
5

ABSTRACT

1. F. Kaufeler and N. C. Head

Flight Control Systems Department
European Space Operations Centre

Darmstadt, Germany

The paper describes the next generation Space-
craft Control System infrastructure (SCOSII) which
is being developed at the Operations Centre
(ESOC) of the European Space Agency (ESA). The
objectives of the new system and selected areas
of the proposed hardware and software approach
are described.

Key Words: software, mission control, object
oriented, infrastructure

and discusses the improvements over the earlier
generation systems.

Two viewpoints are taken for these discussions,
corresponding to the two major user commun-
ities; the mission software engineers who must
configure and extend the infrastructure in order
that it be usable for a specific mission and the
end users, that is the operations engineers who
must control the spacecraft with the help of
configured software.

2. OBJECTIVES

2.1. Functional improvements
1. INTRODUCTION

The Operations Centre of the European Space
Agency is currently developing the next gener-
ation of its Spacecraft Control and Operation
System (SCOS).

Over the years ESOC has made great efforts to
develop and use mission independent and
configurable control system software. This
software is also sometimes referred to as multi-
mission software, in that it can be configured to
support different missions. The first system of this
nature was the Multi Satellite Support System
(MSSS) which entered service in 1977 with the
launch of GEOS-I; this was followed by the first
SCOS systems which are used to support the
Hipparcos, ERS-1 and Eureca missions. It will
continue to be used for all launches until approxi-
mately 1995. Ref. 1 provides an overview of the
history of ESOC spacecraft control infrastructure.

This paper describes some of the principle char-
acteristics of the next generation system (SCOSII)

The end users require a number of improve-
ments and extensions to the functions provided
by the system in order to mitigate the increasing
workload resulting from the complexity of mod-
ern spacecraft. Use of onboard microprocessors
to provide some level of autonomous functions
on the spacecraft is an example of such
complexity.

The essence of any control system is the descrip-
tion of the device (in this case a spacecraft and
its components) to be controlled and its expected
and desired behaviours under various conditions.
With growing complexity of spacecraft the
expressive power of the database oriented descri-
ption techniques used in previous generation sys-
tems is no longer adequate.

It is also clear that there is a need for improved
performance and flexibility of the Man Machine
Interface elements of the system; in particular
inadequacies in the MMI have sometimes slowed
down the response of operations engineers to

119

https://ntrs.nasa.gov/search.jsp?R=19940019378 2020-06-16T15:41:23+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42788438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the contingency situation. 3. TECHNOLOGIES

These lacks are seen to be of two types:

insufficient ability to obtain synthetic over-
views of high level status of the spacecraft
and reduce the information overload on the
operations engineers

slow response when reviewing historical
data in order to evaluate spacecraft perform-
ance or to locate the cause of anomalous
events.

In view of these problems two of the major goals
of the new infrastructure are to (1) improve both
the functional scope and flexibility of the system
and (2) provide greatly increased performance as
seen at the man machine interface.

There have been some recent advances in the
areas of both spacecraft and software engineering
which contribute to the concepts of the SCOSlI
system; with hindsight it is clear that previous ver-
sions of the infrastructure have been handi-
capped by the lack of these advances.

3.1. Standardisation

The application of standards in spacecraft design
and operations, either explicit or de facto, will
obviously greatly ease the provision of infrastruc-
ture software systems by helping to reduce differ-
ences between missions. The SCOSll develop-
ment takes advantage of a number of such stan-
dards.

3.1.1 Explicit standards
2.2. Maintainability

The software engineering community have voiced
concerns about the maintainability and configura-
bility of the existing systems; the effort involved
in adapting these systems to the needs of a speci-
fic mission is significant, i t has to be repeated (at
least in part) for each update of the infrastructure
which is both tedious and error prone.

Typical activities involved in configuring the infra-
structure for use with a specific mission fall into
two broad categories; specification and develop-
ment of new control and analysis facilities in
support of special characteristics of the target
spacecraft which cannot be handled by the gen-
eric software (for example the control and moni-
toring of an Onboard Computer) and modifica-
tions to existing portions of the system to
account for small differences in behaviour (for
example different command encoding schemes
or unusuai telemetry layout policies).

The new infrastructure will apply some of the
more recently developed software implementa-
tion approaches and technologies in an effort to
reduce the effort involved in both development
and maintenance of such specific mission con-
figurations.

The Consultative Committee for Space Data
Standards (CCSDS) has produced definitions for
the space/ground link protocols (Ref. 2) and
transport data formats; although concerned main-
ly with the issues of data transport they will
considerably reduce the proliferation of transport
protocols and simplify the job of interfacing to
the ground station equipment which (in ESA sys-
tems) provide the transport services.

ESA's Committee for Operations and EGSE
Standardisation (COES) is working on a standard
(Ref. 3) which will cover many presentation layer
issues; this will prescribe the telemetry and
telecommand data encoding schemes for the
data contained within the CCSDS packets. It also
defines the protocols to be applied for control of
certain onboard applications (Master Timeline
management or Onboard monitoring for
example). These matters are of direct relevance
to control systems which have the job of present-
ing the telemetry contents to the engineers and
controlling the onboard applications. Despite its
preliminary nature this standard is being adopted
as one of the foundation stones of the SCOSll
syste m .

3.1.2 de facto Standards

The European space industry is developing, in
cooperation with ESA, a set of effectively stan-
dard components for the construction of space-

120

craft (typical "almost" standards are to be found in
the onboard data handling systems as well as in
low level components such as command
decoders). As these devices are employed on
more and more spacecraft it is planned that the
relevant portions of the ground control systems
will also be re-used.

ESOC has also published a set of guidelines
(Ref. 4) for spacecraft manufacturers describing
the operational constraints which should be
respected by ESA spacecraft if they are to be
operated by ESOC. This document is in the pro-
cess of being transformed into a COES standard.

3.2. Object Orientation

The Object Oriented approach to analysis, design
and implementation of software systems has now
matured to the extent that it has been adopted
for the implementation of SCOSII.

The intention is to make use of the inheritance
and polymorphism properties of the technique to
promote the use of specification (and implemen-
tation) by "difference". It is expected that such an
approach will have two benefits; firstly, the differ-
ences between a proposed operational facility
and an existing one will be explicitly stated and
reviewed and will be subjected to more intense
scrutiny than if they were simply part of a overall
description of the facility and secondly, the
implementation and maintenance of the modified
facility will be limited to the code which provides
the differences in functionality.

These benefits will however only be realised if a
thorough analysis of the problem domain is
applied to new mission systems and if the various
users of the infrastructure are prepared to resist
the temptation to "reinvent the wheel" for each
mission.

This change is motivated by two factors; the
availability of large amounts of extremely cheap
computing power compared to the centralised
approach and a desire to achieve a system which
is more tolerant of failure of either processor
hardware or software.

The initial platform selection for SCOSll consists
of SUN Sparcstations connected by an Ethernet
network. Each workstation will have local storage
(at least IGbyte per station), 2 or 3 colour
screens and pointing device (mouse or track ball).
The processors will run the SUN SOLARIS 2.x
system which is System VR4 compatible and pro-
vides a number of services making it more appro-
priate for real-time or time-critical usage that the
previously available SUNOS versions which were
derived from 6SD Unix.

A typical mission configuration will have one
workstation for each operations engineer position
plus a further 2-3 server nodes providing com-
mon functions. It should be noted that there will
not be a Network File System (NFS) server; this
has been identified as a potential single point
failure. Each workstation will use some portion of
its local disk space for storage of executable
images and static configuration data and will
obtain dynamic data from one of the functional
servers located on the network as needed. It is
hoped that a minimum service can be identified
which can run without any support from these
servers and allowing each individual workstation
to function independently to a limited extent.

An important goal of the architecture is to
ensure that the physical location of system func-
tions (in particular the servers) is transparent to
other applications. This will allow a small system
for a simple, low data rate spacecraft to be
configured on a single workstation.

4.2. Basic Software
4. ARCHITECTURE

4.1. Hardware environment

The SCOSll system will be implemented on a
network of Unix workstations. This is a major
departure from previous infrastructure systems
which have been centred around a host machine
with, in some cases, intelligent terminals for user
interfaces.

The underlying approach to the structuring of the
SCOSll software that of the client/server pair.
Much of the functionality of the system will be
provided by servers of various kinds (a telemetry
server or an uplink server are possible examples).
These will communicate with their clients over
the network. In order to help keep the resulting
network load within manageable limits the con-
cept of a "broadcast" server has been introduced.

121

This concept makes use of the observed fact that,
in a multi-user control system, most of the users
perform roughly similar activities at roughly the
same time and so will have very similar needs for
server data. A broadcast server will therefore
distribute its replies to all user nodes on the net-
work with the assumption that it is, in most cases,
directly relevant data and will avoid a subsequent
repeat request for the data from each user
workstation in turn.

As the broadcast data may not be immediately
applicable when it arrives at a node (due to small
differences of processing sequence for example)
it will be stored in a cache which is maintained
by each node in its virtual memory using the
local disk storage as backing store. This cache is
then checked before issuing possibly redundant
requests to the server for the data.

The cache management policy applied at a
particular node may be subject to tuning depend-
ing on the nature of the applications running on
the node; an engineer performing evaluation of a
manoeuvre which took place several days or
months ago is unlikely to be interested in real-
time telemetry broadcasts, similarly the active
spacecraft controller workstation will probably be
configured not to cache data older than a few
days. These tuning activities are not visible to the
broadcast server; these behave in the same man-
ner at all times.

4.3. Basic system model

As noted earlier it is important for a control sys-
tem to be able to model the behaviour the
device being controlled to a sufficient level of
detail. Previous systems have attempted to pro-
vide this flexibility by the use of a single "engine"
driven by a set of data tables of predefined
layout. The approach cannot, in practice, describe
all kinds of spacecraft behaviour and has resulted
in a large amount of mission specific software
being produced to handle devices which are not
describable in this way.

The SCOSll infrastructure is adopts a different
approach, suggested to the designers by the tech-
niques applied in Object Oriented analysis and
supported by the technology available in the
chosen object-oriented programming language
(C++).

A spacecraft is generally viewed by the engineers
as an assembly of sub-systems (and sub-subsys-
tems etc). The behaviour of each component sub-
system is generally fairly well defined as are its
relationships to other sub-systems on the
spacecraft. Thanks to the capabilities of Object
Oriented software and databases this view of the
target has been adopted as the foundation of the
SCOSll "database"; each sub-system is repre-
sented as an object in the database. These
objects maintain connections of various kinds
(contains, is-part-of, refers-to etc) to the objects
representing the other portions of the spacecraft
with which the sub-system interacts. The benefit

I
Figure 1 - Representation of an OBDH

122

of this becomes clearer when it is realised that
each object may have a specific "engine" to
define its behaviour and may use data structures
best suited to the task of describing the object in
question. A complete discussion of this topic is
outside the scope of this paper but a brief
example should help to explain the overall
approach.

Figure 1 shows how a simple Onboard Data
Handling (OBDH) sub-system might be repre-
sented in this manner. It contains several items (a
Central Terminal unit, a number of Remote Ter-
minal units, a data bus) and makes use of infor-
mation from several other subsystems (power, RF
etc). This does not claim to be complete or fully
correct. However it serves to demonstrate the
principles involved.

The effort involved in setting up such models of a
spacecraft will be large, even if sophisticated edi-
tors are provided, and it is necessary to take
additional steps to help. As noted earlier, there is
an advantage to be gained in specifying, and
implementing, systems "by difference" from exist-
ing systems. This principle can also be applied to
the modelling of the spacecraft. A basic set of
foundation objects can be provided which can

then be specialised to match a specific need for a
specific spacecraft. This technique is referred to
as "inheritance" in the Object Oriented view.
Again a full explanation of this is outside the
scope of this paper but an example should serve
to clarify some of the issues.

Figure 2 shows a hierarchy of objects, using a
notation loosely based on that of Coad/Yourdan
(Ref. 5) which represent an onboard processor of
an imaginary mission - DemoSat. At the highest
level is an object representing a generic onboard
processor which has a number (at least 1) of
memory banks and a watchdog timer. At the sec-
ond level is a multitasking processor which is-a
generic processor and therefore has all the char-
acteristics of a generic processor but, in addition,
has descriptions of a number of Tasks which are
able to run on the processor. Finally comes the
DemoSat processor which is-a multitasking pro-
cessor. The control logic for the DemoSat pro-
cessor is similarly derived; as it is-a generic pro-
cessor, for example, it is able to perform memory
loads to its memory bank(s) (typically open the
memory bank, send a number of load packets,
close the memory bank again) and similarly
understand the manipulation of the watchdog
timer. The multitasking processor component pro-

1
is-a

knows how start tasks

kMws how to report task status -
Figure 2 - Representation of a Processor

123

vides additional behaviours (for example start and
stop of tasks, report on task status) and finally the
DemoSat processor specific component provides
information about the exact number of memory
banks, the exact list of tasks which can be run,
their constraints and so forth.

The major point of interest (and labour saving) is
that the objects representing the generic pro-
cessor and the multitasking processor have no
mission specific elements and could be imple-
mented once only; the implementation of the
DemoSat processor object then requires only pro-
vision of those behaviours which are not covered
by components or which are not standard (imple-
mentation by difference) and specification of
particular characteristics (number of memory
banks, valid task list etc) which are referred to
but not defined by the higher level components.

It is clear that it will be necessary to perform a
careful analysis of typical spacecraft in order to
build a usable library of such generic objects
which can be reused at some later date; the first
clients of SCOSll may not reap all of these bene-
fits and may actually be involved in slightly more
work to participate in the analysis and creation of
such standard building blocks.

4.3.1 Applications software

The actual applications tasks of SCOSll can be
viewed mainly as gateways to the functions pro-
vided by the objects in the spacecraft model. To
continue the example used above the Onboard
Software Maintenance application will be mainly
a shell providing a user interface to generate
messages to the DemoSat object and providing
an area of screen where the DemoSat processor
will generate its visible representation.

Those parts of the representation which are arise
from the generic processor (i.e. watchdog status)
or from the multitasking processor (i.e. task status
list) will not need to be reimplemented. This
helps reduce effort and, perhaps more important-
ly, ensures a consistent user interface from one
mission to the next wherever there are similar
functions to be performed.

User interfaces in the SCOSll system will be
provided via the X . l l & Openlook standards
with specific objects (a CTU object for example)

providing the logic for processing input events
and using a X-window provided to place their
visible image. The image produced may vary
depending on the context of the application; in
some cases the current value will be needed, in
other cases a "database" edit dialogue will be
requested. The applications will be responsible
for providing this context information.

5. SUMMARY

This paper has provided a brief glimpse of the
plans for the next generation of the ESOC
spacecraft control infrastructure - SCOSII.

It has discussed some of the motivations behind
the decision to implement a new version of the
infrastructure and has presented some of the
areas where the project is planning to deviate
from established practice in an attempt to
improve the service offered both to the end users
(the spacecraft engineers) and to the, oft forgot-
ten, immediate users of infrastructure software
who are responsible for the customisation and
maintenance of the software for specific missions.

It remains to be seen whether all of the benefits
hoped for by the SCOSll team will actually be
realised in practice but initial positive responses
have been received from all sides. We are taking
a cautious approach however; the very first ver-
sion of SCOSll will contain only functions known
to the users from previous generations of
infrastructure systems with introduction of the
more advanced aspects being left until the safety
net of backwards compatibility is complete.

6. REFERENCES

1 - Debatin,
SPACEOPS 1992

Packet TM & TC standards

Packet Utilisation Standard

Spacecraft Operations Interface Requi rements
Document

5 - Coad/Yourdan,
Object Oriented Analysis

2 - CCSDS,

3 - COES,

4 - SOIRD,

124

