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ABSTRACT

An uncertainty analysis of diffuse-gray enclosure problems is presented. The genesis of this study

was a diffuse-gray enclosure problem which_ proved to be hypersensitive to the specification of view
factors. This genesis is discussed in some detail. The uncertainty analysis is presented for the general

diffuse-gray enclosure problem and applied to the hypersensitive case study. It was found that the

hypersensitivity could be greatly reduced by enforcing both closure and reciprocity for the view factors.
The effects of uncertainties in the surface emissivities and temperatures are also investigated.

INTRODUCTION

All thermal analysis computations involve uncertainties. Geometries are imprecisely specified,

thermal physical properties are not known exactiy, and process data (boundary conditions) such as

temperatures, pressures, and velocities are to some degree uncertain. Some of these uncertainties are a

natural part of the process being modeled. The thermal-physical properties will naturally vary from point

to point in physical space. The thermal conductivity will depend on such local conditions as impurity
concentrations, grain structure, and voids in all but the purest and most carefully handled materials.

Thermal radiation properties can vary considerably over a surface depending on factors such as roughness

and oxidation. Also, the boundary conditions will not be precisely applied in the actual process. Other

uncertainties result from a lack of input data. In the early design computation stages, field data may not
have been collected and previous project experiences or handbook data must be used to estimate certain

process conditions. Finally, all thermal analysis models rely ultimately on experimental measurements
for material properties, boundary conditions, or design data bases and correlations. Experimental

uncertainty is always present.
The treatment of experimental uncertainties is well developed. National and international

standards for the treatment of measurement uncertainty have been published. The ANSI/ASME (1986)

standard is one example. The book by Coleman and Steele (1989) gives a good review of current

practices for experimental uncertainties. The treatment of thermal analysis uncertainties is not

philosophically different from the treatment of measurement uncertainties. A set of basic rules (thermal

analysis model/data reduction equation) is applied to a set of data (physical properties and boundary
conditions/basic measurements) to produce a result. The goal of the uncertainty analysis is to follow the

estimated or measured variances in the data through the rules into uncertainties in the result.

The nuclear engineering community routinely incorporates uncertainty analysis in reactor
certification and design calculations and has developed a considerable body of literature on this subject.

A recent series of articles in Nuclear En_ineerin_ and Desi_ (Boyack et al., 1990, Wilson et al., 1990,
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andWulff et al., 1990) are representative of activity in nuclear engineering. The book edited by Ronen

(1988) is also a good source. The fields of sensitivity analysis in control theory (Cruz, 1973) and
reliability based mechanical design (Rao, 1992) are closely related to uncertainty analysis.

The use of uncertainty analysis in the mechanical and aerospace engineering thermal analysis

community is still rather rare. Emery and Fadale (1990) and Fadale and Emery (1992) present analyses

of uncertainties in finite dement conduction heat transfer computations. Mehta (1991) discusses aspects
of uncertainty in computational fluiddynamics.

This paper presents an uncertainty analysis of diffuse:gray radiation enclosures. Such problems

contain uncertainties in the view factor matrix which arise from the geometric specification, in the

material properties through the emissivities, and in the process specifications through the surface

temperatures. Under the fight (or wrong) conditions these uncertainties can have a profound effect on
the computed heat flux results. The genesis of this study was a homework problem in the second heat

transfer course at Mississippi State University. This genesis is discussed below. This is followed by the
development and application of the uncertainty analysis and discussion.

GENESIS

The following problem from the heat transfer teXt _y incr0pera and Dewitt (i985) _as _signed
in the second heat transfer course at Mississippi State University during the Fall 1992 term.

13.62
A room is represented by the following enclosure, where the ceiling (1) has an emissivity
of 0.8 and is maintained at 40"C by embedded electrical heating elements. Heaters are

also used to maintain the floor (2) of emissivity 0.9 at 50"C. The right wall (3) of

emissivity 0.7 reaches a temperature of 15"C on a c.old, winter day. The left wall (4)
and end walls (SA, 5B) are very well insulated. To simplify the analysis, treat the two

end walls as a single surface (5). Assuming the surfaces are diffuse-gray, find the net
radiation heat transfer from each surface.

Two students, Miguel and Simon, ignored the simplification and worked the problem as a six-

sided enclosure. Miguel computed the view factors from the formulae for opposed parallel plates and
perpendicular plates with a common edge and obtained the following view factor matrix:
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0.0 0.394 0.1921 0.1921 0.1109 0.1109

0.394 0.0 0.1921 0.1921 0.1109 0.1109

0,2881 0.2881 0.0 0,196 0.1139 0.1139

0.2881 0.2881 0.196 0.0 0.1139 0.1139

0.2774 0.2774 0.1898 0.1898 0.0 0.066

0.2774 0.2774 0.1898 0.1898 0.066 0.0

Simon, on the other hand, obtained values for the view factors from plots provided in the text and

obtained the following view factor matrix:

0.0 0.38 0.19 0.19 0.11 0.11

0.38 ,0.0 0.19 0.19 0.11 0.11

0.28 0.28 0.0 0.19 0.11 0.11

0.28 0.28 0.19 0.0 0.11 0.11

0.28 0.28 0.19 0.19 0.0 0.07

0.28 0.28 0.19 0.19 0.07 0.0

Both students used a dif-fiase-gray enclosure computer program to find the net radiation heat flux

at each surface. This program was based on the net radiation method. This is a two step process. First

the following equation is solved for the net radiosity vector, q,.

tz - 0r - D) q. --oD,zr'/ (1)

where I is the identity matrix, D, is a diagonal matrix with the surface emissivities as members, F is the

view factor matrix, Dt is a diagonal matrix with surface temperatures for members, and i is a vector of

l's. The heat flux vector is then calculated from the net radiation energy balance.

q - (t - F)qo (2)

Both students modeled the adiabatic Surfaces as perfect reflections (e = 0). The results are summarized
in Table 1.

Simon has slight errors in his view factors, but all in all they look very reasonable. All of the
values are within a percent or two. The row sums of view factors are 0.98, 0.98, 0.97, 0.97, 1.01, and

1.01; so, the closure requirement is reasonably met. His radiosites are not seriously in error. The

maximum error is 3.5%. However, his heat flux results, which are off by 376%, 18% and 13% for
surfaces 1, 2, and 3, respectively, are profoundly in error. Also, his answers are in gross violation of

global conservation of energy. For a steady-state analysis Such as this one, the net energy stored in the
enclosure should be zero. Miguel only has I0 w out of 5000 w left over which is a reasonable error.

On the other hand, Simon has 2400 w out of 6000 w left over. Clearly something is terribly wrong.
A quick independent check revealed that Simon had executed the program correctly. His radiosity results
are indeed solutions of equation (1), and the problem is not numerical. At least not numerical in so far
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Table 1. Comparison of Miguel's and Simon's Solutions

qe(w/m 2) q(w/m 2) Q(m)

Miguel Simon Miguel Simon Miguel SimonSurface

1 546.2 542.7 '3.69 10.21 -221.4 612.4

2 609.0 607.3 83.87 99.32 5032.2 5959.2

3 , 442.6 435.9 -120.53 -105.00 -4821.2 -4200.0

4 543.3 524.4 0.0 0.0 0.0 0.0

5A 543.4 542.4 0.0 0.0 0.0 0.0

5B 543.4 542.4 0.0 0.0 0.0 0.0
i

Total -10.40 2371.6

as the evaluation of the inverse of the matrix in equation (1) goes. Simon's results are the proper solution
to the problem as Simon posed it.

Simon's view factor matrix did not strictly enforce closure 1. It is common practice to force

closure by only considering N-I elements on each row to be independent and computing the remaining

element from the closure rule. In fact, Brewster (1992) insists that not only closure but also reciprocity

(a_f.6= a_f.._ must be enforced. He quotes avoidance of singular or poorly conditioned matrixes which
Cannot be inverted as the reason. As discussed above, inversion is not a problem in Simon's case. In
fact, the matrix of coefficients, [I - (I-D,)F], which results with Simon's view factors, is well behaved

with a condition number of 2.83, compared to a condition number of 2.85 using Miguel's view factors.

Closure is important philosophically and physically; so, we naively adjusted the diagonal elements
in Simon's view factor matrix to force closure. The resulting view factor matrix was

"0'02 0.38 0.19 0.19 0.11 0.11

0.38 0.02 0.19 0.19 0.11 0.II

0.28 0.28 0.03 0.19 0.II 0.II

0.28 0.28 0.19 0.03 0.11 0.11

0.28 0.28 0.19 0.19 -0.01 0.07

0.28 0.28 0.19 0.19 0.07 -0.01

The physically unrealistic negative view factors were not corrected. Table 2 shows the revised results

which are vastly improved. The heat flux errors are now 21%, 1%, and 2% for surfaces 1, 2, and 3,

respectively. This result is an order of magnitude improvement. This result is somewhat surprising since
we have enforced a closure where the individual view factors are even more in error. We have forced

plane surfaces to see themselves and have forced physically unrealistic negative view factors. However,
on the other hand, we have enforced an important physical constraint.

Anecdotically, we can surmise from this experience that this problem is hypersensitive to errors
in the view factor specification when all NxN view factors are independent. However, a rather naive

enforcement of closure greatly reduces this sensitivity.

_As is well known, since a ray emitted from a surface must either strike that surface or one of the other surfaces in the

?4
enclosure, the rows of'the view factor matrix must sum to unity, II£, - 1.
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Table 2. Simon's revised results

q,,(w/m_) q(w/mz) Q(m)

Surface MigucI Simon MigucI Simon Migu©l Simon

1 546.2 546.0 -3.69 -2.92 -221.4 -174.6

2 609.0 601.9 83.87 82.92 5032.2 4975.2

3 442.6 441.4 -120.53 -117.89 -4821.2 -4715.6

4 543.3 543.0 0.0 0.0 0.0 0.0

5A 543.4 543.0 0.0 0.0 0.0 0.0

_B 543.4 543.0 0.0 0.0 0.0 0,0

ToUd -10.40 85.6

The computations in equations (1) and (2) are readily amenable to an uncertainty analysis. The

sensitivity of the radiosities and heat fluxes to each view factor, emissivity, and temperature can be

computed and used with estimates of the uncertainties in the input data to determine estimates of the
uncertainties in the computed values for radiosity and heat flux. Such an analysis provides a systematic

way to investigate the problems that were apparent in the above discussion, provides a way of
determining the source of the hypersensitivity, and provides a means to determine the fidelity of the input

data required for a desired model accuracy. This uncertainty analysis is developed below.

UNCERTAINTY ANALYSIS

In the following, we discuss the propagation of uncertainties from the input into the result, the

definition of the sensitivity coefficients, and the development of the relations needed to compute the

sensitivity coefficients for this problem. In this investigation, uncertainties in view factors, emissivity,

and temperatures are considered.

Uncertainty Propagation

The development of the first-order general uncertainty analysis is discussed in detail by Coleman
and Steele (1988), and only the result is given here. If all of the uncertainties in the data are taken to

be independent (no common or correlated sources of uncertainty), the uncertainties in the results are

obtained by taking the root-sum-square of the product of the sensitivity coefficient and the input variable

uncertainty.

IV H

U 2

l.t j.l

kt N

• E (ojv ÷E
i=l l=l

(3)

Here the result, rk, is either the heatflux, 4, or the radiosity, qo±. The sensitivity coefficients are the
first partial derivatives of the result with respect to each input variable. For the view factors
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for the emissivities

and for the temperatures

0rk (6)
Ok':l = "_l

The terms can be computed efficiently for small problems (considering algebra, programming, and

computation time) by direct brute-force finite differences. The forward finite difference formula gives

+ - r {x)
e_ • (7)

6x

For the six-surface enclosure considered by Miguel and Simon, this approach would require 49 complete

solutions of the enclosure problem to compute the derivatives in equations (4), (5), and (6). For large
problems this can become onerous. Also, simple forward differences can be troublesome if the scales

are not considered. Fortunately, the direct computation of the sensitivity coefficients is straight forward.

Sensitivity Analysis

The sensitivity computations can be reduced to a series of matrix multiplications by direct
expansion of equations (1) and (2). But first a brief consideration of their origin is in order. The
radiosity on a surface can be written as the sum of the emitted and reflected radiation

where ql is the irradiation. For a diffuse enclosure the irradiation can be written in terms of the
radiosities as

D ,q_ = FrD ,q. (9)

where D, is the diagonal matrix with the surface areas as members.

substituting into equation (8), and rearranging gives
Solving equation (9) for qi,

[I - (z - . oo t (10)

The net heat rate on the surfaces is given by the difference between the radiosity and irradiation as
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Doq ffi D,q, - D_i

Using equation(9) and rearranging yields

q - (I- D_IFrD_q,

Usually at this stage of the development the view factor reciprocity relationship

FrD , - D jF

(11)

(12)

(13)

is substituta:d into equations (10) and (12) to give equations (1) and (2). However, in this investigation,

we are interested in the sensitivity of this analysis to perturbations in the view factors where reciprocity

is not strictly enforced. In this case, it is more appropriate to work with equations (10) and (12) directly

so that the sensitivities are properly weighted.

A term-by-term differentiation of equation (10) with respect to f_jgives

.... t &vr D 8q,
-(I - u,)zn. -_# _q, + [I - (I - D,)D-,XFrD.] -_ = 0

(14)

which can be solved for the radiosity sensitivities using the matrix inverse

aq,_v" [! - (I - D_D-,ZFrD_-I[(I - D.)D-e 1_aFr D,q,]
(1_

A term-by-term differentiation of equation (12) results in

-- -o;' OF" O-.,F,D aq.
_ . -_# D.q, + (l- af#

(16)

Likewise, for the sensitivities with respect to emissivity, a term-by-term differentiation of equation
(10) gives

dD,
aD, D_,FTD,q, + [I- (I- D,)D'jIFrD,] = a_ D4_
3a t 3%

(17)

Solving for the radiosity sensitivities yields

(18)

A term-by-term differentiation of equation (12) results in
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(19)

Finally, for the sensitivities with respect to temperature, differentiation of equation (10) gives

[I - (I- D,)D-.IFrD.] _1. aD,4/_tl t (20)

where li is a vector with 1 at location i and zeros otherwise. Solving for the sensitivities

aq..._,. [I - (! - D,)D,FrD,]'t[aD,4/_I_ (21)

Equation (12) yields as before

. (i-

The calculation procedure for heat flux and uncertainties is as follows:

(22)

I)

2)
3)
4)
5)
6)

 -vert [Z- Cz-
Compute q, by multiplication with oDsD_t

Compute q using equation (12)

Compute the radiosity derivatives using equations (15), (18), and (21).

Compute the heat flux derivatives using equations (16), (19), and (22).
Compute the uncertainties using equation (3).

In this procedure, only one matrix inversion is required. All of the other computations involve only
matrix multiplication.

APPLICATION FOR MIGUEL AND SIMON'S PROBLEM

The uncertainty analysis discussed above was added to the diffuse-gray enclosure computer

program, and the analysis was carried out using Miguel's input data. For sensitivities with respect to the

view factors, four cases are considered: a) all view factors are independently specified, 2) closure is

enforced alone, 3) reciprocity is enforced alone, and 4) both closure and reciprocity are enforced

simultaneously. That discussion is followed by an examination of the sensitivities with respect to
emissivity and temperature and the overall uncertainty problem.

The difference in the four cases for view factor results from the formation Of the view factor

matrix transpose Fr. If all view factors are independent (closure and reciprocity not enforced) the
derivative, oFr/of_, only has one nonzero element, a I at place (j,i). Table 3 shows the normalized

sensitivities with respect to the view factors for the heat flux on the three active surfaces. Considering
that the view factors are of order l, the heat flux on surface 1 is seen to be hypersensitive to uncertainties
in view factors from the first column of Fr and strongly sensitive to the other view factor uncertainties.

The heat flux on the second surface is much better behaved but still has a strong sensitivity to uncertainty
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Table3: Normalized sensitivities with respect to view factors for the active surfaces in Miguel and

Simon's problem with neither closure nor reciprocity enforced.

Surface

k=l 124.17 7.47 18.21 53.73 53.72 53.72

138.46 8.32 20.30 59.91 59.89 59.89

67.08 4.03 9.84 29.02 29.02 29.02

82.35 4.95 12.08 35.63 35.62 35.62

49.41 2.97 7.24 21.38 21.37 21.37

49.41 2.97 7.24 21.38 21.37 21.37

-2 -0.74 -6.02 -0.94 -2.76 -2.76 -2.76

-0.82 -6.71 -1.04 -3.08 -3.08 -3.08

-0.40 -3.25 -0.51 -1.49 -1.49 -1.49

-0.49 -3.99 -0.62 -1.83 -1.83 -1.83

-0.29 -2.40 -0.37 -1.10 -1.10 -1.10

-0.29 -2.40 -0.37 -1.10 -1.10 -1.10

k-3 0.33 0.17 4.99 1.45 1.45 1.45

0.36 0.19 5.56 1.62 1.62 1.62

0.18 0.09 2.69 0.78 0.79 0.79

0.22 0.11 3.31 0.96 0.96 0.96

0.13 0.07 1.98 0.58 0.58 0.58

0.13 0.07 1.98 0.58 0.58 0.58

in the second column of F r. The third surface is relatively less sensitive but is by no means insensitive.

The third column has normalized sensitivities of order 3, and the other view factors have normalized
sensitivities of order 0.1 to 1.0.

This clearly shows the origin of Simon's difficulty. If all view-factor uncertainties are assumed

to be equal (Ut_ = const) in equation (3) and all uncertainties in emissivity and temperature are ignored,
the uncertainty in heat flux is given by

-- _t'¢

q_ = U_ _.q I-L qk

(23)

which gives for each active surface

Uq---2= 283.74 U& (24)
ql

- 14.12 U/.¢ (25)
q2

(26)
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Table 4: Normalized sensitivities with respect to view factors for the active surfaces in Miguel and

Simon's problem with closure enforced.

Surface

k=l

k=2

k=3

..... 118.73 -107.81 -71.67 -71.71 -71.71

132.39 .... 12.18 52.48 52 •44 $2.44
58.23 -S .90 .... 19 .52 19 •50 19 .50

47.53 -31.21 -23.96 ..... 0.02 -0.02

28.52 -18.70 -14.36 0.01 .... 0.00

28.52 -18.70 -14.36 0.01 0.00 ....

..... 5.28 -0.20 -2.02 -2.02 -2.02

5.89 .... 5.67 3.63 3.64 3.64

0.11 -2 •75 ..... 0•98 -0.98 -0.98
1.34 -2.16 1.21 .... 0.00 0.00
0.80 -1.30 0.72 0.00 .... 0.00

0.80 -1.30 0.72 0.00 0.00 ....

..... O. 16 4 .66 1 •13 1 .13 1 .13

0.17 .... 5.37 1.43 1.43 1.43

-2.52 -2.60 ..... 1.91 -1.91 -1.91

-0.7S -0.85 2.34 .... 0.00 O. O0
-0.45 -0.51 1.41 O. O0 .... O. O0

-0.45 -0.51 1.41 O. O0 O. O0 ....

To obtain 5% accuracy in ql, U.f_ must be less than 0.0001546, or the view factors must be

known with approximately 4 digit accuracy. On the other hand, to obtain 5% accuracy in q_ requires U/v

less than 0.0057 or about 2 digit accuracy. This is in line with Simon's experience. His maximum error

was 0.014 on F,2 and Fra. This resulted in 376% error for ql but only 13% error for qs.

If closure is enforced by computing the diagonal elements from

N

.f. -1- E
1"1

the derivative _Fr/0f_ contains two nonzero terms-a -1 at place (i,i) and a 1 at place (j,i). Table 4 shows
the results of the sensitivity analysis for heat flux when closure is enforced. The table shows that closure

alone does not reduce the overall sensitivity. Normalized sensitivity coefficients of 100 are still found.

In our previous work with Simon's solution it appeared that enforcing closure greatly improved the

results. However, equation 1 implicitly assumes that reciprocity exists and Simon's view factors

reasonably meet that reciprocity requirement.

When reciprocity is imposed cross-diagonal terms in F are related by

- aIfj (28)

In this case, view factors in the lower-left triangle of F ate computed from those in the upper'right

triangle by equation (28). Table 5 shows the results of the sensitivity analysis when only reciprocity is
enforced. No improvement is seen. In fact, for this case the overall uncertainty in heat flux would be

higher than the case where reciprocity is not enforced.
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Table5: Normalized sensitivities with respect to view factors for the active surfaces in Mignel and

Simon's problem with reciprocity enforced.

Surface

k = 1 124.91 146.78 119.53 178.32 178.26 178.26

.... 8.37 26.51 67.74 67.70 67.70

........ 9.89 41.35 41.33 41.33

............ 35.85 71.67 71.67

................ 21.49 42.98

.................... 21.49

k=2 -0.74 -6.84 -1.53 -3.49 -3.49 -3.49

..... 6.71 -5.92 -9.07 -9.06 -9.06

......... 0.51 -2.11 -2.11 -2.11

............. 1.83 -3.66 -3.66

................. 1.10 -2.19

..................... 1.10

k-3 0.33 0.53 5.25 1.77 1.78 1.78

.... 0.19 5.69 1.79 1.79 1.79

..... =-- 2.69 4.09 4.09 4.09

............ 0.96 1.93 1.93

................ 0.58 1.16

.................... 0.58

Table 6 shows the results when both reciprocity and closure are simultaneously enforced using

equations (27) and (28). An order of magnitude decrease in the sensitivities is observed. If the

uncertainties in fu are again taken to be constant and the uncertainties in emissivity and temperature are
ignored, the uncertainties for the active surfaces are given by

Uq, (29)
-- = 27.78 U/_
ql

(30)

(31)

Now, to obtain 5% accuracy in q, the uncertainty in f_ must be less than 0.0018 which is between 2 and
3 digit accuracy. Recall that, when Simon's view factors were revised to enforce closure, reciprocity was

implicitly included in equation (I), and the error for q_ was 21%, which is in line with equation (29).

The sensitivity analysis has given us a great deal of insight into the hypersensitivity of Simon's

problem. It has improved our understanding of why enforcing closure in Simon's case so greatly

improved the problem and has shown that this improvement actually requires the simultaneous

enforcement of both closure and reciprocity for the view factors. We can draw the conclusion that both

closure and reciprocity should be strictly enforced to minimize the sensitivity of the diffuse-gray enclosure
analysis to errors in view factors.

For simple geometries such as this one, view factor determination can be made with whatever

accuracy is necessary. However, the material properties, emissivities, process specifications, and
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Table 6: Normalized sensitivities with respect to view factors for the active surfaces in Miguel and

Simon's problem with both closure and reciprocity enforced.

Surface

k=l

k=2

k=3

_w

13.66
--u_w

0.61

0.02

-20.46
3.33

-0.04
1.55

0.88
1.47

-0.38 -0.39 -0.39
5.67 5.67 5.67

-4.45 -4.44 -4.44
.... 0.00 0.00
........ 0.00

-0.01 -0.01 -0.01
0.39 0.39 0.39
0.22 0.22 0.22
.... 0.00 0.00
........ 0.00

0.01 0.01 0.01
0.15 0.15 0.15
0.43 0.43 0.43
.... 0.00 0.00
........ 0.00

temperatures will always contain uncertainties. Table 7 shows the normalized sensitivities for this
problem with respect to em/ssivity and temperature for the three active surfaces. The normalized

sensitivities to errors in emissivity are on the order of 10 which is about the same as the view factor

sensitivities with both closure and reciprocity enforced. The normalized sensitivity to errors in

temperature are on the order of 1. Care must be taken when comparing these normalized sensitivities

if the variables have vastly different scales. Emissivity is on the order of i while temperature in degrees
K is on the order of 100=1000. An absolute error of S°K will cause much more error in the heat flux

result in this problem than a 0.05 error in emissivity.

Using theuncertaintyvalues(U/,I = 0.0001; U_ = 0.I,i= 1,2,3;U,, = 0, i= 4,5A,SB; Ut,

= l°K, i =. 1,2,3;and Ut, = 0, i = 4,5A,5B) and Miguel'sview factorswith both reciprocityand

closureenforced,givestheheatfluxand uncertaintyresultsshown inTable8. The tableshows thatthese

very reasonable uncertainties result in significant uncertainties in the heat transfer result. The percentage

uncertainty on the nearly adiabatic surface 1 is very large. These uncertainties are mainly caused by the
uncertainties in emissivity and temperature since Miguel's very precise view factors were used.

CONCLUSIONS

Uncertainty analysis was used to propagate the uncertainties in the view factors, emissivities, and

temperatures into uncertainties in the computed heat flux. This analysis allowed us to determine the

nature and source of the hypersensitivity to view factor in Simon's case and to find a way to reduce this
hypersensitivity. It was found that to avoid hypersensitivity to view factor specification both closure and

reciprocity must be simultaneously enforced. Even when the v|ew fac_)rs are precisely specified

considerable uncertainty remains because of uncertainties in emissivity and temperature specification.

The sensitivity analysis and associated uncertainty analysis are very enlightening. The

computational overhead is small since only one matrix is inverted for both the diffuse-gray enclosure

solution and the sensitivity analysis. Therefore, it is strongly recommended that all diffuse-gray enclosure
solutions be coupled with an uncertainty analysis.

w
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Table 7: Normalized sensitivities with respect to emissivity and temperature for the active surfaces

in Miguel and Simon's problem with both closure and reciprocity enforced.

Surface 1 2 3 4 5A 5B

ku 1

k-2

k-3

k- 1

k- 2

k-3

emissivity

1.01 12.97 -12.97 0.01 0.01 0.01
0.03 0.84 0.65 0.00 0.00 0.00

-0.01 0.29 1.27 0.00 0.00 0.00

temperature

-1.24 0.96 _ 0.29 0.00 0.00 0.00
-0.04 0.06 -0.01 0.00 0.00 0.00

0.02 0.02 -0.03 0.00 0.00 0.00

Table 8: OveralluncertaintyinMiguel and Simon's Problem:

Uc, = IOK.

Surface

I 2

Ufv 0.0001, U_, = 0.i,

3

q(w) -3.63 83.9 -120.5

Uq(w) + 8.82 ± 10.9 + 16.4

Uq/q + 270 % ± 13% 4-14%

I.

2.

.

4.

.

o

.
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