
E.1.g

Operation Engineering Lab
Jet Propulsion Laboratory, 301-345
California Institute of Technology

Pasadena, California 91 109-8099

ABSTRACT

The Operations Engineering Laboratory
(OEL) at JPL is developing new technologies
that can provide more efficient and productive
ways of doing business in flight operations.
Over the past three years, we have worked
closely with the Multi-Mission Control Team
to develop automation tools, providing
technology transfer into operations and
resulting in substantial cost savings and error
reduction. The OEL development philosophy
is characterized by object-oriented design,
extensive reusability of code, and an iterative
development model with active participation
of the end users. Through our work, the
benefits of object-oriented design have
become apparent for use in mission control
data systems.

In this paper, we will explain object-oriented
technologies and how they can be used in a
mission control center to improve efficiency
and productivity. We will also discuss the
current research and development efforts in
the JPL Operations Engineering Laboratory
to architect and prototype a new paradigm for
mission control operations based on object-
oriented concepts.

Key Words: Operations, Automation, Data
Analysis, Object-Oriented

1. INTRODUCTION

The Multi-Mission Ground Data Svste m
fMGD8) at JPL has brought improvements
and new technologies to mission operations.
The development of a generic data system to
meet the needs of multiple missions was
intended to avoid re-inventing capabilities for
each new mission and thus reduce costs. The

traditional mainframe-based data systems of
the past were expensive to modify and their
proprietary architectures did not facilitate
incorporation of new technologies. The
MGDS is based on a distributed architecture,
with powerful UNIX workstations,
incorporating standards and open system
architectures.

The MGDS is being expanded beyond its
data delivery capabilities to include
automation and analysis tools for the more
demanding missions of the future. However,
automation tools can help reduce costs only if
they are focused on the people and the tasks
they perform. New technologies may only
bring minimal cost savings if the new system
functions much like the old one. This often
happens since the users who write the
requirements aren’t always familiar with the
capabilities of new technologies and simply
use their existing system’as a model. For
example, the mission controllers asked for a
scrolling screen that displayed telemetry
values representing the latest value of the
spacecraft clock This was the way the old
system allowed them to determine whether
there were any data outages. The developers
gave them their scrolling display and
operators continued to stare at these displays
watching for outages. An important
opportunity was lost to automate this process
and improve the efficiency of operations. To
solve these types of communications
problems, a new approach was tried. Each
division was assigned responsibility for its
end-to-end system, from development
through operations. In response, the
Operations Engineering Lab (OEL) was
created several years ago to merge operations
and development activities for the Space
Flight Operations Section.

343

https://ntrs.nasa.gov/search.jsp?R=19940019412 2020-06-16T15:38:30+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42788404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.

ground data systems, data presentation and
data access are not intuitive. Specialized
languages must be learned by the user in
order to describe the way data must be
processed, accessed, and displayed. An
object-oriented approach can simplifv the
user's interaction with the data system by
modeling the system as made up of objects,
entities defined by their functional and
inherited characteristics. Object-oriented
paradigms are ideal for developing easy-to-
use graphical user interfaces where data and
functions can be activated and manipulated
directly on the screen.

Our approach has been successful because
we build tools that are integrated, application-
specific, and focused on automating
essential, yet tedious and time consuming,
operations tasks. In addition, we involve
users and trainers early in the development
process. In fact, we have mission operators
work as developers in the lab, sometimes on
a part-time basis and, in other cases, full-time
for a limited tenure. Conversely, four of the
OEL developers worked as members of the
Spacecraft and Mission Control Teams at JPL
and the Spacecraft Anomaly Team at the Cape
in suppart of the recent Mars Observer
launch. This has allowed us to maintain
close contact with our users and understand
the problems that need to be solved.

We develop software incrementally, as a
series of rapid protoflight models that are
reviewed constantly by the users. Their
active participation has meant that the new
technologies have been accepted more
readily, and even more importantly, it has
often made them enthusiastic to learn a new
system. We have found that it is very
important to get protoflight implementations
in the hands of users and trainers as soon as

Success Story

One of the initial projects in the OEL was to
automate the Sequence of Events Generation
(SEG) process that develops the detailed
schedules and instructions for the ground
control of a spacecraft. The inputs to the
SEG process include the spacecraft command
sequence, ground resource allocations, and
special ground events. The output products
include a text listing of the events (the
Sequence of Events (SOE)) and a timeline
display (the Space Flight Operations
Schedule (SFOS)). [2] In the past, much of
the SEG process was manual, fragmented,
and understood by only a few operators. The
mainframe-based software for SOE
generation was expensive to maintain and
modify and the interface was difficult and
usually tedious. The SFOS timeline product
was produced on a PC with a word
processor. The process was slow, error-
prone, and inefficient in the use of personnel.
Editing a document was cumbersome, as
only a small portion of the page was visible at
once. Printing was done on a line printer,
and the output was reduced and copied for
distribution across the world. The frequent
updates to these documents quickly
invalidated the user's copy. The hard-copy
products made it difficult for users to isolate
the events of interest from the thousands of
SOE items.

2.3 Building a Multi-Mission SEG

The SEG process was separated into two
parts in order to isolate the mission-specific
software that was expected to change
frequently from the more stable, multi-
mission graphical tools that would be needed

344

command sequences and mission planning
schedules, simply by changing the file
generation scripts.

2.4 Object-Oriented Design

The graphical SFOS editinghiewing tool was
designed to make the operator's job fast and
easy. The entire SFOS page is visible on the
screen, with What-You-See-Is-What-You-
Get capabilities for viewing, editing, and
printing. We used an Object-Oriented (0-0)
design approach in which each item can be
directly manipulated on-screen as a graphics
object.

In an object-oriented design, the system is
designed around the data that the system
must manipulate rather than focusing on the
functions a system must perform. Objects
are defined by their functional characteristics;
they encapsulate knowledge of both their
current state and expected behavior.
Embedded in each object is an
'understanding' of its attributes and the
methods it will use for performing its allowed
functions. In an 0-0 system, data objects are
often designed to model real-world objects.
For example, in the SFOS editor, each object
represents a ground or spacecraft event that
will occur for a mission. An object that is a
spacecraft command belongs to a different
class of objects than one that describes a
tracking activity.

In the SFOS editor, each object knows how
to display, edit, delete, add, and move itself.
For example, schedule objects will
automatically place themselves in the correct
timeline position. When a user selects an
object to edit, the object will respond by

f

of the input data files to be automated using
simple scripting languages such as Per1 and
AWK.

The SOE graphical tool has many of the same
features as the SFOS tool. The SOE tool
displays a time-ordered, column-formatted
display of the SOE file. It has capabilities for
searching on selectable criteria, filtering out
events of interest, and highlighting events.
The contents and format of the columns can
be reconfigured by the user.

2.5 Templates for Operations Processes

Although the process was automated, there
were many steps in the procedure and
decisions had to be made on execution
parameters based on a complicated data flow.
It was clear that an interfice was necessary to
simplify the operator's job. An interface
builder (OELSHELL) was first implemented
for building graphical templates. The template
builder was an extension of JPL's D.
Smythe's Widget Creation Library which
uses a resource file to configure the interface.
The templates provide buttons that can be
used to call a program and the output can be
redirected as needed. File widgets allow a
user to designate input files for the process.
On-line help and arrows help describe the
process.

Templates were built for the SEG process as
shown in Figure 1. The SEG template shell
allows a user to select which output products
are desired and which input sources are
needed, eliminating the need for users to
know which program must be executed in
each case. Templates have been built for

345

graphical plotting tool provides sophisticated
capabilities for plotting multiple channels
versus time or channel versus channel plots.
The ASCII file interface has allowed
telemetry plots to be produced automatically
by generating the input fdes with simple
scripting tools that supply hooks into the
MGDS telemetry database retrieval system.

A decommutation map tool provides a
graphical means of visualizing the telemetry
decommutation process and of interactive
editing of a channel object. The tool allows a
user to graphically navigate through a
decommutation map, moving in and out of
sub-commutations using a mouse. The
current mode for manipulating
decommutation maps consists of editing a file
written in a specialized map language. In
order to make a change to a specific map, an
operator must understand the decommutation
map language and must also read through the
lengthy source code logic. Undoubtedly, an
intuitive, graphical method for visual display
and editing of decommutation maps is

2.7 Results

The software interfaces to the graphical tools
are designed to be clean and simple. This has
enabled our software to be used for multiple
missions with differing objectives. These
tools have resulted in substantial savings and
reduced errors. The SFQS editor resulted in

FIGURE 1. SEG TEMPLATE SHELL

The graphical SEG tools have been used as
the basis for other editors and operations
support tools. The editor/viewers were
originally implemented using the SunView
windowing environment. With the lab’s
migration to the new MGDS environment,
our software had to be translated into the
M o t i f windowing environment. The task
was greatly simplified because of the object-
oriented approach and the migration was
done ahead of schedule and under budget.
The system design did not have to change in
the new environment, only the user-
interaction functions were affected. Our
original software design also included a
lower-level set of graphics routines for
drawing objects on the screen or to a laser
printer. Only these routines had to be
changed to interface with the X-server. Since
all of our software tools used the same
graphics routines, our development costs
were significantly reduced through this
commonality. necessary.

2.6 QEL Automation and Analysis Tools

other automation tools developed in the QEL
include an automated telemetry log generator
for data management. This on-line log tool
has replaced the previous method of hand-
written logs describing telemetry data
coverage. An alarm clock tool provides user-

346

project per year. The Smart Alarm Tool has
saved up to 40% of the mission controllers

many error-prone, time-consuming manual
processes.

It is evident that increased automation of the
operations process is necessary and that a
careful strategy is required to
tools focus on specific tasks
approach is flexible enough to meet the needs
of multiple missions. In addition, the 0-0
approach has resulted in less costly
maintenance, and we have been able to
accommodate users' and missions' changing
needs with minimal expense.

We have also discovered that developing
great tools is not enough. It is essential for
developers to get into the operational
environment and assist operations teams in
adapting the delivered system and its many
tools to meet their needs. The OEL has led a
Customer Adaptation Team (CAT) for
adapting the MGDS for the Voyager and
Mars Observer Spacecraft and Mission
Control Teams. This effort has been very
successful because we work in their
environment, configuring the workstations
on their desks, building scripts to automate
their tasks, and designing interfaces to
integrate tools.

3. ADVANCED RESEARCH

3.1 Object-Oriented Operations (03)

Another emerging trend in the
development of data analysis and display
software is the use of modular software
components (or tools) that are integrated and
manipulated by the user as objects in a
desktop environment. For example, in a
ground data system, the software

incorporates these techniques in a mssion
control data system. ~n a fully-integrated 03
environment, the objects could be invoked by
events that occur on the ground or on the
spacecraft. For example, if the spacecraft
unexpectedly went into safe mode, the
ground data system would detect the event
and signal appropriate objects (telemetry
channels) to be instantiated, producing the
necessary displays or analysis of their current
status on the screen for visual inspection by
the engineer.

~n an initial 03 prototype, the OEL is
investigating the combination of expert
system and object-oriented technologies.
Using the Gensym G2 real-time object-
oriented expert system, we have built a model
of the Mars Observer tele,communications
system including the ground system that is
driven by the SOE. The spacecraft and each
ground station are represented by an icon on
a top-level schematic, and the overall state of
the system is displayed by changing colors of
parts of these icons. Each icon has a specific
sub-workspace which can display more
specific information about each component of
the system. Each object has associated rules
that allow the system to compare and verify
the state of the spacecraft with respect to the
state of the ground tracking stations.

3.2 Object-Based Interaction Paradigm

We are also investigating extending object-
oriented concepts to a system environment
which provides a mechanism for the tools
themselves to communicate through an
object-based interaction. The system

347

c1

object-based interaction paradigm has
presented some interesting research
challenges, and a prototype version has been
implemented. In the prototype system, the
graphical decommutation map tool and a
hypertext dictionary tool interact through
common telemetry channel objects. The user
can select a channel object in the map and
then drag it to the dictionary tool for
information on the channel (or vice versa).
The object activates different functions in the
different tools, enabling a user to focus on
the data they want to access and display,
rather than on the tools and methods needed
to get the job done.

3.3 Closed-Loop Monitoring System

Another OEL research project is an automated
closed-loop monitoring system that provides
real-time integration of uplink events with
downlink telemetry information, using the
SOE as the predict source. In the existing
SOE for Mars Observer, each spacecraft
command item has a descriptive text field that
contains a list of related downlink telemetry
channels. These channels are monitored in
real-time by mission controllers using another
tool that reads the downlink telemetry stream.
The closed-loop system will integrate these
tasks by interfacing the SOE with the real-
time telemetry data stream and automatically
appending appropriate channel values with
command items. To integrate downlink
events, the SOE will require a new type of
channel data object that is treated as a special
field and will be configured to send messages
to external processes that will monitor the
appropriate channels. Although the channels
selected for viewing will be automated, a user
may opt to monitor any channel at a given
time, simply by adding that channel object at
the appropriate point in the time-ordered SOE
listing.

equipment for spacecraft integration and test.

4. ~ONC~USION

With new development approaches such as
that of JPL's MGDS and Operations
Engineering Laboratory, success has been
shown in improving mission operability and
reducing cost in operations. The use of
object-oriented technologies has resulted in
software that is easier to use and cheaper to
adapt for multiple missions and changing
mission objectives. The future of mission
control at P L is one of opportunity and
continued improvement. Work at the OEL
continues to make use of these opportunities
to improve productivity in mission control.

5. ACKNOWLEDGEMENTS

This work was done at the Jet Propulsion
Laboratory, California Institute of
Technology, under a contract from the
National Aeronautics and Space
Administration. We would like to
acknowledge the work of the technical staff
in the OEL, especially Patrick Curran, Roger
Davidson, Ana Maria Guerrero, Joseph Hu,
Daniel Hurley, Chester Joe, and Christine
Aguilera. We would also like to
acknowledge the JPL Mission Operations
Teams for their enthusiasm and support.

6. REFERENCES

1. Muratore, J., 1991. Real-Time Data
System at Space Shuttle Mission Control,
NASA Control Center Conference.

2. K. Miller and S. Murphy, 1990. Sun
Technology for Mission Operations, Sun
Tech Journal.

This integrated system will greatly simplify
the user's ability to access and view
telemetty data, and will provide a means to
view this data in the context of the commands

348

