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1. INTRODUCTION

This paper presents an overview of the application of the Space Generic Open Avionics
Architecture (SGOAA) to the Space Shuttle Data Processing System (DPS) architecture
design. This application has been performed to validate the SGOAA, and its potential use
in flight critical systems. The SGOAA has been proposed as an avionics architecture
standard with the National Aeronautics and Space Administration (NASA), through its
Strategic Avionics Technology Working Group (SATWG) and is being considered by the
Society of Automotive Engineers (SAE) as an SAE Avionics Standard. This architecture
was developed for the Flight Data Systems Division of the NASA JSC by the LESC, Houston,
Texas. This architecture includes a generic system architecture for the entities in spacecraft
avionics, a generic processing external and internal hardware architecture, a six class model
of interfaces and functional subsystem architectures for data services and operations control

capabilities.

The SGOAA is documented in Reference [STO93] for the proposed standard and in
Reference [WRA93] for the technical guide for the proposed standard. References [HAN89],
[DPS2102], IMACUNK] and [BUS85] present a discussion of the Space Shuttle Avionics
System. Section 2 provides an overview of the requirements, design and operation of the
Space Shuttle avionics. Section 3 provides an overview of the tailoring of the SGOAA to

the needs of the shuttle avionics. Section 4 provides some conclusions.
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2. SPACE SHUTTLE DPS SUMMARY

The architecture of the Space Shuttle avionics is shown in Figure 2.1-1. It consists of sensor
and effector devices, general purpose hardware and software, and specialized hardware and
software. The primary avionics software system (PASS) is the principal software used to

operate the shuttle. This software contains all the applications and services code needed to
fly the vehicle through all launch and orbit phases, and to manage the vehicle and payload

while in orbit.

The key requirements on the DPS and the PASS are identified below. To meet these
requirements, the four common (of the five) general purpose computers (GPC) are loaded
with the same PASS code to perform the guidance, navigation and control functions
simultaneously, with results compared. The fifth GPC contains a different set of software
developed by a different company to take over vehicle control if the PASS code should have
a generic design error. The software in this fifth computer is the backup flight system (BFS).
It is only needed in critical flight phases such as ascent and descent. During less dynamic
phases, different parts of the PASS software can be loaded into the four GPCs (allocated to
the PASS) to support orbit activities. The GPC architecture and the software architecture,
are summarized below to clarify the goals of the SGOAA tailoring described in Section 3.

2.1 REQUIREMENTS

High level requirements for the Space Shuttle are summarized below. The requirements
fall into two areas: those which are derived from the needs to perform the mission and
those which are derived from the needs to safely control the vehicle.

2.1.1 MISSION DERIVED
¢ At least two safe methods of return to earth must be provided.

* An abort after one failure is not acceptable, therefore: fail op/fail safe is imposed.
This dictates three strings to detect a failure and a backup string to recover; thus at
least four strings are required

¢ Autonomous operation (onboard access for analysis of data) is required.
* Use of operational data to detect and isolate failures is required.

¢ Automatic failure detection and recovery for time critical functions is required.

2.1-1
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21.2

VEHICLE DERIVED

Full-time flight control augmentation is required dictating fly by wire placing the
digital flight control computation system in the safety critical path.

Engine actuator hardover commands are extremely critical requiring redundant

summed inputs for voting to prevent erroneous commands.

Data buses and remote power control devices are required to save weight.

2.1-3






2.2 DATA PROCESSING SYSTEM DESCRIPTION

The DPS consists of the following key hardware and software:

e Multiplexed data transmission with standardized subsystem interfaces over the 24
digital data buses

¢ 5 GPCs with interfaces interconnected by digital data buses into a parallel-redundant
digital computation system

¢ Mass software program storage in two tape mass memory units

e Distributed I/0 through remotely located multiplexer/demultiplexer (MDM) units over
the digital data buses

e Communication with multifunctional displays and keyboards via the Display
Electronics Unit (DEU)

¢ Time management using two Master Time Units.

¢ The PASS software.

2.2.1 DATA BUSES

The use of GPC data buses is critical to operation of the shuttle DPS, and to safe and
successful operation of the vehicle. The data bus architecture for the shuttle is shown in
Figure 2.2-1. The shuttle data bus network consists of 24 twisted shielded wire pairs (data
busses) which support the transfer of digital commands from the GPCs to vehicle hardware
and the transfer of vehicle systems data to the GPCs. Each GPC has 24 serial digital data bus
interface ports with functions allocated by criticality and use with no Hamming-type error
protection. There are seven groups of busses. They consist of 8 flight critical (FC), 2 payload
(PL), 2 launch/boost (LB), 2 Mass Memory Unit (MMU), 4 display keyboard (DK), 5
instrumentation/PCM master unit (IP), and 5 intercomputer communication (ICC) data
buses.

2.2.2 GPC OPERATIONS

The GPC internal structure is depicted in Figure 2.2-2. As noted above, all 4 common GPCs
operate in a redundant set. To prevent divergence while operating in this set, the
synchronization method selected is to insert "sync points” at appropriate locations in the
software. When a computer reaches one of these sync points it stops execution, notifies the

2.2-1
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other computers by way of sync discretes that it has reached that point and waits for receipt
of corresponding sync discretes from the rest of the redundant set before continuing
processing. If all discretes are not received within the preset time the synced computers
resume execution and declare any non-responsive computer to be failed. The synch
method is a software or soft sync approach as opposed to a hardware sync approach which
utilizes a common clock to lock the processors in sync. In addition, all Shuttle GPCs receive
the same data to prevent divergence of computed results since computed results are also

compared to detect a computer failure.

For the flight critical input channels, a group of four buses, each of the four redundant GPCs
controls one bus and listens on the other three buses. Control here means simply that only
the controlling GPC transmits commands on the bus controlled. The transmitter for that
bus is disabled in each of the other three GPCs so they can not transmit, but can only receive
or listen on the bus. Each GPC will send a wakeup command over the bus it controls to each
of the other GPCs before it transmits a request for sensor data. This wakeup command cues
the listen only GPCs to receive and record the returned sensor data. Since the GPCs are
synchronized, all computers request data from its sensor simultaneously with each of the
other GPCs. Each GPC also controls one of four flight critical output buses. Critical outputs
from each of the four GPCs are sent on the bus it controls to the effectors where the four
inputs are voted providing only one output. Each GPC also controls one of the five ICC
data buses. Once per cycle a summary word consisting of the sum of all critical outputs for
that cycle is transmitted by each GPC to the other three GPC's in the redundant set. Each
GPC compares its summary with the summary words of the other GPCs. If it does not agree
with at least one other GPC it declares itself failed and removes itself from the set. There
are also several other logical processes to determine a computer failure that have been
implemented. A complete description of these processes can be found in [HANB89].

2.2.3 MASS MEMORY UNIT

The mass memory unit (MMU) is shown in Figure 2.2-3. Two are installed in each orbiter.
They are magnetic tape units with random access storage capacity of 4.2 million 32-bit words
each. They provide nonvolatile storage for the following:

e System software

e Duplicate copies of application programs
e Overlay program segments

¢ Cathode-Ray Tube (CRT) display formats

2.2-4
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¢ Prelaunch test routines

e Fault isolation diagnostic test programs

¢ I-loads (mission and hardware unique data)
¢ Checkpoint data

¢ Downlink data formats

2.24 MULTIPLEXER/DEMULTIPLEXER UNIT

The shuttle MDM is shown in Figure 2.2-4. It is a flexible multipurpose interfacing device.
The MDM recognizes and responds to valid, correctly addressed data bus transmissions. Its
sequence control unit (SCU) controls operation of the MDM in acquiring blocks of data. The
16 Input/Output (I/0) slots can be populated with a mix of 9 different types of analog,
discrete, digital and special-purpose I/O modules.

2.2.5 DISPLAY ELECTRONIC UNIT

The DEU is the hardware/software unit which drives the general purpose displays and
accepts crew inputs from the alphanumeric keyboard. Each DEU has one digital data bus
input and a special purpose processor with Random Access Memory (RAM).

2.2.6 TIME MANAGEMENT

The GPC uses a stable, accurate time source based on Greenwich mean time (GMT) for
scheduling processing. Each of the five GPCs uses the Master Time Unit (MTU) to update
its internal clock. There are three accumulators in each of the two MTUs on an orbiter.
Each of the accumulators maintain both GMT and Mission Elapsed Time (MET), which can
be updated by an external signal. Each accumulator is tied to a different flight critical
forward MDM. Because of this arrangement, any one of the GPCs which is at least
"listening” on strings 1,2, or 3 will receive MTU time and Built-In Test Equipment (BITE)
status. Software compares internal GPC time with the MTU time sources and updates the
internal clock as needed. Each GPC checks internal clock once per second against the MTU
accumulator. If within tolerance (<= 1 millisecond), the internal clock is re-synchronized.
If outside of tolerance, the GPC checks the other accumulators and GPC clocks until a
within-tolerance time is found for updating. Procedures are available for resynchronizing

out-of-tolerance clocks.

2.2-6



weiSeiq yooig 1exaidnnwaq /1axadump apnys adeds $-7T a3y

6861 ‘¥0S-dS VSVN
‘ WRysAg 82JUOJAY SNYS adeds,,
‘peayaloop g AemeurH :Wol4 uaye )

swalsig 9l L
-qns SINpONN a|npon
SIdIY3A O/l o/l
oL

I
sjnpon
O/l

NWOHd

(2 noS)
nun josuo
@ouanbeg

JOAI929Y
Japlwisuel |
- (2 VIW)
J19)depy aseuau|
Jaxajdninpy

sng ejeqg

Aiepuodsasg

NOoYd
(1 NOS)
Hun jonuo)
aouanbag

JOAI999Y
Joplusuel]
- (1 VIW)
J9ydepy aseuaju|
Jaxa|diyny

sng
ejeq
Arewnud

2.2-7






2.3 SHUTTLE SOFTWARE ARCHITECTURE

The architecture of the Space Shuttle software is shown in Figure 2.3-1. There are two sets
of software resident is the GPCs: the system service software and the applications software.

Key functions provided are summarized below.

2.3.1 APPLICATION PROCESSING SOFTWARE

This is the application software to be executed to perform the activities needed to fly and
operate the shuttle. The major categories of application processes are Guidance, Navigation
and Control (GN&C), System Management and Vehicle Checkout. Only one major function
at a time can operate in each GPC; however, different functions can operate in different
GPCs in non-critical flight phases. GNC will usually operate in more than one GPC. Major
functions are subdivided into mission-phase oriented blocks called operational sequences
(OPS). Each OPS is associated with a specific memory configuration (MC) which can be
loaded into a GPC from the MMU. Thus, all the software in a GPC at one time consists of
the systems software and the OPS software (i.e., a MC). Transitions from one MC to another
is called an OPS transition when the crew requests a new set of applications software to be
loaded.

2.3.2 SYSTEM SERVICES SOFTWARE

2.3.2.1 Fligh mputer ratin stem ware D

The Flight Computer Operating System (FCOS) performs the same type functions as the
SGOAA "Operating System” and consists of a synchronous foreground executive with a
structure that uses an asynchronous priority driven background. The asynchronous priority

driven background accommodates growth and the synchronous executive is predictable.

The FCOS kernel consists of the following three major functions.

e Process management: controls allocation of all internal computer resources.

e 1/0 Management: Controls allocation of I/O processing. This function performs all
of the I/0 functons including UIL, data bus management, and data base manager. It
also includes the I/O error processing, special tests for other failure conditions and
failure annunciation. 1/O transactions are usually performed cyclically, except for
those critical to vehicle safety, which are processed at a higher cyclical rate up to 25
Hz. Asynchronous requests from software are also handled.

2.3-1
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e DPS Configuration Management: Controls loading of computer memories and
sequencing and control of the GPC and IOP operating states.

23.2.2 r Interf

This segment manages the sequencing of all processing and defines the associated CRT
displays and keyboard options. These are the same type functions as the SGOAA 1/0 Data

Services.

One of the key User Interface services is the Command Input Processing. This is the same
type function as SGOAA 1/0 Data Services Data Acquisition. Command Input Processing
includes crew inputs and the launch data bus used to communicate while on the ground.

Another important User Interface service is the output message processing and
coordination software. This provides the same type functions as SGOAA 1/0 services data

distribution.

2.3.2.3 System Control System Services Software Description

This segment performs initialization and configuration control of the data processing
complex including the data bus network. These are the same type functions as SGOAA Data

System Management.

2.3-3






3. APPLICATION OF THE SGOAA TO THE SPACE SHUTTLE DPS

The SGOAA System Architecture is presented in Figure 3.1-1. This can be compared to the
shuttle system architecture shown in Figure 1.1-1. A key difference in these architectures is
the reliance (in the SGOAA) on the 6 classes of interfaces and use of standards in imple-
mentation. The SGOAA approach establishes independence between hardware and
software entities at different interface levels to facilitate future change. The shuttle uses
older methodologies and architectural concepts, with applications and services designed as

monolithic or integrated entities which resist changes.

The SGOAA hardware and software architectures can be compared to and overlayed on the
shuttle architectures to demonstrate the utility of the SGOAA in actual systems. Such

comparisons and overlays are described below.

3.1 HARDWARE ARCHITECTURE

The SGOAA Generic Processing External Hardware Architecture is shown in Figure 3.1-2.
This can be compared to the shuttle hardware architecture shown in Figure 2.2-1. The
hardware architecture diagrams are very similar. The following relationships of the
various hardware units between the two systems can be established:

SGOAA External Hardware Architecture Space Shuttle Data Bus Architecture

* GAP(S) = GPC (CPU/IOP), DEU, MMU

e LOCAL INTERCONNECT = MIA (DATA BUS)

e GAPM) = MDM, PCMMU MEC, EIU, DDU
* SAP = MCIU

The General Avionics Processor (GAP) is a modular general purpose computer architecture
as illustrated in Figure 3.2-1 and can be configured to all of the Space Shuttle Avionics
requirements at the system architecture level. A GAP has one of two forms: one for
standard general purpose use [GAP(S)] and one dedicated to the handling of multiplexing
and demultiplexing I/O signals [GAP(M)]. A GAP(S) always includes a general purpose
application processor modular function. A GAP(M) may contain a special purpose
Programmable Read Only Memory (PROM) programmed processor, but its primary
function is always the receipt, conditioning and distribution of I/O data. The Special
Avionics Processor (SAP) is a special purpose processor designed to perform unique, not

3.1-1
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general purpose processing functions and also does not have as its primary function the
multiplexing and demultiplexing of 1/O signals.

A description of the application of the SGOAA architecture to the internal Space Shuttle
hardware architecture is contained in the Section 3.2 which discusses the internal hardware

architecture.

The SGOAA and the Space Shuttle architectures function in basically the same manner.
GAP(S) type units communicate with each other, with SAP type units and with GAP(M)
type units over multiple local interconnects. The SGOAA system interconnect is not
required for the Space Shuttle. GAP(M) type units perform intelligent multiplexing and
demultiplexing of signals similar to the shuttle MDMs. GAP(M) type units such as the PCM
Master Unit (PCMMU) communicate over dedicated local interconnect buses, Multiplexer
Interface Adapter (MIA) data buses, to lower level EP type units such as the MDM OAL.

The Class 1 SGOAA hardware interfaces in Figure 3.1-2 also apply to the Space Shuttle data
bus architecture shown in Figure 2.2-1. All hardware units communicate over a local
interconnect bus. The SGOAA local interconnect path is required to be an accepted industry
standard. The Space Shuttle multiplexer interface adapter (MIA) data bus is a modified 1553
standard bus. The video monitor interface from the DEU to the Space Shuttle Display Unit
(DU) is another point where an interface standard could be applied. Interface standards
could also be applied to the dedicated buses/signal lines from the MDM type units to the
lower level Embedded Processor Effector (EP(e)) and Embedded Processor Sensor (EP(s))
units and to sensors/effectors. User definable nonstandard interfaces from a SAP type unit,
such as the Manipulator Controller Interface Unit (MCIU) to the manipulator, are also
provided in the SGOAA architecture.

3.1-4



3.2

INTERNAL HARDWARE ARCHITECTURE

Figure 3.2-1 shows the SGOAA GAP internal architecture. As illustrated in this figure, the
architecture is based upon an internal interconnect interface standard internal to the GAP
and standard external interfaces from the modular GAP functions to external hardware
entities. The interfaces are all SGOAA Class 1 hardware interfaces. The SGOAA interface
classes are defined in Table 1. Figures 3.2-2 and 3.2-3 illustrates how seven of the Space
Shuttle hardware units can be functionally built from the SGOAA GAP architecture. Figure
3.2-4 addresses two additional Space Shuttle Hardware units. Functions internal to SGOAA
modules are not required to be standardized. Inputs and outputs to and from SGOAA

modules are required to be standardized.

GPC - This unit as shown in Figure 2.2-2 (AP-101S Block Diagram) contains three of
the GAP(S) modular functions as shown in figure 3.2-2. They are the IOP equivalent
to the GAP Local Interconnect Processing, the Central Processor Unit (CPU)
equivalent to the GAP Application Processing and the Aerospace Ground
Equipment (AGE) interfaces equivalent to the GAP Test and Checkout System
Interface. When installed in the Shuttle, all test and checkout ground interfaces are
by way of 2 dedicated data busses.

MMU - This unit as shown in figure 2.2-3 contains three of the GAP(S) modular
functions as shown in figure 3.2-3. They are the MIA equivalent to GAP Local
Interconnect Processing, Mass Memory Control Logic equivalent to GAP Application
Processing and the Read/Write Electronics and Tape Transport Mechanism

equivalent to the GAP Auxiliary Memory Storage.

DEU - This unit contains four of the modular GAP(S) functions as shown in figure
3.2-3. They are the MIA equivalent to GAP Local Interconnect Processing, processing
of display data and formats in a special-purpose processor equivalent to GAP
Application Processing, conversion of digital data to video/graphics form for display
on the CRT equivalent to GAP Video/Graphics Processing, and interface to the
keyboard equivalent to GAP 1/O Processing.

MDM, MEC, EIU, DDU - These four units all perform different tasks; however, each
of these units contains only two of the modular GAP functions. These functions are
MIA equivalent to GAP Local Interconnect Processing, and special processing of
input and output data equivalent to GAP I/O Processing as shown in figures 3.2-2
and 3.2-3. Since the primary purpose of each of these four units is the handling of

3.2-1
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Table 3.2-1. Architectural Interface Classes

Description

ware- w

Class 1 hardware direct interfaces are the direct connections between different
types of hardware such as needed to enable buses and communications links to
address processors or needed to enable processors to address memory registers.

Hardw. rati m Extension

Class 2 hardware to operating system extension software direct interfaces are the
direct connections between hardware registers and operating system extension
service software or other software performing that function, such as drivers
needed to enable address registers to move data packets from hardware to system
service software, and service drivers which can respond to the data packets.

Class 3 operating system service software to other software direct interfaces are the
direct connections between operating system service code and other local software
code sets, which enable operating system software to receive and interpret data

packets, and pass them on to other software code which will process them locally.

m i -to- m i f :
Class 4 system service software to other system service software logical interfaces
are the indirect connections which enable local service software to determine the
address of the intended software in other local or remote locations which need
the register data being stored and to pass the data appropriately. Enables the
handling of logical data transfers from source to user service

D m Servi f =

Class 5 system service software to applications software direct interfaces are the
direct connections which enable software service code to access and process data
from local application software code.

lication icati ical:
Class 6 applications software to applications software logical interfaces are the
indirect connections which enable an application originating data to pass it to an
application which needs to use the data, or enable an application needing data to
determine the source from which the data must be obtained. These are logical
data transfers from source to user. This interface provides the indirect
connections that allow applications in different systems or in the same system to
communicate, thus enabling applications software to interact across or within
system boundaries to accomplish a mutual purpose. These interfaces may be
applicable to applications executing in the same processor, in different processors
in the same node or in different systems.

3.2-3
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1/0 data, they are designated as GAP(M) type units. The MDM was shown in figure
2.2-4. It can handle up to 9 different types of I/O processing and also contains a PROM
programmed sequence control unit to control MDM operation. The Master Events
Controller (MEC) has special control logic for processing of critical liftoff and stage-
separation functions. The Engine Interface Unit (EIU) converts commands received
from the GPCs over the data busses to engine bus protocol. The Display Driver Unit
(DDU) converts the serial digital data stream received over the data bus to
appropriate analog signals required to drive the various flight instruments.

PCMMU - The PCMMU performs three of the modular GAP(M) functions as shown
in Figure 3.2-4. The first is MIA communication over the data busses equivalent to
GAP Local Interconnect Processing. The second is special 1/O processing in which
data received from the GPCs for insertion into the telemetry downlink data stream is
formatted, commutated and configured. Additional special I/O processing is
performed in the gathering of instrumentation data for use by the GPCs over
dedicated instrumentation data buses from lower level MDMs. The third function is
the Optional Functional Growth Interface to the MTU and distribution of the timing
data over the data busses.

MCIU - The MCIU is the control computer for the remote manipulator system
(RMS). It has one data bus port used for receipt of moding and outer loop control
signals from the GPCs. It is considered a SAP as its single function is to act as a
control computer interface. The MCIU performs three of the modular GAP(M)
functions as shown in Figure 3.2-4. The first is MIA communication over the single
data bus equivalent to GAP Local Interconnect Processing. The second is application
processing in which the moding and outer loop control signals from the GPCs are
interpreted, RMS position data interpreted and the appropriate RMS digital
commands created. The third function is special I/O processing in which the digital
commands are sent and received from the RMS and analog RMS position data
digitized.

3.2-6
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3.3 SOFTWARE ARCHITECTURE

The following requirements are extracted from paragraph 4.3.9 of the SGOAA Standard.
"An architecture prepared in accordance with this standard shall include requirements for
data system services. This shall consist of at least requirements for input/output data
services management, network services management, data base management, data system
management, and an operating system.” All systems will not require all services provided
by the SGOAA data system services architecture. For these cases, the data system services
architecture may be tailored to satisfy specific system requirements.

3.3.1 SGOAA DATA SYSTEM SERVICES REQUIREMENTS
The SGOAA data system services provides all the interfacing services needed by
applications to operate and control the vehicle, and is comprised of the elements
summarized below.
e Input/OQutput Data Services Management shall include at least requirements for
Input/Output Data Services data acquisition, Input/Output Data Services data
distribution and reports generation.

¢ Network Services Management shall include at least requirements for network
services, network management, remote operation, network directory service, and

network association control.

e Database Management shall include at least requirements for file services,
distributed file transfer services, file transfer access and management, and node
directory.

e Data System Management shall include at least requirements for configuration
management, timing service control, initialization startup and reconfiguration, and

health status and fault detection and recovery.

e QOperating System shall include at least requirements for an Operating System (OS)
kernel, a run time environment (RTE) and OS/RTE extensions.

3.3-1



3.3.2 SPACE SHUTTLE ONBOARD FUNCTIONAL SOFTWARE ARCHITECTURE
COMPARED TO THE SGOAA

The Space Shuttle onboard functional software architecture structure was shown in figure 2.3-1. This
architecture differs from the SGOAA "Operating System" architecture requirements in that the FCOS
was developed expressly for the Space Shuttle, and does not satisfy open standards criteria as required
by the SGOAA. In addition, in order to satisfy SGOAA requirements, the Space Shuttle architecture
would have to be modified at a functional level as shown in Figure 3.3-1. The primary changes are:

» Change "System Services" name to "Data System Services"

¢ Change "User Interface” name to "Input/Output Data Services Management"
¢ Change "System Control" name to "Data System Manager"

* Add a second level entity called "Data Base Manager"

* Move "DPS Configuration Management" from FCOS to be a subset of "Data System

Manager”

e From "Application Processing Systems Management” move "Data Management” to
be a subset of the "Data System Services Data Base Manager”

Figure 3.3-2 shows how the SGOAA Space Data System Services would be tailored to
provide the Space Shuttle software system services. Shaded areas are SGOAA data system
services not required by the Space Shuttle DPS. The SGOAA Network Services Manager is
not required as all Space Shuttle DPS communication is over the 24 data buses and not via a
system interconnect network. The other deleted elements are self explanatory.

The Space Shuttle FCOS presently performs all SGOAA OS Kernel and OS/RTE functions.

To be compliant with the SGOAA, the FCOS would be upgraded to meet open standards
criteria or a waiver would be obtained to allow continued, unmodified FCOS usage.

3.3-2
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As in the SGOAA, applications processing is a function of user needs. To comply with the
SGOAA requirements, the Space Shuttle application software would have to be modified to
comply with the requirements of the SGOAA Class 5 and 6 interfaces as defined in Table
3.2-1. A key requirement of the SGOAA is that direct application to application commun-
ication is not allowed. All application to application software communications shall be
implemented by use of system services. All communication must be through a Class 5
direct standard interface to system services to provide the direct communications path
between applications. An estimate of the extent of the modifications that would be required

is outside the scope of this paper.

3.3-5






4. CONCLUSIONS

As was shown above, the SGOAA was found to be capable of satisfying the functional
architecture requirements of the Space Shuttle DPS. The SGOAA GAP internal and external
architectures can be tailored to satisfy the Space Shuttle DPS hardware architecture
requirements. In order to be compliant with the SGOAA, accepted industry standards are
required to be used at all interface points or waivers be obtained. The Space Shuttle does not
satisfy this requirement since it was designed at a very early stage in the development of
standard interfaces. Were it to be designed today the requirement for the use of standard
interfaces could be met. The SGOAA Space Data Systems Services architecture was also
shown to be capable of being tailored to satisfy the Space Shuttle requirements.
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