
GRASP/Ada

Graphical Representations of Algorithms, Structures, and Processes for Ada

Update of GRASP/Ada
Reverse Engineering Tools For Ada

Final Report

Delivery Order No. 21
Basic NASA Contract No. NAS8-39131

Department of Computer Science and Engineering
Auburn University, AL 36849-5347

Contact: James H. Cross II, Ph.D.

Principal Investigator
(205) 844-4330

cross@eng.auburn.edu

December 14, 1993

https://ntrs.nasa.gov/search.jsp?R=19940019638 2020-06-16T16:43:23+00:00Z

Update of GRASP/Ada

Graphical Representations of Algorithms, Structures, and Processes for Ada

Reverse Engineering Tools For Ada
Final Report

Delivery Order No. 21
Basic NASA Contract No. NAS8-39131

James H. Cross II, Ph.D.

Principal Investigator

December 14, 1993

Abstract

The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and

Processes for Ada) has successfully created and prototyped a new algorithmic level graphical
representation for Ada software, the Control Structure Diagram (CSD). The primary impetus

for creation of the CSD was to improve the comprehension efficiency of Ada software and,
as a result, improve reliability and reduce costs. The emphasis has been on the automatic

generation of the CSD from Ada PDL or source code to support reverse engineering and
maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code.

In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied
manually to several small Ada programs. A prototype CSD generator (Version 1) was

designed and implemented using FLEX and BISON running under VMS on a VAX 11-780.
In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A

user interface was designed and partially implemented using the HP widget toolkit and the
X Windows System. In Phase 3, the user interface was extensively reworked using the

Athena widget toolkit and X Windows. The prototype was applied successfully to numerous
Ada programs ranging in size from several hundred to several thousand lines of source code.
Following Phase 3,e two update phases were completed. Update'92 focused on the initial

analysis of evaluation data collected from software engineering students at Auburn University

and the addition of significant enhancements to the user interface. Update'93 (the current
update) focused on the statistical analysis of the data collected in the previous update and

preparation of Version 3.4 of the prototype for limited distribution to facilitate further
evaluation. The current prototype provides the capability for the user to generate CSDs from

Ada PDL or source code in a reverse engineering as well as forward engineering mode with
a level of flexibility suitable for practical application. This report provides an overview of

the GRASP/Ada project with an emphasis on the current update.

A CKNOWLEDGEMENTS

We appreciatethe assistance provided by NASA personnel, especially Mr. Keith

Shackelford whose guidance has been of great value. The following is an alphabetical listing
of the team members who have participated in various phases of the project. An asterisk (*)

indicates the team member worked on the Update of GRASP/Ada addressed in this report.

Principal Investigator:

* Dr. James H. Cross II, Associate Professor

Computer Science and Engineering

Graduate Research Assistants:

Richard A. Davis

Charles H. May
Kelly I. Morrison

Timothy A. Plunkett
Narayana S. RekapaUi
Darren Tola

Statistician

* Dr. Saeed Magssoodloo, Professor
Industrial Engineering

The following trademarks are referenced in the text of this report.

Ada is a trademark of the United States Government, Ada Joint Program Office.
AdaVision is a trademark of Sun Microsystems, Inc.

Apex is a trademark of Rational.
ObjectMaker is a trademark of Mark V Systems, Inc.

PostScript is a trademark of Adobe Systems, Inc.

Software through Pictures (StP), Ada Development Environment (ADE), and

IDE are trademarks of Interactive Development Environments.
VAX and VMS are trademarks of Digital Equipment Corporation.

VERDIX and VADS are trademarks of Verdix Corporation.
UNIX is a trademark of AT&T.

ii

TABLE OF CONTENTS

1.0 Introduction ... 1
1.1 Phase 1 - The Control Structure Diagram For Ada 1

1.2 Phase 2 - The GRASP/Ada Prototype and User Interface 1

1.3 Phase 3 - CSD Generation Prototype and Preliminary Object Diagram
Prototype ... 2

1.4 Update'92 - Preliminary Evaluation and User Interface Enhancements
• .. 2

1.5 Update'93 of the GRASP/Ada 2

2.0 The

2.1

2.2

2.3
2.4

Control Structure Diagram 4

Background .. 4
The Control Structure Diagram Illustrated 5
Observations .. 7

Control Structure Diagram - Future Directions 7

3.0 The GRASP/Ada System Model 9

4.0 User Interface 11
• * * • • • • • • • • ° , • * • • • • • • • • • • • • • • ° • ° ° • • ° • ° • • • ° • °

4.1 System Window 11
4.2 Control Smacture Diagram Window 14
4.3 User Interface - Future Directions 17

5.0 Control Structure Diagram Generator 19
5.1 Generating the CSD 19

5.2 Displaying the CSD - Screen and Printer 19
5.3 CSD Generator - Future Considerations 20

Internal Representation of the CSD - Alternatives 20

6.0 Evaluation of the Control Structure Diagram and GRASP/Ada 25

6.1 The Design of the Experiment 25
6.2 The Subjects ... 26
6.3 The Evaluation Results 26
6.4 Future Directions for Evaluation 37

7.0 Conclusions .. 38

REFERENCES ... 40

APPENDICES .. 42

A. Installation Guide .. A - 0

B. Integrating GRASP/Ada with Software through Pictures (StP) B - 0

C. Evaluation Instrument C - 0

,°°

111

LIST OF FIGURES

Figure 1. Ada Source for SearchArray 6

Figure 2. CSD for Ada Task Body Controller 6

Figure 3. CSD for SearchArray 6

Figure 4. Ada Source for Task Body Controller 6

Figure 5. Control Structure Diagram Constructs for Ada 8

Figure 6. GRASP/Ada System Block Diagram 9

Figure 7. GRASP/Ada System Window

Figure 8.

Figure 9.

Figure 10.

Figure

Figure

Figure

Figure

Figure

Figure

11

12General Options ..

CSD Options .. 13

CSD Window with Procedure Provided by NASA after CSD

Generation .. 15

12. CSD Window Edit Options 16

13.

14.

15.

16.

CSD Window File Options 14

11.

CSD Window View Options 16

16

17

CSD Window Misc Options

CSD Window with Ada Constructs

CSD Window with Program Structure Resulting from Clicking on

procedure body, if�then�else, for loop, and while loop 18

iv

LIST OF TABLES

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Item Response Frequencies 28

Item Analysis for Graphical Representations 28

Percentage Scores For Graphical Representations 29

Percentage Score Differences - CSD Compared to Others 29

Data for Performance Characteristic SEQ (PCH #1) 30

Results of ANOVA 32

Table 7. ANOVA Summary for Treatments FC, NS, WO, AD, CSD 33

Table 8. ANOVA Summary for Treatments FC, NS, CSD 34

V

1.0 Introduction

Computer professionals have long promoted the idea that graphical representations of

software can be extremely useful as comprehension aids when used to supplement textual

descriptions and specifications of software, especially for large complex systems [SHU88,

AOY89, SCA89]. The general goal of this research has been the investigation, formulation

and generation of graphical representations of algorithms, structures, and processes for Ada

(GRASP/Ada). This specific task has focused on reverse engineering of control structure

diagrams from Ada PDL or source code.

Reverse engineering normally includes the processing of source code to extract higher

levels of abstraction for both data and processes. The primary motivation for reverse

engineering is increased support for software reusability, verification, and software

maintenance, all of which should be greatly facilitated by automatically generating a set of

"formalized diagrams" to supplement the source code and other forms of existing

documentation. The overall goal of the GRASP/Ada project is to provide the foundation for

a CASE (computer-aided software engineering) environment in which reverse engineering and

forward engineering (development) are tightly coupled. In this environment, the user may

specify the software in a graphically-oriented language and then automatically generate the

corresponding Ada code [ADA83]. Alternatively, the user may specify the software in Ada

or Ada/PDL and then automatically generate the graphical representations either dynamically

as the code is entered or as a form of post-processing.

The GRASP/Ada project was divided into three primary development phases followed

by two update phases: Update'92 and Update'93, the current phase. Each of these phases is

briefly described below.

I.I Phase I - The Control Structure Diagram For Ada

Phase 1 focused on a survey of graphical notations for software with concentration

on detailed level diagrams such as those found in [MAR85, TRI89], and the development of

a new algorithmic or PDL/code level diagram for Ada. Tentative graphical control constructs

for the Control Structure Diagram (CSD) were created and initially prototyped in a

VAX/VMS environment. This included the development of special diagramming fonts for

both the screen and printer and the development of parser and scanner using UNIX based
tools such as LEX and YACC. The CSD is described in Section 2.0.

1.2 Phase 2 - The GRASP/Ada Prototype and User Interface

During Phase 2, the prototype was extended and ported to a Sun/UNIX environment.

The development of a user interface based on the X Window System represented a major part

of the extension effort. Verdix Ada and the Verdix DIANA interface were acquired as

potential commercial tools upon which to base the GRASP/Ada prototype. Architectural

diagrams for Ada were surveyed and the OOSD notation [WAS89] was identified as having

good potential for accurately representing many of the varied architectural features of an Ada

softwaresystem. Phase2 also included the preliminary designfor an architecturalCSD
[DAV90]. The aspectsof architecturalCSD are expectedto be integratedinto the fully
operationalGRASP/Adaprototypeduringa futurephaseof theproject.

1.3 Phase 3 - CSD Generation Prototype and Preliminary Object Diagram Prototype

Phase 3 has had two major thrusts: (1) completion of an operational GRASP/Ada

prototype which generates CSDs and (2) the development of a preliminary prototype which

generates object diagrams directly from Ada source code. Completion of the GRASP/Ada

CSD prototype (CSDgen) included the addition of substantial functionality, via the User

Interface, to make the prototype easier to use. The User Interface was reworked based on

the Athena widget set. CSDgen was installed and demonstrated on a Sun workstation at

Marshall Space Hight Center, Alabama.

The development of a preliminary prototype for generating architectural object

diagrams (ODgen) for Ada source/PDL was an effort to determine feasibility rather than to

deliver an operational prototype as was the case with CSD generator above. The preliminary

prototype has indicated that the development of the components to recover the information

to be included in the diagram, although a major effort, is relatively straightforward.

However, the research has also indicated that the major obstacle for automatic object diagram

generation is the automatic layout of the diagrams in a human readable and/or aesthetically

pleasing format. A user extensible rule base, which automates the diagram layout task, is

expected to be formulated during future GRASP research.

1.4 Update'92 - Preliminary Evaluation and User Interface Enhancements

Following Phase 3, the Version 3.1 prototype was used in several software engineering

classes at Auburn University, evaluated, and enhanced to create Version 3.2. A preliminary

analysis was done on data collected from students, and then changes were made to the User

Interface to reflect the indicated usage patterns. The UNIX man-page was drafted to provide

online documentation, and the installation guide was drafted to provide for limited distribution

of the tool. And finally, the prototype was modified so that it could be invoked from IDE's

CASE tool StP with a pspec or PDL file (see Appendix B).

1.5 Update'93 of the GRASP/Ada

Update'93 is the most recent phase of the GRASP/Ada project, and the one described

in the remainder of this report. Since Update'92, the Version 3.2 prototype has undergone

continual upgrades which have resulted in Version 3.4 of the prototype. The CSD evaluation

data collected in the previous update was formally analyzed during Update'93 and the User

Manual and Installation Guide have been completed. Each of these tasks is briefly described

below.

(1) The GRASP/Ada tool was evaluated. As part of the ongoing evaluation of

GRASP/Ada, the tool has been and continues to be used in CSE 422 (Introduction to

2

SoftwareEngineering).An evaluationinstrumentwasdevelopedandadministeredto
collect feedbackfrom the studentsduring the Fall 1992quarter. Both the CSD and
theGRASP/Adatool wereevaluated. A preliminary analysisof the datawasdone
during Update'92. During Update'93a formal statisticalanalysiswasappliedto the
CSDevaluationdatato determinestatisticalsignificance,if any, in thepreferencefor
the CSD over othercommongraphicalrepresentationssuchasthe flowchart. The
resultswere,in fact, statisticallysignificantandaredescribedin Section6.

(2) Modification of the GRASP/Ada tool. As a result of the GRASP/Ada tool

evaluation described above and in Section 6, numerous modifications and

enhancements were made to the User Interface. The current User Interface is

described in Section 4.

(3) The Installation Guide, Man-Page, and online User Manual. The make files were

streamlined to make recompilation and installation more straightforward. The

Installation Guide (see Appendix A) includes sections on the system requirements,

installation procedure, and getting started. Although the window-based User Interface

is relatively intuitive, one of items requested most by the students that evaluated the

prototype was a User Manual. The UNIX Man Page has been updated to provide all

necessary user information, and an online User Manual which allows the user to view

individual topics via the User Interface has been included.

(4) Investigation of Object Diagrams. Existing CASE tools that utilize object diagrams

in one form or another were reviewed. ObjectMaker by Mark V Systems was

acquired for evaluation purposes as an example of currently available software tools

that support object diagrams and other architectural level graphical representations.

The results of the review indicate that the GRASP/Ada tool can play an important role

as a natural extension to these existing object diagrams and their supporting CASE

tools. The control structure diagram provides a detailed algorithmic level graphical

representation which has statistically significant advantages over other graphical

notations, PDL, and source code. The entire spectrum of re-engineering oriented

CASE tools with respect to functionality and availability has recently been well-

documented in [OLS93, SIT92].

(5) Presentation of Update'93. Specifications for this update and the expected results

of this update (Update'93) were presented informally during a panel session at the 5th

International Conference on Software Engineering and Knowledge Engineering

(SEKE'93), June 16-18, 1993 in San Francisco [CAL93]. The actual results are

expected to be presented and published at appropriate professional meetings and/or

in an appropriate journal following this update phase.

The following sections describe the control structure diagram, the GRASP/Ada system model,

the user interface, the control structure diagram generator, evaluation of the CSD and

prototype, and future requirements. The overall rationale for the development of the CSD

is described in [CROg0a, CRO90b], which were written during Phase 1. A taxonomy and

extensive literature review of reverse engineering can be found in [CHIg0, CRO92], which

were written during Phases 2 and 3.

3

2.0 The Control Structure Diagram

Advances in hardware and software, particularly high-density bit-mapped monitors and

window-based user interfaces, have led to a renewed interest in graphical representation of

software. Although much of the research activity in the area of software visualization and

computer-aided software engineering (CASE) tools has focused on architectural-level charts

and diagrams, the complex nature of the control constructs and control flow defined by

programming languages such as Ada and C and their associated PDLs, makes source code

and detailed design specifications attractive candidates for graphical representation. In

particular, source code should benefit from the use of an appropriate graphical notation since

it must be read many times during the course of initial development, testing and maintenance.

The control structure diagram (CSD) is a notation intended specifically for the graphical

representation of algorithms in detailed designs as well as actual source code. The primary

purpose of the CSD is to reduce the time required to comprehend software by clearly

depicting the control constructs and control flow at all relevant levels of abstraction. The

CSD is a natural extension to existing architectural graphical representations such as data

flow diagrams, structure charts, and object diagrams.

The CSD, which was initially created for Pascal/PDL [CRO88], has been extended

significantly so that the graphical constructs of the CSD map directly to the constructs of

Ada. The rich set of control constructs in Ada (e.g. task rendezvous) and the wide

acceptance of Ada/PDL by the software engineering community as a detailed design language

made Ada a natural choice for the basis of a graphical notation. A major objective in the

philosophy that guided the development of the CSD was that the graphical constructs should

supplement the code and/or PDL without disrupting their familiar appearance. That is, the

CSD should appear to be a natural extension to the Ada constructs and, similarly, the Ada

source code should appear to be a natural extension of the diagram. This has resulted in a

concise, compact graphical notation which attempts to combine the best features of

diagraming with those of well-indented PDL or source code.

2.1 Background

Graphical representations have been recognized as having an important impact in

communicating from the perspective of both the "writer" and the "reader." For software, this

includes communicating requirements between users and designers and communicating design

specifications between designers and implementors. However, there are additional areas

where the potential of graphical notations have not been fully exploited. These include

communicating the semantics of the actual implementation represented by the source code

to personnel for the purposes of testing and maintenance, each of which are major resource

sinks in the software life cycle. In particular, Selby [SEL85] found that code reading was

the most cost effective method of detecting errors during the verification process when

compared to functional testing and structural testing. And Standish [STA85] reported that

program understanding may represent as much as 90% of the cost of maintenance. Hence,

improved comprehension efficiency resulting from the integration of graphical notations and

source code could have a significant impact on the overall cost of software production.

4

Since the flowchart was introduced in the mid-50's, numerous notations for

representing algorithms have been proposed and utilized. Several authors have published

notable books and papers that address the details of many of these [MAR85, TRI88,

SHN77]. Tripp, for example, describes 18 distinct notations that have been introduced since

1977 and Aoyama et.al, describes the popular diagrams used in Japan. In general, these

diagrams have been strongly influenced by structured programming and thus contain control

constructs for sequence, selection, and iteration. In addition, several contain explicit EXIT

structures to allow single entry / multiple exit control flow through a block of code, as well

as PARALLEL or concurrency constructs. However, none the diagrams cited explicitly
contains all of the control constructs found in Ada.

Graphical notations for representing software at the algorithmic level have been

neglected, for the most part, by business and industry in the U.S. in favor of non-graphical

PDL. A lack of automated support and the results of several studies conducted in the

seventies which found no significant difference in the comprehension of algorithms

represented by flowcharts and pseudo-code [SHN77] have been a major factors in this

underutilization. However, automation is now available in the form of numerous CASE tools

and recent empirical studies reported by Aoyami [AOY89] and Scanlan [SCA89] have

concluded that graphical notations may indeed improve the comprehensibility and overall

productivity of software. Scanlan's study involved a well-controlled experiment in which

deeply nested if-then-else constructs, represented in structured flowcharts and pseudo-code,

were read by intermediate-level students. Scores for the flowchart were significantly higher

than those of the PDL. The statistical studies reported by Aoyami et.al, involved several tree-

structured diagrams (e.g., PAD, YACC II, and SPD) widely used in Japan which, in

combination with their environments, have led to significant gains in productivity. The

results of these recent studies suggest that the use of a graphical notation with appropriate

automated support for Ada/PDL and Ada should provide significant increases productivity

over current non-graphical approaches.

2.2 The Control Structure Diagram Illustrated

Two examples are presented below to illustrate the CSD. The first shows the basic

control constructs of sequence, selection and iteration in Ada. These three control constructs

are common to all structured procedural languages such as Ada, C, and Pascal. The second

example illustrates a more complex control construct, the task rendezvous in Ada.

Figure 1 contains an Ada procedure called SearchArray that searches an array A of

elements and counts the number of elements above, below, and/or equal to a specified

element. Figure 2 contains the CSD for SearchArray which includes the three basic control

constructs sequence, selection, and iteration. Although this is a very simple example, the

CSD clearly indicates the levels of control inherent in the nesting of control statements. For

example, at level 1 there are four statements executed in sequence - the three assignment

statements and the for loop. The for loop defines a second level of control which contains

a single statement, the if statement, which in turn defines three separate level 3 sequences,

each of which contains one assignment statement. It is noteworthy that even the CSDs for

most production strength procedures rarely contain more than ten statements at level 1 or in

any of the subsequences defined by control constructs for selection and iteration. This

graphical chunking on the basis of functionality and level of control appears to have a

5

procedure SearchArray (A : in ArrayType;

Element: in ElementType;

Above,Below, EqualTo: out integer)

begin

Above := 0;

Below := 0;

EqualTo := 0;

for index in A'first..A'last loop

if Element > A(index) then

Below := Below ÷ i;

elsif Element < A(index) then

Above := Above + I;

else

EqualTo := EqualTo ÷ i;

end if;

end loop;

end SearchArray;

Figure 1. Ada Source for SearchArray.

is

procedure SearchArray (A : in ArrayType;

Element: in ElementType;

Element: in ElementType;

Above, Below, EqualTo: out integer) is

begin

-- Above := 0;

-- Below := 0;

-- EqualTo := 0;

-- for index in A'first..A'last loop

Element > A(index) then

Below := Below , I;

sir Element < A(index) then

Above := Above + i;

._se

EqualTo := EqualTo + i;

end if;

end loop;

_nd SearchArray;

Figure 3. CSD for SearchArray.

substantial positive effect on detailed comprehension of the software.

Figures 3 and 4 contain an Ada task body CONTROLLER adapted from [BAR84],

which loops through a priority list attempting to accept selectively a REQUEST with priority

P. Upon on acceptance, some action is taken, followed by an exit from the priority list loop

to restart the loop with the first priority. In typical Ada task fashion, the priority list loop is

contained in an outer infinite loop. This short example contains two threads of control: the

rendezvous, which enters and exists at the accept statement, and the thread within the task

body. In addition, the priority list loop contains two exits: the normal exit at the beginning

of the loop when the priority list has been exhausted, and an explicit exit invoked within the

task body TASK_NAME is

begin

loop

for p in PRIOITY loop

select

accept REQUEST(p) (D: DATA) do

ACTION(D);

end;

exit;

else

null;

end select;

end loop;

end loop;

end TASK_NAME;

Figure 4. Ada Source for Task Body
Controller.

4-

_ask body TASK_NAME is

begin

-- loop

-- for p in PRIOITY loop

select

-_ accept REQUEST(p)

e_ndACTION (D) ;

4- -- exit;

else

--null;

end select;

end loop;

end loop;

_nd TASK NAME;

(D: DATA) do

Figure 2. CSD for Ada Task Body
Controller.

6

select statement. While the concurrencyand multiple exits are useful in modeling the
solution,they do increasetheeffort requiredof thereaderto comprehendthe code.

The CSD in Figure 4 uses intuitive graphicalconstructs to depict the point of
rendezvous,thetwo nestedloops,the selectstatementguardingthe acceptstatementfor the
task, the unconditionalexit from the inner loop, and the overall control flow of the task.
When readingthecodewithout thediagram,asshownin Figure3, theconu'olconstructsand
control pathsaremuch lessvisible althoughthe samestructuraland control information is
available. With additionallevelsof nestingandincreasedphysical separationof sequential
components,the visibility of control constructsand control paths becomesincreasingly
obscure,and the effort requiredof the readerdramaticallyincreasesin the absenceof the
CSD. Now that the CSDhasbeenbriefly introduced,the variousCSD constructsfor Ada
arepresentedin Figure5. Eachof the CSDconstructsshouldbe relatively self-explanatory
sincetheCSD is designedto supplementthe semanticsof the underlyingAda.

2.3 Observations

The control structure diagram is a new graphical tool which maps directly to Ada and

Ada PDL. The CSD offers advantages over previously available diagrams in that it is

combines the best features of PDL and code with simple intuitive graphical constructs. The

potential of the CSD can be best realized during detailed design, implementation, verification

and maintenance. The CSD can be used as a natural extension to popular architectural level

representations such as data flow diagrams, object diagrams, and structure charts.

The GASP/Ada prototype, described in Sections 4 and 5, provides for the automatic

generation of the CSD from Ada or Ada PDL. A preliminary statistical evaluation of the

CSD is presented in Section 6.

2.4 Control Structure Diagram - Future Directions

The CSD constructs shown in Figure 5 are expected to continue to evolve, especially

with Ada 9X on the horizon. Suggestions for improvements to the individual CSD graphical

constructs are continually solicited from users. While most of these suggested changes appear

to be minor when considered individually, their aggregate implementation in the current

prototype represents a major rework. Theoretically, the CSD and its individual constructs are

a separate issue from the automatic generation of the diagrams in a production environment.

However, in practice unless CSDs (or any other diagrams) can be automatically generated,

they will not be utilized. Additional future considerations concerning the overall system

model, the user interface, and the automatic generation of the CSD can be found at the end

of Sections 3, 4, and 5 respectively.

-- ABORT

Ib,_In

P;

Lend;

-- BLOCK

S;

S;

S;
erld ;

-- BLOCK WITH DECLARATIONS
S;

_declare

I Ib_n: INTEGEm;

S;

S;
end ;

-- CASE

s_LeD l,
I O--_when C1 =>

when C2 =>

S;

end case;

-- EXCEPTION HANDLER

-- S;

-- S;
-- S;

when Errl =i

when Err2

S;

Err3

end ;

-- GUARDED SELECT

-- S;
select

I when_;,
t M _:,

--null;

or
when C2 =>

accept N do

S;

4-

end select;

-- IF

s_cthen
S;

elee

S;
S;

if;

F--- S;

-- INFINITE LOOP

S;

S;

S;
loop;

F'-- S;

-- LOOP EXIT

I l_p

exit when C;
S;

loop;

_-- s;

-- PACKAGE

Y is

e Z;

-- FOR

'_]]F--S_rS_ in R loop -- PROCEDURE

loop; Ibe_In

S;

S;

-- GO TO S;

<<L>>

S;
S; -- RAISE

gOtO L; _-- S;
S;
ralse Err;

-- RENDEZVOUS (RECEIVER)

--S;

accept C do

S;
S;

-- S;

-- SELECT

-- S;
select

a_t I do

or

else

--S;

end select;

-- SEQUenCE

S;
S;

S;

-- TASK SPECIFICATION

S;

S;

-- TERMINATE ALTERNATIVE

--S;
select

--I _t Fdo

or

end select;

-- S;

-- WHILE

S;
S;
S;

Figure 5. Control Structure Diagram Constructs for Ada.

3.0 The GRASP/Ada System Model

3.1 Overview

The major system components of

the GRASP/Ada system are shown in the

block diagram in Figure 6. Currently, the

entire prototype is written in the

programming language C. The User

Interface was built using the X Window

System and includes a special CSD

window (modified text editor) and

provides general control and coordination

among the other components.

The control structure diagram

generator, CSDgen, inputs Ada PDL or

source code and produces a CSD.

CSDgen has its own parser/scanner built

using FLEX and BISON, successors of

LEX and YACC. It also includes its own

printer utilities. As such, CSDgen is a

self-sufficient component which can be
executed from the user interface or the

command line without the commercial

components. When changes are made to

the Ada PDL or source code, the entire

GRASP/Ada

J
User Interface (x)

CSDgen : ODgen i

t

I

r
i

I GRASPIib IUNIX File System

source code graphical reps

Figure 6. GRASP/Ada System Block Diagram.

file must be reparsed to produce an updated CSD. A CSD editor, which will provide for

dynamic incremental modification of the CSD, is currently in the planning stages.

The object diagram generation component, ODgen, is in the analysis phase and has

been implemented as a separate preliminary prototype. The dashed lines indicate future

integration. The feasibility of automatic diagram layout remains under investigation. Beyond

automatic diagram layout, several design alternatives have been identified. The major

alternatives include the decision of whether to attempt to integrate GRASP/Ada directly with

commercial components. For example, the Verdix Ada development system (VADS) and

DIANA interface could be used for extraction of diagram information and (2) IDE's Software

through Pictures, Ada Development Environment (IDE/StP/ADE) for the display of the object

diagrams. ObjectMaker by Mark V Systems has also been reviewed and is a strong

contender as a basis for generating and displaying object diagrams. ObjectMaker was

recently ported to UNIX from a PC platform, and unfortunately it appeared to be somewhat
unstable in its current state.

The GRASP/Ada library component, GRASPlib, allows for coordination of all

generated items with their associated source code. The current file organization uses standard

UNIX directory conventions as well as default naming conventions. For example, all Ada

source files end in .a, the corresponding CSD files end in .a.csd, and the corresponding print

files end in .a.csd.ps. In the present prototype, library complexity has been keep to a

9

minimum by relying on the UNIX directory organization. Its purpose is to facilitate

navigation among the diagrams and the production of sets of diagrams.

3.2 System Model - Future Directions

The GRASP/Ada tool was conceived to be self-sufficient reverse engineering tool that

would generate control structure diagrams primarily, and then architectural level diagrams

(e.g., object diagrams) secondarily, all from Ada source code or PDL. An alternative to the

model presented in Figure 6 would be to concentrate on issues that improve the integration

capabilities of GRASP/Ada with commercially available CASE tools and programming

environments. The following are potential tasks.

(I) A CSD editor/generator should include full syntax checking with appropriate error

messages. Appropriate hooks to and from the compiler and debugger should be

considered.

(2) Appropriate hooks to/from the GRASP/Ada tool are necessary to facilitate integration

with commercially available CASE tools and programming environments.

(3) GRASP/Ada system model should include the capability of running in a stand-alone

mode in which several CSD windows are to be coordinated are coordinated by a main

window, similar to the current Version 4.3 prototype.

(4) GRASP/Ada system model should include the capability of running in a single

window mode, similar to opening an X Windows textedit application.

(5) Finally, GRASP/Ada system model should include the capability of running in a

single window mode, as an extension of a commercial CASE tool. For example,

when clicking on an object or module in an architectural diagram, a CSD window

could be opened with the PDL or source code represented in a CSD rather than

simply text. Many commercial tools are competing in this market. One of particular

interest is Rational's Ada programming development environment for UNIX (Apex),

which has recently been made available to universities. Apex is a state-of-the-art

environment which supports the Ada Semantic Interface Specification (ASIS) to

facilitate tool integration. The GRASP/Ada tool with a CSD editor/generator could

play an integral role in software development, maintenance, and reengineering when

integrated with an environment such as Apex.

10

4.0 User Interface

GRASP/Ada user interface was developed using the X Window System, Version 11

Release 4 (XllR4). The X Window System, or simply X, meets the GRASP/Aria user

interface requirements of an industry-standard window based environment which supports

portable graphical user interfaces for application software. Some of the key features which

make X attractive for this application are its availability on a wide variety of platforms,

unique device independent architecture, adaptability to various user interface styles, support

from a consortium of major hardware and software vendors, and low acquisition cost. With

its unique device independent architecture, X allows programs to display windows on any

hardware that supports the X Protocol. X does not define any particular user interface style

or policy, but provides mechanisms to support many various interface styles.

The specifications and figures that follow are intended to define the look and feel of

the GRASP/Ada User Interface as well as indicate much of the current and planned

functionality of the CSD generator. The Man Page provides additional information.

4.1 System Window

The System window, shown in Figure 7, provides the user with the overall

organization and structure of the GRASP/Ada tool. Option buttons include: General and

Control Structure Diagram. These are briefly described below. A future button is planned

for Object Diagram.

::._:.:.:::::.:.:_:.:_:.:.:.:.:.:.:.:.:.:.:.:_:_:_.:_:.:-:.:_:_:.:_:_:_:::_:.:_:_:_:_:_:.:::_:_:::_:_:::_:::_:::.:-:::::::.:::-:_::::::::.:::::::<::.:_::.:<.:.:.:.:_:._.:.:_.:.:_::._:_.:_.`'._...'._....:.:<.:.:_.:.:-:.:.:.:.:_:.:¢_.:.:_.:.:.:.:.:_¢.:_`:¢_.:¢_¢`:.:.:.:._.:.:.:_:.:_:_:`:_:_:.:.:.:.:.:_`:_.:<¢_..:_:_.:-:.:.:.:_:.:_.:.:.:.:.:.:.:.:-:.:

Veruimt 3A

Auburn Unbend,f, 1993

r_aded, m ps_ _/
Mandd Since Fright t'_nmr

 RASP/Ad
Fori_imormmm, W

Jltmte H. Crml II, Projlct DimetQt

Cemlpu_r Sci_m_ und Enl_rlnl[
101 Oulwl_n Hall

Auburn Unimrwty, AL 36549-$347

(_o_ _.._3)o
m_au_m,edu

Figure 7. GRASP/Ada System Window.

11

General - Providesfor selectionof a printer accessto the usermanual(seeFigure 8).

Print ... - Allows the user to select among several printers or the user may enter a

printer name. The list of printers is contained in the fileGRASP.printers located in

the diectory $GRASP_HOME/Iib.

User Manual - Allows the user to open the GRASP/Ada online User Manual which

provides an interactive index of topics. This information is also contained in the

UNIX man page.

Quit - Allows the user to exit the GRASP/Ada system.

GRASP/Ad

Figure 8. General Options.

12

Control Structure Diagram - Allows the user to open one or more CSD windows, close all

CSD windows that are currently open, and generate CSDs in a batch mode (see Figure 9).

In addition, a list of all CSD windows currently open is presented to the user.

Open CSD window - Opens a CSD window and adds it to the list of open CSD

windows. This list is displayed at the end of the options pop-up menu by appending

the name of the respective file in each CSD window. In Figure 9, the file/dev/null

has been appended which indicates that a CSD window has been opened but no file

has been loaded or saved. This list allows the user to see quickly how many CSD
windows are active and what file is associated with each.

Close all CSD windows - Closes all CSD windows. Currently, this "quits" each CSD

window without querying the user regarding unsaved changes. When a CSD window

is "quit" from the CSD window file option menu, the user is queried if changes have
been made since the last save.

Generate CSD ... - Allows the user to generate a set of CSDs by entering the file

name using standard wildcard notation. For example, entering *.a would generate a

CSD for each file with a ".a" extension. A CSD generation summary window

displays the progress of the generation by listing each file as it is being processed and

any resulting error messages. The summary concludes with number of files processed
and the number of errors encountered. The default for each CSD file name is the

source file name with .csd appended. If an error is encountered, an extension of .err

is used. As the CSDs are generated, the GRASP library is updated, which currently

consists of populating a specified directory with f'lle images of the CSDs. Since

GRASP/Ada is expected to be used to process and analyze large existing Ada

..]
:-'.'.:._.,-:55::::5::::::::::5::555::55::55::55::::::::.:.:.:.:.:.:.:.:.:::5::::::_::55::::5::::5::.2:::55;55::_;-. 5::.:5-:_-:-:_;_5;:::; ;:5::5::5;:55;:_;:_.;'..;.;,...';....;..._..:..;.;; _;; ;',.'5;>;:;: ___ _5;;;;; _; :';;::: 55:: 5:: _::::; 5::: 5::::::::::::::::;:;::: _:::::::: _::::;::::;: ;_
ii_i__ ii'iiii-iiiii_iiiiiiii!iiiiiiiiiii'ii'i'ii'iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii'ii.:iii:i'iiiiiii?ii'ii'ii'i?ii'ii'ii'i_!i:ii_iiiii.:ii:'iiiii'_ii__i_-_!_ii'i:+_Sii.:i!iii:'.'_iiii._ii_ii..':_ _ !!_iiili_i_i_i_i!iiii_!_i_!i_!_!!_!_!:_"-::!:__!_i:!:_:!_._!_!i!:!:'.':!:!:_:!:!:!>.":.::_@!:_:!:i:.:@_:i:_:i:i:i:.::':i:i:i:i:i:i:i:i:_i::i::!:i::::::::::::::::::::::::

Gerund I _ Sl_u_ D_

Jde_nul
Fer in_erm_tiee or ¢omo_ ntJ, _l_Ol_

Yemen 3.4

Auburn Uni_nity, 199:1

F_nded, in iwt, l_
I,lium_ll Sl_m Fr,r_ Center

Jmne8H. Crew II, project Director

Con_r Somnm ind Ereu_ermlf

I01 DuMI_n I-kdl

Auburn Ur_er_, AJ. 36849-_34 T
(205")844-4330

croJ,J_e nllm+ Inin'_cbi

.. i,,,',,ir'l,,,',,,,T,r"l'll",,rl"r,,rr,

Figure 9. CSD Options.

13

softwaresystemsconsistingof perhapshundredsof files, theoption to generatea set
of CSDsin batchmodeis particularlyuseful.

4.2 Control Structure Diagram Window

The CSD window, shown in Figure 10 with file options displayed, provides the user

with capabilities for generating and viewing a CSD for an Ada PDL or source file. Multiple

CSD windows may be opened to access several CSD files at once. CSD file names and their

associated directory paths are selected under the File option and displayed at the top of each

window. Figure 11 shows a CSD window after a procedure provided by NASA has been

loaded and the CSD generated by clicking Regenerate CSD on the menu selection bar or by

clicking Generate CSD under File options. In the current version of GRASP/Aria, generation

of the CSD is done on a file-level basis where each file contains one or more units. When

changes are made to the source code, the entire CSD for the file involved is regenerated.

Future versions of GRASP/Ada will address incremental regeneration of the CSD in

conjunction with editing capabilities in the CSD window.

The CSD window Options

File - Allows the user to select from

numerous options (see Figure 10) including

the following.

New- Removes existing file, if any,

from CSD window. Currently, this

option is disabled, and the user must

load a new file or explicitly delete the
contents of the CSD window to

accomplish the function of new.

::_:" _:.::i_:-

Load

Generate CSU

Save

5a_ as..

uAd.

Print_

Quit

Figure 10. CSD Window File Options.

Load - Loads a CSD file. A window is presented that allows the user to navigate

among directories and select a file.

Generate CSD - Generates a CSD from source code and/or regenerates a CSD after

modification. When the CSD window is opened and loaded with a source file without

a .csd extension, a separate CSD window is automatically opened to display the CSD

when it is generated. Note that CSD graphics characters, if any, are filtered prior to

the parse or reparse. Currently, this option is the same as Regenerate CSD on the

menu selection bar of the CSD window (described below). Figure 11 shows an Ada

procedure provided by NASA after the CSD has been generated.

Save - Saves the CSD file with the same name that was loaded.

Save as ... - Saves the CSD file with a new name. This options allows the user to

selected the directory and name from a list.

14

i:::_:_:::_:_::_:_::___iiiiiiii::-::::_:.:.:,:-.i::::::.:::::::::............. i::::::i:::i:::ii:_ii:iiiiiiiii:iiii:iiiiiiiiiilliiiiiiiiiiiiiiiiiiiiiiiiiiiiiii:iiiiiii:!_iiii:ii_i_i_iiiiiiii_iii!i_ii_ii_i_iii!i!_!_ii_i_i_ii_ii_i!i_i_i_i!iii_iii!iii_:_:_!i_i_iiii_i!iiiii!iiii_ii_iiiiiiiii_iiiiiii_iii!ii!ii_iiiii_iiiiiiiiiiiiiiiiiiiiii_i_ii_iiiiiiiii!iiiiiiiiiiiiiiii_ii_iiiiiiiiiiiiiii_

|iiiiiiiiiiiiiiiiiiiiiiilililiiiiiiiiiiiii i iiiiiiiiiiiiiiiii ii|

)rocedure RCS_HIP is

-- subtype TEMP_NJETS_TYPE is INTEGER range i .. 16;
-- type thruster_type is array (I .. 16) of ON_OR_OFF;
-- thrusters: thruster_type :- (others-> OFF);

thrusters: two_byte_var :- (others->false);
thruster_data: arr_64;
bc_interrupt_status: unsigned_word :- 16#75#;

I function convert_tmo_byte_var is new UNCHECKED_CONVERSION(SOURCE->TWO_BYTE_VAR, TARGET->UNSIGNED_WORD);

begin

-- OUTPUT HIP --

..................................

-- OUTPUT ATTITUDE JET COMMANDS --
..................................

-- for INDEX in RCS_ON'range loop
m JET_CMND(INDEX) := RCS_ON(INDEX);

_RCS_ON(INDEX) - ON!THRUSTERS(INDEX true;

se

THRUSTERS(INDEX - i) :- false;

end if;

end loop;
.....................................

-- OUTPUT THRUSTER DATA VIA 1553B --
.....................................

-- 1553B thruster data message --
thruster_data(1) := 16#0888#;

Figure ll. CSD Window with Procedure Provided by NASA after CSD Generation.

Save as Ada - Filters the CSD characters from the CSD file and writes to a file with

a .a extension.

Print - Presents a window which allows the user to select various print options such

as point size, page numbers, and header, and then generates a PostScript file (.ps)

from the .csd file and sends it to the selected printer.

Quit - Closes the CSD window.

Edit - Allows the user to do traditional text editing functions of cut,copy, paste, and search

(see Figure 12).

Cut ... - Allows the user to deleted highlighted text. This option is currently disabled,

and the user must press CTRL-W to accomplish a cut.

Copy ... - Copies the highlighted text to buffer. This option is currently disabled, and

the user must click the right mouse button to accomplish a copy.

15

Paste ... - Inserts the previously "cut"

or "copied" text from the buffer. This

option is currently disabled, and the
user must click the middle mouse

button to accomplish a copy.

Search ... - Opens a textedit search

window. Currently, this option is

disabled, and the user must press

CTL-s to activate the search window.

View - Currently allows the user to select one

of several window font sizes ranging from 9

points to 24 points (see Figure 13). The
default font size for the CSD window is 13

points. Option AA-AA described below also
facilitates the selection of font sizes.

Misc - Allows the user to show or hide The

CSD character panel, set compiler (future

option), invoke interactive User Manual, and

load window fonts. With the CSD character

panel visible, CSD characters can be inserted

directly into the current window, primarily for

the purpose of experimentation (see Figure

14).

Show CSD character panel -

Displays the CSD character set in a

panel in the lower section of the CSD

Window. This option allows the user

to position the curser in the edit
window and then click on a CSD

character in the panel to insert it at the

cursor position. This is useful for

experimenting with alternative

graphical constructs and diagram

layouts. Regenerating the CSD results
in the removal of all added CSD

characters.

Figure 12. CSD Window Edit Options.

!:

Figure 13. CSD Window View Options.

_::: ::

PISe]EdlalVi_]MiselAd*_I_t__i__
i::_::!::!i ::!::i!iS_,. c sD _h._,_ p.. _, ::

Hide CSD character panel

Set compiler_

User manual

Load window fonts

Figure 14. CSD Window Misc Options.

Hide CSD character panel - Removes the panel of CSD characters if it is currently

dispalayed.

Compile - Allows the user to enter the name of an Ada compiler to be called from

the CSD window. Currently, the CSD window file options do not support the

invocation of a compiler. Experience has indicated that it is more practical to invoke

16

thecompilerfrom a separate window. In particular, GRASP/Ada can be called as the

Ada editor from an Ada development tool such as Sun's AdaVision. This allows the

CSD to be utilized for viewing and editing the Ada source code while taking full

advantage of the Ada development environment.

Ada - Displays Ada conlrol constructs and

enables the user to insert them directly into
the current window at the location of the

curser (see Figure 15). A syntactically correct

program can be constructed quickly using this

option. Figure 16 shows a program structure

resulting from four clicks on the Ada

constructs: procedure body, loop, iflthen/else,

for loop, and while loop. The template

placeholders can be modified or replaced as

necessary.

AA AA - Allows the user to increase or

decrease the font size for the current window,

thus shrinking or expanding the overall size of
the CSD.

:::

Fi_IEd"Iv_iMI_
::block

block wlth declarations

case

ezeeption handler

for loop

guarded select

Iffthen

iItlhen/elsc

Infinite loop

pQck|ge spe_

I_ckage body

pro_dure spec

:::[s[_-d dl'_ body :-:.:.:.:.:.:.:.:.:.:+:-:.:.:,:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.::.:.:.:.:.:.:.:.:...

::ii_::i::i::i::i::iiii_::ii_::i::ii_::i::i::i::iii::i::iiiii::iiiii::iii::i::iiiread--o,,. ::
............................... ::
:::_ ::!_!!!::i_!_::!_!::_::_::_:f;:_::_::iiii_::_:;/:;_iiii::_iii_:/;:i::iiiii::iiiii::_::i
::i_i::?:_::iii::i::___::iii::i_i_i::i::i::i::i::i::i::i::i::!::i::iii!i!iii::iiit._ ._ _::_::!!i::i_i::_ii_i_:;:_ii::i::!i!::iii::i::!_i::i::i_i::i::_::_::iii::!:;:i::i_iii::ii_ii::iiiiii
:':" i:i_i:i:i:;:i:_:_:_:i:_:i:i:i:i:i:i:i:
ii_iiii!i!i!i!!!i!!!i!i!iii!i!i!i!iiiii!i!!!iii_i!iii!i!_!_!_task body ::
i_ii!_iii_!!!_i?_!i!_i!_!i!_!_!iiiiii?ii!iiiiiiiiii :i:i:_:i:i:i:i:i:_:!:i:!:!:_:_:_:_:!:_:_:!:!:_:!:_:!:!:_:_:_:_:!:_:!:_:_:_:_:_:!:_:_
_;_i_i_i_i_i_i_;_:!:_:_:i:!:_:_:i:i:_:!:_:::whiteimp :_i_::;_::;::_i_::_::_i_i_:_::_i_:_:_::_::_i_::_::_i_i_::_::_i_i_:_::_i_:_::_::_:_i_::_::_::_i_::_::_

,:,..,....,,::,....,..:....:.,:.,..:.....,........:.,............
:.::_:i:_:_:_:_:_:i:_:i:_:_:_:_:_:_:_:_:_:_:2:_:_:_:_:_:_:_:3:_:_:_:_:_:_:_:_:

Figure 15. CSD Window with Ada
Constructs.

Regenerate CSD - Allows the user to quickly regenerate a CSD after making changes.

Currently, this option is the same as Generate CSD on the File submenu.

Quiet mode / Verify mode - Allows the user to toggle between to modes of regeneration.

Quiet mode assumes that the existing fries should be overwritten during generation or

regeneration, and Verify mode queries the user before continuing.

4.3 User Interface - Future Directions

The User Interface is expected to continue to evolve, especially as new functionality

is added. In particular, implementation based on alternate widget sets is under consideration

as well as utilization with other window manager. The requirements definition and design

of the current version were done in a learning mode under a schedule that required an

operational prototype to be implemented quickly. As a result, many of the features, such as

placement of options, are expected to be streamlined considerably. However, the current

prototype is suitable for limited practical application, and information collected from current

users is expected to have a positive effect on the overall evolution of the prototype. Two
rather immediate future tasks are described below.

(1) Move to the Motif widget set - Currently, the user interface is implemented using

the Athena widget set which is provided with the MIT distribution tape of the X

Windows System. Recently, the Motif widget set was adopted as an industry

17

(2)

standard. By moving to Motif, theGRASP/Adauserinterfacewill havethe same
"look andfeel" asmost commercialCASEtools in thenearfuture.

Simplification of the User Interface - In order to streamline the integration of

GRASP/Ada with commercial CASE tools, the user interface should be simplified.

The appropriate time to do this would be during the move to Motif described above.

File

No syntax errors detected.

)rocedure PROCEDURE_NAME is

begin

i null;

i lloo p

i null;

CONDITION then

null;

ile CONDITION loop

ii II-- null;
it Uondloop;

null;

r INDE×_VARIABLE in VALUE_RANGE loop
null;

d loop;.

end if;

_-i exit when CONDITION;

end loop;

end PROCEDURE_NAME;

Figure 16. CSD Window with Program Structure Resulting from Clicking on procedure
body, iflthen/else, for loop, and while loop.

18

5.0 Control Structure Diagram Generator

The GRASP/Ada control structure diagram generator (CSDgen) is described in this

section from a technical and developmental perspective. Since display mechanisms for both

the screen and printer are an integral part of the CSDgen application, these are included in

this section as well. A more complete history and rationale for the development of the CSD

is contained in [CRO90a, CRO90b]. The graphical constructs produced by CSDgen are

summarized in Figure 5 (Section 2.0). Examples of the CSD are presented in conjunction
with the User Interface in Section 4.0.

5.1 Generating the CSD

The primary function of CSDgen is to produce a CSD for a corresponding Ada source

or PDL file. Although a complete parse is done during CSD generation, CSDgen assumes

the Ada source code has been previously compiled and thus is syntactically correct.

Currently, little error recovery and error reporting are attempted when a syntax error is

encountered. The diagram is simply generated down to the point of the error. In the case

of Ada PDL, non-Ada statements must be valid Ada identifiers so that they are treated like

procedure calls. For example, the PDL for "search array for largest element" could be

represented as "Search_array_for _largest_element" so that the phrase becomes a single

identifier.

As indicated in Section 3, CSDgen was constructed using the UNIX tools LEX to

build the lexical analyzer and YACC to build the parser for Ada. An Ada grammar was

converted to YACC syntax and seeded with calls to action routines which generate the CSD

as tokens in the source code are recognized as individual productions in the grammar. The

current CSDgen prototype builds the diagram directly during the parse by inserting CSD

graphics characters into a file along with text. To increase efficiency and improve

extensibility, future versions of the CSDgen prototype may use a more abstract intermediate

representation.

5.2 Displaying the CSD - Screen and Printer

Basic display capabilities to the screen and printer were implemented during Phase

2. Screen display is facilitated by sending the CSD file to a CSD window opened under an

X Window manager. Printing is accomplished by converting the CSD file to a PostScript file

and then sending it to a printer. Moving to a more abstract intermediate representation in

future versions would necessitate the development of a new set of display routines which will

be X Window System based.

CSD Screen Fonts. The default CSD screen font is a bitmap 13 point Courier to

which the CSD graphic characters have been added. The font was defined as a bitmap

distribution font (BDF) then converted to SNF format required by the X Window System.

Four additional screen fonts ranging from 9 to 24 point are user selectable. These fonts were

19

later convertedto OpenWindowsfontswhich hassincebecometheversion supported in the
distribution tar file.

CSD Printer Fonts. CSD Printer fonts were initially developed for the HP LaserJet

series. These were then implemented as PostScript type 3 fonts and all subsequent font

development has been directed towards the PostScript font. The PostScript font provides the

most flexibility since its size is user selectable from 1 to 300 points.

5.3 CSD Generator - Future Considerations

As indicated above, the actual generation of the CSD and the subsequent display of

it on the screen or printer are in some ways inseparable. For example, margins, line spacing,

and indentation of the CSD constructs could be part of the actual generation of the CSD or

they could be a function of the display mechanism tightly coupled with a CSD editor. Hence,

there is some degree of overlap in the discussion below regarding generating and displaying

the CSD.

5.3.1 Generating the CSD - Future Considerations

Ada 9X. The Ada 9X specification will impact the CSD generator in at least two important

ways.

(1) New 9X control constructs - Additional CSD graphical constructs must be

created as appropriate. Addressing the new 9X control constructs should be relatively

straightforward. Numerous examples will need to be diagrammed and evaluated for

comprehensibility and ease of implementation and integration into the current set of

constructs.

(2) The Ada 9X specification allows all 256 ASCII character codes - These are
allowed to facilitate international character sets. The use of all 256 character codes

presents somewhat more of a challenge. In the present prototype, ASCII codes above

128 have been used for the CSD graphics characters. Several operations in the user

interface have freely filtered these character codes during the regeneration process as

well as the "save as Ada" operation. Obviously, this approach will not be acceptable

if the source code itself contains character codes in this range.

Internal Representation of the CSD - Alternatives. Several alternatives were considered

for the internal representation of the CSD in the Version 3 prototype. Each has its own

merits with respect to processing and storage efficiency and is briefly described below. These

alternatives remain under consideration for future versions.

(1) Single ASCII File with CSD Characters and Text Combined. This is the most

direct approach and is currently used in the Version 3 prototype. The primary

advantage of this approach is that combining the CSD characters with text in a single
file eliminates the need for elaborate transformation and thus enables the rapid

20

implementationof prototypesaswasthe casein the previousphases of this project.

The major disadvantages of this approach are that it does not lend itself to incremental

changes during editing and the CSD characters have to be filtered if the user wants

to regenerate the CSD or send the file to a compiler.

(2) Separate ASCII Files for CSD Characters and Text. In this approach, the file

containing the CSD characters along with placement information would be "merged"

with the prettyprinted source file. The primary advantage of the this approach is that

the CSD characters would not have to be stripped out if the user wants to send the

file to a compiler. The major disadvantage of this approach is that coordinating the

two files would add complexity to generation and editing routines with little or no

benefit. As a result, this approach would be more difficult to implement than the

single file approach and not provide the advantages of the next alternative.

(3) Single ASCII File Without Hard-coded CSD Characters. This approach

represents a compromise between the previous two. While it uses a single file, only

"begin construct" and "end construct" codes are actually required for each CSD

graphical construct in the CSD file rather than all CSD graphics characters that

compose the diagram. In particular, no continuation characters would be included in

the file. These would be generated by the screen display and print routines as

required. The advantages of this approach would be most beneficial in an editing

mode since the diagram could grow and shrink automatically as additional text/source

code is inserted into the diagram. The extent of required modifications to text edit
windows must be considered with this alternative.

Ada Comments. Currently, the location of Ada comments is not preserved by the CSD

generator. Future CSD generators should attempt to preserve the original location to the

degree possible.

Ada Coding Standards. Future CSD generators should provide the user with the capability

to generate CSDs (together with prettyprinted source code) according to a prescribed standard.

This may include conventions for keywords, identifiers, indentation, layout for compound

statements, placement of comments, etc.

Syntax Error Messages. Currently, the CSD generator assumes the Ada source code is

syntactically correct and makes little attempt to recover from encountered errors or to display

meaningful error messages. This has been a major source of complaints from users who have

used the CSD window to develop software in a forward direction rather than simply reverse

engineering existing software. Future versions of the CSD generator could address this issue

in one of two ways.

(1) CSD Generator could generate messages during the parse.

(2) Capabilities of current Ada development environments could be utilized to return

the line number and descriptive message whenever an error is encountered during

syntax checking and/or compiling. These could be sent to the CSD window opened

21

on the file or unit in question,and the offending elementcould be highlighted
awaitingcorrectiveactionfrom the user.

Direct Generation Using the Ada Semantic Interface Specification (ASIS). If tight

coupling and integration with a commercial Ada development system such as Rational Apex

or Verdix VADS is desired, then the ASIS may provide for the direct generation of the CSD

from the DIANA net or other underlying intermediate representation produced as a result of

compilation. This would require a layer of software which traverses the DIANA net and calls

the appropriate CSD primitives as control nodes are encountered. This approach would

eliminate the possibility of directly editing the CSD since the DIANA interface does not

support modifying the net, only reading it. In practice, it may prove more efficient to allow

the CSD generator to simply reparse the entire compilable unit being edited.

Incremental Changes to the CSD. In the present prototype, there is no capability for

incrementally modifying the CSD. When the CSD or source code is modified in the CSD

window, the CSD must be regenerated by reparsing the entire file. While this has been

sufficient for prototyping, especially for small programs, editing capabilities with incremental

modification of the CSD may be desirable in an operational setting. The ASIS cited above

may offer a bridge for these incremental changes to the CSD.

5.3.2 Displaying the CSD - Future Considerations

Layout/Spacing. The general layout of the CSD is highly structured by design. However,
the user should have control over such attributes as horizontal and vertical spacing and the

optional use of some diagramming symbols. In the current Version 3 CSDgen prototype,

horizontal and vertical spacing are not user selectable. They are a part of the CSD file

generation and are defaulted to single spacing with 80 characters per line. In order to change

these, e.g., from single to double spacing, the CSD file would have to be regenerated. In

future versions of the prototype, these options are expected to be handled by the new display

routines and, as such, can be modified dynamically without regenerating the CSD file.

Vertical spacing options will include single, double, and triple spacing (default is

single). Margins will be roughly controlled by the character line length selected, either 80

or 132 characters per line (default is 80). Indentation of the CSD constructs has been a

constant three blank characters. Support for variable margins and indentation is being

investigated in conjunction with the new display routines. In addition, several display options

involving CSD graphical constructs are under consideration. For example, the boxes drawn

around procedure and task entry calls may be optionally suppressed to make the diagram

more compact.

Collapsing the CSD. The CSD window should provide the user with the capability to

collapse the CSD based on all control constructs as well as complete diagram entities (e.g.,

procedures, functions, tasks and packages). This capability directly combines the ideas of

chunking with control flow which are major aids to comprehension of software. An

architectural CSD (ArcheSD) [DAV90] can be facilitated by collapsing the CSD based on

procedure, function, and task entry calls, and the control constructs that directly affect these

22

calls. In future versions of the prototype, the ArchCSD will be generated by the display

routines from the single intermediate representation of the CSD.

Color. Although general color options such as background and foreground may be selected

via the X Windows system, color options within a specific diagram were only briefly

investigated for both the screen and printer. It was decided that these will not be pursued in

the Version 3 prototype.

Printing An Entire Set of CSDs. Printing an entire set of CSDs in an organized and

efficient manner is an important capability when considering the typically large size of Ada

software systems. A book format is under consideration which would include a table of

contents and/or index. In the event GRASP/Ada is fully integrated with IDE/StP/ADE, the

StP Document Preparation System may be utilized for this function.

Navigating among CSDs and Object Diagrams. A GRASP library is required to provide

the overall organization of the generated diagrams. The current file organization uses

standard UNIX directory conventions as well as default naming conventions. For example,

all Ada source files end in .a or .ada, the corresponding CSD files end in .a.csd, and the

corresponding print files end in .a.csd.ps. In the present prototype, library complexity has

been keep to a minimum by relying on the UNIX directory organization. In future versions,

a GRASP library entry will be generated for each procedure, function, package, task, task

entry, and label. The library entry will contain minimally the following fields.

identifier - note: unique key should be composed of the identifier + scoping.

scoping/visibility

type (procedure, function, etc.)

parameter list - to aid in overload resolution.

source file (file name, line number) - note: the page number can be computed from

the line number.

CSD file (file name, line number)

OD file (file name)

"Referenced by" list

"References to" list

Alternatives for generation and updating of the library entries include the following.

(1) During CSD generation, the library entry is established and the entry is updated

on subsequent CSD generations.

23

(2) During theprocessingvia the ASIS of DIANA nets.

Alternativesfor implementingtheGRASPlibrary includethe following.

(1) DevelopinganAdapackageor equivalentC modulewhich is calledby theCSD
generationroutinesduring theparseof theAda source.

(2) Using theRationalApex or Verdix VADS library systemalongwith ASIS.

(3) Using the relational databasesystemof a commercialCASE tool suchas StP
TROLL/USE.

Of thesealternatives,the first one may be the mostdirect approachsinceit would be the
easiestto control. The Apex, VADS, and StPlibrary approachesmay bemoreuseful with
the addition of objectdiagramgenerationand also with future integrationof GRASP with
commercialCASE tools.

24

6.0 Evaluation of the Control Structure Diagram and GRASP/Ada

An important aspect of any research project is the evaluation of the results. In the

GRASP/Ada project the two primary results were (1) the development of the Control

Structure Diagram (CSD) as a new algorithmic level graphical representation for Ada

software and (2) the development of a prototype that automatically generates the CSD from

existing Ada PDL or source code. Formal statistically-based controlled experiments dealing

with the comprehensibility of graphical representations of software are difficult to design and

conduct. Similar difficulties are encountered when attempting design controlled experiments

to evaluate CASE tools with respect to improvements in productivity that result from their

use. The primary difficulty arises from the leaming curve that users/subjects must overcome.

For example, a year or more may be required to become proficient enough with a software

tool to actually realize gains in productivity. Thus, it may be difficult to compare two CASE

tools in a "controlled" experiment without introducing bias based on familiarity or in many

cases the lack of familiarity. As a result, most evaluation of CASE tools is based on

preference surveys in which the user/subject is asked to make mental assessments or

comparisons of various aspects of the tool(s) under study.

This section describes the design of the experiment, the subjects that participated in

the evaluation of the CSD and GRASP/Ada, the preference survey instrument that was

developed and administered, and the results of the analysis of the data collected.

6.1 The Design of the Experiment

The primary objective of the evaluation was to determine preference, if any, for the

CSD over other similar graphical representations for algorithms. The ANSI flowchart (FC),

the Nassi-Shneiderman diagram (NS), the Warnier-Orr diagram (WO), the action diagram

(AD), were selected for comparison [MAR84]. The experiment was set up as a block design

in which each subject was considered a block and each diagram type (FC, NS, WO, AD,

CSD) represented a treatment. The subjects were to compare the treatments with respect to

eleven performance characteristics (PCHs). A secondary objective of the evaluation was to

collect constructive criticisms of the GRASP/Ada prototype to set priorities for future

enhancements.

The evaluation instrument was divided into two parts: (1) the evaluation of graphical

representations of algorithms and (2) the evaluation of GRASP/Ada (see Appendix C). In

the first part, the first three items solicited background information with respect to familiarity

with the five diagram types. The next eleven items indicated PCHs by which the subjects

were asked to compare the diagrams with respect to (a) how well each represented sequence,

selection, and iteration, (b) overall readability, (c) improvement in readability as an extension

to pseudo-code, (d) ease of coding from, (e) ease of manual use, (f) overall preference if

drawn manually, (g) overall economy, (h) overall preference with equivalent automated

support, and finally (h) overall preference all assumptions aside. These eleven items are

described in more detail blow in the discussion of results. The first part of the instrument

concluded with an open ended question soliciting suggestions on how to improve any of the

diagrams compared.

25

The second part of the evaluation instrument was directed specifically at the

GRASP/Ada prototype. Questions were designed to solicit information regarding the User

Interface, major problems encountered, modifications/enhancements desired, and the level of

coverage provided for Ada during the presentation of GRASP/Ada.

6.2 The Subjects

The evaluation instrument was administered to 33 junior/senior computer science and

engineering students at Auburn University in the course CSE 422 - Introduction to Software

Engineering, during the Fall 1992 quarter. These students all had experience with

FORTRAN, Pascal, and C in previous courses. None had formal training in Ada for which

the GRASP/Ada tool was designed. Since participation in the evaluation was optional, five

bonus points to be added to the final exam score were offered as an incentive. All students

present took part in the evaluation.

Each of the graphical representations included in the first part of the evaluation

instrument was presented briefly in class, and exercises were assigned involving the Nassi-

Shneiderman diagram (NS) and the control structure diagram (CSD). Most students were

familiar with the flowchart (FC) from prior classes.

The GRASP/Ada prototype was presented during a laboratory session and used in

conjunction with the commercial CASE tool, Software through Pictures (StP). The primary

focus of the CSE 422 lab is the development of a software specification using CASE tools
such as StP.

6.3 The Evaluation Results

An item analysis was performed on the data collected for the eleven PCHs in the first

part of the evaluation instrument (i.e., all items except the three background items at the

beginning and the last item which asked for suggested improvements to the diagrams).

Following the item analysis, an analysis of variance was performed to determine if differences

in the preferences were statistically significance. The results item analysis and the tests for

significance are presented below, followed by a general summary of the responses from the

second part of the evaluation instrument.

6.3.1 Item Analysis of Comparison of Graphical Representations

The subjects were given the following instructions regarding the eleven performance
chaxacteristics.

Based on the experience you have gained by using these diagramming tools to

represent algorithms, you are asked to assign a rating to each of the diagrams with

respect to a specific comparison among the diagrams. You may assign the same

rating to more than one diagram for a given comparison. Select your ratings from the

following scale and enter them as indicated below.

26

5 - best/ most / first choice

4-

3 - moderate

2-

1 - worst / least / last choice

For each of the eleven items below, the subjects used the rating scale above to complete the

following.
FC NS WO AD CSD

The eleven items describing performance characteristics were:

1. Compare the diagrams with respect to how well each shows sequence.

2. Compare the diagrams with respect to how well each shows selection.

3. Compare the diagrams with respect to how well each shows iteration.

o Compare these diagrams with respect to overall readability (consider reading

someone else's code).

.
Each of these tools can be used with informal pseudocode as opposed to actual

statements in a programming language and, as such, can be thought of as a

graphical extension to pseudocode (with possibly some spatial rearrangement).

Rate the diagrams on the extent to which they increase readability over non-

graphical pseudocode.

. Suppose as a programmer you are given a design specification in which the

program logic has been documented using one of the graphical representations

below. Compare the diagrams with respect to which would best facilitate your

task of coding from the design specification.

. Compare the diagrams with respect to ease of manual use; consider the initial

drawing and subsequent modifications.

. Assuming you have to manually draw the diagrams (in the sense that they are

no..Atautomatically generated), indicate your overall preference for each

diagram where: 5 - first choice 1 - last choice.

. Compare the diagrams with respect to their overall economy (i.e., increases

in comprehension versus effort to draw them manually).

10. Assuming you have equivalent automated support to draw each of the

diagrams in the sense that the diagrams are automatically generated either by

selecting constructs from a menu or by recognizing key words in the code,

27

indicateyour overall preferencefor eachdiagramwhere:5 - first choice,..
., 1 - last choice.

11.
All assumptions aside, indicate your overall preference for each diagram
where: 5 - first choice 1 - last choice.

The results of the item analysis for these eleven items are summarized in Tables 1 and

2 below. Table 1 shows the number of responses from the 33 students for each PCH and

diagram type (FC, NS, WO, AD, CSD). A number less than 33 indicates the performance

characteristic for that particular diagram type was left blank. Students were advised orally

to leave an item blank if they were unfamiliar with the notation or a particular construct.

Note that 20 students responded to all performance characteristics for all five diagrams, and

32 students responded to all performance characteristics for three of the diagrams (FC, NS,

CSD). Table 2 contains the averages for the responses computed on the basis of only those
items completed.

Table 1. Item Response Frequencies

PCH N :it ems FC NS WO AD CSD

i. SEQ 33 33 33 25 22 33
2. SEL 33 33 33 24 21 33

3. ITR 33 33 33 24 21 33

4. GEN READ 33 33 32 24 20 33

5. EXT P-COD 33 33 33 24 21 33

6. CODE-FROM 33 33 32 25 22 32

7. MANUAL 33 33 32 23 24 33

8. PREF/MANL 33 33 33 26 25 33

9. ECONOMY 33 33 33 25 24 33

i0. PREF/AUTO 33 33 33 25 23 33
ii. PREF/GEN 33 33 33 26 25 33

Table 2. Item Analysis for Graphical Representations

PCH N :it ems FC NS WO

1 SEQ
2 SEL

3 ITR

4 GEN READ

5 EXT P-COD

6 CODE -FROM

7. MANUAL

8. PREF/MANL
9. ECONOMY

i0. PREF/AUTO

ii. PREF/GEN

AD CSD

33 3.21 3.64 2.64 2.32 3.94

33 3.52 4.06 2.46 2.05 3.64

33 3.45 3.48 2.58 2.14 3.91

33 3.03 3.38 2.67 2.10 4.24

33 2.85 3.76 2.38 2.48 3.94

33 2.82 3.53 2.60 2.14 4.31

33 3.09 3.16 2.61 2.38 3.91

33 3.00 3.30 2.42 2.16 4.15

33 2.70 3.27 2.52 2.00 4.52
33 3.03 3.52 2.36 2.09 4.55

33 3.00 3.33 2.54 1.96 4.55

ITEM AVG 363 3.06 3.49 2.52 2.16 4.15

The results in Table 2 clearly indicate the overall trend in preference for the CSD. For an

additional perspective, the averages in Table 2 were converted into percentages and are shown

in Table 3. Then the differences between the percentages in Table 3 for the CSD and the
other diagram types is shown in Table 4.

28

Table 3. Percentage Scores For Graphical Representations

PCH

1 SEQ

2 SEL

3 ITR

4 GEN READ

5 EXT P-COD

6 CODE-FROM

7 MANUAL

8 PREF/MANL

9 ECONOMY

10. PREF/AUTO

ii. PREF/GEN

N:items FC NS WO AD CSD

33 64.24 72.73 52.80 46.36 78.79

33 70.30 81.21 49.17 40.95 72.73

33 69.09 69.70 51.67 42.86 78.18

33 60.61 67.50 53.33 42.00 84.85

33 56.97 75.15 47.50 49.52 78.79

33 56.36 70.62 52.00 42.73 86.25

33 61.82 63.12 52.17 47.50 78.18

33 60.00 66.06 48.46 43.20 83.03

33 53.94 65.45 50.40 40.00 90.30

33 60.61 70.30 47.20 41.74 90.91

33 60.00 66.67 50.77 39.20 90.91

ITEM AVG 363 61.27 69.89 50.48 43.23 82.98

Table 4.

PCH

1 SEQ

2 SEL

3 ITR

4 GEN READ

5 EXT P-COD

6 CODE-FROM

7 MANUAL

8 PREF/MANL

9 ECONOMY

i0. PREF/AUTO

ii. PREF/GEN

Percentage Score Differences - CSD Compared to Others

N:items FC - CSD NS - CSD WO - CSD AD - CSD

33 -14.55 -6.06 -25.99 -32.42

33 -2.42 8.48 -23.56 -31.77

33 -9.09 -8.48 -26.52 -35.32

33 -24.24 -17.35 -31.52 -42.85

33 -21.82 -3.64 -31.29 -29.26

33 -29.89 -15.62 -34.25 -43.52

33 -16.36 -15.06 -26.01 -30.68

33 -23.03 -16.97 -34.57 -39.83

33 -36.36 -24.85 -39.90 -50.30

33 -30.30 -20.61 -43.71 -49.17

33 -30.91 -24.24 -40.14 -51.71

ITEM AVG 363 -21.72 -13.09 -32.50 -39.76

CSD

The Table 4 shows the difference between the control structure diagram (CSD) percentage

scores and each of the other percentage scores. Negative values indicate a lack of preference

for the indicated diagram type, and a preference for the CSD. Note that the NS SELection

construct was the only item for which the CSD construct was not preferred on average. Item

5 is of particular interest in that it attempts to determine perceived improvements in

readability over non-graphical pseudo-code.

Tables 1 through 4 provide useful insight and suggest potential significant differences

among the preferences. However, an analysis of variance is required to determine the

presence or absence of actual statistical significance.

6.3.2 Statistical Analysis for Signif'wance of Preference of Graphical Representations

Since the data were taken on a scale of 1 to 5 and thus were not continuous, the

ordinary Analysis of Variance (ANOVA) could not be applied. Note that ANOVA generally

assumes that the data originates from a normal population - an assumption that would not be

tenable in this case. Therefore, a nonparametric (or distribution-free) test was used to

determine if there were statistically significant differences among the five treatments FC, NS,

WO, AD, and CSD. The determination of significant differences would be made with respect
to all eleven PCHs.

Each student responded to at least 3 of 5 treatments (i.e., each student ranked at least

3 of the treatments FC, NS, WO, AD, and CSD). Therefore, each student is considered as

29

a block and therelevantmodel is the randomized complete block design. The appropriate

ANOVA nonparametric test is the Friedman's Test [CON80]. This test analyzes ranked data

for a complete randomized block design. Since only 20 students responded to all 5

treatments, initially the test for significance was done for significant differences among all

five treatments. The null hypothesis is as follows:

H o • There are no significant differences among the 5 treatments;

versus the alternative:

H, • There are significant differences.

For the sake of illustration, the data for the PCH SEQ is provided in Table 5 below.

Table 5. Data for Performance Characteristic SEQ (PCH #1)

Record#

1

12

23
34

45

56

67

78

89

i00

IIi

122

133

144

155

166

177

188
199

210

Student Responses

STU_NO FC NS WOAD CSD
2 1 2 5 4 3

3 5 1 2 4 3

7 5 4 4 2 3
8 5 3 2 i 4

Ii 5 3 3 3 5

14 3 3 1 2 4

15 5 4 3 3 3

16 4 2 3 1 5

17 3 4 2 2 3

19 1 4 2 2 5

20 1 5 4 2 3

21 3 3 3 3 3

FC_R
1 0

5 0

5 0
5 0

4 5

3 5

5 0

4 0

3 5

1 0

1 0

3 0

Assigned Ranks

NS_R WO_R AD_R CSD_R
0 5.0

0 2.0

5 3.5
0 2.0

0 2.0

5 1.0

0 2.0

0 3.0

0 1.5

0 2.5

0 4.0
0 3.0

4 0

4 0

1 0
1 0

2 0

2 0
2 0

1 0

1 5

2 5

2.0

3.0

3.0

3.0

2.0

4.0
4.5

5.0
2.0

5.0

3.5

5.0

3.0

3.0

....25i53.............2...................4...........................iO_"03.0_:04.0

27 3 4 1 2 5 3 0 4 0 1.0 2.0 5.0

29 4 5 1 2 3 4 0 5 0 1.0 2.0 3.0

30 1 2 3 4 5 1 0 2 0 3.0 4.0 5.0

31 5 4 2 1 3 5 0 4 0 2.0 1.0 3.0
32 2 5 3 1 4 2 0 5 0 3.0 1.0 4.0

33 2 5 1 3 4 2 0 5 0 1.0 3.0 4.0

Totals 63.5 69.0 48.0 43.5 76.0

Table 5 shows that, for example, student number 23 ranked FC, NS, WO, AD, CSD as 4, 2,

3, 3, and 5, respectively. The Friedman's Test requires that the responses for all treatments

be ranked within each block from 1 to 5 and therefore, that the sum of the ranks within each

block is 15 as shown below. 5 5

E --Ej--15
1-1 1-1

The tied ranks receive average ranks. The last five columns (FC_R, NS_R, WO_R, AD_R,

and CSD_R) of Table 9 give the ranks for each of the 20 students for the performance

characteristic SEQ after tied ranks have been averaged. Now the ranks assigned by student

number 23 become 4.0, 1.0, 2.5, 2.5, and 5.0 respectively. Since the student ranked NS the

lowest, the treatment NS_R received a rank of 1.0. The student ranked WO and AD equally

30

andnext lowest, therefore ranks 2 and 3 were averaged and WO_R and AD_R each received

2.5. Similarly, FC_R received a rank of 4.0 and CSD a rank of 5.0. Thus, we have

5

_., R13,/--4.0 + 1.0 +2.5 +2.5 +5 = 15
j.l

as expected for student number 23 in row 13. The 2-way (treatments and blocks) ANOVA
is conducted on ranks as illustrated below.

Let SS (Total), SS (Treatments), SS (Blocks), and SS (Residuals) represent total sum

of squares, treatment sum of squares, block sum of squares, and residual sum of squares,

respectively. Then

20 5

SS(Total)=_'_ _ Ru2 - -_-_=12+22+52+...+42-900=182.50
100

J,,1 j,.X

where the correction factor is

20 S 2 _10 2

1_ 100 1_

SS(Treatments)=_ (R¢2/20) - 900 -¢'3"s''_'°_''a'°sapz'43-s'÷'_6"°sap2 -900=38.275
20

j,,1

20

SS(Bloc_)-- _, --_ - _ - 1,,.1,'.._.1,,_9oo__20m__9(x)._o
i=l 5 100 $ J

Note that, since each block subtotal is

SS(Blocks) =SS(Students)

is identically zero.

5

Hence, we have the following PS=_'_ RU--15, then
j-I

S S (Residual) =SS (Total) - S S (Treatme nts) - S S(Bloc ks) =144.225

31

Table 6. Results of ANOVA

Source

Total

Treatments

Blocks

Residuals

df

Degrees of
Freedom

99

=#Tr (#Stu) - 1

19

= #Stu - 1

76

=Totl-Tr-Blk

=99 -4- 19

SS

Sum of

Squares

182.50

38.275

0.0

144.225

MS

Mean Squares
= SS/df

9.56875

0.0

1.8977

F0
(SSd4) /
(SSrd76)

5.0423

The results of the ANOVA are shown in Table 6. Having computed the F statistic, we must

now determine if it is sufficiently large to reject the null hypothesis. Since the 1 percentage

point of the F distribution with 4 and 76 degrees of freedom (df) is F.o_(4, 76) = 3.577 which

is less than Fo = 5.0423, we reject the null hypothesis that there were no significant

differences among the FC, NS, WO, AD, and CSD with respect to the performance

characteristic "Sequence." Now that the null hypothesis has been rejected, we have either

made a correct decision or we have committed a Type I error (note, a Type I error is

committed when an experimenter rejects a true hypothesis). The probability of committing

a Type I error, or the level of significance of the test is determined from _t--P(F,,.7_>Fo).

The probability (or critical) level of the test in this case is a ---0.00117 which indicates there

is very little probability of a Type I error. Note that the smaller the critical level is, the more

strongly Ho can be rejected and the more significant are the differences among the treatments.

The Friedman's Test was conducted on the complete data set of 20 students for all

five treatments and the results are summarized in Table 7. The Friedman's statistic, Fo,

showed that, except in the case of performance characteristic MANUAL, the differences

among the 5 treatments were highly significant (_t<<0.01). In the case of MANUAL, the

differences among the five treatments were significant at the level _t---0.013:t

Table 2 clearly shows that the average rating that the treatments WO and AD received

were lower than the other three, FC, NS, and CSD. Furthermore, 32 students rated FC, NS,

and CSD as opposed to only 20 who rated all five treatments. As a result, the Friedman's

Test was also applied to determine if the three treatments FC, NS, CSD differed significantly.

Again each student's rating of FC, NS, and CSD were ranked as 1, 2, 3 (average ranks were

assigned to equal ratings as before) and the Friedman's Test was applied for each of the
eleven PCHs. The results are summarized in Table 8.

32

Table 7. ANOVA Summary for Treatments FC, NS, WO, AD, CSD

Totals for Assigned Ranks of 20 Students for 5 Treatments

PCH

1 SEQ

2 SEL

3 ITR

4 GEN READ

5 EXT P-COD

6 CODE- FROM

7 MANUAL

8 PREF/MANL

9 ECONOMY

I0 PREF/AUTO

ii PREF/GEN

FC_R

63.5

70.5

74.0

63,5

57.0

57.0

65.0

63.5

55.0

55.0

57.0

NS_R

69.0

85 5

68 0

67 0

79 5

7O 5

68 0

69 5

71 5

70 0

70 0

WO_R

48.0

39.0

50.5

47.0

41.5

45.5

48.5

42.5

49.0

42.0

46.0

AD_R

43 5

38 0

40 5

39 5

46 5

43 0

46 0

45 0

38 5

4O 5

38 0

CSD_R

76.0

67.0

67.0

83.0

75.5

84.0

72.5

79.5

86.0

92.5

89.0

Statistics for Treatments FC, NS, WO, AD, and CSD

PCK

1. SEQ

2. SEL

3. ITR

4. GEN READ

5. EXT P-COD

6. CODE-FROM

7. MANUAL

8. PREF / MANL

9. ECONOMY

i0. PREF/AUTO

ii. PREF/GEN

8S_TOTL

182.50

188.00

182.50

191.50

185 00

194 50

189 50

196 50

187 00

194 00

197 00

SS_TR MS_TR

38.2750 9.5688

86.7250 21.6813

38.9750 9,7438

58.9750 14.7438

57.7000 14.4250

59.7250 14.9313

28.6750 7.1688

50.7000 12.6750

70.8250 17.7063

94.2750 23.5688

81.5000 20.3750

8S_RZSID ___SID

144.2250 1.8977

101.2750 1.3326

143.5250 1.8885

132.5250 1.7437

127.3000 1.6750

134 7750 1.7734

160 8250 2.1161

145 8000 1.9184

116 1750 1.5286

99 7250 1.3122

115 5000 1.5197

&
F_0

5.0423 .00117

16.2703 .08115

5.1596 .00099

8.4552 .000011

8.6119 .00000871

8.4198 .0000112

3.3877 .013231

6.6070 .000129

11.5832 .000000215

17. 9616 .09202

13.4069 .07258

33

Table 8. ANOVA Summary for Treatments FC, NS, CSD

Totals for Assigned Ranks of 32 Students for 3 Treatments

PCH FC_R

i. SEQ 57.0

2. SEL 60.0

3. ITR 64 .0

4. GEN READ 54.0

5. EXT P-COD 51.0

6. CODE-FROM 46.5

7. MANUAL 60.0

8. PREF/MANL 53.5

9. ECONOMY 46.0

i0. PREF/AUTO 48.5

ii. PREF/GEN 50.0

NS_R

66.0

73 .5

58.0

57 0

68 5

63 0

58 0

61 0

59 0

57 0

58 0

CSD_R

69.0

58 5

7O 0

81 0

72 5

82 5

74 0

77 5

87 0

86 5

84 0

Statistics for Treatments - FC, NS, and CSD

PCH

1 SEQ

2 SEL

3 ITR

4 GEN READ

5 EXT P-COD

6 CODE - FROM

7 MANUAL

8 PREF/MANL

9 ECONOMY

i0. PREF/AUTO

ii. PREF/GEN

8S_TOTL 8S_TR MS_TR 88_RZSID

59.00 2.4375 1.2188 56.5625

59.00 4.2656 2.1328 54.7344

59.50 2.2500 1.1250 57.2500

61.00 13.6875 6.8438 47.3125

54.00 8.1719 4.0859 45.8281

61.50 20.2969 10.1484 41.2031

58.00 4.7500 2.3750 53.2500

62.00 9.4219 4.7109 52.5781

60.50 27.4375 13.7188 33.0625

61.50 24.8594 12.4297 36.6406

64.00 19.7500 9.8750 44.2500

MS_RESID

0.9123

0.8828

0.9234

0.7631

0.7392

T_o

1.3359 .27o

2 o4159 .o98

1.2183 .3o3

8.9683 .00004

5. 5278 .0062

0.6646 15.2708 .000004

0.8589 2.7653 .071

0. 8480 5. 5551 .006

0.5333 25.7259 .000000007

0.5910 21.0324 .0000001

0.7137 13.8362 .000011

34

Table 8 shows that the differences among the three treatments FC, NS, CSD were not

significant (at the .05 level) for the four performance characteristics SEQ, SEL, ITR, and

MANUAL, but the three treatments differed very significantly with respect to each of the

other seven performance characteristics. Furthermore, the average ranks for CSD far

exceeded those for FC and NS in the case of the seven significantly different performance
characteristics.

6.3.3 Summary of Responses For Evaluation of GRASP/Ada

The second part of the evaluation instrument was specifically directed at GRASP/Ada.

The items are presented below with a summary of the responses in italics.

1. Was the User Interface intuitive?

Most subjects felt comfortable with the User Interface after several sessions.

However, many expressed the desire for a User Manual.

2. What changes would you make to the User Interface?

Most subjects stated the User Interface was acceptable as is. Several expressed a

desire to have "stickable" subwindows from which options are selected. These were

not available through Athena widgets from which the User Interface was constructed.

3. What were the major problems you encountered when using GRASP/Ada.

As one might expect, a variety of responses were given for this item. Most were as

a result of several known bugs which have since been removed. Some simply

indicated improper use of the prototype and�or a lack of expertise in Ada. Again,

many expressed the desire for a User Manual.

. Rank the following items in order of importance in the prototype. Note, some
of these items are available in the current version and others are under

consideration as modifications/enhancements. Also, feel free to comment on

each in the space provided. (1 - least important 7 - most important)

The overall rank of the items is indicated.

a. 4.69 Integration of CSD generation/editing capabilities with a CASE

tool such as StP to facilitate development of process pspecs

and/or module PDL.

b. 4.84 GRASP/Ada User's Manual.

c. 4.84 Error messages resulting from CSD generation.

35

d. 4.47 Integrationof CSDediting/generationwith automaticgeneration
of objectdiagramsto show softwarearchitecturaldesign(i.e.,
the objectdiagramsindicatethe dependenciesamonga set of
CSDs).

e. 2.81 Spatialoptions(line spacing,amountof indentation,etc.).

f. 4.22 Direct access to a compiler from the User Interface to facilitate

use of the CSD during implementation.

g° 5.19 Extension of the CSD editor and generator to handle other

languages such as C and Pascal.

5. Rate your knowledge of Ada.

__ excellent __ good __ moderate __ very little __ virtually none

1.76 indicates knowledge of Ada was between virtually none and very little.

. How useful was the Ada template feature in the CSD Window in producing

Ada/PDL CSDs?

__ extremely __ very __ moderately __ not very __ not useful

3.53 indicates usefulness of the Ada template was between moderately, and

very useful.

What modifications/improvements should be made to this feature?

Many subjects indicated that additional Ada construct templates were needed.

Only control structures are included presently.

7. The time in class spent on Ada and/or AdaPDL

should have been increased. __ was about right. __ should have been

decreased.

2.64 indicates the class time spent on Ada was between about right and

should have been increased.

Comments? Some subjects indicated that the course (CSE 422) should have

a "more formal emphasis on Ada. Other indicated an emphasis on Pascal or

C was preferred since prior required courses cover these languages.

+ CSD editors and generators are planned for C and Pascal. If these tools were

available on the network, how useful would they be to you with respect to

improving the readability of your source code in future software development

projects?

36

C:

__ extremely __ very _ moderately __ not very __ not useful

4.09 indicates a CSD editor�generator for C would be between very and

extremely useful.

Pascal:

__ extremely __ very __ moderately __ not very __ not useful

3.36 indicates a CSD editor�generator for Pascal would be between moderately and

very useful.

6.4 Future Directions for Evaluation

The current preference survey instrument should be refined with respect to the

performance characteristics. The diagram types (FC, NS, WO, AD, CSD) that were

compared to the CSD should be reassessed as to whether they are currently used widely in

practice. Non-graphical PDL should also be considered as a treatment in the next evaluation

of preference.

While the analysis of preference data in this research clearly indicated statistically

significant differences which heavily favored the CSD, a controlled experiment should be

done to evaluate actual increases and/or decreases in comprehension due to the use of a

particular graphical notation or PDL. In fact, since PDL is in such widespread use as a

detailed design language, an experiment comparing the comprehensibility of PDL versus the

CSD would be perhaps even more appropriate than attempting to compare numerous graphical

notations.

37

7.0 Conclusions

The GRASP/Ada project has provided a strong foundation for the automatic generation

of graphical representations from existing Ada software. The current prototype provides the

capability for the user to generate the Control Structure Diagram (CSD) from syntactically

correct Ada PDL or source code in a reverse engineering mode with a level of flexibility

suitable for practical application. The prototype is being used in two software engineering

courses at Auburn University on student projects in conjunction with other CASE tools. The

feedback provided by the students has been very useful, especially with respect to the user

interface. The prototype has been prepared for limited distribution (GRASP/Ada V3.4).

An important issue for all software tools in general, and graphical representations in

particular, is evaluation. An evaluation based on preference was conducted to provide

information on user perceptions of the CSD. An experiment was designed and data was

collected from software engineering students. Statistical analysis indicated highly significant

differences among five graphical notations when compared with respect to eleven

performance characteristics. There was a clear preference for the CSD for seven of the

eleven performance characteristics. Experience indicates that empirical evaluation of the

comprehensibility (rather than preference) of graphical notations such as data flow diagrams,

object diagrams, structure charts, and flowgraphs is difficult. However, such an evaluation

for the CSD and GRASP/Ada tool would provide further insight into the role that graphical

notations play in the comprehension of software and, as a result, their potential impact on the
overall cost of software.

The CSD generation component of GRASP/Ada has been loosely integrated with

IDE's Software though Pictures to replace non-graphical process specifications (pspecs) for

data flow diagrams and module PDL for structure charts and object diagrams (see Appendix

B). In fact, the CSD becomes a natural detailed-level graphical extension for these system

and architectural level diagrams. In this capacity, the CSD has the potential to replace

traditional non-graphical pspecs/PDL used in software design and textual source code listings

used in implementation, testing, and maintenance.

The primary impact of reverse engineering graphical representations will be improved

comprehension of software in the form of visual verification and validation (V&V). To move

the results of this research in the direction of visualizations to facilitate the processes of

V&V, numerous additional capabilities must be explored and developed. A set of graphical

representations that directly support V&V of software at the architectural and system levels

of abstraction must be formulated. For example, the Object Diagram generator (ODgen)

prototype described earlier is one the components of the GRASP/Ada project which would

address architectural and system levels of abstraction. This task must include an on-going

investigation of visualizations reported in the literature as currently in use or in the

experimental stages of research and development. In particular, specific applications of

visualizations to support V&V procedures must be investigated and classified. Prototype

software tools which generate visualizations at various levels of abstraction from source code

and PDL, as well as other intermediate representations, must be designed and implemented.

Graphically-oriented editors must provide capabilities for dynamic reconstruction of the

diagrams as changes are made to other diagrams at various levels. These graphical

representations should provide immediate visual feedback to the user in an incremental

38

fashionasindividual structuralandcontrol constructsarecompleted. Futuredirectionsand
specifictasksfor theGRASP/Adaprojecthavebeenbeendescribedat theendof eachof the
sectionsabove.

The current prototype of the CSD generator,while only one of set of required
visualizationtools, hasclearly indicatedthe utility of the CSD. Futureenhancementswill
only increaseits effectivenessas a tool for improving the comprehensibilityof software.

39

REFERENCES

ADA83 The Programming Language Ada Reference Manual. ANSI/MIL-STD- 1815A-

1983. (Approved 17 February 1983). In Lecture Notes in Computer Science,

Vol. 155. (G. Goos and J. Hartmanis, eds) Berlin : Springer-Verlag.

AOY89 M. Aoyama, et.al., "Design Specification in Japan: Tree-Structured Charts,"

IEEE Software, Mar. 1989, 31-37.

BAR84 J. G. P. Barnes, Programming in Ada, Second Edition, Addison-Wesley

Publishing Co., Menlo Park, CA, 1984.

CHI90 E. J. Chikofsky and J. H. Cross, "Reverse Engineering and Design Recovery

- A Taxonomy," IEEE Software, Jan. 1990, 13-17.

CON80 W. J. Conover, Practical Nonparametric Statistics, Joh Wiley and Sons, New

York, 1980.

CRO88 J. H. Cross and S. V. Sheppard, "The Control Structure Diagram: An

Automated Graphical Representation For Software," Proceedings of the 21st

Hawaii International Conference on Systems Sciences (Kailui-Kona, HA, Jan.

5-8). IEEE Computer Society Press, Washington, D. C., 1988, Vol. 2, pp.
446-454.

CRO90a J. H. Cross, K. I. Morrison, C. H. May, "Generation of Graphical

Representations From Source Code," Proceedings of the Southeast Regional

ACM Computer Science Conference, April 18-20, 1990, Greenville, South

Carolina, 54-62.

CRO90b J. H. Cross, S. V. Sheppard and W. H. Carlisle, "Control Structure Diagrams

for Ada," Journal of Pascal, Ada, and Modula 2, Vol. 9, No. 5, Sep./Oct.
1990.

CRO92 J. H. Cross, E. J. Chikofsky and C. H. May, "Reverse Engineering," Advances

in Computers, Vol. 35, 1992, 199-254.

CAL93 F. W. Calliss, J. H. Cross, V. Rajlich, Panel on "Reverse Engineering,"

Proceedings of 5th International Conference on Software Engineering and

Knowledge Engineering (San Francisco, CA June 16-18, 1993), 544-545.

DAV90 R. A. Davis, "A Reverse Engineering Architectural Level Control Structure

Diagram," M.S. Thesis, Auburn University, December 14, 1990.

MAR85 J. Marlin and C. McClure, Diagramming Techniques for Analysts and

Programmers. Englewood Cliffs, NJ : Prentice-Hall, 1985.

40

OLS93

SCA89

SEL85

SHN77

SHU88

SIT92

STA85

TRI89

WAS89

M. R. Olsemand C. Sittenauer,"ReengineeingTechnologyReport,Volume
1," SoftwareTechnologySupportCenter,Hill Air ForceBase,UT 840556,
August 1993.

D. A. Scanlan, "Structured Flowcharts Outperform Pseudocode: An
ExperimentalComparison,"IEEE Software,Sep.1989,28-36.

R. Selby,et. al., "A Comparisonof SoftwareVerification Techniques,"NASA
Software Engineering Laboratory Series (SEL-85-001), Goddard Space Flight

Center, Greenbelt, Maryland, 1985.

B. Shneiderman, et. al., "Experimental Investigations of the Utility of Detailed

Flowcharts in Programming," Communications of the ACM, No. 20 (1977), pp.

373-381.

Nan C. Shu, Visual Programming, New York, NY, Van Norstrand Reinhold

Company, .Inc., 1988.

C. Sittenauer and M. R. Olsem, "Re-engineeing Tools Report," Software

Technology Support Center, Hill Air Force Base, UT 840556, July 1992.

T. Standish, "An Essay on Software Reuse," IEEE Transactions on Software

Engineering, SE-10 (9), 494-497, 1985.

L. L. Tripp, "A Survey of Graphical Notations for Program Design -An

Update," ACM Software Engineering Notes, Vol. 13, No. 4, 1989, 39-44.

A. I. Wasserman, P. A. Pircher and R. J. Muller, "An Object Oriented

Structured Design Method for Code Generation," ACM SIGSOFT Software

Engineering Notes, Vol. 14, No. 1, January 1989, 32-52.

41

APPENDICES

A. Installation Guide

B, Integrating GRASP/Ada with Software through Pictures (StP)

C. Evaluation Instrument

42

Appendix A

GRASP/Ada

Installation Guide

A-0

GRASP/Ada 3.4 Installation Notes

$(GRASP_HOME)/sup/doc/README.instalI.3.4

First compiled: 10/31/91 by CHM2
Additions:

12/10/91 by CHM2

01/17/92 by CHM2

01/27/92 by CHM2

12/12/93 by JHC2

##

Purpose of this file:

To give the installer the proper directions for installing

GRASP/Ada and for instructing users in adjusting their

environments as necessary.

##

Installation Requirements

i.

2.

3 •

4.

GRASP/Ada was developed on Sun SPARCstations running SunOS
(a derivative of UNIX BSD ?) and was intended to run on such

systems. At the time of this writing, it is UNKNOWN whether
GRASP/Ada will run under any other UNIX workstation environment.

The file hierarchy, when unarchived, consumes approximately

1.5 MB of disk space (not including the tar file itself).

The process of "making" the program and associated object files

should require approximately 3 MB more disk space.

All intermediate products of the "make" process will be removed
almost as soon as their usefulness has expired. They will not

linger on until the entire "make" process is complete; this

will reduce disk space requirements.

The final GRASP/Ada system (source, executable, other needed
files) will require about 1.5 MB of disk space.

As stands to reason, the installer must have read, write, and

execute (search) permission in the directory in which he
installs GRASP/Ada.

X-related requirements:

a. The system on which GRASP/Ada runs must have XlIR4 or

OpenWindows.

b. The system must have the following link libraries:

Athena Widget Set (Xaw)

(Xmu)
(Xt)
(XlI)

A-!

##

Installation Directions

I. The installer should have an archive file named

"grasp.3.4.tar" or possibly "grasp.3.4.tar. Z" (the compressed
version).

He should move this archive file to the directory in which

he intends to install GRASP/Ada (called, logically enough, the

"installation directory"). A typical example directory

would be "/usr/local'°; thus, the archive file will be in the

"/usr/local" directory.

2 . The installer then should unarchive the archive file in

this way:

(if compressed version)

$ uncompress grasp.3.4.tar. Z

$ tar xvBhmof grasp.3.4.tar

(if uncompressed version)

$ tar xvBhmof grasp.3.4.tar

This will unarchive an hierarchy of files whose root

is a directory called "graspada". "graspada" will be

a subdirectory of the installation directory (i.e. /usr/local

in the above example--ergo, /usr/local/graspada).

The installer will be the owner of all the files and

directories in the hierarchy. The permissions mode of the

files and directories will be set according to the installer's

umask code (see umask(1)).

3 ° At this point, the installer needs to define an environment

variable known as "GRASP_HOME" This variable is necessary
to the installation and use of GRASP/Ada. In his .cshrc file,

the installer should have the following line:

setenv GRASP_HOME [name of installation directory]/graspada

4. Check LD_LIBRARY_PATH environment variable to ensure it contains

the path for the X Athena Widgets libraries (i.e., Xaw, Xmu).

The default is /usr/lib. There should be a link directory in

/usr/lib to the X libraries if they are not in the default

library.

5. (OPTIONAL) There is an applications default file in SGRASP_HOME/Iib

called "XGrasp" which determines things like background

color, button font, etc. To activate these defaults set
the XENVIRONMENT variable as follows:

A-2

setenv XENVIRONMENT SGRASP_HOME/Iib/XGrasp

6. At this point, the installer should "source" the .cshrc file,

initializing the environment variables set above:

$ source -/.cshrc

7 ° To ensure that others will not tamper with various source
and other files, the installer should change the modes of

the files and directories in this way:

$ chmod -R 755 SGRASP_HOME

or, if installer is especially trusting of those

in his group,

$ chmod -R 775 $GRASP_HOME.

8, The installer can now proceed to install GRASP/Ada.

The installation is done via a hierarchy of makefiles, so
there will be a lot of fast-moving messages. The installer

need not be disconcerted by this.

Make and install GRASP/Ada in this way:

(Note: currently only configured for OpenWindows)

$ cd SGRASP_HOME
$ make -e all "GRASP_VERSION=3.4" "WINDOWING_SYSTEM=I"

The following actions are performed in the "make" process:

- the program executable is constructed,
- the man page(s) is (are) constructed,

- the appropriate screen CSD character fonts

are constructed, and

- the printer definitions file is constructed.

The whole process should take about 5-10 minutes.

##

User Instructions

Once installation is complete (no error messages), the installer

should inform potential users of the following environmental changes:

The following should appear in the .cshrc files of all GRASP

users in this order:

I. An environment variable "GRASP_HOME" which is where GRASP

(the current version) is installed, namely,

A-3

2 0

3 o

setenv GRASP_HOME [name of installation directory]/graspada

The path wherein is located the GRASP executable, namely

SGRASP_HOME/bin

in their $PATH list.

The path containing the GRASP/Ada man page(s):

SGRASP_HOME/man

in their SMANPATH list.

4. If users wish to override the XlIR4 application defaults for

GRASP/Ada (or whatever defaults that might be in effect),

then they should set the environment variable

XENVIRONMENT

to their own custom application defaults file.

Invocation is by the command "graspada" or "graspada <filename>"

###

A-4

Appendix B

GRASP/Ada

Integrating GRASP/Ada

with Software through Pictures (stP)

B - 0

Integrating GRASP/Ada
with Software through Pictures (StP)

Introduction

Software through Pictures (StP) is a commercially available CASE tool from

Interactive Development Environments, Inc. ODE). StP provides automated support for

software development methods which allow the user to build a comprehensive model of the

system. This system model helps ensures the integrity of the design before starting the

production of the code. In particular, StP can be used to build the graphical representations

such as data flow diagrams, structure charts, entity relationship diagrams, and object

diagrams. The information generated from the design is compiled into the underlying

database caned Data Dictionary to ensure consistency across the entire project. Once the

design is complete, the system can be developed according to the model. StP includes a set

of editors for graphically modeling programs and the data used in the programs. Among

these graphical editors are the Data Flow Diagram Editor (DFE) and Structure Chart Editor

(SCE). GRASP/Ada can be used to generate a control structure diagram (CSD) from (or in

place of) process specifications (pspecs) in the DFE and module specifications (PDL) in the

SCE. Using CSDs for pspecs and PDL provides a natural graphical extension to data flow

diagrams and structure charts. The figure below shows a snapshot of the screen with a pspec

represented by a CSD.

Data Flow Diagram Editor

The Data Flow Diagram Editor (DFE) is an interactive graphical tool for drawing data

flow diagrams in support of the Structured Analysis method. Data flow diagrams provide a

view of the system from a functional perspective. The top level context diagram shows the

system's overall purpose and how it interacts with external objects. Lower level diagrams

show the system subdivided into components or processes using decomposition techniques.

The DFE models the data flow of a system by using symbols that represent processes, data

flows, data stores, and external data sources and sinks. The status of a process is represented

by the presence or absence of a status marker next to the index number. Ifs is undefined. An

undefined process is one that is neither decomposed nor has a pspec. All processes must be

defined before the diagram is entered into the Data Dictionary. If there is an asterisk (*) next

to the process index number, the process is decomposed. If a Pspec has been generated for

the process, a small p appears next to the process index.

GRASP/Ada can be used to generate CSDs from syntactically correct Ada programs or

Ada PDL. Since the Pspec editor of the DFE does not have the graphic capability, it can be

replaced by GRASP/Ada.

B - 1

Structure Chart Editor

The Structure Chart Editor (SCE) is an interactive graphical editor for drawing

structure charts. The purpose of the structure chart is to show the interconnections between

identifiable program modules by graphically representing the modules hierarchy and

indicating the data that is passed between the modules. Each module has an associated non-

graphical PDL module specification. As with the pspec above, GRASP/Ada can be used to

generate a CSD for each PDL spec by replacing the StP PDL editor with GRASP/Ada.

Integration Procedure

Before integrating GRASP/Ada with StP, the environment variables and path variables

required to execute GRASP/Ada as a stand alone tool should be set in .cshrc file. Tool

Information files are the principal means by which the user customizes StP to suit the needs
of individual user and environment.

Variables in the Tool Information file are used to customize the environment in which

StP runs, specify the commands StP executes when running, and create the look and feel of

the graphical editors. The Tool Information file is a ASCII text file, and the variables can be

changed by commenting them out, changing their values, or setting their values in another
file.

When StP is first invoked from the command line, the system uses routines in the

Tools Library to find the appropriate Tool Information file to read. First, the system looks
for an environment variable called Toollnfo defined in the user's .cshrc file. This variable

gives the complete pathname to the Tool Information fide to be read. A Toollnfo variable can

have a value which is a number or a character string, the pathname for a file or directory, or

a command with optional parameters. For example, the variable that specifies the location of

the file used to set up the Main Menu may appear in the file as follows:

STPMenuSpec=/usr/local/lib/STPmenu. spec

The appearance of the Main Menu and the tools and commands available through it are

controlled by certain ToolInfo variables and Main Menu Specification file.

The Main Menu Specification File. The main menu specification file determines

choices available in various areas of the Main Menu Window. It specifies the icons and

labels that can appear in these areas, and it determines what combinations of commands or

list of choices are available and how they are displayed.

Structure of the Specification File. The following excerpt from STPmenu.spec gives

the specification for CSD icon.

B - 2

/GRASP

label [GRASP]
image { \

/* Format_version=l,
*/ \

0xFFFF

0xC000
0xC000

0xC000
0xC000

0xC000

0xC000
0xC000

0xC7F0
0xCC01

0xCC07

0xCC03
0xCC30

0xC3E6
0xC003

0xC000
0xC000

0xC000
0xC000

0xC000
0xC000

0xC3FC
0xC606

0xC006
0xC006

0xC07C

0xC006
0xC006

0xC606
0xClF8

0xC000
0xFFFF

}

Width:64, Height:64, Depth:l, Valid_bits__per_item=16

0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF, \
0x0000,0x0000,0x0003,0xC000,0x0000,0x0000,0x0003, \

0x0FFF,0xFFFF,0xFC03,0xC000,0x0FFF,0xFFFF,0xFC03, \
0x0C00,0x0000,0x0003,0xC000,0x0C00,0x0000,0x0003, \

0x0C00,0x0000,0x0003,0xC000,0x0FFF,0xFFFF,0xFC03, \
0x0FFF,0xFFFF,0xFC03,0xC000,0x0001,0xS000,0x0003, \

0x0001,0xS000,0x0003,0xC000,0x0001,0xS000,0x0003, \
0x0001,0xS000,0x0003,0xC3E0,0x0001,0xS000,0x0003, \

0x0001,0xS060,0x0003,0xCC30,0x0001,0xSOF0,0x0003, \

0xE001,0xFFS0,0x0003,0xCC03,0xF001,0xFF98,0x0003, \
0x3801,0xSI98,0x0003,0xCC07,0xlBEI,0x819F,0xE003, \

0x83FI,0xSl9F,0xE003,0xCC01,0xC339,0x8198,0x0003, \
0xE319,0xSI98,0x0003,0xC7F0,0x7319,0x819F,0xE003, \

0x3B19,0xS19F,0xE003,0xC007,0x3B19,0x8198,0x0003, \
0xF319,0xSl98,0x0003,0xC001,0xE319,0xSl9F,0xE003, \

0x0339,0xS19F,0xE003,0xC000,0x03FI,0xS198,0x0003, \
0x03EI,0xSOF0,0x0003,0xC000,0x0001,0xS060,0x0003, \

0x0001,0x8000,0x0003,0xC000,0x0001,0x8000,0x0003, \
0x0001,0x8000,0x0003,0xC000,0x0001,0xS000,0x0003, \

0x0001,0xS000,0x0003,0xC000,0x0001,0xS000,0x0003, \

0x0001,0xS000,0x0003,0xCIF8,0x0E01,0xFFE0,0x0003, \
0xlE01,0xFFE0,0x0003,0xC606,0xl601,0x8000,0x0003, \

0x0601,0x8000,0x0003,0xC006,0x0601,0xS000,0x0003, \
0x0601,0xS000,0x0003,0xC006,0x0601,0xS000,0x0003, \

0x0601,0xS000,0x0003,0xC07C,0x0601,0xS000,0x0003, \
0x0601,0xS000,0x0003,0xC006,0x0601,0x8000,0x0003, \

0x0601,0x8000,0x0003,0xC006,0x0601,0xS000,0x0003, \
0xC601,0xS000,0x0003,0xC606,0xC601,0xS000,0x0003, \

0x0601,0x8000,0x0003,0xC3FC,0xlFSI,0xS000,0x0003, \
0xlF81,0x8000,0x0003,0xC000,0x0000,0x0000,0x0003, \

0x0000,0x0000,0x0003,0xC000,0x0000,0x0000,0x0003, \
0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF \

help
row
col

Graphical
0

40

Representation of Algorithms, Structures and Processes

//Edit_Diagrams
label

cmd

msg

[Edit Diagrams]

graspada ${Diagram_Name}
Control Structure Diagram Editor

///Diagram_Name

label Diagram Name(s):
text (,,)

All the Hex numbers are the bitmap representation of the CSD icon. The line emil

graspada ${Diagram_Name} will specify what command to execute when the user selects

CSD icon and clicks on execute.

The dfe_pspec..eflit variable in Toollnfo file should be set as follows so that it

invokes GRASP/Ada instead of standard Pspec editor.

d fe_pspec_eflit=graspafla&

B 3

The sce_pdl_edit variable in Toollnfo file should be set as follows so that it invokes
GRASP/Ada instead of standard PDL editor.

see_pdl_edit=graspada&

SUMMARY OF INTEGRATION STEPS

°

*

°

.

o

Copy the Toollnfo and STPmenu.spec files from StP library to user's home directory.
Set the Toollnfo environment variable in .cshrc file to refer to the Toollnfo file in

user's home directory.

Load the Toollnfo file (which is copied into user's home directory) into an editor and

modify the Toollnfo variable STPMenuSpec as follows:

STPMenuS pec=~/STPmenu.spec

To invoke GRASP/Ada in place of Pspec editor, replace the Toollnfo variable

dfe_pspec_edit variable as follows:

dfe_pspec_edit=graspada

To invoke GRASP/Ada in place of PDL editor,replace the Toollnfo variable

sce_pdl_edit variable as follows:

see_pdl_edit=graspada

To invoke GRASP/Ada as an independent application (like DFE, SCE, etc.,) copy the

information provided above in the Structure of the Specification File to

STPmenu.spec file in user's home directory.

n - 4

Appendix C

GRASP/Ada

Evaluation Instrument

C-0

Name Da_

(optional)

Evaluation of Graphical Representations for Algorithms

Several of the following graphical representations were briefly presented in class: flowcharts

(FC), Nassi-Shneiderman diagrams (NS), Warnier-Orr diagrams (WO), action diagrams (AD),

and control structure diagrams (CSD).

During this course, which of the above diagrams were presented? Check the appropriate

responses.

FC NS WOAD CSD

Priorto thiscourse, which ofthese diagramshadyou used?

FC NS WOAD CSD

Check the appropriate responses.

Were any of the diagramsusedinapro_ssional setting?

FC NS WOAD CSD

Check the appropriate responses.

Based on the experience you have gained by using these diagramming tools to represent

algorithms, you are asked to assign a rating to each of the diagrams with respect to a specific

comparison among the diagrams. You may assign the same rating to more than one diagram

for a given comparison. Select your ratings from the following scale and enter them as
indicated below.

5 - best / most / fit'st choice

4-

3 - moderate

2-

1 - worst / least / last choice

C-1

.

.

o

.

5.

.

Compare the diagrams with respect to how well each shows sequence.

FC NS WO AD CSD

Compare the diagrams with respect to how well each shows selection.

FC NS WO AD CSD

Compare the diagrams with respect to how well each shows iteration.

FC NS WO AD CSD

Compare these diagrams with respect to overall readability (consider reading someone

else's code).

FC NS WO AD CSD

Each of these tools can be used with informal pseudocode as opposed to actual

statements in a programming language and, as such, can be thought of as a graphical

extension to pseudocode (with possibly some spatial rearrangement). Rate the

diagrams on the extent to which they increase readability over non-graphical

pseudocode.

FC NS WO AD CSD

Suppose as a programmer you are given a design specification in which the program

logic has been documented using one of the graphical representations below. Compare

the diagrams with respect to which would best facilitate your task of coding from the

design specification.

FC NS WO AD CSD

C-2

. Compare the diagrams with respect to ease of manual use; consider the initial

drawing and subsequent modifications.

FC NS WO AD CSD

. Assuming you have to manually draw the diagrams (in the sense that they are not

automatically generated), indicate your overall preference for each diagram where:

5 - first choice 1 - last choice

FC NS WO AD CSD

o Compare the diagrams with respect to their overall

comprehension versus effort to draw them manually).

FC NS WO AD CSD

economy (i.e., increases in

10. Assuming you have equivalent automated support to draw each of the diagrams in the

sense that the diagrams are automatically generated either by selecting constructs from

a menu or by recognizing key words in the code, indicate your overall preference for each

diagram where:
5 - first choice 1 - last choice

FC NS WO AD CSD

11. All assumptions aside, indicate your overall preference for each diagram where:

5 - first choice 1 - last choice

FC NS WO AD CSD

12. It is not uncommon for individuals and organizations to introduce modifications (which

they consider to be improvements) to "standard" diagramming tools. These changes may

be to improve readability, to make the diagrams easier to work with manually, to make

them easier to automate, to provide for control flow other than sequence, selection,

iteration, etc. What improvements can you suggest for any of the diagrams we used in

this class?

C-3

Name Da_
(optional)

Evaluation of GRASP/Ada

In CSE 422 lab you were provided the opportunity to work briefly with GRASP/Ada, a prototype

reverse engineering tool for software written in Ada or AdaPDL. The prototype is currently

being evaluated prior to widespread release via the network. As a prototype, GRASP/Ada is

expected to undergo continual modification over the next year, especially with respect to

integration with commercially available CASE tools.

The current GRASP/Ada prototype includes automatic generation of Control Structure Diagrams

(CSDs). Future releases will include the generation of object diagrams. Your responses to the

items below are intended to provide the developers with directions for enhancements to the

prototype, including additional user interface requirements and overall functionality.

The GRASP/Ada Project is supported, in part, by funding from George C. Marshall Space Flight

Center, NASA, Alabama 35821 (Contract Number NASA-NCC8-14).

1. Was the User Interface intuitive?

2. What changes would you make to the User Interface?

3. What were the major problems you encountered when using GRASP/Ada.

C-4

, Rank the following items in order of importance in the prototype. Note, some of these

items are available in the current version and others are under consideration as

modifications/enhancements. Also, feel free to comment on each in the space provided.

(1 - least important 7 - most important)

a° Integration of CSD generation/editing capabilities with a CASE tool such

as StP to facilitate development of process pspecs and/or module PDL.

b. GRASP/Ada User's Manual.

C° Error messages resulting from CSD generation.

d° Integration of CSD editing/generation with automatic generation of object

diagrams to show software architectural design (i.e., the object diagrams

indicate the dependencies among a set of CSDs).

e, Spatial options (line spacing, amount of indentation, etc.).

f. Direct access to a compiler from the User Interface to facilitate use of the

CSD during implementation.

g°
Extension of the CSD editor and generator to handle other languages such

as C and Pascal.

C-5

, Rate your knowledge of Ada.

__ excellent _ good moderate __ very little _ virtually none

, How useful was the Ada template feature in the CSD Window in producing Ada/PDL

CSDs?

__ extremely _ very _ moderately _ not very _ not useful

What modifications/improvements should be made to this feature?

, The time in class spent on Ada and/or AdaPDL

should have been increased. _ was about right.

Comments?

should have been

decreased.

.

C"

CSD editors and generators are planned for C and Pascal. If these tools were available

on the network, how useful would they be to you with respect to improving the

readability of your source code in future software development projects?

extremely _ very _ moderately _ not very _ not useful

Pascal:

extremely _ very _ moderately _ not very _ not useful

C-6

