
N94-:23671
RESPONSE-COEFFICIENT METHOD FOR HEAT-CONDUCTION TRANSIENTS

WITH TIME-DEPENDENT INPUTS

Tamer Ceylan

University of Wisconsin-Platteville

Department of Mechanical Engineering
Platteville, WI 53818

SUMMARY

A theoretical overview of the response-coefficient method for

heat-conduction transients with time-dependent input forcing

functions is presented with a number of illustrative applications.

The method may be the most convenient and economical if the same

problem is to be solved many times with different input-time
histories or if the solution time is relatively long. The method

is applicable to a wide variety of problems (including irregular
geometries, position-dependent boundary conditions, position-

dependent physical properties, and nonperiodic irregular input

histories). Nonuniform interna! energy generation rates within the

structure can also be handled by the method. The area of interest

is long-time solutions (in which initial condition is unimportant)

and not the early transient period. The method can be applied to

one-dimensional problems in cartesian, cylindrical, and spherical

coordinates as well as to two-dimensional problems in cartesian and

cylindrical coordinates.

THEORETICAL OVERVIEW

The analytical formulation of the heat-conduction problems (in

cartesian coordinates) covered by this paper is given in the

appendix A (ref. 3). A problem may have any combination of the

following four time-dependent inputs: specified boundary

temperature, specified boundary heat flux or heat flow, specified

ambient temperature in a convective boundary condition, and

specified internal energy generation rate within the structure.

One may be required to determine outputs such as selected surface

temperatures or boundary heat fluxes as a function of time in

response to the time-dependent input forcing functions in the

problem.

After the problem is discretized spatially by using either

finite differences or finite elements, the resulting system of

first-order ordinary differential equations in time with constant
coefficients can be expressed as (ref. 2)

_2' +ST=F (1)

where _ is the capacitance matrix, _ is the temperature vector

containing nodal temperatures, _ is the conductance matrix, and

is the input vector containing time-dependent and constant input

values. The vector _' contains time derivatives of nodal

temperatures. The matrices _ and S are constant but the vector
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is time dependent.

The response-coefficient method utilizes the exact solution to

equation (I) rather than following the standard approach used by
the finite-difference or finite-element method. This involves

using an integrating factor or Duhamei's theorem , and solving a

generalized eigenvalue problem. Since this paper will also discuss

a number of response-coefficient applications, see ref. 3 for the
details of theoretical development.

After expressing the input vector _ in equation (I) as a

function of time-dependent and constant inputs, the integration in
the exact solution can be carried out. If a time interval is

selected and if each time-dependent input is assumed to be linear
within the time interval, it is possible to obtain Current values

of nodal temperatures as a function of current and previous values

of time-dependent inputs as well as constant input values. The

initial condition will not be important for long-time solutions
because only the most rec_nt input history should be relevant in

finding current values of the selected outputs.

Typically one is interested only in a selected tempera£ure or
heat flow in the system. There are two ways of writing the output

equations. It is possible to express current values of the desired

outputs in terms of current and previous values of time-dependent

inputs as well as constant input values. It is also possible to

incorporate previously-computed outputs into the computations of

the current outputs to facilitate calculations. Equations (B1) and

(B2) for these two options are given in the appendix B. Equation
(B2) is preferred because it involves much fewer calculations

compared to equation (BI). The coefficients in equation (B2) (the

_, the C, and _) are called "response coefficients".

Once all of the response coefficients have been determined in

a problem, it is possible to keep track of the desired outputs as

a function of time by the repeated use of equation (B2). It should

be noted that equation (B2) can handle multiple inputs and multiple

outputs. If there is only one input and one output, then the _
will become scalar numbers.

ONE-DIMENSIONAL EXAMPLE (CARTESIAN COORDINATES)

The response-coefficient method can be used to handle one-
dimensional composite wall structures with nonuniform internal

energy generation within the structure. Consider a homogeneous

wall with convective boundaries on both sides given in the appendix
C. The ambient temperature on the left-hand side is the time-

dependent input and the ambient temperature on the right-hand side

is constant. Let the desired output be the heat flux at the right-

hand side. We have one time-dependent input, one constant input,
and one output in this problem. Therefore, the response

coefficients will all be scalars, as can be seen in the appendix C

A detailed discussion of this example problem and the computation

of the output based on a given input history can be found in ref.
(3).
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ONE-DIMENSIONAL EXAMPLE (CYLINDRICAL COORDINATES)

The response-coefficient method can be used to handle one-

dimensional composite cylinders (solid or hollow) with nonuniform

internal energy generation within the structure. Consider a long

circular cylinder made of steel (Appendix D). Let the surface

temperature be time dependent. The output is the surface heat flow
per unit length. We have one time-dependent input and one output

in this problem. Therefore, the response coefficients will all be

scalars, as can be seen in the appendix D. More details of this

example problem and the computation of the output based on a given

nonperiodic input history can be found in ref. (4).

ONE-DIMENSIONAL PROBLEM (SPHERICAL COORDINATES)

The response-coefficient method can be used to handle" one-

dimensional composite spheres (solid or hollow) with nonuniform

internal energy generation within the structure. Ref. (5)

describes a hollow steel sphere covered with asbestos. The inner

surface of this composite structure has a time-dependent specified

temperature and the outer surface is exposed to a time-dependent

ambient temperature (convective heat-transfer coefficient known).

Assuming that the input-time histories are given on an hourly

basis, it is desired to find the hourly variation of the heat flux

at the outer surface. There are two time-dependent inputs and one
output in this problem. More details of this example problem and

the response coefficients are given in ref. (5).

TWO-DIMENSIONAL EXAMPLE PROBLEM (CYLINDRICAL COORDINATES)

The response-coefficient method can be used to handle two-

dimensional composite structures in cylindrical coordinates (r,z)

with nonuniform internal energy generation within the structure.

Ref. (6) determines the annual heat loss through the walls and

floor of a buried solar energy storage tank with water as the
storage medium. In this example, a vertical cylindrical tank has

a water level at the ground surface. The insulation and the earth

surrounding the tank is the conduction system. The temperature

variation is in the r- and z-directions in this axially-symmetric

problem. Some assumptions need to be made to find the solution.

A time interval of two weeks is used to approximate the yearly

variation of the ambient temperature. The data for the problem,

the response coefficients, and the variation of the instantaneous

heat loss (from which annual heat loss is determined) are given in
ref. (6).

DISCUSSION

For a given problem and time interval, the response

coefficients need to be found only once. They do not depend on any
particular input-time history. For this reason, if the same
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problem is to be solved many times with different input-time
histories, the response-coefficient method may be advantageous. If

the solution is needed for a very long period of time, this would

also make the response-coefficient method advantageous because

arithmetical operations required by equation (B2) can be carried

out easily once the coefficients are found. Moreover, there is no

stability problem in this method since the exact solution to

equation (i) is utilized.

The response-coefficient method can be used to handle three-

dimensional problems as well; however, currently it has not been

developed to do that. The method has not been developed to handle
time- or temperature-dependent thermal Conductivity or convective
heat-transfer coefficient. Another limitation is that radiation

boundary condition cannot be handled at the present time.
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APPENDIX A

This paper is concerned with heat-conduction transients

described by the partial differential equation:

ax (k ) + (k ) + g/#= pc @t

where k, p, and c can be position dependent and g''' may depend

upon both position and time. There will be no restriction to

simple geometrical shapes. The conditions on the boundaries of the

region may be combinations of convection, specified heat flux, or

specified temperature as shown by equations (A2-A4).

Convection: -k @t _ h(t.-t) (A2)
an

Specified heat flux: -k @t "
@n = qs

(A3)

Specified temperature: t = ts (A4)

The convective heat-transfer coefficient may depend upon position

but not upon time. The quantities t., q_, and t s may depend upon

both position and time. In fact, the.primary purpose of this paper
is to discuss problems in which t., qs, ts, and g''' are prescribed

functions of time. Since long-time solutions rather than initial
transients are of interest, the initial condition will be unlm-

portant.

APPENDIX B

The output vector for current values (u (°)) can be expressed as
a function of the input vectors for current_ (°) and previous values

(_(_)) as well as constant input vector (_) as follows:

u(0) = _¢0) + Z A s ¢_) + ED (BI)

In this equation, _ is a time-step index that is zero at the

present time and increases by one for each time-step backward in

time. See ref.(1) for the expressions for the coefficient matrices

(the _ and _).

After incorporating previously-computed outputs into the

computation of the current outputs, equation (BI) takes the form:

_(0) = B_0_(0) + Z _(#) + Z C_ (_) + DD (B2)
_=i _=I
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In this equation _(_) represents the previous output vector at the
time index _. See ref.(1) for the expressions for the _, the C,

and _; which are named as "response coefficients". The summations
have a finite number of terms because the _ and the C get smaller

and smaller as _ increases. The total number of the _ and the C in

equation (B2) is much smaller than the total number of the _ in

equation (BI). The number of rows in the _ will be equal to the
number of different outputs desired and the number of columns in

will be equal to the number of different time-dependent inputs.

APPENDIX C

Length and physical properties of the homogeneous wall

L = 8 in.

k = 0.6 Btu/hr-ft-F

p = 61 _bm/ft 3

c = 0.2 Btu/_bm-F °

Convective heat-transfer coefficient on each side

h = 1.46 Btu/hr-ftZ-F

Time interval

A8 = 1 hr

Response coefficients

B0 = 0.004

B1 = 0. 044
B2 = 0.031

]_j =-- =0. 002

CI = 0.944

Cz =-0. 144

D_ =, 0.001=-0.080

APPENDIX D

Radius and physical properities of long circular cylinder

R= i0 cm

k = 0.03 kW/m-C

p = 8000 kg/m 3

c ,- 0.5 kJ/kg-C

Time interval

&8 = 5 minutes

536



Response coefficients

B0 =-0. 340

BI = 0. 376

B2 = -0. 036

CI = 0. 274
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