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Abstract

The results of an experimental examination of the
vortex structures shed from a low profile "wishbone" gen-
erator are presented. The vortex generator height rela-
tive to the turbulent boundary layer was varied by testing
two differently sized models. Measurements of the mean
three-dimensional velocity field were conducted in cross-

stream planes downstream of the vortex generators. In
all cases a counter-rotating vortex pair was observed. In-
dividual vortices were characterized by three descriptors
derived from the velocity data; circulation, peak vortic-

ity, and cross-stream location of peak vorficity. Measure-
ments in the crossplane at two axial locations behind the
smaller wishbone characterize the downstream develop-

ment of the vortex pairs. A single region of streamwise
velocity deficit is shared by both vortex cores. This is
in contrast to conventional generators, where each core
coincides with a region of velocity deficit.

The measured cross-stream velocities for each case

are compared to an Oseen model with matching descrip-
tors. The best comparison occurs with the data from the

larger wishbone.

Background and Research Objectives

Vortex generators are used to provide a measure of
flow control. Most often the goal is to achieve some
resistance to boundary layer separation or to reduce the
deleterious effects of locally strong secondary flows.

In external flow situations, such as that encountered

on airfoils, the most common application is upstream of
flight control surfaces where boundary layer attachment
is often critical to flight performance.

In internal flows vortex generators are used to pre-
vent flow separation and reduce total pressure distortion.
These effects occur often in inlet ducts and diffusers,

due to such factors as duct centerline curvature and large

changes in duct cross-sectional area.

The key to vortex generator performance is in the
mixing and secondary velocity field created downstream
by the shed vortex structures. If properly situated in the
flow field, the helical motion of the fluid in the vortex

forces high energy fluid of the freestream into the slower
moving fluid of the boundary layer while countering the
tendency of naturally occurring secondary flows to distort
the flow field by the opposite mechanism, namely to
displace boundary layer fluid away from the wall and
into core regions of the flow.

Since the vortex generator presents an obstruction in
the flow, there is a drag penalty paid for its use. Con-
ventional blade type or delta wing type vortex generators
are found to work best when the vortex generator height
above the flow surface, h, is approximately that of the
local boundary layer thickness, 6. Recent work in the de-

sign and performance of vortex generators has produced
low profile vortex generators that meet or exceed the mix-
ing and strength performance of more conventional types.
The height ratio, hi6, for a low profile vortex generator
is typically between one and three-tenths, thereby pro-
riding a substantial reduction in the drag penalty paid for
its use. Low profile vortex generators have been used
recently to improve the high angle of attack behavior
of missiles, 1 control a shock-boundary layer interaction, 2

and improve the total pressure distortion and recovery
performance of a diffusing S-dueL 3 Figure 1 illustrates
the use of a "wishbone" generator, which is a particu-
larly effective low profile design. The secondary velocity
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Figure 1 The flow structures shed from a vortex
generator are examined in a downstream crossplane.

structure of the shed vortices is measured in a crossplane
downstream of the vortex generator. As indicated in Fig-
ure 1, this structure is a pair of counter-rotating vortices
with the flow between vortices directed away from the
wall (an "upflow" pair). This structure was verified in a
flow visualization study conducted by Lin et al. 4



Our qualitative description of embedded vortex struc-

tare can be quantified using three parameters or "descrip-

tors". For any embedded vortex i these are:

1. (zi, Yi) -- Location of the vortex core center. Its
variation with axial position x represents the trajec-

tory of the vortex.

2. _nax __ Peak vorticity. The peak vorticity is lo-

cated at (zi, yi) and its magnitude is indicative of
the vortex concennation.

3. F_ -- Circulation of the vortex, ri represents the

"spinning strength" of the vortex.

Each of these three descriptors are derivable from the sec-

ondary velocity data taken in a downstream crossplane,

as illustrated in Figure 1. A recent study conducted at
NASA Lewis Research Center 5 focused on the quantita-

tive description of the vortices shed from conventional

vortex generator blades. In this study we conduct a sim-

ilar examination of the low profile wishbone generator.

The objectives of this study are summarized as follows:

1. Mount a large low profile wishbone generator in the

thick boundary layer of NASA Lewis Research Cen-

ter's Icing Research Tunnel (IRT). At a suitable po-
sition downstream of the vortex generator conduct

highly resolved crossplane velocity surveys to char-

acterize and quantify the vortex structures produced

by the generator. Conduct these measurements on
two different models, varying h/6. For one model,

examine two downstream crossplanes to study the

streamwise development of these structures.
2. These measurements have the additional benefit of

providing workers in computational fluid dynamics a
basis for modeling low profile wishbone generators

in their studies. Simple mathematical models, devel-

oped in terms of the vortex descriptors, are derived
from the data to represent the measured vortex struc-

tures as velocity and vorticity distributions. These

models are then compared against the data.

Facilities and Procedures

The Test Facility

The investigation of tip vortices shed from vortex

generators generally involves a grid spacing having a
scale similar to that of the vortex viscous core diameter.

In the near-wake region of a low profile vortex generator

this is roughly the same size as h, and thus only a frac-
lion of the local boundary layer thickness. Typical test

section turbulent boundary layers generated in facilities
at NASA-Lewis are on the order of a centimeter or so in

thickness. To obtain the fine scale grid resolution desired

for this study it was necessary to locate a test facility ca-

pable of generating a nominally two-dimensional turbu-

lent boundary layer with 6 in excess of 7 or 8 centimeters.

This requirement was determined as a result of balancing

000 horsepower fan.

Contraction scctionJ \ Control room.

Figure 2 A schematic illustration of
NASA Lewis' Icing Research Tunnel

such factors as time available for testing and the size of

five-hole probe tips available for use within Lewis' Inlets,

Ducts, and Nozzles workgroup. NASA Lewis Research

Center's IRT is a suitable candidate, having a turbulent

test section wall boundary layer of the required thick-

ness. The IRT is a large subsonic test facility designed

and equipped to support the testing of low speed mod-

els. It is a closed-return atmospheric-type tunnel with a

rectangular cross-section at every ax_ station. Figure 2

is a plan view of the IRT showing its various operational

elements. In this study tunnel total pressure and to-

tal temperature are approximately atmospheric. The test
section dimensions are 1.8 by 2.7 meters with velocities

ranging between 20 and 140 meters/sec. Corresponding
mass flow rates are between 100 and 500 kilograms/sec.

Operation of the wind tunnel is fully automatic.

Pressure and temperature instrumentation located in the

test section provides the data input to aid in setting and

controlling tunnel flow conditions. Each flow measuring

device, whether operational or research, is monitored by
a cenwal minicomputer based operating system.

More information concerning the design, operations,

and capabilities of the IRT may be found in the report of
R. Soeder and C. Andracchio. _

Test Parameters and Research Instrumentation

Hgure 3 is an illustration of the test section showing

the coordinate system in use. The cartesian coordinate
axes are centered on the tunnel top wall at an axial loca-

tion corresponding to the boundary between the contrac-

tion and test section. The model vortex generator, probe,

and probe traversing hardware are mounted on a hatch in
the test section ceiling. The leading edge of this hatch
is located at x z 3 meters. This test was conducted

at a freestream Mach number of 0.2. The test section

freestream velocity, Uoo, is approximately 70 meters/sec.

Boundary layer surveys conducted in the empty test
section indicate a nominally two-dimensional turbulent

profile over the central two-thirds span of the top wall. At

the axial location corresponding to the mounting position

2
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Figure 3 The IRT test section showing the coordinate

system used and the location of the test hardware.

of the vortex generator model _ _ 9 centimeters, and

the Reynolds number is Re = U_z/v ,_ 13 x 106.

No significant spanwise variations in profile shape or
thickness were detected in the center span region of the

test section ceiling.

The vortex generator models tested in this study are

patterned after the Wheeler wishbone design. 7 Figure 4

is an illustration of the geometry. Two models were
constructed from a block of aluminum alloy using a wire

cutting (EDM) process. The dimensions of both models

are given in Figure 4.

Figure 5 illustrates the arrangement of hatch, vortex

generator model, velocity probe, and traversing bearing.

A two axis (z, y) mechanism located above the hatch

moves the probe stem in the crossplane survey grid,

sealed by the free-floating "double-bearing" rig.

The velocity probe is a five-hole Pilot probe with

a tip diameter of 0.23 cms. This probe tip is mounted

off-axis on a goose-necked stem to a position upstream
of the circular bearing seal line. The probe is used in

a non-hulling capacity and is calibrated to determine all

three components of the mean flow velocity following the

procedure outlined by Treaster and Yokum. s

C C -

_-20"_

R1 = 79 mm
R2 = 65 mm

R3 = 152 mm

h=25mm
C = 92 mm

s =68 mm

Figure 4 Small wishbone generator geometry.

The length dimensions of the larger generator
are 2.5 times the values listed here.

Figure 5 The arrangement of model generator

and instrumentation on the test section ceiling.

Right and left side flow symmetry in the crossplane

is expected in the wake of the vortex generator. To

take advantage of this, the survey grids examined in this

study are not centered with respect to the model, but

are positioned to favor the right half. The large vor-

tex generator model is mounted with its trailing edge at

(z, z) = (3.24, 0.00) m. The 15.1 x 13.5 cm (z, y)
crossplane survey grid used for the larger model is cen-

tered at (x, z) = (3.47, 0.04) m. This is one chord length
downstream of the model.

The smaller vortex generator is mounted at two

z locations. The (z, z) wailing edge positions are at

(3.10, 0.00) m and (3.38, 0.00) m. The axial variation

of 6 between these two z positions is negligible. The

11.4 x 10.8 cm grid used for the smaller model is centered

at (z, z) = (3.47, 0.04) m for survey locations of four
chord lengths and one chord length downstream of the

model, respectively. The grid spacing for both models is

Az = A v = 0.64 cms.

Experimental Results

Small Vortex Generator

The crossplane velocity field measured one chord

length downstream of the small vortex generator

(h/_5 = 0.30) is shown in Figure 6a. A concentrated pair

of upflow vortices is evident in the vector plot.

The three structural descriptors of the RHS vortex

are derived from the measured crossplane velocity field il-

lustrated in Figure 6a. The velocity field is first converted

to a streamwise vorticity field following the relation:

';z)w_:= • (I)

Finitedifferenceformulasareused torepresentthespatial

derivativesin Eq. (I). Figure 6b isthe vorticityplot

correspondingtothevelocityfielddepictedinFigure6a.

a_ a= is located at a grid point having coordinates (zi, Yi).
For the RHS vortex illuslrated in Figures 6a-b:

w_a_ = 7586 see -1, (zi, yi) = 1.44, 2.56 cms. (2)



Thecenter of the vortex appears to be located on the fight

shoulder of the vortex generator. The circulation, 1"i , is

calculated by first isolating the region of core vorticity in
the data field. This is done by referring to the contour

plot in Figure 6b. A path enclosing the region of core

vorticity is defined. The circulation is then calculated

according to:

(3)

where V is the velocity vector in the crossplane, and

_"refers to the path coordinate. By using closed paths
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Figure 6 The results one chord length

downstream of the small vortex generator.

composed of line segments in the z or y coordinate di-

rections, the circulation is easily determined. The circu-

lation of the vortex illustrated in Figure 6b is found to
be Fi = 1.561 m_/sec. Contours of streamwise veloc-

ity ratio are plotted in Figure 6c. The boundary layer

is slightly thickened in the vicinity of the ¢m_ up-

flow pair, as would be expected. An unexpected result is
the lack of a streamwis¢ velocity deficit coinciding with

the location of each vortex center. A single large region

of streamwise velocity deficit encloses both vortex cores

and is centered at a crossplane location coincident with

the tip location of the vortex generator.

The corresponding results recorded four chord

lengths downstream of the small vortex geneaatorare

shown in Figures 7a-c. The descriptors of the RHS vor-
tex at this location are:

w_ a= = 1044 see -1, (zi, _ti) = 2.08, 5.12 ems,
(4)

ri = 1.047 m_/see.

Figures 7a and 7c illustrate the displacement of the
vortex cores away from the wall, convected them by the

strong secondary flows occurring in the upwash region
of the vortex pair. As discussed in Wen& et al., _ the

33% reduction in circulation may be attributed, in part,

to the ¢rossplane component of wall shear stress which

applies a torque opposing the rotation of the vortex. An
additional mechanism for the observed circulation decay

is the diffusion of vorticity between the closely spaced

vortex cores. A steep gradient in streamwise vorticity

between the LHS and RHS cores is evident in Figures

6b and 7b. In addition to reducing circulation and peak

vorticity, diffusion of the core vorticity has significantly

increased the core size as can be seen by comparing

Figures 6 and 7. Located under the core in Figure 7b is a

region of "secondary" vorticity. This vorticity, opposite

in sign to that of the core or "primary" vorticity, is

induced by the viscous interaction between the secondary

flows of the vortex and the walL Figure 7c again shows a

single region of streamwise velocity deficit. This region
is now centered between, and above, the vortex cores.

Large Vortex Generator

The results obtained one chord length downstream of

the large vortex generator(hi6 = 0.70) are illustrated in
Figures 8a-c. The descriptors of the RHS vortex are:

w'_ a= = 6435 see -x, (zi, yi) = 2.74, 8.15 eros,
(5)

Fi = 5.173 m_/sec.

Modeling

The large number of parameters to consider when

designing a vortex generator array for an aircraft com-

ponent, such as a wing or inlet, has the implication that



experimental work on optimum designs is often slow and

expensive. This fact has motivated a few workers in

computational fluid mechanics to assist in the optimizing

problem by including a means of representing vortex gen-
erators in their codes. A simple and effective means of

doing this is to employ a model for the crossplane veloc-

ity or vorticity induced by the generators. This is the ap-

proach taken in recent work by Anderson et aL 1°' _1 who

examined multiple vortex generator array geometries in a

diffusing S-duct inlet using a pambolized Navier-Stokes

(RNS) solver. A similar inclusion of embedded vortices

in a full Navier-Stokes (FNS) code was implemented by
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Figure 7 The results obtained four chord lengths

downstream of the small vortex generator.
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Figure 8 The results obtained one chord length

downstream of the large vortex generator.

Cho and Greber t2 for a constant area circular duct and

a diffusing S-duct geometry. The advantage of this ap-

proach lies in the fact that a newly formed vortex may

be accurately represented in this manner.

Experimental workers concerned with embedded
vortices have often noticed the close similarity of

observed crossplane vortex structure to simple two-

dimensional models of vortices. Inviscid or "potential"

models were first applied to results obtained in subsonic

diffusers by Taylor and Grose) s Later, Pearcy _4 would



developembedded vortex interaction models based on
the inviscid representation of embedded vortex structure.

Eibeck and Eaton _s compared the structure of a single em-

bedded vortex to that of the patchwork "Rankine" model

vortex. Studies by Pauley and Eaton 16 and Wen& et al) 7

have made comparisons to the "ideal viscous" or "Os-
een" model.

Lets now examine the equations of the Oseen model

and show the comparison between the model and the

present results.

The Oseen Model of the Embedded Vortex

The two-dimensional Oseen model of a viscous vor-

tex represents the time dependent decay of a potential

vortex where the velocity at the origin (r = 0) is forced
to zero at time t = 0. A single isolated vortex cen-

tered on the crossplane origin has velocity components

(in cylindrical coordinates):

'V f* "* 0,j

P
vo:_r(1--er"/(4vt)),

(6)

where F is the vortex circulation and v the laminar

coefficient of kinematic viscosity. Following Squire Is

the unsteady solution is transformed to a steady one by

relating the decay time to the distance between the vortex

generator tip and the crossplane of interest (z - z0):

:_ -- X 0
t ,_ _ (7)

Uoo

For an isolated turbulent vortex i located at (zi, Yi) the

velocity components in the crossplane can be written in

terms of the vortex descriptors./7 In cartesian coordi-

nates:
r,(z - Zi)

F,,
(8)

r_(y -_y_) p

where:

(9)

and:
7f_ nax 2

Fi=l-exp( _ii Ri}" (10)

The vorticity field is given by:

(11)

We can superimpose solutions for a representation
of the wall and neighboring vortices. Figure 9 illusmates

how a representation of a single embedded vortex is

constructed. Eqs. (8) represent the secondary velocities

Y_

¢_¢¢_tst_n= 1"1I

.I.//////////////._/// ,v z
" Yl

( +____ _ _t
llnlll

-y

Figure 9 The construction of an Oseen

model of a single embedded vortex.

vi and wi for the vortex above the wall. The equations for

the image vortex are identical except for the sign switch

on Fi and Yi. Denote these velocities l)irni and wire i •

The equations representing the embedded vortex are then

simply:

v = Vl + Vim x, (12)
W -" W 1 -[- tl)im 1"

Figure 10 illustrates the construction of an embedded

array of N vortices. The secondary velocities of this

Y _--_ z i _m.lex i

I y_

.1.//_/////_.//,y///. w z

I i

Figure 10 The construction of an {)seen

model of an array of N embedded voriicies.

flow field are:

l/ = I) 1 "4- Vim 1 "[" V2 "l- Vim 2 "_- " " "

"''q'VN-I- VimN,

W= 1131 + Wim l -l- W2 dr Wim 2 "t-''"

• ''+WN + WirnN.

(13)

6



Model and Data Comparisons

The model is constructed by matching the vortex

descriptors in the equations to those previously listed for
the data (Eqs. 2, 4, and 5). The circulation and peak

vorticity descriptors for the LHS vortex in each case are
chosen to be equal (but opposite in sign) to the descriptor

values determined for the RHS vortex. (zi,yi) for the

LHS vortex is found by symmetry with respect to the

line (x, y = 0, z = 0).

Figure l la illustrates the crossplane velocity field
of the model when the vortex descriptors are matched

to those obtained from the data taken one chord length

downstream of the small vortex generator. This can be
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Figure 11 The model velocity field (lla) one
chord length downstream of the small vortex

generator, and a contour plot of the variance
between the measured velocities and the model (llb).

compared to Figure 6a. One point to note is that the
near wall velocities are a good deal weaker in the model

representation of the data. Figure lib is a contour plot of
the variance between the data and the model defined as:

variance = I['Qdata - _Tm°d°'ll (14'

The best comparison occurs just above the RHS core,
where the variance is less than 15%.

Figures 12a-b illustrate the corresponding results for

the crossplane field four chord lengths downstream of the
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Figure 12 The model velocity field (12a) four

chord lengths downstream of the small vortex

generator, and a contour plot of the variance
between the measured velocities and the model (12b).

small vortex generator. Figure 12a may be compared to

Figure 7a. The best comparison here occurs just below
the vortex core, and to either side.

Figures 13a-b illustrate the model and variance ob-

tained one chord length downstream of the large vortex
generator. Figure 13a may be compared to Figure 8a.

The model provides a better match to the data in this

case, as evidenced by the large regions of the flow field

(in the vortex upwash, downwash, and above the core)
where the variance is less than 15%.

Summary

The low profile wishbone generator sheds a strong

pair of counter-rotating vortices. Measurements of ve-

locity in a downstream crossplane form the basis for
characterization of the vortex structures. Vortex struc-

ture was quantified by three descriptors. Vortex strength

was characterized by its circulation or integrated stream-

wise vorticity, vortex concentration by the magnitade of

peak vorticity, and the vortex trajectory by the location

of peak vorticity.

Measurements made at two axial locations illustrate

the streamwise development of the shed vortices. The

counter-rotating pair of vortices was observed to lift off
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the surface quickly. A single region of streamwise veloc-

ity deficit was located between vortex cores. Although
the observed three-dimensional flow structure was com-

plex, the flow in the erossplane is well _nted by the

two-dimensional Oseea model, particularly in the case of

the larger vortex generator.
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