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Abstract

This paper describes a knowledge-based system, called visualization tool assistant
(VISTA), which was developed to assist scientists in the design of scientific data
visualization techniques. The system derives its knowledge from several sources which

provide information about data characteristics, visualization primitives, and effective visual
perception. The design methodology employ.ed by the system is based on a sequence of
transformations which decomposes a data set into a set of data partitions, maps this set of

partitions to visualization primitives, and combines these primitives into a composite
visualization technique design. Although the primary function of the system is to generate
an effective visualization technique design for a given data set by using principles of visual

perception, the system also allows users to interactively modify the design, and renders the
resulting image using a variety of rendering algorithms. The current version of the system

primarily supports visualization techniques having applicability in earth ana space sciences,
although it may easily be extended to include other techniques useful in other disciplines
such as computational fluid dynamics, finite-element analysis and medical imaging.

Introduction

Scientific data visualization has become an important discipline which supports scientists in

exploring data, looking for patterns and relations, proving or disproving hypotheses, and

discovering new phenomenon using .graphical techniques. Although visualization has such an
important role in scientific data processing, it is still an art which requtres significant knowledge in
various fields, such as data management, computer graphics, perceptual psychology, and visual
art. Most scientists whose work involves data visualization usually lack this knowledge.

Furthermore, there are very few guidelines for selecting and creating effective visualization
techniques. In order to facilitate the visualization process, there is a strong need for systems that

embody the required knowledge and provide guidance to their users.
The visualization process can generally be viewed as a sequence of transformations that

convert a data set into a displayable image. There are typically three transformations in this process
[Haber88]: (1) data manipulation, (2) visualization mapping, and (3) rendering. Data manipulation
includes such operations as gridding and interpolation which convert a given data set into a form
that is suitable for subsequent visualization operations. Visualization mapping defines an abstract
visualization technique by establishing a set of bindings between the data manipulated in the
previous stage and the visualization primitives such as positional parameters, color, texture, and
animation. The primary objective of visualization mapping is to identify a set of visualization
primitives that can effectively convey the informational content of data. During the f'mal stage, an

image of the data is rendered, according to the design produced by the visualization mapping,



using such operations as projection, shading, and hidden surface removal. While there are several
algorithmic techniques that are useful in the data manipulation and rendering phases, there is no
well-def'med methodology to guide the visualization mapping process. Since the effectiveness of a
visualization technique is primarily determined by the bindings established at this stage, the
visualization mapping is the most important stage of the visualization process. This is the stage at
which scientists need considerable guidance in the design of effective data visualizations.

Although the existing visualization systems such as apE [Crusi87], NGS [Trein88], FOTO

[Cogni89], AVS [Upson89], and DataScope [NCSA89] provide the basic mechanisms to establish
such bindings, they generally do not provide much guidance on generating the most effective
visualization technique for a given data set. For instance, the data flow diagrams that are
conveniently used to specify visualization techniques in ape and AVS may also lead to the design
of ineffective visualization techniques due to their seemingly unlimited flexibility. Assuming that

the potential users of visualization tools are not visualization experts, a methodology leading to the
design of effective visualization techniques is needed. Even though this need has been
acknowledged by many researchers developing visualization tools, the design of visualization
techniques has mostly been done in an ad hoc fashion. This is primarily attributable to our limited
understanding of how the human visual system works and what types of visual presentations can
most effectively harness its capabilities. Recently, a methodology that matches data characteristics
and interpretation aims with properties of visualization techniques using a natural scene paradigm
[Rober90] has been proposed to guide the design of visualization techniques for effective data
presentation. Methodologies of this sort are indeed essential in order to simplify the scientific data

visualization process for the average user.
In this paper, a visualization tool assistant (VISTA) which employs a compositional design

methodology is described. In order to ensure the effectiveness of its designs, VISTA uses a large
number of rules, mostly heuristic in nature, that have been acquired through literature surveys and
discussions with visualization experts [Senay90]. While the primary function of VISTA is to

automatically generate an effective visualization technique design for a given data set by applying
these rules in a systematic fashion, it also allows users to interactively modify this design, and
renders the resulting image using a variety of rendering algorithms. The development of VISTA is
based on the research in graphical perception ['Berti83, Cleve85, Tufte83] and extends the design
methodology of APT [Macki86], a presentation tool for two dimensional graphics, to three
dimensions.

Knowledge for Scientific Data Visualization

Visualization essentially offers another level of abstraction at which scientific and

engineering data can be represented and manipulated quite effectively. In a sense, it has a similar
role to that of a database schema for providing insight into a complex information space. Because

of its ability to present a large amount of data at once, a visual data representation and manipulation
scheme provides a much higher bandwidth in data processing than that of any other alternative.
Since the process leading to the design of data visualization techniques involves several
transformations which require knowledge in a variety of disciplines, the process of generating an
effective visual presentation of data is difficult. Furthermore, there is no unique visual presentation
that can convey the entire informational content of data. Alternative visualization techniques must
be used to convey different aspects of the data. In general, the creation of an appropriate data
visualization and its accurate interpretation requires knowledge about data, computer graphics, and

visual perception.
As the term "data visualization" implies, data and graphics are the essential components of

scientific data visualization techniques. In the visualization mapping stage where a visualization

technique is defined abstractly, various characteristics of data dictate the type of graphical
primitives that must be used to express the data content. For instance, a scalar field may be
effectively displayed using color whereas a vector field cannot be represented using color alone.
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Knowing the characteristics of data relevant for visualization map.p!ng is the first important step in
designing an effective data visualization technique. The most primlnve components of visualization
techniques are the marks (graphical symbols) which constitute the graphics. In general, a
visualization technique can be viewed as a collection of marks which collectively encodes a

particular data subset. While it is possible to describe visualization techniques in terms of simple
marks, such as points, lines, areas, and volumes, a higher level description based on commonly
used primitive visualization techniques which encode simple relations among a few data variables
is more practical. It is also possible to combine several primitives for visualizing a
multi-dimensional data set. Similar to grammar rules in a language, there are rules, albeit implicit
and not well-known, for combining the visualization primitives. Knowledge about various

graphical primitives as well as composition rules is essential for data visualization using advanced
computer graphics techniques. Since graphical primitives, rather than the data itself, are presented
to convey the data content, it is important that the graphical primitives used in visualization
precisely express only the data. There are visualization techniques that are incapable of presenting
certain phenomena that may exist in the data. For instance, particles do not necessarily show
twisting effects in a flow field. If it is desirable to display twisting effects in a flow field, the use of
flow ribbons is more appropriate than the use of particles [Shir189]. In general, knowledge of this
sort which is heuristic in nature and relates to how human perceptual system reacts to different

graphical primitives is crucial for effective data visualization.
Based on an analysis of existing data visualization techniques [Senay91], the knowledge

necessary for scientific data visualization has been classified into five knowledge categories: (1)
data characteristics, (2) visualization vocabulary, (3) primitive visualization techniques, (4)

composition rules, and (5) rules of visual perception. In the rest of this section, each of these

knowledge categories is described in further detail.

Data Characteristics

Scientific data can broadly be classified into two groups: qualitative and quantitative.

Qualitative data is further subdivided into two groups: nominal and ordinal. Nominal data types are
unordered collections of symbolic names without units. For instance, the names of the orbiters,
such as Hubble, Magellan, Mariner, Viking, and Voyager form a nominal data set. Ordinal data
types are rank ordered only, where the actual magnitudes of the differences are not reflected in the
ordering itself. A typical example of an ordinal data set is the names of the calendar months,

January through December.
Compared to qualitative data, quantitative data is more common in all scientific disciplines.

Quantitative data is typically classified along two dimensions; (1) based on the number of
components which make up the quantity, and (2) based on the scales of the values. Along the first
dimension, quantitative data can be scalar, vector, or tensor. Scalar data types possess a
magnitude, but no directional information other than a sign. They are simply defined as single
numbers. Vectors have both direction and magnitude. Quantitatively, their mathematical

representation requires a number (equal to the dimensionality of the coordinate system) of scalar
components. In general, a vector is a unified entity. This implies that the problem of visualizing
vector fields is not equivalent to the problem of displaying independent, multi-variate scalar fields.
The number of components which specify a tensor depends on the dimensionality of the coordinate
system and the order of the tensor. Along the other dimension, quantitative data can be classified as
interval, ratio, and absolute [Koss189]. Interval data scales preserve the actual quantitative
difference between values (such as farenheit degrees), but do not have a natural zero point. Ratio
data scales are like interval scales but they do have a natural zero and can be defined in terms of

arbitrary units. For instance, two hundred dollars is twice as much as one hundred dollars.
Absolute data scales are also ratio scales which are well-defined in terms of non-arbitrary units,

such as inches, feet, and yards.
Other important attributes of data, that play a role in selecting visualization primitives,

3



include functional dependencies among data variables, spacing between sampling points,
cardinality of the data set, upper and lower bounds of values, units of measurement, coordinate

system, scale and continuity of data.

Visualization Vocabulary

The visualization vocabulary identifies the basic building blocks of scientific data

visualization techniques. In general, a mark (any graphical symbol that is visible on a display
medium) is the most primitive building block that can encode some useful information in data
visualization. Each mark can be classified as either simple or compound. There are four types of

simple marks: points, lines, areas, and volumes. A point has a single conceptual center that can
indicate a meaningful position, a line has a conceptual spine that can indicate a meaningful length or
connection, an area has a single conceptual interior that can indicate a meaningful region or cluster
of marks, and a volume has a single conceptual interior that can indicate meaningful space in three
dimensions. Of the four simple mark types, the first three are identified by Bertin [Berti83] as

being the most primitive components of two dimensional graphics and used by Mackinlay
[Macki86] to automate the design of graphical presentations. The fourth mark type, volume, is a
natural extension of Bertin's classification to three dimensions and appropriate when the third

dimension can be perceived effectively. A compound mark is a collection of simple marks which
form a single perceptual unit. For instance, contour lines, glyphs, flow ribbons, and particles are
all compound marks. A useful analogy is that simple marks are like letters in the alphabet, whereas

compound marks are like words in a dictionary.
Data content is generally encoded by varying the positional, temporal, and retinal properties

of marks in a visualization technique. A positional encoding of information is a variation of the

positions of the marks in the image. A temporal encoding of information is a variation of the mark
properties over time. A retinal encoding of information is any variation of the "retinal" properties of
the marks that the retina of the eye is sensitive to independent of the position of the marks. The

retinal properties of marks include size, texture, orientation, shape, and the three parameters of
color, namely hue, saturation, and brightness.

The marks can further be classified as to whether they represent single or multiple data

variables and single or multiple data points. A single variable (SV) mark is associated with one
variable, whereas a multiple variable (MV) mark is associated with several variables. A single data
(SD) mark conveys a single value for a single data point, whereas a multiple data (MD) mark
shows a range of summary information regarding the local distribution of several data points. This

classification is particularly useful when visualizing large multi-variate data sets.

Primitive Visualization Techniques

Primitive visualization techniques are those which encode one dependent and up to four

independent variables. Additional variables (dependent or independent) that may exist in a given
data set can further be encoded by manipulating retinal properties of marks within the primitive

visualization techniques or equivalently combining two or more primitive visualization techniques
into a single design. In general, each primitive visualization technique can be classified into one of
three categories, that is, positional, temporal and retinal, depending on the primary mark property
that is manipulated by a given technique. Positional techniques can be one, two, and three
dimensional such as single axis, contour plot, and surface diagram, respectively. There is only one

temporal technique, namely, animation, and a set of retinal techniques that corresponds to the set of
retinal properties of marks such as shape, size, orientation, texture, and color. Following the
analogy made previously between simple (or compound) marks and letters (or words), the
primitive visualization techniques may be viewed as forming simple sentences in a language. The
primitive visualization techniques that are supported by VISTA are shown in Figure 1.
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Figure 1. Primitive Visualization Techniques.

Although some of these techniques may be considered to be compositions of others, it is
more appropriate to include them in the set of primitive visualization techniques rather than to
construct them in terms of others. For instance, an arrow plot may be viewed as a composition of

a scatter plot and a shape, where the scattered points have an arrow shape. The set also contains
techniques that manipulate more than one of the positional, temporal, and retinal properties of
marks. For instance, a pseudo-color image is basically a positional technique, which also uses one
or more of the color parameters, namely hue, saturation, and brightness.

Composition Rules

Information spaces that are of interest to scientists and engineers are mostly multi-
dimensional. Even though such information spaces can be investigated in a traditional manner by
looking at a small number of dimensions one at a time and repeating the process until all
dimensions are correlated, it is often more beneficial and desirable to visualize several, or if

possible all, dimensions at once. Fortunately, the recent advances in computer graphics hardware
and software have made the visualization of multi-dimensional data sets a reality. There are already

examples of visualization techniques that effectively display several data variables at once. Our
analyses of these techniques have revealed a set of composition rules that describes the generation
of composite visualization techniques from primitives. These rules not only describe how a
composite design is obtained from a set of primitive visualization techniques, but may also be used
to generate novel visualization techniques for multi-dimensional data sets.

In general, the composition rules define conditions under which a pair of visualization
techniques can be combined to form composite visualization techniques for displaying
multi-dimensional data. Each of these rules also describes a combination scheme that can

effectively convey the correlation between data variables encoded by the component visualization
techniques being combined. The conditions associated with each rule test (1) the compatibility of
component visualization techniques, (2) the visibility of each component upon composition, and
(3) the distinguishability of components in the composite design. The compatibility conditions
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checkwhetherthecomponentvisualizationtechniqueshaveidentical axes,that is, the axesare
associatedwith the samedata variables,have the sameupper and lower bounds,units of
measurement,coordinatesystems,and scales.Furthermore,the compatibility of marks of the
componentsaretestedby eachrule to determinewhethera markpropertyusedto encodeadata
variableby onecomponentis constrainedby theotherin suchawayasto preventthecomposition
associatedwith therule. Thevisibility conditionscheckwhetheranacceptableportion of both
componentvisualizationtechniqueswouldbevisibleaftercomposition.Theacceptablevisibility is
determinedbasedon the characteristics of data being visualized, the type of primitive visualization

techniques involved in the composition, and the amount of data that can be seen interactively after
composition. For instance, if the data is either discrete or discontinuous then all marks of the
component visualization technique should be visible. If the data is continuous and visualized with a
primitive visualization technique, such as a contour plot, which already takes advantage of the
continuity, then again, all marks of the primitive visualization technique should be visible. If only a
small portion of data would be visible after composition then interaction methods, such as cutting
planes, adjustable transparency, and peelable surfaces, must be available to allow the user to view
the entire data. The f'mal class of conditions associated with composition rules checks whether the

marks of one component visualization technique involved in the composition process are

distinguishable from the marks of the other component by manipulating an appropriate retinal
property of the marks. For instance, if two contour plots are to be combined then the contour lines
belonging to different contour plots must be distinguishable. Since color and size (or line
thickness) are the only manipulable retinal properties of contour lines, either the color or the
thickness of lines belonging to one contour plot should be different than that of the other contour

plot.
Although additional or alternative composition rules may be identified through further

analyses of existing visualization techniques, our experience shows that the following six
composition rules are useful in describing and generating a large number of composite visualization

techniques.
1. Mark composition merges marks of the component visualization techniques by pairing

each and every mark of one technique with a compatible set of marks of the other (see Figure

2a). For mark composition to be applicable, each component involved in the composition
must be manipulating different and nonconflicting mark properties. The number of mar. ks in

the composite design resulting from mark composition is equal to me number o: marks in one
of the components having a larger mark set. Despite the fact that the number of marks in the
composite is less than the total number of marks in the components, all marks of both
components remain visible and distinguishable after composition. Another important property
of mark composition is its commutativity. That is, the resulting composite visualization

technique is invafiant regardless of the order in which the components are combined.
2. Composition by superimposition merges marks of the component visualization

techniques by superimposing one mark set onto the other (see Figure 2b). For composition

by superimposition to be applicable, all data fields encoded by one of the components must
be continuous. Furthermore, the component visualization technique encoding these
continuous fields should mostly be visible through the marks of the other component. After

superimposition, the number of marks in the composite design is equal to the sum of marks
in both components. Since the marks of one component are superimposed onto those of the

other, com.position by superimposition is not commutative.
3. Composition by union combines marks of a pair of component visualization techniques

by using set union (see Figure 2c). This is by far the simplest composition technique since it
forms the mark set of the composite by using each and every mark of the components. For it

to be applicable, the marks belonging to each component must be at least partially
distinguishable in space. This requirement is satisfied when the marks of each component
visualization technique are either sparsely distributed in the same coordinate system or

positioned at a distance from the marks of the other component along one axis. In the former
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Figure 2. A simple graphical illustration of composition techniques. In each case, the pair of
graphs on the left represents the component visualization techniques and the graph on the right
represents the result of composition.

case, the marks belonging to different components must further be distinguishable by at least
one retinal property such as color or shape. In the latter case, the use of an additional retinal
property is not necessary since the marks belonging to different components are clearly
separated positionally. The number of marks in the composite design resulting from
composition by union is equal to the sum of marks of both components. Like set union,
composition by union is also commutative.

4. Composition by transparency combines a pair of visualization techniques by
manipulating the opacity values of marks belonging to either or both visualization techniques
(see Figure 2d). The opacity of marks in each component visualization technique may either
be set to a constant value for insuring visibility of all marks at all times or be altered under
user control for increasing the contribution of one technique or the other to the composite

image. Unlike the continuity requirement in composition by superimposition, the data fields
encoded by either component visualization techniques need not be continuous for
composition by transparency. After the composition, the number of marks in the composite
design is effectively equal to the sum of marks in both components. However, the number of
marks that are visible at any point in time is a function of the opacity values associated with
each mark set at that point. The operator associated with the composition by transparency role
is in general commutative provided that the positional (spatial) parameters of marks belonging
to either component are kept unchanged. If, on the other hand, one of the component is
translated in any spatial dimension, for instance, to bring that component to the foreground,

the composition by transparency becomes noncommutative.
5. Composition by intersection combines a pair of visualization techniques by first

computing their intersection and then superimposing the intersection onto one of the
components (see Figure 2e). For composition by intersection to be applicable, at least one
data field encoded by each component must be continuous. Furthermore, the marks of both
components should be densely populated in the same viewing space in a way to make it hard
to view both visualization techniques simultaneously. In general, composition by intersection
reduces the number of data points visualized in a viewing space. Thus, the number of marks
of the composite visualization technique is less than the total number of marks in the
components but greater than that of the component onto which the intersection is
superimposed. The data points that are missing from the composite can subsequently be
visualized provided that appropriate interaction techniques are available to manipulate the
composite. However, the interactive manipulation of the composite may. not even be
necessary when it is possible to mentally interpolate the missing data points from the
intersection points. Since the intersection of marks is superimposed onto the marks of one
component, composition by intersection is not commutative.

6. Composition by interleaving selects marks of the composite technique by alternating
between the marks of the component techniques (see Figure 2f). This is by far the least
common composition scheme among all. Even though its effectiveness may be questionable,
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there is a small number of designs illustrating its use. Composition by interleaving is

typically applicable if each component encodes a continuous field using a large number of
marks. The number of marks in the composite design is one half of the total number of marks

in both components. Composition by interleaving is also not a commutative composition
scheme.

Rules of Visual Perception

The primary objective in data visualization is to gain insight into an information space by
mapping data onto graphical primitives. In general, such map.p.mg defines an abstract visualization
technique for a given data set in terms of marks, primitive visualization techniques, and
composition rules. However, there are several possible mappings which lead to different
visualization technique designs. Selecting and creating the most effective design among all
alternatives for a given situation usually requires considerable knowledge about principles and
rules of visual perception. While the knowledge about characteristics of data, such as types, units,
scales, and spacing among measurement points, as well as graphical primitives, which eventually
form a composite design, is important in constructing visualization techniques, the knowledge
about how the resulting image is perceived and which aspects of data can or cannot be conveyed by
the design is essential for effective presentation of the data. Even though the latter type of
knowledge is crucial for the design of effective visualization techniques, it is imprecise,
incomplete, and inexact, and thus, hard to formalize. Existing theories on visual perception offer
valuable guidelines for effective visualization, but they are often limited in scope because of the
inherent complexity of the human visual system. In the absence of in-depth theories on visual
perception, visualization designers often have to resort to heuristic rules that are developed through
experience and experimentation.

Through literature surveys and discussions with visualization experts, several heuristic rules
that are useful in visualization technique design have been acquired. In general, these rules relate to
the expressiveness and effectiveness of visualization primitives, the use of descriptors that aid in
understanding the meaning of visualizations, and other issues, such as scaling, image sequencing,
depth perception, and handling peculiarities in data. While the expressiveness and effectiveness
rules determine the characteristics of visualization mappings, the remaining classes of rules

enhance the images corresponding to those mappings. The expressiveness rules identify
visualization primitives that are capable of expressing the desired information, whereas the
effectiveness rules identify those primitives which are the most effective in a given situation at

exploiting the capabilities of the output medium and the human visual system [Macki86]. For
instance, an expressiveness rule, that can be used to determine how magnitude of vectors can be
conveyed in an arrow plot without using the length of arrows, states that "If there is a wide range
of magnitudes in a vector field, then let each arrow represent the local direction of the vector field,
but make all arrows the same length. Let such attributes as color, line thickness, or the vertical

projection of the arrow be used to represent the vector magnitude" [Haber88]. A typical
effectiveness rule states that Our visual perception system is better tuned to quantitative
understanding using geometry rather than color" [Berti83]. Thus, a visualization technique that
primarily uses geometry, such as a surface diagram, to display quantitative data is more effective
than a technique that primarily uses color, such as a pseudo-color image, in presenting the same
data.

Despite their importance in visualization, the rules of visual perception are far from being
complete and extensive. Furthermore, some of the rules are somewhat controversial and conflicting
due to the lack of formal evaluation criteria in their development. Nevertheless, these rules provide
a basis for generating effective data visualization techniques in the absence of in-depth theories.
However, there is still a strong need for formal studies to identify additional rules and to refine the

existing ones.
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VISTA Architecture

The software architecture underlying the operation of VISTA is based on the visualization

process model having three transformational phases. The main components of the architecture
corresponding to the phases of this model are: (1) data unit through which data manipulations can
be performed, (2) design unit which defines a visualization mapping between data and graphical
primitives, and (3) rendering unit which produces an image of the data according to the
visualization mapping defined in the design unit. The overall system architecture, including various
modules in each unit along with the input and output elements of those modules, are shown in

Figure 3. While conforming to the visualization process model, the architecture further sup.ports
modularity in visualization software development. This modularity facilitates a clear separation of
data manipulation, visualization mapping, and rendering issues in data visualization. Since VISTA
has been developed to assist users in the visualization mapping phase, rather than the data
manipulation or rendering phases, the design unit forms the core of the architecture. Although the
data and rendering units are not central in the VISTA architecture, both units have been designed to
support complete automation of the visualization process. Following the specification of data to be
visualized, VISTA can generate an appropriate visualization technique and render the

corresponding image automatically. Since visualization is essentially an interactive process, each
unit also provides interaction tools for users to modify the visualization techniques or to manipulate

the images that are generated by the system.

Data Base

VISTA assumes that the data to be visualized is stored in Common Data Format (CDF)

which has been developed by the National Space Science Data Center (NSSDC) at NASA Goddard
Space Flight Center [Gough88]. For simplifying the overall system design, the data is further
assumed to be stored in regularly gridded form. The VISTA database (DB) provides both data and

its description using various attributes that characterize data at a high-level of abstraction. Both data
and design units operate on data description. Only the rendering unit requires access to the actual
data.

Data Unit

The function of the data unit is to provide users with a set of operators for interactive data

manipulation. In the current implementation, the only operators supported are the data selection
operators which allow the users to specify a data subset for visualization. A data subset can be
obtained from the database by selecting several data variables from one or more data sets that may

be gridded differently. Selection of data sets and data variables from these sets are done through
dynamically organized menus. The order of variable selection defines an importance ordering in
visualizing the selected data subset. However, the user has the option and the facilities to redefine
the importance ordering. Even though the current implementation of the data unit is limited to the
data selection operators, the modularity of VISTA architecture facilitates a straightforward
extension of the data unit to include a full range of data manipulation operators.

Design Unit

Starting with a data subset which is output from the data unit, the design unit generates a
composite visualization technique by using a three step design process. Once the composite
visualization technique is generated, it can be modified within the design unit by the user.

In the first step of the design, the data subset is decomposed into a set of simple data

partitions each of which can be visualized by a primitive visualization technique. The partitioning is
based on functional decomposition in relational data base theory [UllmaS0]. Essentially, each data

10



DESIGN UNIT

Primitives

Rules

Visualization

Knowledge
Base

Effectiveness IRules Rules

VT
Data VT Primitive

Decomposition Pa.,'ddon Selection Composition

Subset

Composite

DATA
UNIT

Data VT

Manipulation Rendering Modification

User
Image

Image
Manipulation RENDERING

UNIT

User

Used"

Figure 3. The VISTA architecture.

partition corresponds to a relation in one of the following forms having one dependent and up to

four independent variables: (1) X _ A, (2) X,Y _ A, (3) X,Y,Z --->A, or (4) X,Y,Z,T --->A.

In the second step of the design, a primitive visualization technique is found for each
partition by the visualization technique selection module using the expressiveness and effectiveness
rules. In order to facilitate the selection process, the search space for primitive visualization

techniques is organized in such a way that the primitive visualization technique that can most
effectively convey the most important data partition is selected first. For each data partition, the
visualization technique selection module iteratively examines the search space depth-first from left
to right until it finds an appropriate technique that has not already been used to visualize another
partition or not ruled out because of design constraints imposed by the user. Although the initial
design of the composite visualization technique, including the initial selection of primitive
visualization techniques, is done without any constraints, subsequent design modifications that are
directed by the user may bring constraints into the visualization technique selection process. If and
when such constraints are imposed, the visualization technique selection module tries to find a
primitive visualization technique for each data partition without violating those constraints.
Following a successful mapping between a data partition and a primitive visualization technique, a
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data structure in the form of a frame describing characteristics of the mapping is passed to the

visualization technique composition module.
In the final step of the design, the visualization technique composition module combines a

pair of component visualization techniques by applying appropriate composition rules. The
component visualization techniques are either the primitives that have been generated in the
preceding design step or the composites that have been formed previously by composition of other
components. The visualization technique composition module attempts to apply composition rules
in the order that they appear in the preceding section by checking the compatibility, visibility, and
distinguishability conditions associated with each rule. If any one of these conditions are not met
for a specific composition, an alternative rule is tried until either the composition is successful or all
composition rules are exhausted without success. If the visualization technique composition
module is unable to combine a pair of components, then it initiates backtracking m an attempt to
find an alternative design. This backtracking may result in the selection of an alternative primitive
visualization technique for a data partition in the selection module or the application of an
alternative composition rule for a previously combined component pair.

Once all primitive visualization techniques corresponding, to the data partitions are combined,
a design description of the composite visualization technique is presented to the user for possible
modifications that may improve the design. If a modification is simple, that is, does not violate

compatibility, visibility, and distinguishabili_ requirements while preserving the consistency of the
composite design generated by the sy.stem, it can be handled within the visualization technique
modification module without ever going back to the preceding steps of the design. Otherwise, it
imposes a constraint that must be satisfied in the visualization technique selection module.
Depending on the type of changes that must be made to satisfy a constraint, any arbitrarily complex
part of the composite may be redesigned starting from a selection step. The design process
terminates with a customized visualization technique, encoding the entire data subset selected at the

data manipulation stage, upon instruction from the user.

Rendering Unit

A design description of the customized visualization technique that is output from the design
unit forms the primary input for the rendering unit. The main function of the rendering unit is to

create an image according to the design description by using ap.pro.priate rendering algorithms.
Each rendering algorithm creates an image that corresponds to a pntrunve visualization technique in
the design by accessing data stored in the data base. Once all images corresponding to the
primitives in the design are created, they are combined using operators associated with the
composition rules in the design description. The image resulting from this process is then
displayed on the screen of the user's terminal.

The other important function of the rendering unit is to provide interactive facilities for image
manipulation. The image manipulation operators, that are available in the current implementation,
are confined to various viewing and image modification operations. Using the viewing operations
that include rotation, translation, zooming and others, the user can interactively change the

viewpoint and see the image from different perspectives. The image modification operators are
functionally similar to those provided for visualization technique modification in the design unit.
However, all image modification operations are graphically performed on the actual image, rather
than, on its abstract description. Using the image manipulation operators, the user can select any

component of the visualization technique corresponding to a data partition and modify its attributes,
including the retinal properties of its marks, interactively. Each component visualization technique
can also be removed from the image in order to reduce image complexity or be brought back, if it
was removed previously. Furthermore, the image can be modified drastically by applying a
different composition rule from the one that was used to combine a particular pair of components in
the original design.

Even though the current implementation provides a small set of rather simple operators for
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imagemanipulation,the modularityof VISTA architecturefacilitates aneasyextensionof the
renderingunit to includeafull rangeof imagemanipulationoperators.The modular structureof
VISTA alsomakesthe additionof sophisticatedrenderingalgorithmsto thecurrent framework
possiblewithout mucheffort.

Implementation

A majorpartof VISTA architecture,includingdataanddesignunits,hasbeenimplemented
usingAutomatedReasoningTool (ART), aLisp-basedknowledgeengineeringsystem,on aSun3
workstation.Therenderingunit hasbeenimplementedin ClanguageusingGraphicsLibrary (GL)
routinesonanSGI4D/210GTXworkstation.In this implementation,componentsof data,suchas
datasubsetsandpartitions,primitive andcompositevisualizationtechniquesarerepresentedusing
frames while composition, effectiveness,and expressivenessrules are representedusing
condition-actionpairs.The communicationbetweenthe renderingunit andthe otherunits are
handledby passingmessagefiles throughthenetwork.

Visualization Technique Design

In order to illustrate the operation of VISTA in more detail, a sample visualization technique
design is presented in this section. The sample data to be visualized is a small subset of a rainfall
data set obtained in Northwest Peru during the 1982-83 E1 Nino period. The data set contains 3

independent and 5 dependent variables that are gridded regularly.

DELEIE

Priority

From 1 TO: 1

Figure 4. A snapshot of data selection screen.
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Since the data selection is the first step of the visualization process, VISTA starts a
visualization session by presenting a menu listing all data sets that are accessible through the data
unit. Following the selection of a data set from the menu, VISTA forms two additional menus from
which independent and dependent variables, belonging to the data set, can be selected one by one.
The order of variable selection from each of these menus defines an importance ordering that can

be used during the visualization technique selection steps. If it is desirable to include variables from
other data sets, the user can always select another data set from the first menu and continue

choosing among its dependent and independent variables. As the data selection proceeds in this
manner, the currently selected data subset along with its partitions is displayed in a data selection

summary window. A snapshot of a data selection screen including the summary window, the three
selection menus, and a few control buttons is shown in Figure 4. The number appearing on the left
hand side of each data variable indicates the relative position of that variable in the importance
ordering. For instance,"rainfall" and "station-location" are respectively the most and the least
important variables among the currently selected dependent variables in Figure 4.

Since data partitions are formed by interleaving decomposition and selection of the data
subset, the next design step following the completion of data selection is mapping data partitions to
appropriate primitive visualization techniques. The mapping starts with the data partition that
includes the most important dependent variable. For instance, the data partition having "longitude"
and "latitude" as independent and "rainfall" as dependent variables would be considered In-st in the
sample design. There are several primitive visualization techniques, such as surface diagram,
contour plot, and pseudo-color image, that can be used to convey the informational content of the
data partition under consideration because each of these primitives satisfies the expressiveness
requirements. The next thing to consider is the effectiveness of each candidate primitive. In the
absence of any information about the tasks to be supported by the resulting visualization technique,
the effectiveness rules would qualify the surface diagram as the most effective primitive. Thus, the
data partition associated with "rainfall" distribution should be encoded by the position of marks on
a surface diagram. The selection of surface diagram, rather than contour plot or pseudo-color
image, is essentially based on the following effectiveness rules:

(1) Position is more effectively perceived than color,
(2) Our visual perception system is better tuned to quantitative understanding using geometry

rather than color, and
(3) Contour plots require some effort on the part of the viewer to establish quantitative relations

between different contour levels - it is not always obvious whether a local extremum is a
minimum or a maximum.

The mapping process continues for the remaining data partitions unless there is a previously
generated visualization technique, either primitive or composite, with which the recently selected
primitive can be combined. Since there is no possible composition at the current state of the sample
design, the data partition that includes the second most important dependent variable in the
importance ordering must be processed next. Accordingly, the data partition having "longitude"
and "latitude" as independent and "humidity" as dependent variables is processed next in the
sample design. This data partition has similar characteristics to those of the first data partition.
Thus, it can be visualized using one of the three primitives, all satisfying expressiveness
requirements, that were considered before for the visualization of the "rainfall" data partition. Since
the most effective primitive visualization technique, surface diagram, has already been used in the
design, a contour plot should be selected to encode the data partition being processed. The
decision to select a contour plot rather than a pseudo-color image is again based on the
effectiveness criteria. Once the type of primitive visualization technique is identified, for instance,
as being a contour plot, the next step is to determine the values of its attributes including a mark
set, retinal properties of marks, how data values can be conveyed most effectively and so on. For a
contour plot, this step involves defining the contour levels that bounds the mark set, selecting a
retinal property that can most effectively convey the data values associated with contour lines, and
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setting the values of the remaining retinal properties of the mark set. Based on the effectiveness
criteria, line thickness (size) is chosen to be the most effective retinal property for conveying the
data values associated with contour lines in the current design. Furthermore, the number of contour

levels is defined to be equal to 5, which is the default value, and the color of contour lines, being
the only unused retinal property, is set to the default value for color.

After a primitive is completely specified, it is combined with another visualization technique,
either primitive or composite, that has been formed before, provided that the most recent primitive
is not the first one. This means the contour plot that has just been generated should be combined
with the surface diagram that was generated previously in the sample design. The combination of
these techniques can be achieved based on either the composition by superimposition or the
composition by union rules. In the current design, VISTA uses the composition by
superimposition rule since it is the first applicable rule in the rule application order. The result of
composition is a composite design that can be represented by a visualization tree.

A visualization tree is a data structure similar to a parse tree that is commonly used to

represent the meaning of a sentence in a formal language. For instance, a visualization tree
representing the sample composite design obtained by combining a surface diagram and a contour
plot is shown in Figure 5. In a visualization tree, the leaf nodes correspond to primitive techniques
and the internal nodes, including the root, correspond to composite techniques. The values of the
relevant attributes of an internal node, which completely describe a composite design, are

computed based on its components by applying the operator specified in that node. For instance,
the application of the superimposition operator to the components, vt-1 and vt-2, determines the
values of the technique, partition, x-axis, y-axis, z-axis, and mark-set attributes of the sample
composite design using the composition by superimposition rule.
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Figure 5. A visualization tree representing the composite formed by combining two primitives.

Although the design encoding the entire Peruvian rainfall data is not complete yet, the p.artial
design given in Figure 5 completely describes an image that can be rendered even at this point. If
the current design had been passed to the rendering unit, the resulting image would have been as

shown in Figure 6.

15



Figure 6. The image corresponding to the partial design shown in Pigure 5.

A visualization tree grows bottom-up until all data partitions are encoded by the leaves of the
tree. The composite design represented by a complete visualization tree essentially encodes the
initial data subset selected for visualization. For instance, the composite design encoding the
Peruvian rainfall data set is outlined by the visualization tree in Figure 7. Rather than describing the
composite design in full detail, the tree shows only a summary of the design for the sake of concise
presentation. In the actual design, each node of the visualization tree has several attributes similar
to those shown in Figure 5.

Following the completion of a composite design that may be used to visualize a given data
set, a summary of the design is presented to the user in the textual form for possible modifications.
Any part of the design can be accessed through a menu-driven interface and be modified before
rendering the corresponding image. The interface also provides a set control buttons that may be

used for passing design constraints to the visualization technique selection module or initiating the
rendering process if the current design is acceptable.

Upon initiating the rendering process, the rendering unit automatically generates an image of
the composite by accessing data from the data base and executing a set of graphic routines
associated with primitive visualization techniques and composition operators. For instance, given
the composite design shown in Figure 7, the rendering unit generates the image shown in Figure 8.

Even if the initial design has not been altered before rendering, there are several ways it can
be modified interactively once the corresponding image is generated. Most of these modifications
are intended to provide alternative views of the data being visualized while others can be performed
to change retinal properties of each primitive visualization technique in the image. The
modifications providing alternative views of the data generally fall into two operation categories:
(I) data reducing, and (2) image compositing. All operations in both categories are performed
through a menu-driven interface.
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Figure 7. A visualization tree describing the composite design that encodes the Peruvian rainfall
data.

Figure 8. A visualization of the Peruvian rainfall data according to the design description shown
in Figure 7.
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The data reducing operations simply reduce image complexity by removing one or more
primitives from the image when it is desirable to correlate a few data variables. The data reducing
operations have inverses, that is, it is possible to bring any primitive removed from the image
back. For instance, the image encoding only the "rainfall" and"temperature" partitions after data
reduction is shown in Figure 9. Like any other image generated by the rendering unit, an image
created after data reduction has a corresponding visualization tree that is a subtree of the original
visualization tree. For instance, the visualization tree of the image obtained after data reduction is
the subtree having two leaf nodes corresponding to the "rainfall" and "temperature" partitions that
are combined by a mark composition operator in Figure 10. To show the correlation between
original and reduced visualization trees, the nodes removed from the original along with the
composites that cannot be viewed as a result of data reduction is shown as empty nodes in Figure
10. Empty nodes corresponding to the primitives and composites removed from the original image
can be filled with the previous contents of those nodes by applying the inverse of data reduction

operators. For instance, if the primitives highlighted by thick lines are included in the design again,
an image corresponding to the visualization tree with four primitives can be rendered as shown in
Figure 11.

The image compositing operations allow the user to apply alternative image composition
rules in an attempt to get a somewhat different view of the data. Each composition operator in a
visualization tree can be replaced by an alternative composition operator as long as they are
compatible. For instance, if the composition by superimposition operators in the original design are
replaced by the composition by union operators, another image encoding the same data set
alternatively can be obtained as shown in Figure 12.

Figure 9. The image encoding the "rainfall" and "temperature" partitions after data reduction.
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Figure 10. A visualization subtree having two primitives and its relation to the original
visualization tree. The highlighted part of the tree shows the effect of including two more
primitives.

Figure 11. The image encoding the "rainfall", "temperature", "wind-velocity", and
station-location' partitions after the application of inverse data reduction operations.

19



Figure 12. An altcmativc visualization of the Peruvian rainfall data after substituting a union
operator for each superimposition operator in the original design given in Figure 7.

Conclusions

Scientific data visualization is a complex process requiring significant knowledge in a variety
of disciplines. In order to facilitate this process, it is essential to develop methodologies which
provide support and guidance to users. Based on a compositional design methodology having three
data transformation phases, a knowledge-based system (VISTA) was developed to assist scientists
in the design of scientific data visualization techniques. The system derives its knowledge from
several sources which provide information about data characteristics, visualization primitives, and
effective visual perception. The design methodology employed by the system is based on a
sequence of transformations which decomposes a data set into a set of data partitions, maps this set
of partitions to visualization primitives, and combines these primitives into a composite
visualization technique design. Although the primary function of the system is to generate an
effective visualization technique design for a given data set by using principles of visual
perception, the system also allows users to interactively modify the design, and renders the
resulting image using a variety of rendering algorithms. The software architecture underlying the
system operation conforms to the visualization process model and is highly modular. While clearly
separating the data manipulation, visualization mapping, and rendering tasks in data visualization,
the modularity of the system simplifies potential modifications and extensions of the modules
performing these tasks.

Although VISTA is capable of providing design support and guidance for scientific data
visualization, there are several areas in which its capabilities can be extended considerably. First,
the knowledge utilized by VISTA is not complete by any means. In particular, the current
implementation of the knowledge base do not provide information about the effective use of color
and animation, and the selection of lighting and projection schemes in visualization. Furthermore,
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only a small number of prirnitives are implemented. Second, VISTA does not consider the
characteristics of user tasks to be supported by .visualization in the design process. In general,
visualization supports a variety of data processing tasks, for instance, identification of certain
attributes of data, clustering a set of data points, and correlating a set of data variables. However,
not all visualization techniques can be used to perform a given task with the same effectiveness.
The utility of visualization, like any other data presentation, is a function of the task to be
performed by the user [Casne91]. Hence, it is important that visualization software must provide
support and guidance for users to select the most appropriate visualization technique for each task.
The third area of extension is the integration of VISTA with other data processing tools

and techniques such as statistical analysis software packages and simulation programs. Such
integration is crucial because visualization is just a small and integral part of the overall data

processing activity.
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