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Toward modeling wingtipN r ce L

By O. Zeman

1. Motivations and objectives

Wingtip vortices are generated by lifting airfoils; their salient features are com-

pactness and relatively slow rate of decay. The principal motivation for studying

the far field evolution of wingtip vortices is the need to understand and predict the

extent of the vortex influence during aircraft take-off or landing. On submarines a

wingtip vortex ingested into a propeller can be a source of undesirable noise.

The flow field associated with a single vortex freely propagating in the envi-

ronment is difficult to measure. On an aircraft, the vortices are generated in pairs,

and these have a tendency to meander and interact with each other. Environmental

conditions such as stratification and ambient turbulence may exert an important in-

fluence on the vortex as well. So far, the only quantitative measurements of wingtip

vortex (far field) evolution in flight experiments have been reported by Rose &

Dee (1963). Wind tunnel experiments of an isolated vortex have been reported

by Hoffmann and Joubert (1963), Phillips and Graham (1984), and Bandyopad-

hyay et al. (1991). In these experiments, a pair of oppositely loaded airfoils have

been employed to generate a turbulent vortex with a wake- or jet-like axial flow

field. Measurements of trailing vortices behind a lifting hydrofoil (in water) were

made by Baker et al. (1974) and Green & Acosta (1991). The near field turbulent

structure of a single wingtip vortex has been measured by Zilliac et al. (1993). At

present, experimental data of a far-field vortex growth are sparse, and data on tur-

bulence quantities in the vortex are virtually nonexistent. The major difficulty in

measuring vortex turbulence is the vortex meander, which results in contamination
of turbulence statistics.

The main objectives of this research are i) to establish theoretical understanding

of the principal mechanisms that govern the later (diffusive) stages of a turbulent

vortex, ii) to develop a turbulence closure model representing the basic physical

mechanisms that control the vortex diffusive stage, and further iii) to investigate

coupling between the near and far field evolutions; in other words, to study the
effect of initial conditions on the vortex lifetime and the ultimate state.

At this stage of the effort, I have concentrated on studying a rectilinear, or line,

vortex. Thus, the actual vortex evolution in space downstream from a generating

wingtip is replaced by evolution in time. The line vortex is axisymmetric in the

mean and treated in cylindrical coordinates, where radial distance and time are

the only independent variables. The vortex is assumed to be isolated from external

influences and its evolution to be independent of the details of tile initial (prescribed)

conditions. The influence of different initial conditions will be investigated in future.

When compared with experiments, standard k-e models are known to overpredict

the decay rate of a line vortex. This is due to the absence of the rotation effects
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in the turbulence kinetic energy equation. Our past experience with modeling the

airflow over hills indicated that a Reynolds stress closure (RSC) model is a must

if one is to predict the observed distribution of Reynolds stresses and mean wind

on the hilltop. Here, the (convex) streamline curvature can significantly alter the

turbulence structure and stress distribution (Zeman and Jensen 1987). We have,

therefore, employed a full RSC model where the curvature effects are present intrin-

sicaUy and appear as explicit terms once the model equations are cast in cylindrical
coordinates. As we show later, the RSC model predictions are in broad agreement

with the observed line vortex growth, while the k - e version of the model yields

unacceptably high turbulent intensities and vortex growth rates.

The further stages of this research effort are described in the Future Work section

of this report.

2. Accomplishments

The main accomplishments to date have been the development of a RSC closure

model and the theoretical and scaling analysis of the turbulent vortical flow. These

accomplishments are described in detail in the forthcoming manuscript (Zeman

1993). The principal result reported here is the model-experiment comparison of the

vortex growth rates for different vortex Reynolds numbers. It appears that the mean

vortical flow generated by the wingdp very effectively suppresses the Reynolds shear

stress which mediates the extraction of energy from the mean flow by turbulence.

In consequence, the vortex core growth rate is controlled only by molecular viscosity

and the vortex turbulence decays since the turbulence production rate is very nearly

zero. This rather unexpected result appears to be supported by experiment as is

evident from Figure 1. This section is subdivided in two parts: Model formulation

and description and comparison with experiments.

_.1 Model formulation and description

The cylindrical coordinates (r, 0, z) are the natural choice for the Reynolds-

averaged description of the turbulent vortex flow. The presence of the pressure-

strain and transport terms in the RSC equations requires that the equations be

formulated in generalized coordinates xi. Assigning arbitrarily the azimuthal angle

0 - xx, radius r =- x2, and axial distance z _. x3, we obtain the metric tensors

of transformation 9iJ,gij whose only nonzero components are 922 = 933 = 1 and

gll r2; the contravariant ga_ = -I= goa- It is then fairly straightforward but ar-

duous to convert the equations for, say, the contrax_ariant tensor u*uJ to physical,

Reynolds stress components in cylindrical coordinates (see e.g. Durbin 1993, also

Zeman 1993). Prior to the conversion one must choose an appropriate model for the

rapid part H R of the pressure strain term Hij = p(ui,j + uj,i)p -1. Here, we employ

the general (linear) version of the rapid model proposed by Zeman and Tennekes

(1975); written in Cartesian tensor notation the rapid part is

II R'tJ= 2q2[ Sij + al(Sikbit, + Sjkbik -- 3S'b_ij) + c_2(Rikbjt. + Rjkbik )]. (1)

Here, bij = uiu]/q 2 - _ij/3 is the turbulence anisotropy tensor and q2 = uju) is

twice the turbulent kinetic energy (hereon TKE); the mean strain (S) and rotation
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(R) tensors are defined as Sij = 7(Ui,jl + Uj,i) and Rij = 71(Uij - Uj,i). The
coefficients al and a2 can, in principle, be functions of the flow invariants and the

turbulence Reynolds number. In practice, al and a_ are constant, chosen for the

best agreement with experiment. The version of the above model was successfully

employed in a boundary layer flow with significant streamline curvature effects

(Zeman and Jensen 1987) with al = 0.375 and a2 = 0.225.

Labeling the azimuthal, radial, and axial fluctuating velocity components as u,

v, and w, respectively, and U(r, t) as the mean azimuthal (vortical) velocity, we can

write the set of turbulence model equations as follows:

R

Ou2 = 4(1 - c_2)h-'_ U + 2(1 - al 1 0 9
Ot r "-ff--a2)P,-II_u rOr(rT,.,_)- rT,,v -_e,2 (2)

lOOv_ -4(1 - c_2)_-_ U + 2(_2 - )P, - H$, r Or (rT_v) + 2T"_v 2--&-= - 5" (3)

Ow 2 4 1 0 2

Ot - 3 _IP` - H_ww - ---(rTu, wV)rOF -- --3e' (4)

-IP 1 0 2 1
- --_rr(r T,_) + -(T,_ - T,_). (5)uv r2 r

In the above equations, l'IiSj = 3.25(_- 1 2-5q b,_)e stands for the so-called slow
return-to-isotropy pressure term, and Tijk = UiUjUk are the third moment terms

(ui stands for u, v, w). P_ -- 0 v= -uv('_rU - V) is the TKE production rate (by the

mean strain °U v- V)" The closure equation for the rate of dissipation used at the
present time is in a standard form:

= -3.8(fie - 0.75P_) 1 1 0 (rT, v), (6)
0t r r 0F

with r = q2/e is the turbulence (equilibrium) time scale and fl = 1 - 0.3 exp(-R_ )
where Rt = q4/(9ev) is the turbulence Reynolds number.

By summing (2), (3), and (4), the TKE rate equation is obtained

10q 2 1 020t - P_ - e - - (rTqq_). (7)/.

Here q2 = u 2 + v 2 + w 2 and Tqqo 1= 5(T_ + T_,o + T,,,w_) is the (total) flux of
q2/2 in the outward radial direction. Note that curvature effects associated with

the factor U/r in (2) to (4) are absent in (7).
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_.1.1. Concerning the transport term model

To first approximation, the third moments Tij_ can be considered as radial fluxes
of the second-order quantities involved. After some experimentation, we have settled

on the following scalar-type, gradient transport model:

a-
T_ = -(vt_ + V)_r¢, (8)

where ¢ is any second-order quantity in (2)-(7) including e and the (radial) eddy

transport coefficient utr is

-- 1

_rt = 0.07Tv2 1 + dlr_(K_)'ir 3" (9)

Here, the prime (') stands for radial derivative, and Kz = Ur = F/2rr is the an-

gular momentum (in z direction); the adjustable constant dl is set tentatively at
dl = 0.02. The modification of the eddy coefficient in (9) by the curved flow

(stability) parameters is a novel idea, and its rationale is based on the analogous
modifications in modeling buoyancy driven flows (Zeman and Lumley 1976). An

analogy between streamline curvature and buoyancy has been originally suggested

by Bradshaw (1969). Townsend (1976) proposed a curved flow parameter analogous

to the gradient Richardson number, i.e.

(K=2)'/,-3
Ric= (U,) 2

The modifying factor (K_)'ir 3 in (9) is apparently analogous to the Brunt-Vaisaila

frequency squared N 2 in flows with buoyancy, and the sign of K' z corresponds to the

sign of (potential) temperature in stratified flows. Within the bulk of a turbulent

vortex core, Ktz > 0, which means turbulence damping.
Donaldson and Sullivan (1971) employed for the modeling of the same (line vor-

tex) flow the invariant transport model

uiuJu k o¢ -r(uiui(uJuk)3 + permutations in (i,j, k)).

The author found this type of model to give unrealistically high levels of the third

moments; their effects overwhelmed the solutions. Evidently, the invariant model of
Donaldson and Sullivan is incomplete because it does not include curvature (strat-

ification) effects. Ettestad and Lumley (1985) considered the full third-moment

equations with the curvature terms included. The resulting transport model was
too complex to be applied in actual flow computations, but the modifying factor

r 2(K_)'/r 3 does appear repeatedly in the Ettestad and Lumley expressions for eddy
coefficients. Finally, it is interesting that an eddy transport coefficient similar to

(9) can also be inferred from a Lagrangian analysis (see Zeman 1993; Ettestad and

Lumley 1985). The invariant form of the transport model (8) and (9) for general

(non-axisymmetric) flows will be considered ill future work (Zeman 1993}.
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Y2.I.12. Concerning boundary and initial conditions

The boundary conditions at the eenterline r = 0 are not readily obvious but can

be inferred from the following reasoning. If the turbulence undergoes a solid body
rotation, the solutions to the equations (2)-(7) must admit a homogeneous solutions
independent of r. It follows that at r = 0,

_v = w 2 =0andS=0.

The last condition stems from the symmetry requirement. Symmetry also requires

that near r = 0 the mean flow is solid body rotation and thus (U/r)' = 0; this,
according to (5), is consistent with g-_(r = 0) = 0 only if _-7 = _'7. This eenterline

turbulence axisymmetry is not directly imposed on the flow, but it is satisfied in

actual computations. Similar observations have been reported by DonMdson and
Sullivan (1971), who used the same boundary conditions. It is noted that the above

boundary conditions are consistent with a theoreticM anMysis of Shariff (1993)
(brought to my attention by Dr. Moser of NASA Ames). Sharif's anMysis is based

on the requirement that the velocity components (u, v, w) be analytical near r = 0.
It then follows that near r = 0 the components behave as

u''g=a 2+bur 2 _=a 2+bvr 2, and_=c 2+bwr 2.

Evidently, the turbulence axisymmetry is a requirement of analyticity of the fluc-
tuating flow field at r = 0.

The centerline dissipation ec is obtained from the integral balance of the TKE
equation (7), i. e., % must satisfy the integral

_{ l Oq2 +P, - = O. (10)

Durbin (1991) showed the integral constraint to give the proper value of e at the

wall in a (steady) channel flow. Here, the situation is somewhat different; the flow

is unsteady and near r = 0, q_,t= (vtr + v)q,2rr - 2%.
The conditions at r --* oo are r = Fo, (or U = Fo/(2rr)), and all second-order

turbulence quantities tend to zero. The turbulence time scale v = q2/e is prescribed
to be large (with respect to vortex core time scale) but finite as r --, oc

The initial profile for the azimuthal velocity conditions U(r, t = 0) is given by the
prescribed circulation distribution

F

ro = 1 - exp -1.26(r/R1 )2, (11)

where r = R1 is the radius of max{U} = U1, and it delimits the size of the

vortex core; for the distribution (11) the maximum velocity Ul occurs where F =

2_rUiR1 = 0.716Fo. Since the vortex evolution approximately obeys the scaling laws

Ua o_ (Fo/t)a/2 and R1 cx (Fot)l/2, the initially prescribed Reynolds number Fo/v
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remains constant in time. The Gaussian profile of F is a laminar vortex solution, or

if one assumes the eddy viscosity to be constealt, it is a turbulent vortex solution

as well (see e.g. Govindaraju & Saffman 1971).

Initial profiles of the turbulence moments were specified as

u 2 = v 2 = w 2 = u_h(r/Rl), e = u3or-lh(r/Rl) and _-_ = O,

with h(r/) = ys exp{1 - r/S}. The above profiles were fairly consistent with the

equation solutions but introduced transient oscillations in the _-_ profiles. The
initial turbulence intensity uo/Ul is a parameter of the flow problem which also

specifies the initial turbulence Reynolds number Rt. It has been found, so far, that

the long-time evolution of the vortex is not very sensitive to the value of uo/Ul or to

the initial spatial distribution of turbulence. However, this aspect will be explored

in more detail in future work.

2.1.3. Interpretation of the model equations

The equations (2) through (7) have been arranged to highlight the different effects

of the mean strain S : 1 t_(U - U/r) and rotation U/r on turbulence. According to

(7), the turbulence is produced only if the mean strain S is nonzero. The circula-
tion distribution Fir ) in the bulk of a turbulent line vortex remains approximately

Ganssian as described by (11), thus S < 0 and the shear stress _ is positive. In-

spection of the equations reveals that for the gradient K' z 0¢ F' > 0, the generation
of the stress _-_ is severely inhibited and so is the TKE production Ps = -h--_S. In

the limit of rapid solid body rotation U/r = 12 >> l/r, equations (2), (3) and (5)

yield an oscillatory solution with (inertial wave) frequency 4(1 -as) 1/s f/. The rapid

rotation theories give the frequency of oscillations to be exactly 412 (Mansour et al.

1991), suggesting that the rapid-pressure model constant as should approach zero

in the rapid limit 12r >> 1. We found this, however, to be of little consequence for

the model results and retained, for the present, the value a2 = al = 0.3 inferred

from realizability considerations (Zeman 1981). By comparing the TKE equation

(7) with the RSC equations (2)-(5), one can easily see that the rotational terms

(associated with U/r) are absent in the TKE equation showing that, as alluded to

earlier, standard k - e models cannot represent the stabilizing effect of the concen-

trated vortex flow. Results supporting this conjecture are presented in the following

section.

2.3. Computations, comparison with experiments

The most important result of the present work is contained in Figure 1. Here,

the vortex core growth parameter

Zx(R,) (12)
bl -- A(Fot)l/s

is plotted against the flow Reynolds number Fo/u. The observation data points

plotted are a mixture of flight and laboratory experiments as indicated in the figure

legend. There are two set of model results; one computed with the present RSC



Modeling wingtip vortices

lC?

i lO.Z

• i,l,l,rlnl I • i.l.l.l.llnl • i-i-i,1,111111 • w,l,l-rlnl I • i-i-i,1,Iiiii

• .......... °°° "6o ............ .6

'%.%. •

°'....%

".o% • •

"%'*...... •

• I *1_ l.lJllll • I.i.l.i.lllll • I. hi,l,llill . I .i.hlJUll • l .hI.Lllltl

ld_ 104 ldb 1o' lO'

rolv

37

FIGURE 1. Vortex core growth rate b] (defined in (12)) vs Fo/v. Data compiled

in Govindraju and Saffman (1971): • ; Baker et aL (1974): • ; RSC model results:
o -- = ; k - e model: A .... " ; -1/2 slope: ........ .

model, and the second with a k - e model. The k - e model consists of equations

(6), (7), and the constitutive relation for the stress u"-_

o vu---_= 1 +c, r2(K_)2/r 3 ( U- r )" (13)

In (13) VTo is the standard eddy viscosity for curvature-free flows. The curvature ef-

fect on the eddy viscosity is included through a modification similar to (9). Without
this modification, the computed turbulence levels and vortex core growth rates were

hopelessly unrealistic. Even so, as shown in Figure 1, the growth rate parameter bx

computed with the modified k - e model is still an order of magnitude higher then

indicated by experiments or the RSC model. This trend could not be significantly

altered by increased damping through the constant c].
The present results, although still tentative, have some surprising implications.

First, as seen in Figure 1, the experimental growth parameter bl appears to follow
a trend bl o¢ (Fo/V) -]/2 which suggests viscous rather than turbulent diffusion of

the vortices. In other words, it suggests a dependence

R] o¢ (vt) 1/2 o¢ (ro/v)-ll2(rot) 1/2.

This trend is evidently reproduced by the RSC model results. Indeed, the inspection

of computed stress profiles show that the turbulent shear stress h-g is so effectively
damped by the swirl that within the vortex core the angular momentum transfer

is dominated by the viscous stress. Whatever turbulence is present throughout the
vortex, it is passive and does not contribute to the momentum transfer, except in

the outer part of the vortex 2R] < r < 3R1. Hence, the RSC-computed vortex

appears to be quasi-laminar. On the other hand, the same vortex predicted by the
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FIGURE 2. Circulation profile evolution computed by: (a) k - e model, (b) RSC

model; the indicated time of evolution t is in units of T = (RI/Ul)o.

k - e model is fully turbulent within the core and the angular momentum transfer

is dominated by turbulence. Thus as indicated in Figure 1, the growth parameter

b] inferred from the k - e model results is independent of Fo/V.

The second result of interest is the circulation profile evolution. As seen in Figure

2, there is a striking difference between the F profile evolutions computed by the

RSC and k - e models. The fully turbulent vortex computed by the k - e model

develops an overshoot in circulation, while the quasi-laminar vortex computed by
the RSC model evolves on the viscous time scale and changes very little within

the time period shown. Both of these results are consistent with the analysis of

Govindraju and Saffman (1971). They inferred from the equations of motion that
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for a turbulent vortex, the nondimensional quantity

1 _o _°Fo-Frdr

should approach zero for sufficiently large times t >> R_/Fo, and thus the F dis-

tribution should develop an overshoot. Evidently this is true for the k - e model as

shown in Figure 2a. On the other hand, a lack of a visible overshoot (about 1% of

Fo) in Figure 2b, indicates that I._ remains approximately constant and this result

is again consistent with the quasi-laminar vortex computed by the RSC model.

In conclusion, on the basis of experimental evidence presented in Figure 1, we

have inferred that the vortex growth is dominated by viscous effects and not by

turbulence. This view is consistent with the RSC model results, which suggest that

the turbulent momentum transfer is suppressed by the stabilizing effect of the swirl

and that the vortex turbulence plays only a passive role in the vortex dynamics.

3. Future work

The modeling results are sufficiently interesting to continue exploring the wingtip

vortex modeling in the present geometry. There are many questions to be answered

before proceeding to a more complex flow configuration which allows for an axial

shear and pressure gradient. It has to be established whether the computed quasi-

laminar vortex is a representation of physics, or whether it is an artifact of the RSC

model. To this end, we shall test different model versions, investigate the effect of

initial conditions, and make more detailed model-experiment comparisons.
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