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INTRODUCTION

Traditionally, long term measurements of atmospherically propagated sound signals

have consisted of time series of muItiminute averages. Only recently have continuous

measurements with temporal resolution corresponding to turbulent time scales been

available. With modern digital data acquisition systems we now have the capability to

simultaneously record both acoustical and meteorological parameters with sufficient

temporal resolution to allow us to examine in detail relationships between fluctuating sound

and the meteorological variables, particularly wind and temperature, which locally

determine the acoustic refractive index.

The atmospheric acoustic propagation medium can be treated as a nonlinear

dynamical system, a kind of signal processor whose innards depend on thermodynamic

and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear

dynamical system. In fact one simple model of atmospheric convection, the Lorenz

system(l), may well be the most widely studied of all dynamical systems. In this paper we

report some restfits of our having applied methods used to characterize nonlinear dynamical

systems to study the characteristics of acoustical signals propagated through the

atmosphere. For example, we investigate whether or not it is possible to parameterize

signal fluctuations in terms of fractal dimensions. For time series one such parameter is the

limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of

methods we have to study the properties of low dimension global attractors(2).

7=t:'7 = :s

In this paper we show, for example, that the limit capacity dimensions for

atmospherically propagated acoustic signals are greater than those of either the wind speed

or the along (propagation) path wind component. TurbuIence is the phenomenon which
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moststronglycontrolsfluctuationsin theacousticrefractiveindexrl. Variations in acoustic

refractive index are a function of velocity, temperature and, to a lesser extent, humidity

fluctuations. Written in terms of the turbulent structure function parameters and neglecting

humidity, variations in r I are

C_c =cxC_ + _C_ + 7C_C_, (1)

where ot and _]areconstants.Gamma isnot a constantbut rathera function,inparticular,

of the stability (heat flux).

Although the use of nonlinear dynamical methods is now rapidly growing, they are

not yet nearly so widely known as, e.g., linear Fourier methods(3). Thus we summarize

here the basic analysis method as well as the results of using it.

DIMENSIONAL ANALYSIS OF A TIME SERIES: SOME FUNDAMENTALS

When one is working out of doors it is virtually impossible to measure all of the

potentially important environmental variables. Nevertheless it may be possible to

extract most of the information necessary to define signal variability by analyzing

appropriately combined acoustic and meteorological measurements.

Takens' theorem (4) defines the largest embedding dimension which is needed

to analyze a single time series and, thus, to obtain an accurate fractal dimension for the

system. The embedding dimension is the state space in which an objectcan be

visualized. For any system having a fractal dimension, e.g. the well known Lorenz

attractor, Takens' theorem states that a maximum embedding dimension of 2d+l is

needed, where d is the fractal dimension rounded to the next higher integer. Thus an

embedding dimension of seven should define the Lorenz system, which has a fractal

dimension of 2.06. A system might be described in fewer dimensions, but Takens'

theorem sets an upper bound for the state space in which the attractor can be embedded.

In the analysis of a time series, if an embedding dimension is used which is Iess

than prescribed by Takens' theorem, the fractal dimension may not be saturated (i.e',

reached its peak value). However, as schematically shown in figure 1, if an embedding

dimension of higher order is used, little, if any additional information will be gained(5).
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Practicallyit is importantto workwith theminimumrequiredembeddingdimensionin

orderto minimizecomputationalcosts.

Fractal

Dimension
n

__E,D.=2n+I

Embedding Dimension

Figure 1. Fractal dimension as a function of embedding dimension

Lagging

In order to extract all information contained within a single time series it is

necessary to reconstruct m single order equations. Let the single time series X=F(t) be

the set of points (x 1,x2,x 3 .... ) which are separated by a distance Ax. First we

approximate the first derivative of F(t) to be

X" - F( t ) _ F,+ 1 - F, (2)
dx Ax

Actually, there is redundant information in the first derivative, as F i is the original time

series. Therefore, an embedding dimension of two space is created when the original

time series is shifted by one time step (_i, Fi+l) T. For higher order systems this

process is continued until one has created a state space which is large enough so that the

attractor can be unfolded.

If the spacing between points in the approximation of the derivative is too small

then points will appear to be totally correlated and cannot be considered as independent

coordinates(6). SimiIarly, if the spacing is too great adjacent points will appear to be

unrelated (see figure 2).
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In practice, instead of using successive points in the time series to calculate the

derivatives, the time series is lagged by a certain number of points. Lagging consists of

setting X' = F'(O equal to the i+/th sample of F(t), (i.e. i, i+l, i+2l, ...), where l is

the size of the lag. Lagging the time series allows one to form a matrix as

Fi+, = Xl+l, X2+,, X3+,,.. = (3)

i+2t Xl+21, x2+21 s x3+21,'"

where each column of the matrix defines a single point in (2d+l) phase space.
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Figure 2. Lorenz attractor with correlated and uncorrelated lags

To estimate an appropriate value of the'lag size, three methods are commonly

used(7), the autocorrelation time, mutual information, and visualization. For systems

having an unknown fractal dimension the autoc0rrelation method appears to be the

conservative approach. To determine the lag there are two possible ways of

interpreting a graph of the autocorrelation time scale as shown in figure 3. One is to

, . take th e pointhalfway to the first zero crossing. A second approach is to determine the

halfway point to where the autocorrelation curve becomes parallel to the x-axis. If no
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zerocrossingexiststhisis theonlypracticalmethod.For theexampleshownthetwo

methodsyield lag sizesof 52and35,respectively.

Anothermethodfor estimatingaproperlagis calledmutualinformation. In this

caseoneincreasesthelagsizeuntil nonewinformationis gainedandthendefinesthat

point asbeingtheappropriatelag size.
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Figure 3. Autocorrelation of the Lorenz attractor

What is called visualization or visual reconstruction may also be used.

Visualization is often used in situations where one has some prior knowledge of the

system. This method consists of graphically reconstructing the attractor with various

lags. If the topology of the attractor is known, e.g., as in the case of the Lorenz

attractor, then the lag that appears closest to that for the real system is determined to be

the appropriate one.

Limit Capacity Dimension

The limit capacity is one of four commonly used fractal dimensions: capacity,

correlation, information, and Lyapunov. Determination of the limit capacity dimension is
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made as follows(8). If one lets N(e) represent the minimum number of m-dimensional

cubes of length e needed to enclose the time series, then as s decreases one expects N(e) to

increase.

N(e) oc e

and therefore the capacity dimension is defined as:

(4)

de.p = lim log[ N(c)]
.--,0 log[)/;] (5)

The output of this limit capacity algorithm gives a lower bound to the dimension of the

attractor.

Determining the Dimension from Graph

Figure 4 shows the result of applying the limit capacity algorithm to the Lorenz

system. In this representation the bin numbers represent distances between points on the

attractor. To estimate the limit capacity dimension of a data series a "stable plateau" region

must be determined. Definition of the stable plateau may be subjective. Definition of

optimal methods for determining the dimension and hence uncertainties in it are still being

researched(9).
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Limit capacity dimension of Lorenz attractor
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ACOUSTICALAND WIND SIGNALSSTUDIED

Wehaveappliedthesamemethodsasdescribedabovefor theLorenzsystemto
hourlongrecordingsof constantfrequencysoundsignals,andto wind speedandthealong

pathcomponentof thewind.Thesemeasurementsweremadeaspartof thecomprehensive

JointAcousticPropagationExperiment(JAPE)study.Acousticreceiverswerelocated1

Km from thesoundsourceandspacedlogarithmicallyon atowerto aheightof 32meters.

Threetonesof 80,200,and500Hz weretransmitted.For thisanalysistheoriginal 2048

samplespersecondwereaveragedto onequartersecond.Thecorrespondingwind time
serieshadone-tenthsecondresolution.Sofardimensionalcalculationsfor only the80and

500Hz toneshavebeencompleted.

Lagsweredeterminedby calculatingtheautocorrelationtimefor eachtimeseries.

Appropriate lags for the acoustic transmission loss (TL) signals varied between 12.5 and

187.5 seconds; lags for the wind signals ranged from 150 to 400 seconds. Wind speeds

were less than 6 meters per second during the recording period. Correlation times of the

TL signals measured at 0, 2, and 32 meters decreased both with height and frequency

(figure 5).
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Figure 5. Correlation times vs. height for acoustic signals
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Recall that for the Lorenz attractor an embedding dimension of seven was sufficient

to unfold the attractor. However, for our acoustic and wind signals the dimension of the

attractor was unknown. Thus it was necessary for us to calculate the limit capacity for a

number of different embedding dimensions (figure 6). This was done repeatedly until it

appeared that the dimensional information had saturated. Figure 6 shows the progression

of the limit capacity dimension with increasing embedding dimensions until saturation was

reached at roughly an embedding dimension of 12.
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Figure 6: Dimension of 80 Hz tone at 2 meters for various embedding dimensions

Results

Tables I and II, respectively, summarize the calculated limit capacity dimensions for

the acoustic signals, the wind speed and the along p_.th component of the wind.

__---
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Table I. Limit Capacity Dimension for Acoustic signals

Embedding

Dimension

Om

80 Hz

9 4.19

0m

500 Hz

2m

80 Hz

4.13

2m

500 Hz

32m

80 Hz

32 m

500 Hz

4.69 4.18 4.39 4.42 4.57

4.68

10 4.50 4.60 4.31 4.56 4.61 4.82

11 4.34 4.85 4.55 4.64 4.63 4.76

12 4.19 4.87 4.73 4.71 4.81 4.89

13 4.66

4.53

4.96

4.89

4.95

4.954.4414

4.91

4.87 4.77

Table II. Limit Capacit

Embedding

Dimension

9

10

11

12

13

14

r Dimension for Wind Speed and Alon_ Path Component Signals

2m

(u2+v2)0.5

3.01

3.12

3.05

3.07

2.96

2.97

2m

Wnlnn_, nnlh

3.47

3.43

3.4

3.35

3.03

2.98

32 m

(U2+V2) 0-5

2.58

2.33

2.21

32m

,.Walnng pnth

2.33

2.07

* higher embedding dimensions were not able to be used due to the limited data set and

high lag.

Graphical representation of the change in limit capacity dimension with height is

shown in figure 7.
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Figure 7. Limit Capacity of acoustic and wind signals

CONCLUSIONS

Low order limit capacity dimensions have been determined to exist for both the

acoustic and wind time series. These results confirm the existence of local attractors. The

acoustical multivariable dependent signals have higher order attractors than were found for

the independent meteorological input variables.

The limit capacity dimension of the acoustic signals appears to increase with height

and frequency. We believe that this is due to the role which large eddies (thermals) in the

convective boundary layer (CBL) play in controlllng intermittent space-time variations in

the acoustic refractive index. The properties of propagated sound are sufficiently sensitive

to those eddies so that tomographic methods may be used to indirectly measure their

properties (10).
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We expectthatwith furtherdimensionalanalysisit will bepossibleto definelow

orderdynamicalmodelsthatwill morepreciselydefinethevariabilityof acousticsignal

fluctuationsthancanbedonepresentlywith linearmethods.Furtherstudieswill require,

however,severalmultihourtimeseriesrecordedin bothstableandunstableboundarylayer
conditions.ThesinglehourtimeseriesrecordedduringJAPEis of insufficient length.

Sincelargeeddiesappeartobethedominantsignalcontrollingmechanism,it wouldalsobe

helpful to havemeasurementsovertransmissionpathsrangingfrom about2.5to 10kin.
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