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Local isotropy in distorted turbulent
boundary layers at high Reynolds number

By Seyed G. Saddoughi

1. Motivation and background

This is a report on the continuation of our experimental investigations (Sad-

doughi 1993; Saddoughi & Veeravalli 1993) of the hypothesis of local isotropy in

shear flows. This hypothesis, which states that at sufficiently high Reynolds num-

bers the small-scale structures of turbulent motions are independent of large-scale

structures and mean deformations (Kolmogorov 1941), has been used in theoretical

studies of turbulence and computational methods such as large-eddy simulation.

Since Kolmogorov proposed his theory, there have been many experiments, con-

ducted in wakes, jets, mixing layers, a tidal channel, and atmospheric and labora-

tory boundary layers, in which attempts have been made to verify - or refute -

the local-isotropy hypothesis. However, a review oi the literature over the last five

decades indicated that, despite all these experiments in shear flows, there was no

consensus in the scientific community regarding this hypothesis, and, therefore, it

seemed worthwhile to undertake a fresh experimental investigation into this ques-
tion.

i.i Plane boundary layer

In our previous reports, we presented hot-wire measurements of the velocity

fluctuations in the test-section-ceiling boundary layer of the 80- by 120-foot Full-

Scale Aerodynamics Facility at NASA Ames Research Center, the world's largest

wind tunnel. At our measurement location, the boundary-layer thickness, 6, was

about 1.1 m, and the maximum Reynolds numbers based on momentum thickness,

Ra, and on Taylor microscale, Rx, were approximately 370,000 and 1,450 respec-

tively. These were the largest ever attained in laboratory boundary-layer flows.

The boundary layer developed over a rough surface, but the Reynolds-stress pro-

files agreed with canonical data sufficiently well for our purposes. Spectral and

structure-function relations for isotropic turbulence were used to test the local-

isotropy hypothesis, and our results established the condition under which local
isotropy can be expected.

Here we use a Cartesian co-ordinate system xi = (x,y,z) with x-axis along

the flow direction, y-axis normal to the solid surface, and z-axis in the span-
wise direction. The respective mean-velocity components in these directions are

Ui = (U, V, W), and the fluctuating components are ui = (u, v, w). Overbars de-
note time averages.

Our plane boundary-layer data showed that, to within the accuracy of measure-

ment, the shear-stress co-spectral density El_(kl ), which is the most sensitive indi-

cator of local isotropy, fell to zero at a wavenumber about a decade larger than that
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at which the energy spectra first followed -5/3 power laws. At the highest Reynolds

number, Ea2(kl ) vanished about one decade before the start of the dissipation range,
arid it remained zero in the dissipation range.

We found that the lower-wavenumber limit of locally-isotropic behavior of the

shear-stress co-spectra is given by klan-IS a _ 10 where S is the mean shear,

OU/Oy, and e is the average turbulent energy dissipation rate per unit mass. Our

inve_ion also indicated that for energy spectra this limit could be relaxed to
kav/e/S a .._ 3; this is Corrsin's (1958) criterion, with the numerical value ob-
tained from our data. The existence of an isotropic inertial range requires that
this wavenumber be much less than the wavenumber at the onset of viscous effects,

klr/<< 1 (77is the Kolmogorov length scale), so that the combined condition (Corrsin
1958 and Uberoi 1957) is SV/'_ << 1.

Among other detailed results, it was observed that in the dissipation range, the

energy spectra had a simple exponential decay (Kraichnan 1959) with an exponent

prefactor close to the value/3 = 5.2 obtained in direct numerical simulations at low
Reynolds number. Plots of compensated spectra, ks/3, E(kl ), proved to be a very
sensitive test in the inertial subrange. The Kolmogorov constants obtained from
the one-dimensional data at high Reynolds numbers satisfied the isotropic relations

for the spectra and the second-order structure functions, and the constant for the
three-dimensional spectrum, C, was estimated to be 1.5 5:0.1 (Monin & Yaglom

1975). Spectral "bumps" between the -5/3 inertial range and the dissipative range
were observed on all the compensated energy spectra. The shear-stress co-spectra

rolled-off with a -7/3 power law and scaled linearly with S (Lumley 1967).

In summary, our results confirmed the local-isotropy hypothesis for "simple" shear

layers, and it was shown that one decade of inertial subrange with truly negligible
shear-stress co-spectral density requires S_'_ not more than about 0.01 (for a

shear layer with turbulent kinetic energy production --_ dissipation, this implies a

microscale Reynolds number of about 1500).

1.2 Distorted boundary layer

The effects of extra mean strain rates on the large-scale structure of shear flows

(Bradshaw 1973) have been investigated extensively. The unanswered question for
us was "will our criteria for the existence of local isotropy hold for complex non-

equilibrium flows". Therefore, experiments to address this question were designed
for the 80- by 120-foot wind tunnel. One possible experiment was to study the

plane-of-symmetry flow in front of an obstacle placed vertically in a fully-developed
two-dimensional turbulent boundary layer, e.g. a circular cylinder placed with its

axis perpendicular to the plate. There have been a number of experimental inves-

tigations dealing with the large-scaie structural changes that occur in this kind of

flow (Johnston 1960; Hornung & Joubert 1963; Belik 1973; Mehta 1984; Agui &
Andreopoulos 1990; Devenport &_ Simpson 1990; to name a few). In this type of

boundary layer, the pressure rises strongly as the obstacle is approached and in the

plane of symmetry of the flow the boundary layer is also influenced by the effects
of lateral divergence (Saddoughi & Joubert 1991). Hence, in addition to the basic

shear, OU/Oy, the extra strain rates involved in the flow are OU/Ox, OV/Oy and
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OW/Oz. To obtain the desired effects, the size of the cylinder should be at least of

the order of the thickness of the boundary layer. To conduct such an experiment

in the 80 ° by 120 ° wind tunnel, a very large cylinder had to be fixed to the ceiling
of the tunnel. This presented considerable construction difficulties. Here some of

the results taken in front of this cylinder at the highest speed of the tunnel will be
discussed.

2. Accomplishments

,_.I Apparatu_ and mea, urement techniques

The only possible way for attaching an obstacle to the ceiling of the 80- by 120-

foot wind tunnel was to use one of the existing light ports for this purpose. Since the

diameter of our test cylinder had to be larger than the clear opening of a typical

light port, we had to use two concentric cylinders. As shown in Plate l(a), the

main cylinder is a ready-made light-weight polyethylene tank (wall thickness = _1"
4 '

• 1 todiameter D = 4' and height L = 6') and the inner (second) cylinder is a _ thick,
8" diarneter aluminum (6061-T651) tube, which extends for about 6° into the attic

I H
through the light port. Steel rods are bolted to the aluminum cylinder. A _ thick

1 It
high-density polyethylene plate and a _ thick aluminum plate are respectively

bolted to the inside and outside of the bottom of the polyethylene tank. The
5 to 1 H

effective wall thickness at the bottom of the tank is _ . Another _ thick high-

density polyethylene plate is bolted to the top of the tank, and the space between

the aluminum cylinder and the tank is filled with high-density Polyurethane foam.

This provided us with a fairly light-weight (500 lb) and solid cylinder.

From the attic above the test-section ceiling, this whole unit was pulled up

through the light port and was attached to the attic structure. Plate l(b) shows

the test cylinder in place as viewed from inside the test section. The NASA safety

requirements were satisfied, and the cylinder and its attachments were designed for

maximum possible aerodynamic load and dynamic loading due to seismic activity
with an overall factor of safety of 5 on yield strength.

Another light port upstream of the cylinder was used for traversing the probe

through the boundary layer. Therefore, our measurement location was fixed at

x/D _ 0.85 with respect to the front of the cylinder. The measurement strategy,

instrumentation, and procedure were all similar to those explained by Saddoughi

(1993) and Saddoughi k Veeravalli (1993), and details will not be repeated here.

_.2 Re,_ult8 and discussion

The measurements to be discussed here correspond to the maximum reference

velocity of the tunnel, Ur,! = 51.25 m/s. The normalized profiles of the longitudi-

nal mean velocity, U/Urel, for the present distorted boundary layer are compared

with the profiles obtained for both the high-speed and low-speed cases of the plane

boundary layer in figure 1, where Y is the distance from the wall. Also shown in

this figure are the least-squares polynomial fit to each of the data sets (solid lines),

which have been used to obtain the mean-flow integral parameters for each experi-

ment. The shape of the velocity profile for the distorted boundary layer is typical
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(a)

Cb)

Plate 1. Test cylinder. (a) Outer (main) cylinder (polyethylene tank: wall thick-
1/I

ness= _ , diameter D = 4', and height L = 6 t) and the inner (support) cylinder
1 tt 8 H

(aluminum 6061-T651 tube: _ thick, diameter and 12' height). (b) Test cylin-
der attached to the ceiling of the 80 r X 120 _ wind tunnel, as viewed from inside the

test section.
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FIGURE 1. Normalized longitudinal mean-velocity profiles measured in plane
and distorted boundary layers, o , Ure! _ 50 m/s and [] , Urn! ._ 10 m/s plane
boundary layer; ® , U_f ._ 51 m/s distorted boundary layer. The solid lines are
the least-square polynomial fit to each data set.

of the adverse-pressure-gradient flows: reduction in OU/Oy. The boundary-layer

thickness, g (the point where U/U_ = 0.995) has increased to approximately 1250

mm in the distorted boundary layer. Here the shape factor H ,_, 1.85, and in the
freestream the pressure coefficient Cp _, 0.23.

Figure 2 shows the normalized profiles of the normal velocity component, V/U,.el,
and the spanwise component, W/U,.tl, which were measured by the X-wires in

UV- and UW-mode respectively. It can be seen that, as expected, in the plane of
symmetry of the flow the crossflow, W, is approximately equal to zero. A least-

squares polynomial fit to the V profile was used to obtain the values of cOV/Oy.

The magnitudes of the extra strain rate due to the streamline divergence, cOW/Oz,

influencing the plane of symmetry of the flow can be obtained from (OW/Oz) =

U(O_/Oz) (see e.g. Saddoughi & Joubert 1991), where _ is the flow yaw angle mea-
sured at different spanwise locations z. The profiles of fl measured by a yaw-meter

probe for three spanwise locations (z/D = -0.21,0,0.21) through the boundary
layer are shown in figure 3. The profiles are typical of three-dimensional bound-

ary layers: larger flow yaw angles near the wall thaxl the freestream. Finally, the
continuity equation was used to obtain the OU/Ox values.

The profiles of the Reynolds normal stresses (-_l/U2el,'_2/U2rel,-_a/U2rel) ' and
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FIGURE 2. Normalized vertical and spanwise mean-velocity profiles measured in

the plane of symmetry of the distorted boundary layer. ®, V/UreI; "_, W/U,'*t.
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FIGURE 3. Flow yaw-angle profiles measured in the distorted boundary layer at

different spanwise locations.
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FIGURE 4(A,B). For caption see next page.
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FIGURE 4. Profiles of Reynolds stresses measured in plane and distorted bound-

ary layers: (a) %/U,-+ I , (b) u_/Urel 2, (c) u]/U,-,I 2, (d) u-'i'_/U,-,f _. For key to

symbols see figure 1.
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FIGURE 5. The structure parameter, al = -ulu2/q 2. The solid line is the

canonical smooth-wall value (Townsend 1976). For key to symbols see figure 1.

the shear stress, -ulu2/U2rel, for the distorted and plane boundary layers are com-

pared in figure 4. The profiles for the distorted bou__ndary layer appear to be quite

different from the plane flow case. The peaks of u_ and the shear stress, -UlU2,

profiles have moved away from the wall to y ._ 300 ram, and in the outer part

of the layer the values of all the Reynolds stresses have increased. The changes

in the large-scale structure of turbulence can be seen in figure 5, which shows the

profiles of Townsend's structure parameter, al = (-u--i-_/q2), where q2 (= u--/-_) is

twice the turbulent kinetic energy per unit mass. The large drop in the values of

this parameter in the inner part of the boundary layer, and their recovery to the

canonical values in the outer part of the layer are apparently due to the effects of

adverse pressure gradients (see Bradshaw 1967).

The spectral measurements of the three components of the velocity made at

9 = 100 ram, 300 mm, and 500 mm are analyzed here. The location y = 300mm

was chosen because, as shown earlier, the peak of the Reynolds stresses occurred

at this position in the layer. For these three locations, the values of the extra-

mean-strain rates, (OUlO )l(OUlau),(OVlOu)l(a ;/ou),and (OWlOz)/(aUlO )
are all larger than 0.1, which according to Bradshaw (1973) should produce large

non-linear effects on the large-scale structures of the boundary layer.

xbijbji) and III(=_ 1In figure 6, we examine the II(- -5 bij bj_ bki ) invariants map

of the Reynolds stress anisotropy tensor (Lumley & Newman 1977; Lee & Reynolds

1985), bij = (u--_/q 2) - 6ij/3, where 8ij = 1 or 0 for i = j or i ¢ j respectively.

The data points shown in this figure correspond to those positions in both the

boundary layers where spectral measurements were taken. It appears that for both

the plane and distorted layers, the values are close to the axisymmetric expansion

limit. However, note that there is a fairly large increase for the distorted boundary

layer, particularly at y = 100 ram, which is represented by the highest point in each
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FIGURE 6. Anisotropy invariant map of Reynolds stress. Open and solid symbols

are for the plane and distorted boundary layers respectively. The maximum value

in each case corresponds to measurements at y = 100 mm.

data set.

As an example of the spectral measurements, figure 7 shows Kolmogorov's uni-

versal scaling of the one-dimensional longitudinal power spectra at the inner-layer

position of the distorted boundary layer and the mid-layer position of the plane

boundary layer, compared with a compilation of previous experimental work taken

from Chapman (1979) with later additions. The Reynolds numbers for the present

distorted boundary layer have increased substantially, and a maximum Rx ,_ 1960

has been obtained for the inner-layer position.

The intensity (or rapidity) of a mean strain rate can be measured in terms of

s = _j/2, (Lee g¢ Reynolds 1985). To be consistent with our earlier definition,
we shall use S = 2s as the equivalent mean strain rate. To test the local-isotropy

hypothesis in the distorted layer, log-linear plots of the correlation-coefficient spec-

tra, R12(kl ) -- -E12(kx )/x/Ell(kl )E22(kl ), are plotted versus the non-dimensional

wavenumber kl V/'['/S 3 in figure 8. In isotropic flow the shear-stress co-spectrum,

E12(kl), which satisfies fo El_(kl)dka = -ulu2, is equal to zero. This indicates
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FIGURE 9. Ratios of calculated to measured transverse spectra at different loca-

tions and freestream velocities in the plane (.... ) and distorted ( ........ ) boundary

layers: wavenumber scaled with v'r_-/S 3.

that for local isotropy the correlation-coefficient spectrum should fall to zero at

high wavenumbers. For all the three measurement positions in the boundary, the

Corrsin-Uberoi condition S_ -=- SV/'_ << 1 was satisfied. It can seen from figure 8

that at all the measurement locations R12(kl) reaches the isotropic value of zero at

kl V/'-e-/S 3 ,_ 10, which is the same limit found for the plane boundary layer for the

onset of local isotropy.

If the motion is isotropic, the transverse spectra E_(kl ) and E33(k] ) are uniquely

determined by the longitudinal spectrum E1 _(kl) (e.g. Batchelor 1953): E22(kl ) =
E33(kl) = ½(1 0- kl"b-_)Ell(kl). The transverse spectra, "_22_'ca1_I"_'_1j_ and _33_'_al_lt'_'_l),

can be calculated from the measured longitudinal spectrum, E_'(k 1), using the

above equation. An anisotropy measure may be defined as E_tcrk,_,__ l)/_,o_/_me'_'_'_,

where a = 2 or 3 corresponds to u2 or u_ respectively. These anisotropy measures

should be equal to 1.0 in an isotropic flow. We have used 9*h-order, least-squares

polynomial log-log fits to the data to calculate these measures, which are shown

in figure 9 scaled using the length scale V/[-/S 3. The data for the plane boundary

layer are also shown in this figure. It is obvious that the uncertainty in estimat-

ing the S values for the distorted boundary layer is larger than the plane case.
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However, it appears that a reasonably good collapse is obtained and local isotropy

of energy spectra is achieved (+10%) in the inertial subrange for non-dimensional

wavenumbers kl _ > 3.
For both plane and distorted boundary layers, the collapse of the longitudinal

and transverse spectra achieved using v_S 3 and V_ as length and velocity

scales, respectively, is shown in figure 10. As to be expected, these scales will not

collapse the low and high-wavenumber ranges of the spectra. Also marked on this

figure is the wavenumber corresponding to the start of Rx2(kl) _ 0, which is about
one decade higher than the start of the -5/3 law on the energy spectra. This

plot clearly demonstrates the fact that a -5/3 law does not necessarily imply local
isotropy. We also note that in the high-wavenumber range the extent of the -5/3
law does not increase with Ra, but it is a function of (e/S2v), which is the Reynolds

number based on the above length and velocity scales. However, the accuracy of
this observation will be examined further after completing the upcoming low-speed

measurements.
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