
D.10

T ~ E ~ ~ ~ C ~ ~ G ’ ’
X SPACECRAFT

Joan C. Horvath, Leon J. Alkalaj, Karl M. Schneider, and Arthur V. Amador

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 9 1109
USA

Joseph N. Spitale
California Institute of Technology

Pasadena, CA 9 1 125
USA

ABSTRACT

Robotic spacecraft are controlled by sets of commands
called “sequences.” These sequences must be checked
against mission constraints. Making our existing
constraint checking program faster would enable new
capabilities in our uplink process. Therefore, we are
rewriting this program to run on a parallel computer.
To do so, we had to determine how to run constraint-
checking algorithms in parallel and create a new
method of specifying spacecraft models and
constraints. This new specification gives us a means
of representing flight systems and their predicted
response to commands which could be used in a
variety of applications throughout the command
process, particularly during anomaly or high-activity
operations. This commonality could reduce operations
cost and risk for future complex missions. Lessons
learned in applying some parts of this system for the
TOPEXPoseidon mission will be described.

Key Words: Sequencing, mission operations,
automation, parallel computing.

1. INTRODUCTION

Robotic spacecraft are controlled by sets of time-
tagged onboard commands called ‘‘sequences.” These
sequences must be verified and checked against
mission constraints to be certain that they will have
the planned effect on the spacecraft. One of the key
automated portions of the sequence verification
process is a checking program which does some
limited functional simulation of the sequence running
on the spacecraft and compares the resulting spacecraft
states against mission rules. Constraint-checking
occurs at many points in the so-called “uplink
process”, which creates spacecraft command
sequences. Checking occurs at the command timing

interaction level, but also at the high-level planning
and sequence-integration stages.

Making our existing sequencechecking program,
(called the “Checker”) faster would make some
changes in our uplink process, since then people
building command sequences would not tend to check
a sequence by hand before submitting it to lengthy
batch runs. We determined that a good way to make
the Checker code run faster would be to run it on a
parallel computer, which meant that we had to
determine how to run constraintchecking algorithms
in parallel. Directly porting the existing Checker
code to a parallel machine, however, proved to be
difficult due to the inherently non-parallel way in
which the flight rules and the spacecraft models on
which they acted were encoded pefs 1-2.1 Once we
realized this, we concentrated our efforts on exploring
better ways of specifying constraints and models.

When we created this new specification system, we
realized that we had a way of describing flight
systems that was more broadly applicable than just
within the traditional “sequence checking” part of the
flight command process. A general representation of
flight systems and their predicted response to
commands could be used in a variety of applications
throughout the uplink process, particularly during
anomaly or high-activity operations. We currently
have two development efforrs under way: a system
intended to run on a parallel computer, and an
operational (sequential) system for use by the
TOPEX/Poseidon spacecraft.

2. SPECIFICATION AND VERIFICATION

2.1. Basics

We describe spacecraft systems in terms of three

273

https://ntrs.nasa.gov/search.jsp?R=19940019402 2020-06-16T15:38:10+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42788414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

fundamental pieces: the rules to be checked, a model
of the subsystem(s) of the spacecraft or ground
system to which the rule(s) apply, and an “action
table” that describes interactions among the models
and illegal transitions inside the models [Ref. 31. It
is also very desirable to have “status events” that flag,
in user-readable form, changes of state of some
spacecraft components. Each of these is now described
in turn.

2.2 Rules

When a spacecraft is designed, “flight rules” or
“mission rules” are developed to prevent damage to
the hardware, to prevent loss of science data, or to
simplify and constrain the operation of the spacecraft.

In our system, which we call SAVE (Specification
and Verification Environment) each rule to be checked
by software is expressed as a logical constraint over
state transitions. The constraint can be of temporal
nature as well as a constraint over state orderings.
Informally, the syntax of a rule is as follows.

Whenever (astate -> a certain value)
i f (some condition holds)
=>(a violation of the flight rule has

occurred).

Where the “->” symbol should be read as “goes to”
and the “=>” value should be read as “generates.” The
states and models used in the rules are defined in
models and action tables.

2.3 States

The states may be in the format

model.state

where model is the name of the model to which the
state belongs, and state is the particular state
variable. For temporal comparisons, the state may
also be shown as: .

model.state.time

where the t ime field is the time at which a given
state achieved its most recent value. The syntax used
inside the “iY clauses of the rules is the standard
syntax for a logical expression in the “C”
programming language; e.g. “&&” for “AND, “II”
for “OR, and so on.

2.4. Status information

It is desired that the status of certain variables be
printed out whenever the state changes (even if the
change is not a flight rule violation.) The synw for
status events is similar to that for rules, namely:

henever (state-a goes to a value)

then status (state-astate-bstate-c)
if (condition)

where state-a is the “trigger state” which will cause a
status message to be generated, and state-b, stafe-c,
. . . are states the user may want to see as well when
state-a changes. Usually the condition in the “if”
statement will be TRUE unconditionally -- that is,
the status event will always be printed out
irrespective of any other states.

2.5 Models

Every rule and status event requires that one or more
“models” of a limited subset of the spacecraft
behavior be generated. These models can be shown in
“finite-state” form: that is, a portion of the spacecraft
is modeled in terms of several discrete variables (an
“A” and “B” redundant side, for example). The
commands or other actions that cause the system to
transition from one state to another are shown on the
arcs between the commands. [Figure 11.

STATES:

1NSTRUMENT.POWER = (A, B, NONE)
1NSTRUMENT.MODE = (OFF, POWERED, ON)
In model, stale k shown as (POWER, MODE)
Number in brackets kstale number (seeaction table)

I

Figure I . A typical state diagram.

274

Figure 1 models an instrument on board a spacecraft
which can be powered by one of two redundant power
supplies - A or B. The command to close the relays
from &he instrument to the A power supply is the
“AJ’OWER-ON command; similarly with the
“B-POWER-ON” command. Once the instrument is
powered, it can be turned on to its operational mode
with the “INSTRUMENT-ON command. This
model shows that the instrument can be turned
on when it is unpowered, but it will then surge when
power is applied ”his “illegal transition” is discussed
in the following sxtion.

2.6 Action tables

The finite-state models can also be shown more
completely in a spreadsheet-like form. This form has
all the legal states in the vertical direction, and all the
transition commands in the horizontal direction
Every command is analyzed for its actions should it
be issued in any of the states. In some cases this will
work out to nothing happening; in others this
command will cause an illegal transition. These
illegal transitions will also be flagged by the
checking software if and when they occur. The “next
state” field in each box of the action table tells the
software fhat the next state would be should the
relevant ~ ~ m m a n d be issued.

Figure 2 shows an “action table” for the system
shown in Figure 1. The blank boxes in the Action
rows imply that the transition simply takes place to
the “Next State” shown and no side effects occur.
The “ERROR” states shown (for example, the
transition from State 0 to State 3 caused by the
INSTRUMENT-ON command issued when the
spacecraft is in State 0) would generate an “illegal
transition” message to the user. Arbitrarily complex
“side effects” (e.g., effects on other models) can
appear in these “action” boxes in the form of function
calls in the “C” programming language.

Let’s say that there is a restriction on the system
shown in Figures 1 and 2 that will not allow other
instruments to be turned on if this instrument
happens to be turned on. A typical rule, then, for the
system described in Figure 1 might then be expressed
as:

Whenever (INSTRUMENTMODE -> ON)
i f (OTHER-INSTRUMENTMODE == ON)

=> violation.

Note that there is no hard-and-fast distinction between
an “illegal transition” and a “flight rule”; some illegal
transitions have been called out as particularly
troublesome and made rules. Implementationally,
some are easier to call out one way and some in
others.

3.0 PARALLEL IMPLEMENTAnON

3.1. Overview

Our next step was to build a small prototype system
that used these principles and implemented them on a
parallel computer. This SAVE software
implementation consists of two major functions.
The primary function is sequence verification; the
second (related) function is system specification.
System specification is a kind of “installation”
function which normally would not be used routinely.
In system specification, an operator using finite state
machine notation lays out a spacecraft/ground model,
and specifies constraints upon the behavior of this
model. System verification is “production” running
of the system to check a sequence with pre-defined
constraints.

The system was designed in three basic parts: the
“core”, the “compiler” and the “database.” Figure 31.
The compiler takes as input rules in the “whenever”
syntax described above, and models in a database.

Figure 2. An Action Table.

275

format derived from the action table format shown in
Figure 2. When a user adds a model or rule, these
inputs are compiled into in-line C code, which is
linked with the core code.

and an error message, if any, is output to the error
log. A final state is written to a file at the end of the
run.

3.3. Parallel processing results
3.2. Runtime environment

At runtime, the core code determines from a user
input how many processors and models it will have
for the gwen run. It assigns the models to processors
according to a user-specified definition. A sequence
of commands to be checked against rules is read and
stripped of all information that is not relevant to the
sequence rule checking function. The commands in
the sequence are then partitioned out to the different
processors according to the model to which they
“belong.”

SPECIFICATION ENVIRONMENT
Specifeation user

library

“C” language code - I] I
“C“ compiler ClUNIX

linker I
‘ 1 VERIFICATION ENVIRONMENT

Initial conditions

Figure 3. Architecture summary.

Then, starting from an initial state for each model,
each command‘s effects on the system are simulated
according to the data in the action tables. If a state
changes that triggers a rule check, the rule is activated

A prototype was built on a five-processor parallel
computer. In this prototype, a “conservative”
synchronization approach pef.41 is used to ensure
that processors do not get out of synchronization with
each other. This prototype showed that this
methodology could achieve excellent speedup for this
type of problem depending heavily upon the actual
models and sequences being checked. (Models which
interact with each other frequently make less efficient
use of the parallel computer. Sequences which use one
model disproportionately make less efficient use, as
do very short sequences where work tends not to
average out over the parallel processor too well.)

The methods used in the parallel prototype could
easily be adapted to a distributed system or to any of a
variety of parallel architectures. The system is best
suited for the type of parallel processor which has
substantial memory and processing power on each
node (i.e., a “large g r a i n s or “medium grained”
machine). We also use this parallel system as the
basis for our one-processor system we are
implementing for the TOPEXPoseidon project. For
the one-processor version, we have built routines that
mimic the parallel interprocessor communications and
return the same value(s) as would the parallel one.
Since most of these routines do nothing on one
processor, this was not a complex task.

4.0 LESSONS LEARNED FROM EIGHT
IMPLEMENTATION

4.1. Moving a prototype into a flight environment

Recently it was decided to build a sequencechecking
system for the TOPEXPoseidon spacecraft based on
the SAVE prototype system. This full system is
called “MSAVE (for Mission Planning, Sequencing
and Scheduling Specification and Verification
Environment) Several modifications were necessary
to the system for it to be used in the TOPEX
environment [RefS].

4.2. Modifications required

These modifications fell into three basic categories.
First, some additional functionality in the core code

276

was needed to handle TOPEX-specific issues (TOPEX
file formats, handling of some special command
types, etc). Secondly, a more robust and friendlier
user interface was needed than the text-editor-
dependent interface of the prototype. A graphical user
interface based on X-windows is being developed,
heavily re-using code that was developed for the rest
of the TOPEX sequencing system. Thirdly, some
convenience functions to assist people developing
large sequences were added.

One of these “conveniences” was the addition of
“intermediate carryover.” It is always necessary to
carry over state information from the end of one
sequence to the beginning of the next. Intermediate
carryover, however, is used to allow MSAVE to start
a run part-way into a sequence file, similar to the
concept of “checkpointing” often used in large
computational physics runs. If an anomaly occurs on
the spacecraft, this capability can also be used to
allow the user to change a state at a given time
without a command (should the spacecraft exercise
some of its automated fault protection, for example.)
This same capability could also be used for “what-if‘
tests: if a sequence is built and someone in real time
wants to know “what happens if I turned off this
piece of hardware here with a realtime command’?

limited and predefined. Further, rules and models are
isolated from the rest of the processing code, and a
tracking scheme to avoid the possibility of
overwriting variables or addresses in the rest of the
executable has been developed. A syntax and f m a t
checking process takes place in MSAVE when a
compilation request for a new rule or model is
received to enforce this isolation. These limitations
should bound the amount of testing that will be
required.

A good analogy to the MSAVE testing situation is
that when one develops flight code in C it is not seen
as necessary to re-regression-test the C compiler for
every delivery of the C software in addition to testing
the code that has been written. The specification
environment portion of MSAVE can be seen as a
compiler for the flight rule and model language, and
as such can be tested once and then the ”programs”
(the new rules and models as they are added) can be
debugged separately. However, there is a capability in
MSAVE to add functions in action tables for complex
side-effect calculations. These functions will need to
be generated in an editor, and limited functional
testing of the system will be performed should a
function like this be linked into MSAVE.

4.4. Limitations of the Verification Environment
4.3. Testing issues

In addition, several issues arose that were not as
critical in the research prototyping environment.
Primarily these issues were in the realm of
compatibility with existing software, testing and
verification. The most significant of these was that
the MSAVE system is novel among flight sequence
checking software in that it allows a user to compile
new rules and models into in-line code, thereby
reducing the coding complexity and runtime penalties
inherent in interpreted code while avoiding the
inflexibility of hardcoded models. When a rule or
model is added and saved, MSAVE will automatically
recompile and relink the relevant MSAVE
executables. However, the following issue inevitably
arises:

“When we add a rule or m d e l and add it to
the code and recompile, what retesting is
necessary ?”

The addition of a rule or model is generating code, but
the code is machine-generated. This machine-
generation process will be exhaustively tested prior to
project delivery. The syntax of the code is also

MSAVE will not be able to detect constraint
violations which occur after the end of a sequence,
although if a subsequent sequence is checked they will
be detected at that time. MSAVE verifies constraints
using information available in the command sequence
file only. This implies that certain constraints, such
as those requiring precision modeling of spacecraft
turns, solar array slewing, or orbit position
propagation cannot be verified without significantly
expanding the complexity and scope of rules and
models in this implementation of MSAVE (although
the general SAVE methodology in Section 2 could
support this functionality).

4.5. Limitations of the Specification Environment

4.5.1. Command Scheduling And Cyclic Graphs

Sometimes it arises that a command has an effect
later in time than the command itself; for example, a
heater takes a thruster to the “warm” state after some
time delay. These effects are modeled by “scheduling”
a pseudocommand at a later (or, in some cases, the
same) time. This ability to schedule commands is
also the essential mechanism by which a given model

277

can effect changes upon the state of another model.
The danger arises from self-scheduling commands,
which can lead to a cyclic graph; i.e., Command A
which schedules Command B which schedules
Command A which whenever Command A or B
is in the sequence file. This problem is handled in
the flight version by prohibiting these loops, but a
robust way of handling this situation is of interest for
future versions.

4.5.2. Model Modification And Consistency
Maintenance

The user will load into memory and edit only one
model at any given time. Inconsistencies can arise
because of this; for example, if Model B reads a state
variable of Model A, and the user decides to delete
this state variable in Model A, then Model B now has
a reference to an undefined state variable. When the
models are compiled, the inconsistency is detected
and an error generated. It would be preferable to catch
the error as soon as possible, but if MSAVE tried to
catch all inconsistencies as each change to a model
was entered, its performance would probably be
unacceptable to the user if there were more than a few
models in the system.

available, we will take this large set and a set of
sequences and determine the parallel efficiency of this
full implementation. This will give us a basis for
extrapolation for other missions and applications.

6. ACKNOWLEDGEMENTS

The authors would like to thank the JPL Director’s
Discretionary Fund and the TOPEWoseidon project
for their interest in and support of this work. We also
would like to recognize the contributions to the
TOPEX-specific implementation by JPL‘s Dennis
Page, Carlos Carrion and Robert Gustavson.
Dr. Arkady Kanevsky of Texas A& M University,
Dr. Krishna Kavi of the University of Texas at
Arlington, and Dr. James Peters of the University of
Arkansas had many helpful discussions with the
authors during their tours as NASNASEE Summer
Faculty Fellows at JPL. Joe Spitale was a
participant in the Caltech Summer Undergraduate
Research Fellowship program while working on this
project. The work described in this paper was carried
out by the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the
National Aeronautics and Space Administdon.

7. REFERENCES
4.6. Experience Encoding Rules

Nk have now used the ruledaction table system to
develop and encode a variety of TOPEX flight rules.
We have found the system to be a very good and
systematic way of doing “knowledge capture” while
the spacecraft experts who actually built the hardware
are still around, since there is a tendency for a project
to slowly lose expertise over time.

The action table format forces one to think through
what happens if a command is sent in any of the
possible spacecraft states that apply to that command,
leading to thorough system behavior specification. It
also leads to easier review and discussion than
discussion of code in a programming language.

5. CONCLUSIONS AND PLANS

The specification and verification environment
described in this paper has been successfully
implemented as a prototype on a parallel machine,
and is being fully implemented for the
TOPEXPoseidon project on a single-processor
workstation. The environment has proven useful in
generating real rules and models. When the full
TOPEX implementation and rule/action table set is

1. Horvath, J.C. and Perry, L.P., “Hypercubes for
Critical Spacecraft Command Verification.” AIAA-
90-5095, In Proceedings of AIAAINASA 2nd
International Symposium on Space Information
Systems, September L7-19,1990, Pasadena CA.

2. Horvath, J.C., Tang, T., Perry, L.P., Cole, R.C.,
Olster, D.B. and Zipse, J.E., ”Hypercubes for Critical
Space Flight Command Operations.” In
Proceedings of The Fifth Distributed Memory
Computing Conference, Charleston, SC, April 8-12,
1990.

3. Alkalaj, L.J., “Towards a Specification Language
and Programming Environment for Concurrent
Constraint Validation of Spacecraft Commands.” JPL
Internal Report, July 1992.

4. Chandy, K.M., and Misra, J., “Asynchronous
Distributed Simulation via a Sequence of Parallel
Computations.” Communications of the ACM, Vol
24, No. 11, April 1981.

5. Schneider, K.M., “TOPEXPoseidon Project Post-
Expanded Checker Software Specification Document.”
JPL Internal Report, October 1992.

278

