NASA LEWIS ADVANCED IPV NICKEL-HYDROGEN TECHNOLOGY

John J. Smithrick and Doris L. Britton National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT

Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: (1) to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, (2) to modify the state-of-the-art cell design to eliminate identified failure modes and further improve cycle life, and (3) to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload.

A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10°C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400.

Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0°C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the noncatalyzed wall wick cells failed (cycles 9,588, 13,900 and 20,575).

Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80 mil thick, 90 percent porous Fibrex nickel electrode has been cycled for 10,000 cycles at 40 percent DOD.

INTRODUCTION

The state of development of individual pressure vessel nickel-hydrogen battery cells is such that they are acceptable for geosynchronous orbit (GEO) applications since not many cycles are required over the life of the battery system (1000 cycles, 10 years). There are 20 communication satellites in GEO using IPV nickel-hydrogen batteries [1]. For the demanding Low-Earth-Orbit (LEO) applications, however, the current cycle life at moderate-to-deep depths-of-discharge (40 to 80 percent) should be improved. Battery cycle life has a major impact on life cycle cost for LEO applications such as Space Station Freedom (30 year life). The primary drivers are transportation to orbit and battery cost.

IPV nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: (1) to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, (2) to modify the state-of-the-art cell designs to eliminate identified failure modes and further improve cycle life and (3) to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch cost and/or increase satellite payload.

The influence of potassium hydroxide electrolyte concentration on cycle life was investigated at Hughes Aircraft Company under a NASA Lewis Contract. Hughes reported a breakthrough in LEO cycle life [2, 3]. Boiler plate cells containing 26 percent KOH were cycled for about 40,000 accelerated cycles at 80 percent depth-of-discharge (DOD) at 23°C, compared to 3,500 cycles for cells containing 31 percent KOH. These results are in the process of being validated using flight hardware and real time LEO test under a NASA Lewis Contract with the Naval Weapons Support Center, Crane, Indiana.

The advanced design for an IPV nickel-hydrogen cell was conceived with the intention of improving cycle life at moderate-to-deep depths-of-discharge (40 to 80 percent). The approach was to review IPV nickel-hydrogen cell designs and results of cycle life tests conducted in-house and by others to identify areas where improvements could result in a longer life [4 - 10]. The feasibility of the design was demonstrated using 6 Ah boiler plate cells [11]. The advanced design is in the process of being validated using 125 Ah flight cells and real time test under a NASA Lewis Contract with the NWSC, Crane, Indiana.

A lightweight nickel electrode using a thick, porous, fiber substrate has been evaluated in-house using boiler plate cells. The thickness is 80 mils, porosity 90 percent, active material loading level 1.6 g/cm³ void volume.

In this report results of validation tests will be updated [12,13].

MEASUREMENTS AND PROCEDURES

For both the 48 and 125 Ah cells, the quantities measured every 2.4 min for each cell during charge and discharge and their accuracies are: current (\pm 2.0 percent), voltage (\pm 0.001 percent), pressure (\pm 1 percent), and temperature (\pm 1 percent). Charge and discharge ampere-hour capacities are calculated from current and time. Charge-to-discharge ratio (ampere-hours into cell on charge to ampere-hours out on discharge) is calculated from the capacities. Cell charge and discharge currents are calculated from the voltage measured across a shunt, using an integrated digital voltmeter. Cell pressure is measured using a strain gauge located on the cell dome. The temperature is measured using a thermistor located on the center of the pressure vessel dome. The thermistor is mounted using a heat sink compound to insure good thermal contact.

To verify the performance of lightweight nickel electrodes in boiler plate hardware, a nickelhydrogen cell was assembled at NASA Lewis. The quantities measured during charge and discharge are: current (\pm 2.0 percent), voltage (\pm 0.001 percent), and time (\pm 1 percent). The charge and discharge ampere-hours and watt-hours are calculated from current and time on every scan. Every 18 sec, the data is saved and stored to a data collector. The data can be retrieved for data and graphical output. The percent utilization is calculated by using the ratio of the measured discharge capacity to the theoretical calculated capacity based on the weight of the active material deposited. End-of-life failure is defined as the point where the discharge voltage degrades to 0.5 V.

For the 48 Ah cells, prior to cell final hydrogen gas adjustment, the nickel electrodes were positively charged, which results in a 0 psia hydrogen gas pressure. After completion of acceptance testing the cells were discharged at the C/10 rate (4.8 A) to 0.1 V or less. The cells were shipped to NWSC, Crane, Indiana, where they were stored at 10°C under trickle charge at C/200 for 31 days. After storage the discharge ampere-hour capacity acceptance test was repeated. The capacity was measured after charging the cells at the C/2 rate (24 A) for 2.0 hr, then C/10 for 6 hr followed by a 0.5 hr open circuit stand. The discharge capacity was measured to 1.0 V at each of the following rates: C2, C, 1.4, and 2 C.

Prior to undergoing cycle life testing, the capacity retention after a 72 hr open circuit stand (10°C) was measured for each cell. For the cycle life test the cells were connected electrically in series to form a six cell pack. The cycle regime was a 90 min LEO orbit consisting of a 54 min charge at a constant 0.93 C rate (44.7 A) followed by a 36 min discharge at a 1.33 C rate (64 A). The charge to discharge ratio was 1.048. The depth-of-discharge was 80 percent of name plate capacity (48 Ah). During the cycle life test the cooling plate temperature was maintained at 10 ± 2 °C. Cell failure for this test was defined to occur when the discharge voltage degrades to 1.0 V during the course of the 36 min discharge.

For the 125 Ah cells, after completion of activation by the manufacturer, the precharge hydrogen pressure was set to 0 psig (14.5 psia) with the nickel electrodes in the fully discharged state. After completion of the acceptance testing the cells were discharged at the C/10 rate (12.5 A) to 0.1 V or less and the terminals were shorted. The cells were shipped to NWSC, Crane, where they were stored at open circuit, and discharged at 0°C for 52 days. After storage the discharge ampere-hour capacity acceptance test was repeated. The capacity was measured after charging the cells at the C/2 rate (62.5 A) for 2 hr then C/10 for 6 hr followed by a 0.5 hr open circuit stand. The discharged capacity was measured to 1.0 V for each of the following rates: C/2, C, 1.4 C, and 2 C.

Prior to undergoing cycle life testing the capacity retention after a 72 hr open circuit stand (10°C) was measured for each cell. For the cycle life test the cells were connected electrically in series to form a six cell pack. The cycle regime is a 90 min LEO orbit consisting of a 54 min charge at a constant 0.69 C rate (87 A) followed by a 36 min discharge at a C rate (125 A). The charge-to-discharge ratio was 1.04. The depth-of-discharge was 60 percent of name plate capacity (125 Ah). During the cycle life test the cooling plate temperature was maintained at $10\pm 2^{\circ}$ C. Cell failure for this test was defined to occur when the discharge voltage degrades to 1.0 V during the course of the 36 min discharge.

The boiler plate cell was cycle life tested using a 90 min cycle regime at 40 percent DOD. The continuous test regime consists of charging at a constant 0.48 C rate for 55 min immediately followed by discharge at a constant 0.69 C rate for 35 min. Cell capacities are measured every 1000 cycles, by charging at the C rate for 80 min followed by discharging at the 0.69 C rate to 0.5 V. Failure of the cell occurs when the discharge voltage degrades to 0.5 V during the course of the constant current 35 min discharge at the 0.69 C rate.

EXPERIMENTAL

TEST FACILITY - The facility is capable of testing 45 battery packs with maximum of 10 cells electrically connected in series per pack. Each pack has its own charge and discharge power supply controlled by a computer which is programmed to satisfy the particular test requirements. During testing, each pack is scanned every 2.4 min to compare data such as voltage, temperature, and pressure with programmed limits. If a parameter is out of limit, an alarm will be initiated and a message will be typed out identifying the cell and parameter. The data is recorded on a 132 mB disc drive and if requested can be obtained in report form. The cell temperature during a test is controlled by a recirculating cooler that circulates a solution of water and ethylene glycol through a cooling plate.

CELL DESCRIPTION - <u>48 Ah Flight Cells</u> - Six Air Force/Hughes recirculating design IPV nickelhydrogen flight cells manufactured by Hughes are undergoing testing. Three of the cells contain 26 percent KOH electrolyte (test cells). The other three (control cells) are identical to the test cells but they contain 31 percent KOH. Both the test and control cells contain an equal number of components. The name plate capacity is 48 A-hr. The cell is illustrated in Fig. 1. It consists of a stack of nickel electrodes, separators, hydrogen electrodes, and gas screen assembled in a non-back-to-back electrode configuration. In this configuration electrodes of different types directly face each other. The stack is packaged in a cylindrical pressure vessel, with hemispherical end caps. This is made of Inconel 718 and lined with zirconium oxide which serves as a wall wick. The components are shaped in a pineapple slice pattern. Like electrodes are connected electrically in parallel. The separators consist of two layers of zircar, which extend beyond the electrodes to contact the wall wick. Hence, the electrolyte which leaves the stack during cycling will be wicked back. The gas screens are polypropylene. The nickel electrode consists of a dry sinter plaque containing a nickel screen substrate which was electrochemically impregnated by the alcoholic Pickett process [14].

CELL DESCRIPTION - <u>125 Ah Advanced Flight Cells</u> - Six 125 Ah advanced design IPV nickelhydrogen flight cells fabricated by Eagle-Picher, Joplin according to NASA Lewis specification are undergoing cycle life testing. The nickel electrodes were fabricated at Eagle-Picher, Colorado Springs and were impregnated with active material by the alcoholic Pickett process [14]. Three of the cells (test cells) contain all of the advanced design features as described in [15]. The other three cells (control cells) are the same as the test cells except they do not have catalyst on the wall wick. All six cells contain 26 rather than 31 percent KOH electrolyte. The test cell design is illustrated in Fig. 2. The new features of this design which are not incorporated in the state-of-the-art Air Force/Hughes or COMSAT/Intelsat Cells are: (1) use of 26 rather than 31 percent KOH electrolyte which improves cycle life [2, 3, and 16], (2) use of a catalyzed wall wick located on the inside surface of the pressure vessel wall which chemically recombines oxygen generated at the end of charge and on overcharge with hydrogen to form water. State-of-the-art nickel-hydrogen cells recombine the oxygen on the catalyzed hydrogen electrode surface in the stack. The catalyzed wall wick should improve oxygen and thermal management [17], (3) use of serrated edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management, (4) use of a floating rather than fixed stack (SOA) to accommodate nickel electrode expansion due to charge/discharge cycling. This is accomplished by use of Belleville disc springs located at each end of the stack. The significant improvements resulting from these innovations are extended cycle life, enhanced oxygen, thermal and electrolyte management, and accommodation of some of the nickel electrode expansion.

LIGHTWEIGHT NICKEL ELECTRODE - The lightweight nickel electrodes evaluated were fabricated from Fibrex nickel fiber substrates. The substrates contain 50 percent nickel fibers, 35 percent nickel powder and 15 percent cobalt powder. The porosity was 90 percent and the thickness was 80 mils. They were electrochemically impregnated by Eagle-Picher using the aqueous process to a loading level of 1.6 g/cm³.

CELL DESCRIPTION - For Testing Lightweight Nickel Electrodes - The cycle test was conducted using a boiler plate cell with a 5- by 5-cm active area. The components of the cell consist of a stack of nickel electrode, separator, hydrogen electrode, and gas screen. The nickel electrode is made from an 80 mil thick, 90 percent porous Fibrex nickel electrode loaded to 1.6 g/cm³ void volume. The separator consists of three layers of 6-mil thick beater treated asbestos separator. The hydrogen electrode was made by Life Systems, Incorporated and consists of a mixture of platinum and Teflon applied to a gold plated nickel screen. The gas screen, located behind the hydrogen electrode, is 60 mil thick nickel Exmet which was compressed to 40 mil to fit into the cavity designed for the hydrogen electrode and gas screen. An electrolyte reservoir plate (ERP), which is incorporated into the cell, is made of 125 mil-thick foam metal. The current collectors are gold plated nickel. A graphic representation of the unit cell cross section is shown in Fig. 3. After assembly, the entire stack is vacuum-filled with 26 percent KOH electrolyte. The electrolyte is allowed to stand in the stack overnight, then the excess electrolyte is drained. The stack is placed in a pressure vessel which is evacuated and filled with hydrogen to 3.4 atm (50 psi).

RESULTS AND DISCUSSION

48 Ah FLIGHT CELLS - <u>Storage Test</u> - The nickel-hydrogen battery could undergo a planned or unplanned storage due to delays prior to launch. This may have an effect on performance. The influence of storage (31 days, trickle charged at C/200, 10°C) on the capacity of the 48 Ah IPV nickel-hydrogen flight cells containing 26 and 31 percent KOH electrolyte is shown in Fig. 4. The spread in the data indicate there is no significant capacity loss after 31 days for either the 26 or 31 percent KOH cells.

48 Ah FLIGHT CELLS - <u>Performance Test</u> - A comparison of the average discharge voltage (three cells) as a function of time for the cells containing 26 and 31 percent KOH was made and is shown in Fig. 5. The voltage for the 26 percent KOH cells is higher than for the the 31 percent KOH cells up to about an 82 percent DOD. The discharge rate was 1.4 C (67.2 A) and the cell temperature was maintained at 10°C. The ampere-hour capacity for these cells is shown in Table I (1.4 C, 10°C). The capacity on the average for the 26 percent KOH cells was about 10 percent lower than the 31 percent KOH cells. The tradeoff for this relatively small decrease in initial capacity is a significant increase in cycle life. It should be noted that the data in Table I is for a 100 percent DOD. In an actual application the DOD will be much less. For instance the DOD for Space Station Freedom will be about 35 percent. In this operating region the cells containing 26 percent KOH have a higher discharge voltage, and still have adequate capacity reserve.

48 Ah FLIGHT CELLS - Cycle Test - The influence of LEO cycling at 80 percent DOD on the end

of discharge voltage for the 48 Ah IPV nickel-hydrogen flight cells containing 26 percent KOH is summarized in Fig. 6. The three cells containing 26 percent KOH failed on the average at cycle 19,500 (cycle 15,314, 19,518, and 23,659). The influence of cycling on the end of charge pressure for the 26 percent KOH cells is shown in Fig. 7. The pressure increase per 1000 cycles if 23.3 PSI. The pressure increase could be indicative of nickel plaque corrosion which converts nickel to active material. The increase in pressure will result in a shift in the beginning of life state-of-charge versus pressure curve.

The influence of LEO cycling at 80 percent DOD on the end of discharge voltage for the cells containing 31 percent KOH is shown in Fig. 8. The three cells containing 31 percent KOH failed on the average at cycle 6,400 (cycles 3,729, 4,165 and 11,355). The failure mode for each cell was characterized by degradation of discharge voltage to 1.0 V. No cell failed due to an electrical short. A comparison of the discharge curve at the beginning and end of life for Cell 1, which failed at cycle 3,729, is shown in Fig. 9. This information also shows a voltage degradation. The ampere-hour capacity decrease for cell 1 was about 33 percent (1.4 C rate, 10°C), for cell 2, 33 percent, and for cell 3, 36 percent. The influence of cycling on the end of charge pressure for the 31 percent KOH cells is shown in Fig. 10. The pressure change can be correlated with the discharge voltage change due to cycling. The pressure increase per 1000 cycles is 23.3 PSI. The pressure increase is the same as for the 26 percent KOH.

The cycle life of the cells containing 26 percent KOH was a factor of 3 to 4 better than those with 31 percent KOH. The superior performance of the 26 percent KOH cells compared to the 31 percent cells is in agreement with boiler plate cell results reported previously (2 and 3). It is attributed to crystallographic change of active material [16]. Gamma NiOOH is converted to beta NiOOH in 26 percent KOH. Beta NiOOH has a lower capacity but longer life.

48 Ah FLIGHT CELLS - <u>Destructive Physical Analysis</u> - Destructive physical analysis (DPA) of all three of the 31 percent KOH cells was completed and documented at Hughes under a NASA Lewis contract [18]. DPA of the 26 percent cells is in process. A summary of the DPA results of the 31 percent KOH cells is as follows: All three cells failed during cycling due to a decrease in voltage and nickel-electrode capacity. The capacity decrease was confirmed by measuring nickel-electrode capacity in flooded electrolyte cells. Some observations which could cause the capacity decrease are nickelelectrode expansion, rupture and corrosion of the nickel-electrode substrate, active material redistribution, and accumulation of electrochemically undischarged active material with cycling. Cell 3 appears to have failed by gradual wear-out due to these changes. Some of the electrodes from cells 1 and 2 showed a premature capacity fading which was responsible for early failure. However, chemical analysis of these electrodes did not show anomalous results. The mechanism of the premature capacity fading is not fully understood by the present DPA. No cells failed due to an electrical short. All cells showed some increase in internal resistance after the cycle test; however, this increase itself does not appear to be the direct cause of failure. All cells showed a decrease in discharge voltage and an increase in charge voltage after the cycle test.

125 Ah ADVANCED FLIGHT CELLS - <u>Cell Performance</u> - For a representative 125 Ah advanced catalyzed wall wick nickel-hydrogen flight battery cell the voltage and pressure during charge and discharge are shown in Fig. 11 (beginning of life). The discharge rate was 0.69 C (87 A) and the temperature was a nominal 10°C. The mid-discharge voltage was 1.248 V. The pressure, as expected, varies linearly with the state-of-charge. It should be noted, however, that the pressure could increase with charge/discharge cycling causing a shift in the state-of-discharge curve.

The effect of discharge rate on ampere-hour capacity for a representative cell of each type is shown in Fig. 12. The capacity decreased slightly (1 percent) over the range of C/2 to 1.4 C, after which point it decreased rapidly. In a nickel-hydrogen cell the gaseous hydrogen comes into contact with the nickel electrodes resulting in a capacity loss due to self discharge. The capacity retention of the cells after a 72 hr open circuit stand at 10°C is shown in Fig. 13. The data shows no significant difference in capacity retention between the catalyzed and noncatalyzed wall wick cells. The capacity retention for the catalyzed wall wick cells on the average is 84 percent and for the noncatalyzed wall wick cells is 85 percent. 125 Ah ADVANCED FLIGHT CELLS - <u>Storage Test</u> - The effect of storage (52 days, discharged, open circuit, 0°C) on the capacity of the six 125 Ah flight IPV nickel-hydrogen cells is summarized in Fig. 14. The spread in the data shows no significant capacity loss for either the catalyzed or noncatalyzed wall wick cells due to the 52 day storage. Actually, there was a slight average increase in capacity for both the catalyzed and noncatalyzed wall wick sells.

125 Ah ADVANCED FLIGHT CELLS - <u>Cycle Test</u> - The influence of LEO cycling at 60 percent DOD on the end of discharge voltage for the 125 Ah catalyzed wall wick IPV nickel-hydrogen flight cells is summarized in Fig. 15. After 22,694 cycles there has been no cell failure in the continuing test. The influence of cycling on the end of charge pressure for the catalyzed wall wick cells is shown in Fig. 16. No pressure for cell 2 is available because the cell had a bad strain gauge. For cells 1 and 3 the pressure increased relatively rapidly up to about cycle 1400 then decreased. The average pressure increase at cycle 1400 is about 11 percent higher than at the beginning of life.

The influence of LEO cycling at 60 percent DOD on the end of discharge voltage for the 125 Ah noncatalyzed wall wick IPV nickel-hydrogen flight cells is shown in Fig. 17. All three of the noncatalyzed wall wick cells failed (cycles 9,588, 13,900, and 20,575). The failure was characterized by degradation of end of discharge voltage to 1.0 V. The cells did not fail due to an electrical short. The influence of cycling on the end of charge pressure for the noncatalyzed wall wick cells is shown in Fig. 18. The pressure for the three cells increased up to about cycle 2000 then decreased. The average pressure increase at cycle 2000 is about 9 percent higher than at the beginning of life.

The cycle life testing will continue until cell failure. A post-cycle teardown and failure analysis will be conducted to evaluate the cause of failure. This information will be used to affect further improvements.

BOILER PLATE CELL - For Testing Lightweight Nickel Electrodes - The cell cycled for 10,000 cycles, as shown in Fig. 19, before the test was terminated. The effect of cycling on the end of discharge voltage is shown in Fig. 20. An end-of-discharge voltage of about 1.175 V is observed for the first 1000 cycles. The average end-of-discharge voltage gradually dropped to about 1.060 V at 9000 cycles and remained constant until the end of the cycle test.

Final characterization testing will be conducted and will be reported later. Failure analysis will also be conducted to evaluate the cause for failures.CONCLUDING REMARKS

al mbiana backatalan in

t

A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10°C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400.

Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0°C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the noncatalyzed wall wick cells failed (cycles 9,588, 13,900 and 20,575).

Cycle life test results of the Fibrex nickel electrode have demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80 mil thick, 90 percent porous Fibrex nickel electrode has been cycled for 10,000 cycles at 40 percent DOD.

10.100

REFERENCES

- L. Miller, "The Ni-H₂ Battery System: A Space Flight Application Summary," 1988 IECEC; Proceedings of the Twenty-Third Intersociety Energy Conversion Engineering Conference, Vol. 2, ASME, New York, 1988, pp. 489-492.
- 2. H. S. Lim, and S. A. Verzwyvelt, "KOH Concentration Effect on Cycle Life of Nickel-Hydrogen Cells, III. Cycle Life Test," *Journal of Power Sources*, Vol. 22, Mar.-Apr. 1988, pp. 213-220.
- 3. H. S. Lim, and S. A Verzwyvelt, "KOH Concentration Effect on the Cycle Life of Nickel-Hydrogen Cells, IV. Results of Failure Analysis," *Journal of Power Sources*, Vol. 29, Feb. 1990, pp. 503-519.
- 4. E. Adler, T. Duranti, P. Frisch, T. Jacewicz, H. Rogers, L. Samoss, S. Stadnick, and L. Tinker, "Nickel-Hydrogen Battery Advanced Development Program," AFWAL-TR-80-2044, Hughes Aircraft Company, 1980.
- 5. D. Warnock, "Life Test of 50 Ah NiH₂ Battery," The 1981 Goddard Space Flight Center Workshop, G. Halpert, ed., NASA CP-2217, 1982, pp. 487-500.
- 6. J. J. Smithrick, "Cycle Life Test and Failure Model of Nickel-Hydrogen Cells," IECEC '83: Proceedings of the Eighteenth Intersociety Energy Conversion Engineering Conference, Vol. 4, AlChE, New York, 1983, pp. 1535-1542.
- 7. D. H. Fritts, "Testing the Mechanical Characteristics of Sintered Nickel-Battery Plaque and Their Relationship to Nickel-Electrode Performance," *Journal of Power Sources*, Vol. 6, Apr. 1981, pp. 171-184.
- D. F. Pickett, H. H. Rogers, L. A. Tinker, C. A. Bleser, J. M. Hill, and J. S. Meador, "Establishment of Parameters for Production of Long Life Nickel Oxide Electrodes for Nickel-Hydrogen Cells," Energy to the 21st Century; *Proceedings of the Fifteenth Intersociety Energy Conversion* Engineering Conference, Vol. 3, AIAA, New York, 1980, pp. 1918-1924.
- 9. V. C. Mueller, "Failure Analysis of Nickel Hydrogen Cell Subjected to Simulated Low Earth Orbit Cycling," The 1983 Goddard Space Flight Center Battery Workshop, D. Baer and G. W. Morrow, eds., NASA CP-2331, 1983, pp. 523-538.
- K. M. Abbey, and D. L. Britton, "Electrolyte Management in Porous Battery Components Static Measurements," NASA TM-83073, 1982.
- J. J. Smithrick, "Initial Performance of Advanced Designs for IPV Nickel-Hydrogen Cells," Power Sources 11: Research and Development in Non-Mechanical Electrical Power Sources, L. J. Pearce, ed., International Power Sources Symposium Committee, Leatherhead, England, 1986, pp. 215-226 (Also, NASA TM-87282).
- J. J. Smithrick, and S. W. Hall, "Effect of KOH Concentration on LEO Cycle Life of IPV Nickel-Hydrogen Flight Cells - An Update," *Proceedings of the 26th Intersociety Energy Conversion Engineering Conference*, IECEC '91, D. C. Black, ed., Vol. 3, American Nuclear Society, 1991, pp. 276-281.
- J. J. Smithrick, and S. W. Hall, "Effect of LEO Cycling on 125 Ah Advanced Design IPV Nickel-Hydrogen Flight Cells - An Update," *Proceedings of the 25th Intersociety Energy Conversion Engineering Conference*, IECEC '91, D. L. Black, ed., Vol. 3, American Nuclear Society, 1991, pp. 311-317.
- 14. D. F. Pickett, "Preparation of Nickel Electrodes," U. S. Patent 3,827,911, Aug. 1974.

- J. J. Smithrick, M. A. Manzo, and O. Gonzalez-Sanabria, "Advance Designs for IPV Nickel-Hydrogen Cells," IECEC '84: Advanced Energy Systems - Their role in Our Future; Proceedings of the Nineteenth Intersociety Energy Conversion Energy Conference, Vol. 1 American Nuclear Society, New York, 1984, pp. 631-635 (Also, NASA TM-83643).
- H. S. Lim, and S. A. Verzwyvelt, "Electrochemical Behavior of Heavily Cycled Nickel Electrodes in Ni H₂ Cells Containing Electrolytes of Various KOH Concentration," *Proceedings of the Symposium on Nickel Hydroxide Electrodes*, D. A. Corrigan, A. A. Zimmerman, eds., Electrochemical Society Proc., Vol. 90-4, Electrochemical Society, 1990, pp. 341-355.
- O. D. Gonzalez-Sanabria, "Effect of NASA Advanced Designs on Thermal Behavior of Ni-H₂ Cells," 1988 IECEC; Proceedings of the Twenty-Third Intersociety Energy Conversion Engineering Conference, D. Y. Goswami, ed., Vol. 2, ASME, New York, 1988, pp. 453-456.
- H. S. Lim, G. R. Zelter, T. T. Smithrick, and S. W. Hall, "Destructive Physical Analysis Results of Ni/H₂ Cells Cycled in LEO Regime," *Proceedings of the 26th Intersociety Energy Conversion Engineering Conference*, ECEC '91, D. L. Black, ed., Vol. 3, American Nuclear Society, 1991, pp. 304-310.

TABLE 1. - CAPACITY OF HUGHES FLIGHT CELLS CONTAINING 26 AND 31 PERCENT KOH ELECTROLYTE

Cell	Capacity, ^a A-hr	KOH concentration, percent
1	59.0	31
2	59.9	31
3	59.0	31
4	53.8	26
5	53.2	26
6	52.3	26

FIGURE 1 - ILLUSTRATION OF HUGHES RECIRCULATION STACK INDIVIDUAL PRESSURE VESSEL NICKEL-HYDROGEN CELL

^a Discharge at 1.4 C rate, 10 °C.

FIGURE 2 - NASA ADVANCED DESIGN IPV NICKEL-HYDROGEN CELL-CATALYZED WALL WICK

FIGURE 3 - CROSS-SECTIONAL UNIT OF THE NICKEL-HYDROGEN CELL

-

Ę

FIGURE 5 - COMPARISON OF HUGHES 49 A-hr IPV Ni/H 2 FLIGHT CELLS CONTAINING 26 PERCENT AND 31 PERCENT KOH ELECTROLYTE

FIGURE 6 - EFFECT OF LEO CYCLING AT 80 PERCENT DOD ON 48 A-hr IPV HUGHES FLIGHT CELLS CONTAINING 26 PERCENT KOH ELECTROLYTE, 10'C.

FIGURE 7 - EFFECT OF LEO CYCLING AT 80 PERCENT DOD ON 48 A-hr IPV HUGHES FLIGHT CELLS CONTAINING 26 PERCENT KOH.

interim and the second

11150 (M) 112

Distant of the

ł

FIGURE 11 - CELL VOLTAGE AND PRESSURE DURING CHARGE AND DISCHARGE FOR A REPRESENTATIVE 125 A-hr ADVANCED CATALYZED WALLWICK IPV Ni/H $_2$ FLIGHT BATTERY CELL

FIGURE 15 - EFFECT OF LEO CYCLING ON 125 A-hr NASA LEWIS ADVANCED CATALYZED WALLWICK IPV NI/H₂ CELLS MANUFACTURED BY EAGLE-PICHER, 26 PERCENT KOH, 60 PERCENT DOD, 10°C.

FIGURE 16 - EFFECT OF LEO CYCLING ON 125 A-hr NASA LEWIS ADVANCED CATALYZED WALLWICK IPV Ni/H2 CELLS MANUFACTURED BY EAGLE-PICHER, 26 PERCENT KOH, 60 PERCENT DOD, 10'C.

FIGURE 17 - EFFECT OF LEO CYCLING ON 125 A-hr NASA LEWIS ADVANCED NONCATALYZED WALLWICK IPV Ni/H2 CELLS MANUFACTURED BY EAGLE-PICHER, 26 PERCENT KOH, 60 PERCENT DOD, 10'C.

Ξ

3

1.1.1

FIGURE 19 - UTILIZATION VERSUS CYCLE NUMBER OF A NICKEL-HYDROGEN CELL USING A FIBEREX NICKEL ELECTRODE.

FIGURE 20 - END OF DISCHARGE VOLTAGE VERSUS NUMBER OF CYCLES FOR A NICKEL-HYDROGEN CELL USING A FIBEREX NICKEL ELECTRODE.

--. -

Section Two

÷

Fuel Cells

