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ABSTRACT 
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Darmstadt, Germany 

The paper describes the next generation Space- 
craft Control System infrastructure (SCOSII) which 
is being developed at the Operations Centre 
(ESOC) of the European Space Agency (ESA). The 
objectives of the new system and selected areas 
of the proposed hardware and software approach 
are described. 
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and discusses the improvements over the earlier 
generation systems. 

Two viewpoints are taken for these discussions, 
corresponding to the two major user commun- 
ities; the mission software engineers who must 
configure and extend the infrastructure in order 
that it be usable for a specific mission and the 
end users, that is the operations engineers who 
must control the spacecraft with the help of 
configured software. 

2. OBJECTIVES 

2.1. Functional improvements 
1. INTRODUCTION 

The Operations Centre of the European Space 
Agency is currently developing the next gener- 
ation of its Spacecraft Control and Operation 
System (SCOS). 

Over the years ESOC has made great efforts to 
develop and use mission independent and 
configurable control system software. This 
software is also sometimes referred to as multi- 
mission software, in that it can be configured to 
support different missions. The first system of this 
nature was the Multi Satellite Support System 
(MSSS) which entered service in 1977 with the 
launch of GEOS-I; this was followed by the first 
SCOS systems which are used to support the 
Hipparcos, ERS-1 and Eureca missions. It will 
continue to be used for all launches until approxi- 
mately 1995. Ref. 1 provides an overview of the 
history of ESOC spacecraft control infrastructure. 

This paper describes some of the principle char- 
acteristics of the next generation system (SCOSII) 

The end users require a number of improve- 
ments and extensions to the functions provided 
by the system in order to mitigate the increasing 
workload resulting from the complexity of mod- 
ern spacecraft. Use of onboard microprocessors 
to provide some level of autonomous functions 
on the spacecraft is an example of such 
complexity. 

The essence of any control system is the descrip- 
tion of the device (in this case a spacecraft and 
its components) to be controlled and its expected 
and desired behaviours under various conditions. 
With growing complexity of spacecraft the 
expressive power of the database oriented descri- 
ption techniques used in previous generation sys- 
tems is no longer adequate. 

It is also clear that there is a need for improved 
performance and flexibility of the Man Machine 
Interface elements of the system; in particular 
inadequacies in the MMI have sometimes slowed 
down the response of operations engineers to 
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the contingency situation. 3. TECHNOLOGIES 

These lacks are seen to be of two types: 

insufficient ability to obtain synthetic over- 
views of high level status of the spacecraft 
and reduce the information overload on the 
operations engineers 

slow response when reviewing historical 
data in order to evaluate spacecraft perform- 
ance or to locate the cause of anomalous 
events. 

In view of these problems two of the major goals 
of the new infrastructure are to (1) improve both 
the functional scope and flexibility of the system 
and (2) provide greatly increased performance as 
seen at the man machine interface. 

There have been some recent advances in the 
areas of both spacecraft and software engineering 
which contribute to the concepts of the SCOSlI 
system; with hindsight it is clear that previous ver- 
sions of the infrastructure have been handi- 
capped by the lack of these advances. 

3.1. Standardisation 

The application of standards in spacecraft design 
and operations, either explicit or de facto, will 
obviously greatly ease the provision of infrastruc- 
ture software systems by helping to reduce differ- 
ences between missions. The SCOSll develop- 
ment takes advantage of a number of such stan- 
dards. 

3.1.1 Explicit standards 
2.2. Maintainability 

The software engineering community have voiced 
concerns about the maintainability and configura- 
bility of the existing systems; the effort involved 
in adapting these systems to the needs of a speci- 
fic mission is  significant, i t  has to be repeated (at 
least in part) for each update of the infrastructure 
which is both tedious and error prone. 

Typical activities involved in configuring the infra- 
structure for use with a specific mission fall into 
two broad categories; specification and develop- 
ment of new control and analysis facilities in 
support of special characteristics of the target 
spacecraft which cannot be handled by the gen- 
eric software (for example the control and moni- 
toring of an Onboard Computer) and modifica- 
tions to existing portions of the system to 
account for small differences in behaviour (for 
example different command encoding schemes 
or unusuai telemetry layout policies). 

The new infrastructure will apply some of the 
more recently developed software implementa- 
tion approaches and technologies in an effort to 
reduce the effort involved in both development 
and maintenance of such specific mission con- 
figurations. 

The Consultative Committee for Space Data 
Standards (CCSDS) has produced definitions for 
the space/ground link protocols (Ref. 2 )  and 
transport data formats; although concerned main- 
ly with the issues of data transport they will 
considerably reduce the proliferation of transport 
protocols and simplify the job of interfacing to 
the ground station equipment which (in ESA sys- 
tems) provide the transport services. 

ESA's Committee for Operations and EGSE 
Standardisation (COES) is working on a standard 
(Ref. 3) which will cover many presentation layer 
issues; this will prescribe the telemetry and 
telecommand data encoding schemes for the 
data contained within the CCSDS packets. It also 
defines the protocols to be applied for control of 
certain onboard applications (Master Timeline 
management or Onboard monitoring for 
example). These matters are of direct relevance 
to control systems which have the job of present- 
ing the telemetry contents to the engineers and 
controlling the onboard applications. Despite its 
preliminary nature this standard is being adopted 
as one of the foundation stones of the SCOSll 
syste m . 

3.1.2 de facto Standards 

The European space industry is developing, in 
cooperation with ESA, a set of effectively stan- 
dard components for the construction of space- 
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craft (typical "almost" standards are to be found in 
the onboard data handling systems as well as in 
low level components such as command 
decoders). As these devices are employed on 
more and more spacecraft it is planned that the 
relevant portions of the ground control systems 
will also be re-used. 

ESOC has also published a set of guidelines 
(Ref. 4) for spacecraft manufacturers describing 
the operational constraints which should be 
respected by ESA spacecraft if they are to be 
operated by ESOC. This document is in the pro- 
cess of being transformed into a COES standard. 

3.2. Object Orientation 

The Object Oriented approach to analysis, design 
and implementation of software systems has now 
matured to the extent that it has been adopted 
for the implementation of SCOSII. 

The intention is to make use of the inheritance 
and polymorphism properties of the technique to 
promote the use of specification (and implemen- 
tation) by "difference". It is expected that such an 
approach will have two benefits; firstly, the differ- 
ences between a proposed operational facility 
and an existing one will be explicitly stated and 
reviewed and will be subjected to more intense 
scrutiny than if they were simply part of a overall 
description of the facility and secondly, the 
implementation and maintenance of the modified 
facility will be limited to the code which provides 
the differences in functionality. 

These benefits will however only be realised if a 
thorough analysis of the problem domain is 
applied to new mission systems and if the various 
users of the infrastructure are prepared to resist 
the temptation to "reinvent the wheel" for each 
mission. 

This change is motivated by two factors; the 
availability of large amounts of extremely cheap 
computing power compared to the centralised 
approach and a desire to achieve a system which 
is more tolerant of failure of either processor 
hardware or software. 

The initial platform selection for SCOSll consists 
of SUN Sparcstations connected by an Ethernet 
network. Each workstation will have local storage 
(at least IGbyte per station), 2 or 3 colour 
screens and pointing device (mouse or track ball). 
The processors will run the SUN SOLARIS 2.x 
system which is System VR4 compatible and pro- 
vides a number of services making it more appro- 
priate for real-time or time-critical usage that the 
previously available SUNOS versions which were 
derived from 6SD Unix. 

A typical mission configuration will have one 
workstation for each operations engineer position 
plus a further 2-3 server nodes providing com- 
mon functions. It should be noted that there will 
not be a Network File System (NFS) server; this 
has been identified as a potential single point 
failure. Each workstation will use some portion of 
its local disk space for storage of executable 
images and static configuration data and will 
obtain dynamic data from one of the functional 
servers located on the network as needed. It is 
hoped that a minimum service can be identified 
which can run without any support from these 
servers and allowing each individual workstation 
to function independently to a limited extent. 

An important goal of the architecture is to 
ensure that the physical location of system func- 
tions (in particular the servers) is  transparent to 
other applications. This will allow a small system 
for a simple, low data rate spacecraft to be 
configured on a single workstation. 

4.2. Basic Software 
4. ARCHITECTURE 

4.1. Hardware environment 

The SCOSll system will be implemented on a 
network of Unix workstations. This is a major 
departure from previous infrastructure systems 
which have been centred around a host machine 
with, in some cases, intelligent terminals for user 
interfaces. 

The underlying approach to the structuring of the 
SCOSll software that of the client/server pair. 
Much of the functionality of the system will be 
provided by servers of various kinds (a telemetry 
server or an uplink server are possible examples). 
These will communicate with their clients over 
the network. In order to help keep the resulting 
network load within manageable limits the con- 
cept of a "broadcast" server has been introduced. 
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This concept makes use of the observed fact that, 
in a multi-user control system, most of the users 
perform roughly similar activities at roughly the 
same time and so will have very similar needs for 
server data. A broadcast server will therefore 
distribute its replies to all user nodes on the net- 
work with the assumption that it is, in most cases, 
directly relevant data and will avoid a subsequent 
repeat request for the data from each user 
workstation in turn. 

As the broadcast data may not be immediately 
applicable when it arrives at a node (due to small 
differences of processing sequence for example) 
it will be stored in a cache which is maintained 
by each node in its virtual memory using the 
local disk storage as backing store. This cache is 
then checked before issuing possibly redundant 
requests to the server for the data. 

The cache management policy applied at a 
particular node may be subject to tuning depend- 
ing on the nature of the applications running on 
the node; an engineer performing evaluation of a 
manoeuvre which took place several days or 
months ago is unlikely to be interested in real- 
time telemetry broadcasts, similarly the active 
spacecraft controller workstation will probably be 
configured not to cache data older than a few 
days. These tuning activities are not visible to the 
broadcast server; these behave in the same man- 
ner at all times. 

4.3. Basic system model 

As noted earlier it is important for a control sys- 
tem to be able to model the behaviour the 
device being controlled to a sufficient level of 
detail. Previous systems have attempted to pro- 
vide this flexibility by the use of a single "engine" 
driven by a set of data tables of predefined 
layout. The approach cannot, in practice, describe 
all kinds of spacecraft behaviour and has resulted 
in a large amount of mission specific software 
being produced to handle devices which are not 
describable in this way. 

The SCOSll infrastructure is  adopts a different 
approach, suggested to the designers by the tech- 
niques applied in Object Oriented analysis and 
supported by the technology available in the 
chosen object-oriented programming language 
(C++). 

A spacecraft is generally viewed by the engineers 
as an assembly of sub-systems (and sub-subsys- 
tems etc). The behaviour of each component sub- 
system is  generally fairly well defined as are its 
relationships to other sub-systems on the 
spacecraft. Thanks to the capabilities of Object 
Oriented software and databases this view of the 
target has been adopted as the foundation of the 
SCOSll "database"; each sub-system is  repre- 
sented as an object in the database. These 
objects maintain connections of various kinds 
(contains, is-part-of, refers-to etc) to the objects 
representing the other portions of the spacecraft 
with which the sub-system interacts. The benefit 

I 
Figure 1 - Representation of an OBDH 
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of this becomes clearer when it is realised that 
each object may have a specific "engine" to 
define its behaviour and may use data structures 
best suited to the task of describing the object in 
question. A complete discussion of this topic is 
outside the scope of this paper but a brief 
example should help to explain the overall 
approach. 

Figure 1 shows how a simple Onboard Data 
Handling (OBDH) sub-system might be repre- 
sented in this manner. It contains several items (a 
Central Terminal unit, a number of Remote Ter- 
minal units, a data bus) and makes use of infor- 
mation from several other subsystems (power, RF 
etc). This does not claim to be complete or fully 
correct. However it serves to demonstrate the 
principles involved. 

The effort involved in setting up such models of a 
spacecraft will be large, even if sophisticated edi- 
tors are provided, and it is necessary to take 
additional steps to help. As noted earlier, there is 
an advantage to be gained in specifying, and 
implementing, systems "by difference" from exist- 
ing systems. This principle can also be applied to 
the modelling of the spacecraft. A basic set of 
foundation objects can be provided which can 

then be specialised to match a specific need for a 
specific spacecraft. This technique is referred to 
as "inheritance" in the Object Oriented view. 
Again a full explanation of this is outside the 
scope of this paper but an example should serve 
to clarify some of the issues. 

Figure 2 shows a hierarchy of objects, using a 
notation loosely based on that of Coad/Yourdan 
(Ref. 5) which represent an onboard processor of 
an imaginary mission - DemoSat. At the highest 
level is an object representing a generic onboard 
processor which has a number (at least 1) of 
memory banks and a watchdog timer. At the sec- 
ond level is a multitasking processor which is-a 
generic processor and therefore has all the char- 
acteristics of a generic processor but, in addition, 
has descriptions of a number of Tasks which are 
able to run on the processor. Finally comes the 
DemoSat processor which is-a multitasking pro- 
cessor. The control logic for the DemoSat pro- 
cessor is similarly derived; as it is-a generic pro- 
cessor, for example, it is  able to perform memory 
loads to its memory bank(s) (typically open the 
memory bank, send a number of load packets, 
close the memory bank again) and similarly 
understand the manipulation of the watchdog 
timer. The multitasking processor component pro- 

1 
is-a 

knows how start tasks 

kMws how to report task status - 
Figure 2 - Representation of a Processor 
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vides additional behaviours (for example start and 
stop of tasks, report on task status) and finally the 
DemoSat processor specific component provides 
information about the exact number of memory 
banks, the exact list of tasks which can be run, 
their constraints and so forth. 

The major point of interest (and labour saving) is  
that the objects representing the generic pro- 
cessor and the multitasking processor have no 
mission specific elements and could be imple- 
mented once only; the implementation of the 
DemoSat processor object then requires only pro- 
vision of those behaviours which are not covered 
by components or which are not standard (imple- 
mentation by difference) and specification of 
particular characteristics (number of memory 
banks, valid task list etc) which are referred to 
but not defined by the higher level components. 

It is clear that it will be necessary to perform a 
careful analysis of typical spacecraft in order to 
build a usable library of such generic objects 
which can be reused at some later date; the first 
clients of SCOSll may not reap all of these bene- 
fits and may actually be involved in slightly more 
work to participate in the analysis and creation of 
such standard building blocks. 

4.3.1 Applications software 

The actual applications tasks of SCOSll can be 
viewed mainly as gateways to the functions pro- 
vided by the objects in the spacecraft model. To 
continue the example used above the Onboard 
Software Maintenance application will be mainly 
a shell providing a user interface to generate 
messages to the DemoSat object and providing 
an area of screen where the DemoSat processor 
will generate its visible representation. 

Those parts of the representation which are arise 
from the generic processor (i.e. watchdog status) 
or from the multitasking processor (i.e. task status 
list) will not need to be reimplemented. This 
helps reduce effort and, perhaps more important- 
ly, ensures a consistent user interface from one 
mission to the next wherever there are similar 
functions to be performed. 

User interfaces in the SCOSll system will be 
provided via the X . l l  & Openlook standards 
with specific objects (a CTU object for example) 

providing the logic for processing input events 
and using a X-window provided to place their 
visible image. The image produced may vary 
depending on the context of the application; in 
some cases the current value will be needed, in 
other cases a "database" edit dialogue will be 
requested. The applications will be responsible 
for providing this context information. 

5. SUMMARY 

This paper has provided a brief glimpse of the 
plans for the next generation of the ESOC 
spacecraft control infrastructure - SCOSII. 

It has discussed some of the motivations behind 
the decision to implement a new version of the 
infrastructure and has presented some of the 
areas where the project is planning to deviate 
from established practice in an attempt to 
improve the service offered both to the end users 
(the spacecraft engineers) and to the, oft forgot- 
ten, immediate users of infrastructure software 
who are responsible for the customisation and 
maintenance of the software for specific missions. 

It remains to be seen whether all of the benefits 
hoped for by the SCOSll team will actually be 
realised in practice but initial positive responses 
have been received from all sides. We are taking 
a cautious approach however; the very first ver- 
sion of SCOSll will contain only functions known 
to the users from previous generations of 
infrastructure systems with introduction of the 
more advanced aspects being left until the safety 
net of backwards compatibility is complete. 
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