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Computation of large-scale statistics _
in decaying isotropic turbulence

By Jeffrey R. Chasnov

1. Motivation and objectives

The most basic result in a study of decaying isotropic turbulence is the evolution

of the kinetic energy as a function of time. By postulating a self-similar decay of

the energy spectrum based on an exact invariant B0 of the flow, Saffman (1967a,b)

determined the high Reynolds number decay law

6

(u2)_ B_t-_ (I)

where Bo isthe leading coefficientof the energy spectrum near k = 0

E(k) ,,_ 2rBok 2 k ---* O. (2)

Saffman's determination of the high Reynolds number decay exponent was based

on earlier work by Kolmogorov (1941) in which it was assumed that a self-similar

decay of the spectrum could be based on the invariance of the Loitsianski integral

B2 (Loitsianski, 1939), yielding the decay law

(u2)o<B z t-T (3)

where now

E(k) ... 2rrB2k 4 k _ 0. (4)

However, it was later shown (Proudman & Reid, 1954; Batchelor & Proudman,

1956) that B2 was in fact not invariant and depended on time during the turbulence

decay.

However, one may still postulate an exact self-similar decay of the energy spec-

trum at large-scales (Lesieur, 1990). If it is assumed that

B_(t) = _t_, (5)

then (3) still holds but with B2(t) given by (5). When 3' is positive, as is indicated

by numerical simulations and quasi-normal closure models, this results in a less

rapid decay of the energy as t -1°/r+2_/7.

We have performed large-eddy simulations of decaying isotropic turbulence (Chas-

nov, 1994) to test the prediction of self-similar decay of the energy spectrum and

to compute the decay exponents of the kinetic energy. In general, good agreement

between the simulation results and the assumption of self-similarity were obtained.

However, the statistics of the simulations were insufficient to compute the value of

which corrects the decay exponent when the spectrum follows a k 4 wavenumber

behavior near k = 0. To obtain good statistics, it was found necessary to average

over a large ensemble of turbulent flows. We report on this work here as well as ill

a recent Physics of Fluids A letter (Chasnov, 1993).
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2. Computation of the Loitsianski integral

The coefficient B2 above, the so-called Loitsianski integral, can be written as an

integral over the infinite flow volume as

B2 - 48_3 (Ui(X)Ui(X + r))r2dr. (6)

To compute B2 by numerical simulation, we assume that the velocity field is

periodic in three directions with periodicity length L = 2r. The velocity field may
then be expanded in a Fourier series as

u(x) = E fi(k)exp(ik, x), (7)
k

where the components of k in the sum span the set of integers. A good approxi-

mation to homogeneous turbulence is thus obtained when the integral scale of the
turbulence is much less than 7r. Treating the average in (6) as a volume average,

and substituting the Fourier expansion (7) into (6), we obtain after one integration
over the volume

1 L._2 ---- --48_1.-'-----_ E fii(k)fii(-k) exp(ik, r)r2dr. (8)
k

The remaining volume integral in (8) may be evaluated analytically, and making

use of fii(-k) = fii(k)*, where * denotes the complex conjugate, and fii(0, 0, 0) = 0
we obtain

B2 --_ -32 _ (-1)kk2 [iC,(k,0,0)l2 + I (0, k,0)l 2 + Ira(0,0, k)l 2] . (o)

k=l

There are two main difficulties in the direct use of (0) to compute B2 in a numer-

ical simulation. Firstly, the correlation (Ui(X)Ui(X + r)) in (6) decreases in general

as O(r -5) in homogeneous turbulence (Batchelor & Proudman, 1956) - although

it decreases faster as o(r -_) in an isotropic turbulence - so that the integral scale
of the turbulence must be small enough for the integral in (6) to converge within

the computational domain. Secondly, as the value of r in (6) becomes comparable

to r, the replacement of the ensemble average in (6) by a volume average becomes
inaccurate because of a lack of sample of the largest computed scales. Explicit

computation has shown that direct use of (9) to compute B2 in a single realization
of a turbulent flow is highly inaccurate. We are thus led to average B2 over an
ensemble of such flows. This is equivalent to treating the original average in (6) as

a combination of a volume and ensemble average.

In this research brief, we report on a computation of B2(t) accomplished by

performing 1024 independent simulations of resolution 643 . The size of this en-
semble is sufficient to compute B2(t) to a statistical accuracy better than 5% over

the entire time-evolution considered. The computations are performed on an Intel
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iPSC/860 hypercube parallel machine containing 128 processors. The machine had

eight megabytes RAM per processor which allowed 64 realizations to be performed

in parallel with each independent realization computed on 2 processors. Commu-

nication between processors computing different realizations is minimal so that the

simulation of an ensemble of turbulent flows makes very efficient use of parallel

computer architectures. Sixteen independent runs -- each of 800 total time-steps

-- were performed. With each time-step taking approximately 10.6 seconds of cpu

time, a total of 38 hours of dedicated machine use was required.

Our main goal in computing B2(t) is to determine its long time, high Reynolds

number behavior. Under the constraints imposed by 643 resolution simulations, this

necessitates the use of a large-eddy simulation with the initial peak of the energy

spectrum placed at as large a value of k magnitude as possible (Chasnov, 1994).
Here, the initial energy spectrum is taken to be

E(k,O) : 27rB2(0)k a exp [-2(k/kp)2], (7)

with kp = 25 and B2(0) = 6.934 × 10 -8, so that (u 2> : 1. As we have done previ-

ously, an eddy-viscosity subgrid scale model (Kraichnan, 1976; Chollet & Lesieur,

1981) is used to model the unresolved small-scale turbulence. Although the inclu-

sion of a stochastic backscatter term in the subgrid model (Chasnov, 1991) can

directly affect the time-variation of B2, this effect is negligible at the later times of
the turbulence evolution of interest to us here.

The finite resolution of the simulation results in a spherical truncation of the

Fourier series in (7) at kin, the maximum wavenumber of the simulation, so that

the sum to oo in (9) is replaced by a sum to k,,,/V_. At small times when the

peak of the energy spectrum is near kin, this sharp cutoff results in errors in the

computed value of B2. We have shown that these errors can be easily removed by

applying an additional Gaussian filter of the form exp[(-k/kl) 2] with kf = 12 to

/_(k) before computing (9). At the later evolution times of interest to us here, the

effect of this additional filter is negligible.

The results obtained from the simulations are shown in figures 1-3. In figure 1, we

plot the time-evolution of the ensemble-averaged energy spectrum obtained from the

large-eddy simulations by summing the contributions of lu(k)l 2 into wavenumber

shells of thickness Ak = 1 in the usual way, i.e.,

E(k, t) - 2rk2
St, E _,(q, t)_i(-q, t),

k-½_<lql<k+_

where S, is the number of Fourier modes in each wavenumber shell and k =

1.5,2.5,3.5,...,29.5. A good approximation to the homogeneous turbulence en-

ergy spectrum is thus obtained at high wavenumbers, while the approximation is
less accurate at low wavenumbers. Nevertheless, the increase in time of the low

wavenumber k 4 coefficient is clearly evident from the plot.
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FIGURE 1. Time-evolution of the energy spectrum.
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FIGURE 2. Time-evolution of the Loitsianski integral.

The coefficient B2(t)/B2(O) versus time, in units of the initial large-eddy turnover

time r(0) where r(0) = 1.38/(kVpB2(O)) 1/2, is plotted in figure 2. The points rep-
resent the statistical mean of the ensemble while the pluses represent one standard

deviation from the mean. The standard deviation of the distribution of B_ itself,

which we have shown from the simulation data to be approximately Gaussian, varies
somewhat over the course of the simulation but at the latest time plotted is 80%

of the mean. With 1024 realizations, the statistical uncertainty of the mean at the

latest time is 2.5%.
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FIGURE 3. Time-evolution of the logarithmic derivative of the Loitsianski integral.

In figure 3, we plot the logarithmic derivative of B2 with respect to time in order

to determine the validity of (5) and to compute a value of 3' from the simulation.

In agreement with the EDQNM model, we find that B2(t) follows an approximate

power-law at large times. From figure 3, we estimate the power law exponent to be

3' _ 0.25, with a statistical uncertainty of 6% at the latest time. The straight line

drawn on the log-log plot of figure 2 represents this result. The value of 3' we obtain

from the simulation is about 50% larger than that estimated previously (Lesieur &

Schertzer, 1978; Lesieur, 1990). Using our computed value for 3`, the Kolmogorov

decay exponent becomes -1.36 instead of -1.43, a difference of 5%.

The statistical uncertainty of our asymptotic result for _/can be reduced further

by computing additional realizations. However, there may be other errors in our

result associated with the deviation of "periodic turbulence" from homogeneous

turbulence at the latest times of evolution, as well as the expected slow approach

of the turbulence to asymptotics (Chasnov, 1994). The evident trend of figure 3

is towards a somewhat smaller asymptotic value for 3' than we have estimated. It

would be of interest to repeat the present computation at higher resolution with a

larger ensemble after parallel machines have become substantially more powerful.

We also note here another approach to the current computation. Rather than

simulate 1024 643 turbulent fields, we could have simulated 16 2563 fields with

slightly more computer time due to the need for inter-processor communication. To

obtain similar statistics between these two simulations, we would have to increase

the initial peak of the energy spectrum kp by a factor of four and truncate the

volume integration in (8) to 1/64 the volume of the entire periodic domain. It is

unclear which simulation would result in a more accurate computation of B2(t),

but we chose the former mainly to illustrate the efficiency of performing realization

averages of turbulent flows on parallel machines.
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3. Conclusions

This work has demonstrated the capability of numerical simulations to compute

large-scale statistics of turbulent flows by means of an ensemble average over a large
number of independent realizations of the flow. Such a technique is "embarrassingly

parallel" and is ideally suited for the new parallel computer architectures. This tech-

nique may also be applicable to turbulence simulation on virtual parallel machines

in which many powerful workstations are connected together over a local network.
If the memory of each workstation is sufficiently large so that each realization can

be performed independently on each workstation, then the only communication

required between workstations is to perform the ensemble average.
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