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SUMMARY

We present ideas on how to use wavelets in the solution of boundary value ordinary differential

equations. Rather than using classical wavelets, we adapt their construction so that they become

(bi)orthogonal with respect to the inner product defined by the operator. The stiffness matrix in a

Galerkin method then becomes diagonal and can thus be trivially inverted. We show how one can

construct an (.9(N) algorithm for various constant and variable coefficient operators.

INTRODUCTION

The purpose of this paper is to use wavelets in the solution of certain linear ordinary differential

equations of the form

Lu(x) = f(x) for x•[0,1], where

m

L = __,aj(x) D j,
j=0

and with appropriate boundary conditions on u(x) for x = 0, 1.

Currently there exist two major solution techniques. First, if the coefficients aj (X) of the

operator are constants, then the Fourier transform is well suited for solving these equations. The

underlying reason is that the complex exponentials are eigenfunctions of a constant coefficient

operator and they form an orthogonal system. As a result the operator becomes diagonal in the
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second author is Research Assistant of the National Fund of Scientific Research Belgium and partially supported by
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Fourier basis and can thus trivially be inverted. The numerical algorithm then boils down to

calculating the discrete Fourier transform of the right hand side, dividing each coefficient by its

corresponding entry in a diagonal matrix and finally taking the inverse Fourier transform to obtain

the solution. This can be done quickly using the fast Fourier transform which has a complexity of

N log N, where N is the number of unknowns in the discretization.

If the coefficients are not constant one typically uses finite element or finite difference methods to

discretize the problem. We focus here on finite element methods. Define the op: ,:i/,,_. i,, :r p rod_lct

associated with an operator L by

<(u,v>> = (Lu, v).

A weak solution u can be found with a Petrov-Galerkin method, i.e. consider two spaces S and S*

and look for a solution u E S such that

=

for all v in S*. If £ and S _ are finite dimensional spaces with the same dimension, this leads to a

linear system of equations. The matrix of this system, also referred to as the .,l_ff,(s.s _,,t_'Lr, has as

elements the operator inner products of the basis functions of 8 and S*.

Traditionally one uses very local finite elements such that the stiffness matrix has a banded

structure. The linear system can then be solved efficiently with an iterative method. These classical

finite elements however have the disadvantage that the stiffmess matrix becomes ill conditioned as

the problem size grows. This slows down the convergence speed of the iterative algorithm

dramatically. It is well understood by now that this can be solved with multiresolution techniques

such as multigrid or hierarchical basis functions [1, 2]. Multiresolution finite element bases can

provide preconditioners which result in a uniformly bounded condition number, see e.g. [3, 4, 5].

The convergence of the linear system is then independent of the problem size.

The research presented here is motived by the question of how good wavelets are for the solution

of ordinary differential equations. We know that there are basically four main properties of

wavelets; namely, they provide a multiresolution basis for a wide variety of function spaces, they are

local in both space and frequency, they satisfy (bi)orthogonality conditions and fast transform

algorithms are available. Because of these properties, wavelets have already proven to be a valuable

substitute for the Fourier transform in many applications.

One possible idea, as proposed by several researchers, is to use wavelets as basis functions in a

Galerkin method. This has proven to work and results in a linear system that is sparse because of

the compact support of the wavelets, and that, after preconditioning, has a condition number

independent of problem size because of the multiresolution structure. However, in this setting the

wavelets do not provide significantly better results than more general multiresolution techniques

(cfr. supra) and in fact one of their major properties, namely their (bi)orthogonality, is not

exploited at all.

Three questions are addressed in this research. The first, how can one make use of the

(bi)orthogonality property of the wavelets? The second, which operators can be diagonalized by

wavelets? The last, are fast algorithms available and what is their complexity?
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PRELIMINARIES

Notation and definitions

Much of the notation will be presented as we go along. Here we just note that the inner product

of two square integrable functions f, g E L2(IR) is defined by

(f,g) = f_+_ f(x)g(x)dx,

and that the Fourier transform of a function f is defined as

-_,x](w) = f(x) e -i"_x dx.

We say that a function w is an L-splint if

L*Lw = 0 and w E C 2m-2,

where L* is the adjoint of L, a linear differential operator of order m. This definition leads to the

classical piecewise polynomial splines in case L = Dm.

Multiresolution analysis

We give a brief review of wavelets and multiresolution analysis. For more information one can

consult [6, 7, 8, 9]. A m'ultiresoh_tion analg._i._ of L2(IR) is defined as a set of closed subspaces Vj,

with j E Zg, that exhibit the following properties:

1. _- : V3+1,

2. v(x) e V 3 ¢:_ v(2x) e V3+: and v(x) e Vo ¢:_ v(x + 1) e V0,

3. U V3 is dense in L2(In) and N Vj={0},
J=-'=,:_ i=-'_.

4. A ._,.,di_q .f,,ctio_7 ¢(x) C V0 exists such that the set of functions {¢j,l(x) {l C _}, with

Cy,l (z) = v_ ¢(2_x - l), is a Riesz basis of Vj.

As a result there is a sequence {hk { k E _} such that the scaling function satisfies a r(fi,_cment

cqtullion

= 2 - k).
k

(:)
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Define Wj now as a complementary space of Vj in Vj+I, such that t_+l = Vj @ Wj (@ stands for

direct sum) and, consequently,

(_) Wj = L2(IR).
J

Note that this definition of Wj as a complementary space is non unique.

A function _b(x) is a u,av_l,t if the set of functions {g)(x - l) I I E ZZ} is a Riesz basis of W0. The

set of wavelet functions {¢j,l(x) I l,j E _'} is then a Riesz basis of L2(IR). Since the wavelet is an

element of V1, it too satisfies a refinement relation,

¢(x) = 252 gk¢(2x - k). (2)
k

There are dual functions Cj,t(x) = v_J¢(23x - l) and Cj,,(x) = v_(p(2Jx -l) that exist so that the

projection operators Pj and Qj onto Vj and W_, respectively, are given by

5y(x) = 52 (y,$j,,)¢_.,(x) and ojf(x) = 52 (y,_j,,)¢,,,(_).
l l

The basis functions and dual functions are biorthogonal,

(¢j,_,$j,t}= 51-t' and (¢j,t,¢j,,,,>= 6j_j,6t_u. (3)

If the basis functions are orthogonal, they coincide with the dual functions and the projections are

orthogonal.

The dual scaling function and wavelet satisfy

$(_) = 252hk_(2_-k), _(_) = 252_k$(2x-k), (4)
k k

and

$(_._- k) = 52 hk__,_(_ - 0 + 52 g_-_,¢(_ - 0.
l l

Taking the Fourier transform of the refinement equations (1) and (2) yields

q_(w) = h(w/2) ¢(w/2) with h(w) = 52 hke -ik"_
k

(5)

and

_(_) = g(_/2)_(_/2), with g(_) = 52g_-'_.
k

Here h(w) and g(w) are 2rr-periodic functions that correspond to discrete filters. Similar definitions

and equations hold for the dual functions. A necessary condition for biorthogonality is then

Vw • IR • rh(w)rnt(w) = 1,

where

re(w) = [ h(w) h(w + rr) ]

and similarly for rh(w). The existence of the dual filters is guaranteed by the following lemma:
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Lemma 1 Th¢ ._p_e_ g¢nc,'al,d b.9 th_ .__¢1of time�ion.; {¢j,t t / E Z_} compl, ,,, ,,/._ Vj i, V3+1 if a,_d

o,,l.y,f = ,/,/re(o,) ,/o,., ,,or ,.,,,,i.w,.

The following statements are now equivalent :

• The dual wavelet has M vanishing moments.

• Any polynomial with degree less than M can be written as a linear combination of the

functions ¢3,_(x) with l E z_.

• If f E CM, then the error of the approximation [If - Pjfll decays as O(h M) with h -- 2-J.

These statements are also equivalent with the Strang-Fix condition [10].

The fast wavelet transform

Since V_ is equal to V_-__ @ Wj_x, a function vj E Vj can be written uniquely as the sum of a

function vj-1 E Vj_I and a function wj-1 E Wj-I:

= = +
k

l l

There is a one-to-one relationship between the coefficients in the different representations. The

decomposition formulae can be found using (4):

The reconstruction step involves calculating the vj,k from the 1]j_l, l and the #3-1,1. Using (5) we have

l l

When applied recursively, these formulae define a transformation, the .fa._t u,avHei h'_n._form [8, 11].

The decomposition step consists of applying a low-pass (h) and a band-pass (._) filter followed by

downsampling (i.e. retaining only the even index samples). The reconstruction consists of

upsampling (i.e. adding a zero between every two samples) followed by filtering and addition. Note

that the filter coefficients of the fast wavelet transform are given by the coefficients of the

refinement equations.

There are many constructions of wavelets. Here we shall only consider compactly supported

wavelets as in [12, 13]. In this case the filters used in the fast wavelet transform are finite impulse

response filters and a fast accurate implementation is assured.
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General idea

We shall assume that L is self-adjoint and positive definite and, in particular, we can write

L=V'V,

where V" is the adjoint of V. We call V the ._q_l_rc root operator of L. Suppose that {_j,t} and

{_,l}, for an appropriate range of indices, are bases for S and S* respectively. The entries of the
stiffness matrix are then given by

({_j,*,_;',l')} = ( L_J,l,qJ;',l ' ) = (VqJj,,, V_;,,t, ) .

Now, the idea is to let
-1 * -1 -

_j,l = V Cj,t and _,l = V Cj,t,

where ¢ and ¢ are the wavelets of a classical multiresolution analysis. Because of the

biorthogonality (3), the stiffness matrix becomes a diagonal matrix which can trivially be inverted.

This avoids the use of an iterative algorithm. We will call the • and _* functions the operator

wa t,_/ets and the ¢ functions the original u,av_.h_._. The operator wavelets are biorthogonal with

respect to the operator inner product, a property we refer to as operator biorHwgon¢d.

This idea can be powerful, but there are a few problems. First of all one has to check whether

the operator wavelets still provide an multiresolution analysis where the successive approximations

to a general function converge sufficiently fast (cfr the Strang-Fix condition). Secondly one has to

construct a fast wavelet transform for this operator multiresolution analysis. We want operator

wavelets to be compactly supported and to be able to construct compactly supported operator

scaling functions Cj, t- We will see that the latter is not as simple as just applying V -_ to the

original scaling functions.

The analysis is relatively straightforward for simple constant coefficient operators such as the

Laplace and polyharmonic operator. For more general constant coefficient operators, we will show

that one needs to modify the construction of the original wavelets for the operator wavelets to

satisfy all the desired properties. We will discuss the Helmholz operator as a typical example. At

the end of the paper we shall consider a variable coefficient operator.

A similar idea was described in [14, 15]. However there only the operator wavelets of different

levels are operator orthogonal and not the ones from the same level. As a result, one does not

obtain a full diagonalization, but rather a decoupting of equations corresponding to different levels.

Our idea is different from the technique presented in [16]. There wavelets are used to efficiently

compute the inverse of the matrix that comes from a finite difference discretization. It is also shown

that the wavelets provide a diagonal preconditioner which yields uniformly bounded condition

numbers.

In [17, 18] antiderivates of wavelets are used in a Galerkin method. This parallels our

construction in the ease of the Laplace or polyharmonic operator.
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LAPLACE OPERATOR

The one dimensional Laplace operator and its square root are

L =-D 2 and V = D.

The associated ope:rato," inner product is therefore (< u, v >) = (u', v'). Since the action of V -1 is

simply taking the antiderivative here, we define the operator wavelets as

• (x) = ¢(t)dt, and qy*(x)= t)dt.

The operator wavelets are compactly supported because the integral of the original wavelets has to

vanish. Also translation and dilation invariance is preserved, so we define

• 3,t(x) = _(2Jx -/) and _;,,(x) = _*(2Jx-/).

It is then easy to see that

((_;,l,_y,e>> = 2J6j_y6t_l, for j,j',l,l' 62Z.

This means that the stiffness matrix is diagonal with powers of 2 on its diagonal.

We now need to find an operator scaling function O. The antiderivative of the original scaling

function is not compactly supported and hence not suited. We instead construct the operator

scaling function • by taking the convolution of the original scaling function with the indicator

function on [0, 1],

¢ = ¢* X[0,1l,

and similarly for the dual functions. We will show that these functions indeed generate a

multiresolution analysis. To this end define

Vj = clos span {¢3,l I l E Z_} and Wj = clos span {_j,l I I E ,_}.

We show that the V 3-spaces are nested and that Wj complements Vj in Vj+I.

In the Fourier domain we have

1 -e 1
/w ¢(w) and _(w) ,w ¢(w).

A simple calculation shows that the operator scaling function satisfies a refinement equation

1 + e -i"

' $(w) = _(w/2)H(w/2) with H(w)= 2 h(w).

Consequently, the Vj spaces are nested. If we can find a function G such that

= a@/2),

265



then this implies that Wj is a subset of Vj+I. It is easy to see that this holds with

-

This function is well defined because g(0) = 0.

The space Wj complements Vj in V3-+1 if

A@) = det

1

2(1 - e-"_) g(w)"

H(w) H(w+ =)]+ =)

does not vanish, see lemma 1. In fact, we readily see that A(w) = 5(w)/4, and this cannot vanish

since ¢ and ¢ generate a multiresolution analysis. The construction of the dual functions _ and

kg" from ¢ and ¢ is competely similar. The coefficients of the trigonometric functions H, H', (7 and
G* now define a fast wavelet transform.

Note that there is no reason why the operator scaling functions should be operator biorthogonal

and in fact one can prove that this never happens. Note also that if true, this property would make

the use of wavelets superfluous.

Algorithm

We will describe the algorithm in the case of periodic boundary conditions. This implies that the

basis functions on the interval [0, 1] are just the periodization of the basis functions on the real line.

Let S = V n and consider the basis {On,l [ 0 _< l < 2n}. Define vectors b and x such that

2__1

bl = (f,¢_,t), and u = _XlCn,l.
/=0

The Galerkin method with this basis then yields a system

Ax = b with Ak,t = ((_=,l,_n,k)).

As we mentioned earlier, the matrix A cannot be diagonal. Also its condition number grows as

O(22_). Consider now the decomposition

vn = Vo _ Wo e ... $ W,,_l,

and the corresponding wavelet basis. The space V0 has dimension one and contains constant

functions. We now switch to a one index notation such that the sets

{1,_j,ll0_<j<n, 0_<1<2 ¢}

coincide. Define the vectors b and _ such that

b_ = (f,k_[) and u =

We know that there exists matrices T and T * such that
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2 n --1

l=O

= T*b and x = T_



The matrix T _ corresponds to the fast wavelet transform decomposition with filters H _ and G" and

T corresponds to reconstruction with filters H and G. The complexity of the matrix vector

multiplication is O(N), N = 2 n. In the wavelet basis the system becomes

2 = b with ii = T'AT and Ak,_ = {(_n,l,_-,k))"

Since A is diagonal, it can be trivially inverted and the solution is then given by

x = TA-1T'b.

This means that one has to calculate the wavelet decomposition of the right hand side, divide each

coefficient by its corresponding diagonal element and reconstruct to find the solution. The

complexity is O(N).

The constant basis function of V0 has a zero as diagonal element and its coefficient is thus

undetermined. Note that this leads to an inconsistency if the integral of f does not vanish.

Boundary conditions

Our general idea to deal with boundary conditions is to let the operator wavelets satisfy the

homogeneous boundary conditions and to let the component in the V0 space satisfy the imposed

boundary conditions. This requires the use of special boundary wavelets as described in [19]. With

only a slight change of basis one can then incorporate Dirichlet, Neumann, mixed and periodic

boundary conditions. The details of this construction go beyond the scope of this paper. We will

describe the construction in some specific cases.

Example

In this section we shall take a look at a simple example, namely the basis we get by starting

from the Haar multiresolution analysis, where

¢ = X[0,1l and ¢(x) = ¢(2x)-¢(2x-1).

Define the 1_./ .fll._.lio_ as

A = X[0,_l*X[0,_], such that ff = h and kO(x) = A(2x).

The original wavelets are orthogonal and as a consequence the basis functions and dual functions

coincide.

The operator scaling functions can represent linears which means they satisfy the Stang-Fix

condition with M = 2 and the convergence is of order h 2. One can prove that higher order wavelets

with more vanishing moments (M) will in general not yield faster convergence because the solution

u is not smooth enough. The underlying reason is that the solution u belongs to the Sobolev space

W2. One can get faster convergence only by imposing extra regularity conditions on the right hand

side. So in a way this basis seems to be the most natural one to work with. Note that these

piecewise linear basis functions are local solutions of the homogeneous equation such that the
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Figure 1: Basisfor Dirichlet problem. Figure 2: Basisfor Neumannproblem.

operator scaling functions and waveletsare V-splines.This basis alsocoincideswith Yserentant's
hierarchical basis.

Figure 1 showsthe basisfunctions in the caseof Dirichlet boundary conditions and n = 3. The

left part are the bases for the spaces V0 up to V3 while the right part are the bases for W0 up to W2,

which provide the diagonalization. The coefficients of the two functions in the V0 space are

determined by the boundary conditions. The fast wavelet transform differs from the periodic

algorithm here in the sense that different coefficients are used for the wavelets at the boundary.

Note the "half hat" functions here. The basis in case of the Neumann problem is shown in figure 2.

The boundary conditions are handled by the two functions in the V1 space. Again the coefficient of

the constant is undetermined. The algorithm leads to an inconsistency in case the integral of f is

not equal to u'(1) - u'(0). Note that in both cases the operator wavelets satisfy the homogeneous

boundary conditions.

MORE GENERAL CONSTANT COEFFICIENT OPERATORS

The polyharmonic operator

The polyharmonic equation is defined as

_u (2m) = f,

and the square root operator is now V -- D 'n. The operator scaling function • is now m times the

convolution of the original scaling function ¢ with the box function and the operator wavelet • is

m times the antiderivative of the original wavelet ¢. In order to get a compactly supported wavelet,

the original wavelet now needs to have at least m vanishing moments, a property which can be

satisfied by all known wavelet families. The construction and algorithm are then completely similar
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Figure 3: The refinement relation for the piecewise exponentials.

to the case of the Laplace operator.

The Helmholz operator

The general definition of the one dimensional Helmholz operator is:

L=-D 2+k 2 such that V=D+k.

Here we shall assume that k = 1 which can always be obtained from a simple transformation.

Observe that V = D + I = e-_De x and thus V -1 = e-XD -1 ex. One easily verifies that applying

V -1 to a wavelet will not necessarily yield a compactly supported function since eXCj,t in general

does not have a vanishing integral. Therefore we let _3,l = V-le-_q2j,l = e-XD-_¢j,l. If Cj,t has a

vanishing integral, then _j,t is compactly supported.

In order to diagonalize the stiffness matrix, the original wavelets now need to be orthogonal with

respect to a weighted inner product with weight function e -2_ because

-]- ._:. ~((_j,l,_;,t,)) = e-2_p3,1(x)¢i,v(x)dx.
X,

Finding such wavelets is a hard problem to solve in general. Inspired by the Haar basis, we

construct a solution where the orthogonality of the wavelets on each level immediately follows from

their disjoint support, by letting supp _bj,t = [2-i/, 2-_(/+ 1)]. To get orthogonality between the

different levels, we need that V 3- is orthogonal to W_, for j'/> j or

+'_ e -2xCj,t(x)¢j,,t,(x) dx = 0 for j'/> j.

We now let the scaling function coincide with e 2x on the support of the finer scale wavelets,

Cj,l -_ e2x xj,l,
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where Xj,l is the indicator function on the interval [2-J/, 2-J(l + 1)], normalized such that the

integral of the scaling functions is a constant. As in the Haar case we choose the wavelets as

Cj,t = Cj+l,_l - ¢j+1,21+1,

so that they have a vanishing integral. The orthogonality between levels now follows from the fact

that the scaling functions coincide with e 2x on the support of the finer scale wavelets, and from the

vanishing integral of the wavelets

S_ L -+_o e -s= Cj,,(x) Cj,,t,(x) dx = Xj,,(x) ¢7,,,,(x) dx = (x) dx = O.

One can see that the operator wavelets are now piecewise hyperbolic functions (piecewise

combinations of e _ and e-t). The scaling functions are chosen as

q_7,z = e-_D-l(¢7,,-¢7.,+l) so that _j,, = _7+1,21.

With the right normalization, one gets

%,,(x)
sinh(x-/2-7)

sinh(2-7)

= sinh((/+ 2)2 -j -x)

sinh(2-7)

0

for x e [Z2-7,(l + 1)2-7]

for x e [(/+ 1)2 -7, (l + 2)2 -7]

elsewhere.

The operator scaling functions on one level are translates of each other but the ones on different

levels are no longer dilates of each other. They are supported on exactly the same sets as the ones in

figure 1 and they roughly look similar. The operator scaling functions satisfy a refinement relation

2

= Hi
k--O

with

H j = H_ = sinh(2-s-1)/sinh(2 -7) and H_ = 1.

Figure 3 shows the refinement relation for the scaling functions. The 3 finer scale functions are not

the dilates of the coarse scale one but they still add up to it.

The Helmholz operator in this basis of hyperbolic wavelets again is diagonal and the algorithm is

completely similar to the Laplace case. The only difference in implementation is that the filter

coefficients H]_ used in the fast wavelet transform now depend on the level.

Note that these functions again are V-splines and, in a way, are the most natural to work with.

Also note that

lim ¢7,0(2-7x) = A(x).
7_ ,.-K

Despite the fact that the Strang-Fix conditions are not satisfied, one can prove that the

convergence is still of order h 2.

So we can conclude that a wavelet transform can diagonalize constant coefficient operators

similar to the Fourier transform. The resulting algorithm is a little faster (O(N) instead of
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(_9(N log N)). This gain in speed is a consequence of the subsampling of the coarser levels in the

wavelet transform (the ones that correspond to the low frequency components of the solution)

which is not present in the Fourier transform. Also boundary conditions are taken care of more

easily than in the Fourier case.

VARIABLE COEFFICIENTS

Naturally, the next question is how to use wavelets for variable coefficient operators. The

underlying reason why wavelets can diagonalize constant coefficient operators is their locality in the

frequency domain. We want to understand if we can exploit the localization in space to diagonalize

variable coefficient operators. The answer is (perhaps quite surprisingly) yes and this really justifies

the use of wavelets for differential equations. No other technique (to our knowledge) has been able

to accomplish this.

We take a closer look at the following operator

L = -Dp2(x)D,

where p is sufficiently smooth and positive. The square root is now V = pD and V -1 = D -1 1/p.

The rest of the analysis is very similar to the case of the Helmholz operator. Applying V -1 directly

to a wavelet does not yield a compactly supported function. We therefore take _j,t = V -1 pCj,l

which implies that the wavelets need to be (bi)orthogonal with respect to a weighted inner product

with p2 as weight function. We use the same trick as for the Helmholz equation to construct such

functions. This means that we let the scaling functions Cj,l coincide with lip 2 on the dyadic

interval [2-J/, 2-_(/+ 1)] and normalize them such that they have a constant integral. We then take

the wavelets ¢3,l to be equal to Cj+l,2z - ¢j+1,21+1 so they have a vanishing integral and the operator

wavelets are compactly supported. The operator wavelets are now piecewise functions that locally

look like AP + B where P is the antiderivative of 1/p 2 and again are V-splines. Their support also

coincides with the support of the functions of figure 1, and since p is smooth they will converge to

hat functions as the level goes to infinity. The operator wavelets are neither dilates nor translates of

one function, since their behavior locally depends on p. This is not a problem because they still

generate a multiresolution analysis and satisfy refinement relations. The coefficients in the fast

wavelet transform are now different everywhere and they depend in a very simple way on the Haar

wavelet transform of 1/p 2. The entries of the diagonal stiffness matrix can be calculated from the

wavelet transform of 1/p 2. The algorithm is completely similar to previous cases and is of order N.

Boundary conditions are as easy to handle as in the case of the Laplace operator. Note that the

operator scaling functions do not satisfy the Strang-Fix conditions. It is however again possible to

prove that the method has a convergence of order h 2. As mentioned earlier, higher convergence

orders can not be obtained in general.

NUMERICAL EXAMPLE

We solve the equation

-D e x_ Du(x) = e x2 (sin(x)(3x 2- 2) + cos(x)(2x- 2x3))/x 3, with u(0)--I and u(1)--sin(1),
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l L,_ error

1 1.22e-02

2 3.37e-03

3 8.66e-04

4 2.18e-04

5 5.45e-05

6 1.36e-05

7 3.41e-06

8 8.52e-07

9 2.13e-07

such that the exact solution is given by u(x) - sin(x)/x. The L_ error of the numerically

computed solution is a function of the number of levels (l) shown in the above table. Each time

the number of levels is increased the error is divided almost exactly by a factor of 4, which agrees

with the O(h 2) convergence.

CONCLUSION

In this paper we showed how wavelets can be adapted to be useful in the solution of differential

equations. Like the Fourier transform, wavelets can diagonalize constant coefficient operators. The

resulting algorithm is slightly faster. The main result however is that even non-constant coefficient

operators can be diagonalized with the right choice of basis which evidently yields a much faster

algorithm than more classical iterative methods.

This technique can also be applied to the solution of implicit time stepping discretizations of

equations of the form Ou/Ot = Lu + f even when L is non-linear. Future research includes the

study of non self adjoint operators where a splitting L = V_" is needed and the study of the

possible generalization of these ideas to partial differential equations.
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