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ABSTRACT
IMPLEMENTATION OF BALDWIN-BARTH TURBULENCE MODEL
INTO A TIME-ACCURATE CODE FOR UNSTEADY FLOWS
Scott L. Low
June 1993

The Baldwin-Barth turbulence model was implemented into Zeta, a time-accurate,
zonal, integro-differential code for incompressible laminar and turbulent flows. The
implementation procedure patterned after the model subroutine in ARC2D. The results of
ZETA with the Baldwin-Barth turbulence model were compared with experimental data,
with ZETA using Baldwin-Lomax model, and with ARC2D using the Baldwin-Barth
model. The Baldwin-Barth model subroutine was tested by inputting an ARC2D velocity
solution of an NACA-0012 airfoil at R = 3.91x100 and a = 5°. The resultant turbulent
viscosity and Reynolds stresses compared favorably with the original data. For the same
grid having grid points inside the laminar sublayer, which is necessary due to the one-
equation nature of the model, ZETA however predicts early separation. It was found that
the current ZETA has problem with such a fine grid. Further work is in progress to solve

this problem.
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NOMENCLATURE

Cross-sectional area of an airfoil.

Constant equal to 26 in the turbulence models.
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Airfoil transformation parameters.

Velocity Fourier coefficients where n is an index.

Grid stretching parameters.
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Components making up D; j where n is an index.

D;,D2 Damping functions in the Baldwin-Barth model.
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E
F(y)
Fieb

fx

Velocity Fourier coefficients where n is an index.
Extent of the grid.

A function in the Baldwin-Lomax model.
Klebanoff intermittence function.

A Damping function in the Baldwin-Barth model where k is an index or variable.
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H Transformation factor.

JR Radial index of the grid.

L, AL Airfoil chordlength.

Nﬁi) A M-type matrix operator in the discretized Baldwin-Barth model equation.
P Production of K in the Baldwin-Barth turbulence model.

R Flow region or radius of a unit circle.

Re Reynolds number.

Rjj  Solution vector of the Baldwin-Barth subroutine.

Rt  Turbulent Reynolds number.

T Position vector with respect to axis of rotation.
1,0  Physical radial and angular coordinates.

So  Source term of the vorticity transport equation.

s Distance from the unit circle in the computational grid.

t Time in second.

Us  Freestream velocity.

u Scaled velocity.

u,v  Cartesian velocity components in the physical plane and inertial system.

u,v  Cartesian velocity components in the physical plane and rotating system.

u,v'  Cartesian velocity components in the computational plane and inertial system.
u,v  Cartesian velocity components in the computational plane and rotating system.
ug Friction velocity.

\ Velocity vector in the physical plane and inertial coordinate system.

' Velocity vector in the physical plane and rotating coordinate system.

Y;’v¢ Cylindrical velocity components in the computational plane and inertial system.
Vp:Ve  Cylindrical velocity components in the computational plane and rotating system.
x,y  Cartesian coordinates of the grid.

y+ Length scale.
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Physical plane: Z = x + iy, Z=reif.

Airfoil angle of attack.

Vorticity Fourier coefficients where n is an index.

The first coefficient s of the advective terms in the Baldwin-Barth model.
The first coefficient s of the diffusive terms in the Baldwin-Barth model.
Vorticity Fourier coefficients where n is an index.

The second coefficient s of the advective terms in the Baldwin-Barth model.
The second coefficient s of the diffusive terms in the Baldwin-Barth model.
Increment of m where m is a dummy variable.

Boundary layer thickness.

Dissipation terms in the turbulence models.

The third coefficient s of the advective terms in the Baldwin-Barth model.
The third coefficient s of the diffusive terms in the Baldwin-Barth model.
Von Karman constant or Production terms in the turbulence models.
Kinematic viscosity.

Turbulent and effective viscosities.

Inner turbulent viscosity in the Baldwin-Lomax model.

Outer turbulent viscosity in the Baldwin-Lomax model.

Computational radial and angular coordinates.

Physical plane origin shift in the transformation.

Computational plane: =& +in ¢ =pe'd.

Body or airfoil angular speed, positive counter-clockwise.

Scalar and vector vorticities.

General computational coordinates.

Stream function in either plane and the inertial coordinate system.

Stream function in either plane and the rotating coordinate system.



CHAPTER 1
INTRODUCTION

1.1 Motivation

For years,unsteady flow has been the subject of numerous and continuing studies,
in the field of helicopter or rotorcraft aerodynamics. The performance of a helicopter such
as the UH-60A Black Hawks (Fig. 1.1) depends greatly on the aerodynamic lift of the
rotor. Since the angle of attack of any rotor blade section oscillates as it travels through the
rotor plane (Fig. 1.2), the resulting flow over the blade has complex and periodically
changing characteristics. Understanding and accurately predicting the unsteady
aerodynamics of flows over airfoils are, therefore, critical for designing new rotor blade

airfoils and improving helicopter performance.

1.2 Previous Work

Much experimental work has been done and many numerical flow solvers have
been developed to study unsteady flows. Experimental data from unsteady flow
investigations on geometries such as rotor system [1] and advanced airfoil sections [2-4]
are readily available for review and comparison. Reference [2] contains the two
dimensional dynamic stall characteristics of eight arifoils in sinusoidal pitch oscillations
over a wide range of unsteady flow conditions. Numerical codes ranging from panel
methods, coupling between time-dependent inviscid panel method and an unsteady
boundary layer code [5], a full-potential code [6], an Euler code [7], a zonal integro-
differential method [8] and other finite difference codes based on the Navier-Stokes
equations, have produced results of reasonable agreement with experimental results. The
code in Ref. [6] predicted comparable surface pressures for helicopter rotors and the Euler

code of Reference [7] was used to investigate the rotor blade-vortex interactions.



One recent study using the zonal integro-differential method for a two-element
airfoil [9] and other single airfoils has demonstrated that this procedure is effective in
treating general viscous flows, even with large separation regions. The code, ZETA [10]
utilizes an integral representation of the velocity vector [11], a velocity-vorticity formulation
of the Navier-Stokes Equations, and a Fourier series expansion. Using an integral
representation of velocity, the flow computation may be confined to viscous zones. For
turbulent flows, the Baldwin-Lomax [12] algebraic model is used to determine the eddy
viscosity. A typical grid has 80x50 grid points, which is coarse compared to prevailing grid
requirements for Navier-Stokes solutions. The general performance of this numerical
procedure is satisfactory. However, further evaluations and refinements are required prior

to using it for designing high-lift rotor blade airfoils.

1.3 Present Works

The Baldwin-Barth turbulence model [13] is a self-consistent one-equation model
that does not require an algebraic length scale. It is derived from a simplified form of the
standard x-€ model equations [13]. This robust model was found to give significantly
better results than the algebraic Baldwin-Lomax model in a recent study of four popular
turbulence models [14]. This and other good results obtained with this model prompted the
present investigation. The objectives are to implement the Baldwin-Barth turbulence model,
and examine the effect of finer grids and Reynolds number(Re) on ZETA. No known time-
accurate case has be run with the Baldwin-Barth model. The computational results will be
compared with that of ARC2D and with the experimental results of McAlister, et al [2].

This report presents the numerical procedures used and the results. Chapter 2 and 3
describe the governing equations, grids, and boundary conditions. The code's numerical
formulation is explained in Chapter 4, and the two turbulence models are presented in
Chapter 5. Numerical results for the NACA-0012 airfoil and comparisons are presented in

Chapter 6. Chapter 7 contains major conclusions and recommendations for future study.



CHAPTER 2
GOVERNING EQUATIONS

2.1 Equations of Motion

The behavior of a viscous, incompressible, turbulent flow is described by the
continuity equation and the vorticity transport equation in the code. The vorticity transport
equation is derived by taking the curl of each term of the incompressible Navier-Stokes
equations in its familiar pressure-velocity form. Since the flow is incompressible, no
energy equation is required. With body forces such as gravity and heat transfer are

negligible, these equations can be expressed as
Vv=0 2.1
o0
-V ® - VN + Vivew) + S
% - {5V +(3 -9 + o)+ .
where vV denotes the velocity and the vorticity vectors:
63 =V x V (2.3)
The effective viscosity Ve is composed of both eddy viscosity Ve and kinematic viscosity v:
Ve=V+V
The physical processes of convection, stretching and rotation, and diffusion of vorticity are
represented by the right hand side terms of Equation 2.2 respectively. For a two-

dimensional flow, the scalar source term So reduces to

sof 22 22 o2 T2

The Se term is negligible relative to the other terms of the equation.
These equations are appropriate for both external and internal flow, but external

flow will be emphasized. Equation 2.1 to Equation 2.3 are also three-dimensional but their



two-dimensional forms will be applied in ZETA. The corresponding velocity field is
computed from the vorticity field with Equations 2.1 and 2.2. Along with initial and
boundary velocity conditions, these equations will uniquely determine the time-dependent

flow field of an incompressible fluid.

2.1.1 Kinematics and Kinetics of the Flow

The equations of motions are divided into a kinematic aspect and a kinetic aspect.
The kinematic aspect of the problem relates the velocity field to the vorticity field at any
instant of time. For a given vorticity field, the velocity field can be uniquely determined
[15]. This aspect of the flow is governed by Equations 2.1 and 2.3 which are linear and
elliptic. The solution of these equations will require prescribed boundary conditions about
the flow field. Since the flow field is known only at infinity, the entire flow field must be
included in the solution procedure.

With the vorticity-velocity formulation, Equations 2.1 and 2.3 may be reformulated
as an integral representation for velocity vector at time t [11]

VL) = f @oxVoPdR, + f [(Vo-ﬁo)-Goxﬁo)x]VoPdBo
R B 2.4)

where B includes the internal boundary B and external boundary B, of the region R. nis
the unit normal on B facing away from the region R. The subscript ‘o’ denotes that the
operators and variables are in the viscous region, and P is the fundamental solution of

Poisson's equation.

PG 1) = -Llin-L-
With an integral representation, the integral over the fluid domain, R, does not need to
include the inviscid region since a)o is zero there. The solution of velocity is then confined

to the viscous region.

The kinetic aspect of the problem deals with the change of the vorticity field with



5
time and it is described by Equation 2.2. This equation is nonlinear, parabolic in time, and

elliptic in space. The equation describes the transport, not the generation or depletion, of
vorticity. Again, the solution of vorticity may be confined to the viscous region since EI)O is
zero in the inviscid region of the flow. This is the distinct feature of the numerical method.
Taking advantage of this feature, the flow field is divided into three zones: an inviscid zone
constituting the majority of the field, an attached viscous zone, and a detached viscous zone
(Fig. 2.1). The detached viscous zone may include the wake, starting vortex assembly and

separated regions of the airfoil.

2.2 Coordinate Transformation
The grid generation procedure employs a modified Joukowski transformation. The
geometry and governing equations in Cartesian coordinates(x,y) are transformed to a
generalized, body-conforming, curvilinear coordinate system(P,%) [16]. The grid points
have a one-to-one correspondence with the physical points. Unlike a conventional grid
generator, this procedure works backward in that a specified computational grid is first
constructed and then comformally mapped into the physical plane. The computational grid
is composed of concentric circles and radial lines about a unit circle which represents the
airfoil (Fig. 2.2). The grid transformation used is
Zeic={ +y+ < 40
G+ (2.5)
where
Z = physical plane
=X +1y
= reif
¢ =computational plane
=&+in
= peid



o = airfoil angle of attack
C,Y = airfoil parameters

o = physical plane origin shift
1,0 = physical radial and angular coordinates

P,9 = computational radial and angular coordinates

The airfoil parameters are
c=E+V1-n)(1-8) 2.6)

Y=§+in 2.7)
The parameter ¢ is the numerical chord length of the airfoil. Y is a complex translation of the
origin to the center of the unit circle in the computational plane. & is a real number close to
zero which prevents the transformation from becoming singular. It also specifies the
curvature of the trailing edge. € will always be negative and T will be zero for symmetric
airfoils [15].
Based on the above transformation, the metrics and scale factor, H, of the

transformations are defined as

ox _9dy
& o (2.8)
9x _ dy
m 3 (2.9)
u =%
18 2.10)
ox\2 (ox)?
H2={— +(_
(aa) on
0
g @2.11)

The invariant of the transformation is the stream function. The integral representation for
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the velocity vector is transformed into the computational plane by multiplying the vorticity

vector by the square of the scale factor H2,

o = Ho (2.12)
The vorticity transport equation is transformed by differentiating the physical coordinates
with respect to the computational coordinates. The vorticity is computed in the rotating
coordinate system so the grid parameters need not be recomputed as the airfoil angle of
attack changes. The velocity is computed in a body-fixed inertial reference frame. When

needed, the velocity values are transformed to the rotating reference frame.

2.3 Transformed Equations

The governing equations for the kinematic and kinetic aspects of the flow are
presented in both the inertial and rotating coordinate systems. These equations are
summarized in their differential forms. The two aspects of the flow problem are computed
in different reference frames. Both coordinate systems are considered body-fixed. The
transformed equations are presented in their respective frames of reference. In this section,
a primed variable is associated with the inertial coordinate system while a non-primed

variable is associated with the rotating coordinate system. The following list of variables

are used:
v Velocity vector in the physical plane and inertial coordinate system.
v Velocity vector in the physical plane and rotating coordinate system.

u,v'  Cartesian velocity components in the physical plane and inertial system.

u,v  Cartesian velocity components in the physical plane and rotating system.

u',v'  Cartesian velocity components in the computational plane and inertial system.

u,v Cartesian velocity components in the computational plane and rotating system.

V‘P’v‘¢ Cylindrical velocity components in the computational plane and inertial
system.

Vps¥¢ Cylindrical velocity components in the computational plane and rotating



system.
Stream function in either plane and the inertial coordinate system.

Stream function in either plane and the rotating coordinate system.

o € <€

Body or airfoil angular speed, positive counter-clockwise.

Position vector with respect to axis of rotation.

-4

The velocities defined in terms of the the stream functions are

3 Y
Y=oy M
_oy _ .oy
Y= Ve
¥yl
on o
u-3% v=-
g (2.13)
The governing equations of the code are presented in the inertial reference frame below.
Kinematics:
V=0 (2.14)
Vi =0 (2.15)
v =Q xip 2.16)

VB is the velocity at any station on the body or airfoil surface.

Kinetics:
aco v V)(o +V2(ve(o)

Transforming to the computational plane, the kinematic governing equations become

(2.17)

Vg vg=0 (2.18)

Vg X Vg = g (2.19)

The two dimensional vorticity in the computational plane is



~ gv ou

g =—- =

9 on
Numerically, the kinematic aspect of the flow will be solved using the integral

representation of the velocity vector and a Fourier series expansion. The governing

equations of the code are now presented in the rotating coordinate system.

Kinematics:
Vv=0 (2.20)
Vxv=o 2.21)
V=-\;-QX; (222)
o= -2Q (2.23)
vg=0 (2.24)
Kinetics:

%‘” = {7 V)& + VA{vew) - 20 (2.25)

The transformation of the governing equation of the kinetic aspect of the flow will be
presented in more details. With the above equation and Equation 2.2, the vorticity can be

referenced to the inertial system. The vorticity vector has been replaced by its scalar value.

00 _ (= ol '
5= -(v° V)O) + Vz(ve(‘)) (2.26)

The vorticity is in the physical plane and the velocities are still referenced to the rotating
coordinate system. The divergence of velocity and Laplace operators are transformed as

described in reference [10]:

vy =¥115(VQ'V§) 2.27)

v?=_1v}
H2 (2.28)

The resulting vorticity transport equation in the computational plane and in its conservative
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formis

H23_0)' + Ve (V;(o'} = V%(veo)')

ot (2.29)

To obtain the numerical form of this equation, it is first non-dimensionalized.

x* =X y-.=_y_
et e

U U.
«_0R ¢« _tU-
©=1. =R

R =1 is the radius of the unit circle in the computational plane which represents the airfoil
surface. U = 1 is the velocity at infinity. The non-dimensionalized vorticity transport

equation is

v i

or’ (2.30)
With L defined as the airfoil chord length, the Reynolds number R is
U.L
Re== (2.31)

The numerical kinematic viscosity Vv is therefore defined as L/Re since U = 1. Dropping

the superscripts and writing in cylindrical coordinates, the vorticity transport equation to be

discretized becomes
,0® d 9
pH2="+ Glc—z)a—s(PVp“’) + a_¢'(v¢°’) =
1 9 p 3mv}+ 1970y
(p-c2)ds\(p-c2) 9s |~ p 547 (2.32)

where

o=k v

9 _09s0

dp dpos

p = elstote
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The variable s, c1, and ¢ will discussed in details in the next chapter.

Finally, the kinetic part of the problem requires velocity values in the rotating
reference frame. Since the velocity is solved in the inertial reference frame in the kinematic
part of the problem, the velocity correlations in the computational plane are given here.
Having obtained the cylindrical velocity components, V'p and V'¢, in the inertial coordinate

system, the Cartesian velocity components, u’ and v', are computed as
u = V,C08 § - V,sin ¢ (2.33)
V = V,sin ¢ + v,Cco8 ¢ (2.34)

The Cartesian velocity components are then transformed to the rotating coordinate system.

. OX oy
u=u+ —Qx +0Q
on " on (2.35)
V=1V - B_xQx -é)—y—Qy
9 (2.36)
Transforming back to the cylindrical coordinates, the velocity components in the rotating
coordinate system become
Vp = ucos ¢ + vsin ¢ 2.37)
V¢ = vcos ¢ - usin ¢ (2.38)

24 Aerodynamic Loads

Use of the vorticity-velocity form of the Navier-Stokes equation has the
disadvantage of not having the pressure distribution computed from the equations of
motion. Thus, special attention is required . The total head, h, of an incompressible flow
can be derived from the pressure-velocity form of the Navier-Stokes equations [10]. An

integral representation of the total head, h, for a two-dimensional external flow is
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h(E,t) = ZJE (V°x;°;2(r°ilRo

ho(ro r) no

0

lf Wolfo- r) So iB, + h.
(2.39)

where B, is the internal boundary, and n and § are the unit normal and tangent vectors,

respectively. The pressure coefficient, Cp, is calculated as
Cp(p=1,0) = h(p=1,) - ho. + 1 (2.40)

where P and ¢ are the radial and angular coordinates of the computational plane. Having
determined the pressure coefficient, the components of aerodynamic force coefficients on

the body(P = 1), in the computational plane, are computed as follow:

2n
=] e
00
0 (2.41)
2n
on=-2|  o1,ePa
0 (2.42)
2n
-1 dy
Cr,= L Cp(1,¢)£d¢
0 (2.43)
2R
_2 ox
Cr, R 0)(1,¢)a—¢d¢
0 (2.44)

Cn=Cn, +Cn; (2.45)
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Cr=Cr, +Cy, (2.46)
The subscripts N and T denote the normal and tangential components, and p and f the
pressure and friction components. The lift and drag coefficients are
CL=Cncos & - Cysin (2.47)
Cp = Cnsin o + Ctcos o (2.48)
where o is the airfoil angle of attack. The moments are computed with respect to the
quarter-chord and are positive counterclockwise since ZETA uses a left-handed coordinate

system. The moment coefficients are

2

_1 ox _ dy
Cm, = ) Cp(¢)["£ + Y£j|d¢
0 (2.49)

2n

Cu=—L w<1,¢)[xa—y . y—‘?ﬂw
e'L

0 % % (2.50)

Cm=Cym, + Cym, (2.51)

All of the above coefficients are normalized with respect to the airfoil chord length L.



CHAPTER 3
GRID AND BOUNDARY CONDITIONS

3.1 Grid Generation
The grid generation procedure as mentioned in Section 2.2 uses a modified

Joukowski transformation. Though a numerical transformation is also available, only the
well tested Joukowski transformation will be discussed. This transformation conformally
maps the computational plane about the specified airfoil in the physical plane. The grid is
composed of concentric circles and radial lines in cylindrical coordinates about a unit circle
which is the transformed airfoil surface. The grid generator constructs the physical and
computational grids, and computes the parameters of the grid transformation and all the
variables which depend only on the specified grid.

The radial lines in the computational plane are evenly spaced about the unit circle.
When conformally mapped into the physical plane, the radial lines are more concentrated
near the leading and trailing edges (Fig. 3.1). The concentric circles in the computational
plane are, however, stretched in the radial direction. With conformal mapping, the
stretching will give better resolution near the leading and trailing edges. The grid generator,
presently, does not have any adaptive feature like clustering, but the conformal
transformation accounts for it by concentrating lines near the surface and the leading and
trailing edges.

The stretching formula in the computational plane is

p=estétcr 3.1)

where s=(n- 1)As
n is the index of the radial grid line and s is the distance from the unit circle. The radial grid

extent E in the computational plane and the desired spacing between the first two azimuthal

14
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lines As; must be specified in order to determine the unknown stretching parameters As, ¢y

and c,. A minimal non-dimensional grid extent of 18 that corresponds to approximately 5
chordlengths is recommended. Typically, the boundary layer thickness and the desired
number of grid lines within the boundary layer will determine the first grid spacing As;.
For some applications, the As; will have to be inside the laminar sublayer. The laminar

boundary layer thickness is [17]

8_S-AL
YRe (3.2)
where AL is the non-dimensional airfoil chordlength. The turbulent boundary layer
thickness is
.37-AL
o= 7
Re™ 3.3)

Knowing the grid extent E, the radial grid dimension JR, and the first grid spacing As;,
along with defining the unit circle will give a system of three equations to determine the
three unknown parameters. An area ratio of less than 1.2 was maintained and experience
has shown that As should be less than 0.15 for an effective grid [10]. The system of
equations is

est+cy=1.0

edsta 4+ ¢ = 1.0 + Asg

elRAster + ¢y =E (3.4)

3.2 Boundary Conditions

For a given airfoil geometry, the combination of initial and boundary conditions
distinguishes the flow patterns. The airfoil and the surrounding fluid are initially at rest.
Immediately after time t = 0, the airfoil instantaneously translates at a velocity of -V.. The

flow is potential at this instant. A sheet of vorticity acts as a velocity discontinuity between
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the airfoil surface and the undisturbed surrounding fluid. This vorticity sheet will diffuse

and convect away with time.

For the solution of the vorticity and velocity vectors, four boundary conditions are
required. These are the vorticity and velocity boundary conditions on the flow field's
internal and external boundaries. Each of these is a Dirichlet type boundary condition. The
internal boundary is the airfoil surface and the external boundary is taken to be at infinity.

The velocity on the external boundary is zero since the fluid far from the airfoil is at
rest. The external boundary condition is satisfied exactly. The V. term in Equation 2.4
accounts for the relative velocity between the airfoil and the fluid. The velocities on the
internal boundary are known through the no slip condition and the prescribed airfoil
forward speed, angle of attack, and oscillatory motion. The integral over the internal
boundary in Equation 2.4 will generally be non-zero since the airfoil is free to rotate about
some body-fixed origin. This boundary integral requires both normal and tangential
velocity components, but one is sufficient to uniquely determine the incompressible
velocity field in R.

At the external boundary, the vorticity is simply zero. The vorticity external
boundary can be located anywhere inside the inviscid zone. Computation of vorticity is
confined to just inside the inviscid zone. A zero vorticity gradient normal to the boundary is
applied when cutting through the vortical wake is required. The internal boundary
vorticities are accurately computed with Equation 2.4 which is part of the kinematic aspect
of the problem. Knowing either the normal or tangential velocity component on the airfoil
surface, the near-surface vorticity @ can be computed uniquely [18]. However, the same
reference shows that using the normal velocity component may introduce numerical

difficulties, so the tangential component is used.



CHAPTER 4
NUMERICAL METHOD

The numerical formulation of the governing equations is an integro-differential and
zonal methods. Applying the zonal procedure does not require modification of the
governing equations. As previously stated, the kinetic and the kinematic aspect of the flow
are treated separately through the integro-differential approach.The great advantage of using
this approach is that it permits the flow solution to be confined to the viscous regions. The
kinematic aspect or the velocity vector equation utilizes the integral approach while the
kinetic aspect or the vorticity transport equation utilizes the differential approach. There are
three major steps in the computation loop. The loop starts with one kinetic part and
followed by two kinematic parts. It may be summarized as [7]

1) Solving the vorticity transport equation, the interior vorticity values at

the new time level are computed with the known vorticity and velocity
values at the previous time level.

2) Using the newly computed interior vorticity values, new boundary

vorticity values are established.

3) A new velocity field is computed with the new vorticity field.

The velocity is computed at grid points and the vorticity is computed at half points in the
radial direction. Details of the numerical methods used for the two aspects of the problem
will be discussed.

4.1 Kinematic Aspect Of The Flow

The integral representation for the velocity vector is

17
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L1 Gofofed,

2n Fo_ﬂ2

B,

- (VOXHO)X(FO-F)dBO + _V’“

2n [o-°

Bs 4.1)

The boundary conditions and two-dimensional restrictions have been imposed on this
equation. Since the computational grid is in polar coordinates, the velocity components may

be expressed as

vi(1,0) = -1 WoTosin(B,-6)
20 | r3+r2-2ro1cos(6,-6)
R

2x
_Lr v,a[rocos(eo-e)-r] . d6
- 21t 2 10 [+
Jo r3+1r2-2r,rcos (60-9)

2%
+—1_ r VGOTOSiH(eo'e) . deo +V

sz 0 13+12-2r01COS (eo'e)‘o N 4.2)

ool O)O[TOCOS(eo'e)_r]d
ve(r.0) 2 rg+r2-2rorcos(90-9) w
1 ( Vy JoSin (90-9) r,d0
2n _J rg+r2-2rorcos(90'9)

0

¥ x

o

=
1 veu[rocos(eo-())-r]' 46 +V
2 J r%+r2-2rorcos(9°-9) oFo ™ Yo
0

(4.3)

where
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V.., = v.cos(a)cos(0) + v..sin(a)sin(6)

Vo = Vosin(a)cos(8) + v_cos(a)sin(0)
and O is again replaced by it sole component ®. As in Equation 4.1, the last two integrals
of Equation 4.2 and 4.3 are over the interior boundary B which is the airfoil surface.
These two equations are also valid in the éomputational plane if @o is replace by ®o;, which

is transformed as

Qo = WoH} 4.4)
This transformation was discussed in the last chapter. In the computational plane, the
position components r and 6 are replaced by P and ¢. The angle of attack o is positive

nose-up as before.

4.1.1 Fourier Series Expansion

Using conventional methods to compute the integrals for the velocity components
will be inefficient numerically. If the finite Fourier series expansion is used for the
integrals, the vorticity and the velocity components can be evaluated explicitly. The

modified equations are

ofp.e)= 222 , Z (cta(pc0s(10)+Bulp)sin(no)

N(p)
— cosNe) (4.5)
velp.0) = a"(") + Z (an(p)cos(ng)+by(p)sin(ng))
N(p)
———cos(No) 4.6)

velp.0) = °“’) + E (calp)cos(nd)+du(p)sin(nd))
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Each of the Fourier coefficients is a function of P only, assuming the coefficients are

constant along any azimuthal grid line. There are 2N =1 - 1 terms in each series. I is the
total number of discrete points in the tangential direction about the grid. Since an "O" grid
is used, the first and last points overlap. Knowing ()¢ at all grid points, in particular, at 2N
points along an azimuthal line, the Fourier coefficients can be determined as

2N-1
LY ag@pcoskey)  k=0,1,...N

O ===
N =0 (4.8)

2N-1
B =1 2, Ox(@psin(kdy) k=0,1,.,N-1
p=0 (4.9)

Substituting Equations 4.5 through 4.7 into Equations 4.2 and 4.3 in the computational
plane and evaluating the integrals, the following relations between the known vorticity

Fourier coefficients and the velocity Fourier coefficients are: [12]

(1)

as(p) =
P p (4.10)

p 2 -
al(p>=%[ Bl(po>(‘:)—°) dpﬁ%f B1(po)dpo

+ %‘%ﬁal(l) +d;y(1)] + v..cos(a)

@.11)
1 Pt 1 Pol!
anp) =1 f pripofE2] dpo+2j prcpo2]" apo
1 p
+ 4IP* 1y + dy(1) 2<n<N
jp ) (4.12)

. 2
bx(P)=%I a:(p(,)(Epﬂ} dpo-%j o1(po)dpo
1 P

1{1 - i
] jp)z[cl(l) bi(1)] + vesin(a) (4.13)
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n 1' o)( 2 d o'l o(&)‘r-ld o
ba(p) = jan(p > P 2[%@)‘) Y

-%(5)““ [ea(1) - by(D)] 2<nsN (4.14)
colp) = I ao(po)(F Po + Cf) (4.15)
cp)=1 f , o (po)( 5] 4P f - @1(Po)dpo

+ ﬂ%ﬁcl(l) - by (D] + vwliﬂ(a) (4.16)
ca(p) =1 I p an(po>{2°)n+ldp° 3 f - ““(p°)(%orldp°

*ﬂiyﬁl [ea(1) - bu(1)] » 2<nsN (4.17)
di(p) = I Bl(po){ dpo - —] B1(po)dpo

+ jla)z[al(l) +di(1)] - v:cos(“) (4.18)
d:(p) =% f ,, Pucpof2e) " apo -1 j - buooffs] 0

+%)“+‘[an(1)+dn(l)] p 2<n<N (4.19)

an(1), bn(1), cn(1), and dn(1) are the known Fourier coefficients of the transformed
velocities on the unit circle. By applying these Fourier coefficient equations on the
tangential velocity component on the unit circle, the constraints on the vorticity Fourier

coefficients are found.

f a1(po)dpo = -c1(1) - by(1) + 2v_sin &
, (4.20)
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j Bi1(po)dpo = -di1(1) + a;(1) - 2v.cos a

(4.21)
B .
an(po>(J— 'dpo = -ca(1) - by(1)
) Po (4.22)
[~ 1
Ba(Po)-I" " dpo = -dn(1) + an(1)
Jl 1‘)0)" (4.23)

The principle of conservation of total vorticity is employed to add the final constraint to the
kinematic aspect of the flow. Using the finite Fourier series expansion of vorticity (Eq.

4.5), the equation can be re-expressed for numerical application

I wo,dR, =-2AQ

I 0o(Po)Podpo = -%Q
, (4.24)

where A is the airfoil cross-sectional area and Q2 the airfoil angular speed. The velocity and

the vorticity field are uniquely determined with these constraints.

4.2 Kinetic Aspect of the Flow

A combination of finite difference schemes is used to compute a numerical solution
of the kinetic part of the problem in the computational plane. Discretization of the vorticity
transport equation (Eq. 2.32) generates a set of finite difference equations(FDE) which are
algebraic. The working variable is the vorticity as mentioned. As time advances, the
employed time-accurate numerical method solves for the vorticity at the half grid points in
the radial direction, based on known vorticity values at the previous time level. A first order
accurate backward difference scheme is used on time, and a second order accurate central
difference scheme in space is used on the diffusive terms. An upwind difference scheme is

used on the convective terms. The differencing is second order accurate in the stream-wise
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direction and first order accurate in the reverse direction. Collecting the terms of the FDE

into a tridiagonal matrix for successive line under-relaxation along the radial line, the FDE
becomes
Al + Bt + Gyl = Dif ok, ok ok ) (4.25)

The superscripts, k+1, indicate the new time level. The matrix elements for the laminar

terms are
Aiy=A2+A4
__Pinp VoR<0] - L/R. T PJ‘”Z)
(pic2)As (prco)As Pz (4.26)
B, =Bl + B2 + B3 + B4 + BS
2 - j+
=H%, . M{VNKO] + -———{p’ 2 Vpr<0]
At (pic2)As (pi-c2)As
+ 4ver>0] - vy <0
ZLJ or>0] Z];[ oL<0]
,_LR 2[ Pin . _ Pin ] L2LR,
(prca)As l.(PJ+1f2’C2)AS (Prmc2lis]  pAg’ (4.27)
CiJ =C2+C4
__ Pin [VpL>0 __LRe T Pj-uz)
(pi-c2)As (pr-c)As” WPz 2 (4.28)
D;j=D1+D3 +D5
2
= E20/0t) + L{akoJvye<0)
At Ad
- ek Jve 0] + L/Rez (kg + o)
Ao ol (4.29)
where
VYpR = Vpiyu

VpL = Vpy,



24
VoR & i'(v¢u+v¢u+1+v¢mJ+v¢i+u+1)

VoL = f{("w*"wu+V¢a-u+"¢s.u.1)

The index j and J are for the vorticity and velocity grids respectively. The conditions in the

brackets indicate when the term is included. The relationships between some of the

variables are
B2=C2
B3=A2
B4=-A4-C4
B5=2xD5 (4.30)

When the flow at a grid point is considered turbulent, the diffusion terms, A4, B4, B5, C4,
and D5, are multiplied by

1429
This modification is possible by utilizing the definition of ®v used in Equation 2.32. In the
boundary layer, the discretized vorticity transport equation may be simplified to the
boundary layer equation which is parabolic, and the solution is marched forward without
iterating. With the zonal approach, the numerical procedure is made even more efficient.

The numerical procedure used for the aerodynamic loads are very similar to that of

the velocity vector equation in its integral form. Greater details are found in reference [10].



CHAPTER 5
TURBULENT MODELS

In examining the differential form of the incompressible turbulent, Reynolds-
averaged Navier-Stokes momentum equation, there are apparent stress gradients due to
transport of momentum by turbulent fluctuations and deformations attributed to
fluctuations. To solve these equations by a finite-difference method, some closing
assumptions have to be made about these apparent turbulent stresses. In 1877, Bouséinesq
suggested that the apparent turbulent shearing stresses might be related to the rate of mean
strain through an apparent scalar turbulent or "eddy" viscosity [16). Many turbulence
models have been developed but all have limitations. The models range from algebraic to
x—€ formulations and the accuracy of these models' predictions varies.

The present code employs the Baldwin-Lomax algebraic turbulence model [12].
This model requires small amount of computational time and has been used extensively. Its
accuracy has been found to be comparable to more complex turbulence models [20]. The
accuracy of the model will change depending on the flow conditions since it was calibrated
and verified with experimental data. The present code using the Baldwin-Lomax turbulence
model has been generally under-predicting the aerodynamic loads such as Cp__ This differs
from most turbulence models which over-predict the value of C. The model is used for
attached and separated flow regions. Beside the inherent shortcomings of the zero-equation
model [16], the calculation of the length scale will not be accurate for separated flow
regions. To further develop the code and to improve upon its performance, the Baldwin-
Barth wrbulence model is to be added to the code. Since the major aim of this investigation
is to implement the Baldwin-Barth one-equation turbulence model, this model will be

presented in greater details.

25
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5.1 The Baldwin-Lomax Turbulence Model

The Baldwin-Lomax turbulence model is a two-layer, zero-equation, or algebraic
eddy viscosity model. This model is patterned after that of Cebeci [21] with modification
that avoid the necessity for finding the edge of the boundary layer [12]. The eddy viscosity
Vi is computed as follow

vi= { Vi Y < Yerossover
Vio Yerossover S Y (5.1)
where the subscripts i and o denote the inner and outer layers respectively. ycrossover is the
smallest value of y at which the eddy viscosity values from both the inner and outer regions
are equal.

The inner eddy viscosity v,; is based on the Prandtl-Van Driest formulation.
v =d (5.2)
where
1 =ky[ 1- exp(-y*/A¥)] (5.3)
lal is the vorticity magnitude and y* is the length scale.

+=yu‘t

7N (5.4)
where u, is the friction velocity and v is the kinematic viscosity. The friction velocity is
used to scale the tangential velocity. The scaled tangential velocity is given as reference [22]

which is the law of the wall'.

ut =yt in viscous layer
ut = i—ln y*+C  ininertial layer 5.5)
C is found by assuming that y+ = 10 is the matching point between the two layers.
The eddy viscosity in the outer region, vy, is given as
Vio = KCopFwakeFitet(y) (5.6)

with
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Fyake = Min(ymaxFmaxs CwkY maxt3i/Frmax) (5.7)

The value of Fax is determined from this function:
F(y) = yle[1 - expl-y*/A*)] (5.8)

and ymax is the corresponding y location. Fyjep is the Klebanoff intermittency function:

Ceby |
Fkleb{Y) =[1 + 5. kl_ebY) ]

¥max (5.9)
The quantity u3it is the difference between the maximum and the minimum total velocity in
the profile. The constants used are
A+t =260 Cep=1.6 Ckieb = 0.3
Cwk =10 k=04 K =0.0168
Numerically, the model begins with the determination of friction velocity, ur,
iteratively. Consequently, the inner and outer eddy viscosity, v,; and vy, is computed

along the direction normal to the surface. The final eddy viscosity value is assigned

according to the ycrossover location.

5.2 The Baldwin-Barth Turbulence Model

The originally proposed Baldwin-Barth turbulence model [13] is chosen over the
recently modified formulation [23] because applications of the model showed that the
original model formulation gave significantly better results [14]. The finite difference
method is used to determine the turbulent Reynolds number Rrof the partial differential Rt
equation. The turbulent Reynolds number is directly related to eddy viscosity v;. The
derivation of the x-RT and then the R model equation begins with a standard form of the

k-€ equations.
(5.10)

(5.11)
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where the total or substantive derivative is

Q=i +V.V
Dt ot (5.12)

and P is the production of x in the equation,

P= V'{_a.p.}. + % Ui lv{éli)z

ox; 0x;Jox; 3 \ox (5.13)
By considering R and its differentials,
Rr= é (5.14)
dRT _ »dk _de
Rr K € (5.15)
a k-Rt equation is derived from the kx-€ equations with a valid simplification of the
diffusion terms.
H;LT) = (2:¢e)YRIP + (ce, 2)c + (v%at)vz(vRT) - {ov) vivry 516
where
Vi = cy(VRr) (5.17)

and VvRr is the appropriate field variable rather than RT. To obtain the R equation, it will

first require the rearrangement of Equation 5.14

o K2 _ (ka+xp
VRt VRT (5.18)

where k2 = (x1+x2)2 and assigning a value to k; without loss of generality, at large R.
x} = VRTP (5.19)
With the above two equations, a relation among k, ki, and k3 is obtained.

K= m(l + K2
X1 (5.20)

Substituting Equation 5.20 into Equation 5.16 and rearranging the terms leads to
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D =(c€2-cel)VvE—pP + v+— 2 vR ——(Vvt) vRT

2 Cgl)——z—V VRTP - 2 Cgl)Kz

(5.21)
Neglecting the last two terms in this equation, a self-consistent one-equation model is
obtained [13]. This equation is valid over a major portion of the shear layer at sufficiently
high Rr. For the model to be applicable in near-wall regions, the turbulent Reynolds

number, R is re-expressed as

Rt = Ref4{Ry) (5.22)
where f3 is a damping function that approximates Rt = Rrat large R1. Applying

commonly used damping functions in the x-€ models [13], the eddy viscosity is

vi=vefuRr = veufuRe (5.23)

and

VR vfsRy (5.24)
K} is also applicable at small RT when R is replaced with ﬁ-r in its definition. The

resulting model equation for Rris

dVﬁT) = (cg,_f 2-Ceg, )‘J VRTP + (v + %‘- Vz(VﬁT) - é—(Vvl)- V(VﬁT)
e €

Dx

(5.25)
Subjecting this equation to the thin shear layer approximation and further developments

[13], the following list of functions are obtained to determine vﬁT.

o = alCer el (5.26)
v = c(VRr)D1D; (5.27)

- v, (5.28)
Dy = 1-exp{-y*/A*) (5.29)

Dy =1 - exp(-y*/A}) (5.30)
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fuf3=DiD2 (5.31)
_ aU; anpUi _2 {aUk)z
P= "4 o T axlax 3 \ox (5.32)

)= g +(1- (o5 + DiD2)(YDID;
¥ %‘_l-;y—z—(—A&exp(-y*’/A}')Dz ¥ Algcxp(-y‘*/A'z*)Dl)) .
The constants used for the preceding equations are
k=041 Ca=1.2 Ce2 = 2.0
o = 0.09 A*=26 A3 =10
5.2.1 Numerical Formulation
The numerical solution of the one-equation model is de-coupled from the flow
equations. An implicit factored ADI solver for scalar equation is employed on a two-
dimensional, logically rectangular mesh. This computational grid, which is different from
the cylindrical computational grid of the main flow solver, is chosen to simplify and
quicken the implementation process. The finite difference formulation of the model
equation is patterned after that of ARC2D [24]. Having to use an "O" grid and computing
time-accurately requires, respectively, periodicity and modifications for a time-accurate and
integro-differential code for incompressible turbulent flows.
Defining the solution vector R where Ri; = vﬁﬂxid, ¥ij), the model equation with
discretized advection and diffusion terms becomes a system of ordinary differential

equations of the form [13]

R.+MRJR =DR (5.34)
where M(ﬁ) is a M-type matrix operator representing the discretization of advection and
diffusion terms and D is a diagonal matrix. A M-type matrix is diagonally dominant, has

positive diagonal entries and negative off-diagonal entries, and has zero row sum.
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Since the source term of the one-equation model can be computed explicitly once
the velocity gradient is known, only the advection and diffusion terms are discretized.

Assuming v is constant, the model equation may be rewritten as

JVﬁT) +V- V(vﬁ-r) = Z{V + %:)Vz(\/ir) - B_IEV ' VtV(V§T) + (CEJ 2- cel) V CLJ LLf 3 SﬁT

ot (5.35)

where S is

§2 = aU; BU,)B_
dx; Oxi)ox; (5.36)

The advective terms is approximated by first-order accurate upwind differencing:

V- V(Vﬁ']‘) = G:Riq it BBXRU + 'Y%Ri-l.j

+ odRije1 + PIRi; + YERij1 (5.37)
where
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The diffusive terms are approximated by second-order accurate central differencing and

may be combined as
2(v + %)Vz(vﬁT) - V-YGAV(vﬁT) = a}Rin; + BaRi; + Y3Ri1,
+ &Rijo1 + BARy + YiRyj (5.38)

where
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The matrix operator will not be a M-type matrix due to the coefficients of the diffusive

terms if the grid resolution is poor. This condition is strictly enforced in the algorithm.
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Typically, a grid wall or first grid spacing of y*+ = 3.5 is required since Ry is designed to
behave linearly in the near-wall region for zero gradient boundary layers [13]. Therefore, a
grid of adequate resolution is critical to the model's performance. The recommended
boundary conditions are

1) Solid walls: Ry = 0.

2) Inflow: Specify Rt to match experimental V.

3) Outflow: Extrapolate ﬁ-r from interior values.

4) Freestream: Set to a small value Rr. <1

A listing of the one-equation model is in Appendix A.



CHAPTER 6
RESULTS AND DISCUSSION

Implementation and verification of the Baldwin-Barth one-equation turbulence
model and evaluation of ZETA are described. ZETA is a zonal integro-differential code for
incompressible, laminar and turbulent flows. The emphasis will be on the verification and
evaluation processes since the field equations and numerical method for the implementation
have been described in Section 5.2. The new constraints introduced by the Baldwin-Barth
model and modifications of the ZETA require further evaluation of the code. The test cases
were chosen for their simple flow characteristics and for correlation with the experimental
results [2]. Numerical results are first compared with corresponding results of ZETA with
the Baldwin-i.omax algebraic turbulence model and of ARC2D using the Baldwin-Barth
model. The comparison will also utilize experimental results when applicable.

Computations are performed on a NACA-0012 airfoil which has been extensively
studied. Most cases have a Reynolds number R of 3.91x109, an angle of attack a of 5.0
degrees, and a freestream Mach number M., of 0.301. This flow condition corresponds to
an experimental case of Ref. [2]. It was chosen to minimize compressibility effects so
using the incompressible flow solver, ZETA, was justified.

This flow case with simple attached flow features is selected so the newly
implemented Baldwin-Barth subroutine can be easily tested. Although ZETA is capable of
computing unsteady flow over oscillating airfoils, the computed cases are steady at a given
angle of attack. The code is time-accurate and both laminar and turbulent computations
were performed (Table I). All computations were done on the CRAY Y-MP 8/832 or C-90
but the code can be run on VAX, IRIS, or SUN workstations.

ZETA can only compute on the "O" grid which is created with a grid generator that

is used exclusively for this code. The grid generator also provides the transformation
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factors and other grid dependent variables for the flow solver. Creating a grid normally

requires a CPU time of less than 1.0 second. The computation begins when the airfoil
starts impulsively from rest at a time immediately after t = 0. For most flows, the solutions
are considered steady at a non-dimensional time of about 150. This time is equivalent to
having the airfoil travel 42 chord-lengths through the fluid since the non-dimensional
freestream velocity is 1.0 and the chord length of an airfoil is 3.6190589 due to the
conformal mapping scheme. The typical number of iterations to reach a non-dimensional
time of 150 is about 7,600. This corresponds to a total CPU time of about 4.5 hours, or a
real time of about 2 to 3 days. The convergence rates vary with grids, angles of attack, and

Reynolds numbers.

6.1 Implementation of the Baldwin-Barth Turbulence Model

The implementation of the Baldwin-Barth one-equation turbulence model is
patterned after that of ARC2D [13]. Modification of the ZETA code was also necessary.
The major change in ZETA involved the computation of physical velocity for the Baldwin-
Barth subroutine. Presently, the model subroutine is capable of handling the periodicity of
an "O" grid, the left-handed coordinate system, and the time-accurate aspects of ZETA.
Since the model subroutine is de-coupled from the flow solver, a conventional rectangular
computational grid was chosen for convenience.

The numerical procedures in the model subroutine include computations of the
metrics and Jacobians of transformation [16], a generalized distance function which gives
the minimum distance to the solid wall [25], and the gradient of the mean velocity. The
solution of the model equation utilizes an alternating-direction implicit(ADI) scheme in a
half-stagger grid. The eddy viscosity is provided at half points in the radial direction. The
"Q" grid is periodic in the tangential direction which requires a periodic scalar tridiagonal
solver for the system of finite difference equations in the computational plane. A Thomas

tridiagonal solver is used for the non-periodic, normal direction.
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For a given iteration, the model subroutine will require the input of Re, velocity

components(u, v), and the physical grid geometry(x,y) from the flow solver. Using these
informations, the subroutine will model the corresponding eddy viscosity of the flow. A

flowchart of the Baldwin-Barth one-equation model subroutine is presented in Figure 6.1.

6.2 Verification of the Baldwin-Barth Turbulence Model

Testing was conducted to verify that the subroutine works properly. The constraints
imposed by the "O" grid and conformal mapping complicated the verification process. The
ideal test case would be a turbulent flow on a flat plate. With no pressure gradient, the flow
characteristic is dominated by eddy viscosity since the molecular viscosity is small. Flow
on a flat plate has been thoroughly investigated and analytical descriptions of the flow are
available for comparisons. However, numerical computation of flow on a flat plate with
"O" grid has proven to be extremely difficult. The grid spacing of a zero-thickness, flat
plate collapses near the surface and especially at the leading and trailing edges. Difficulties
in calculating the transformation metrics makes proper transformation of such grids nearly
impossible. A pseudo-flat plate was not used due to similar restrictions associated with
conformal mapping. Therefore, a NACA-0012 airfoil was chosen as the test body.

ARC2D and ZETA, using the Baldwin-Barth turbulence model, computed cases for
comparison. The test cases ran at Re = 3.91x106 and o = 5.0 degrees on a 120x80 grid.
The velocity magnitude contours and eddy viscosity distributions of ZETA and ARC2D are
shown in Figure 6.2 through Figure 6.5. Although the figures show global similar
features, ZETA with the Baldwin-Barth model predicts flow separation early. Separation is
indicated by flow reversal. As in the ARC2D case, ZETA with Baldwin-Lomax does not
show any flow separation (Fig. 6.6). The corresponding vorticity is presented in Figure
6.7. The unexpected flow separation could be caused by the incorrect implementation of the
Baldwin-Barth model or undesirable interactions between ZETA and constraints imposed

by the turbulence subroutine. The ZETA code and these probable causes were examined.
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6.2.1 Test of the Isolated Turbulence Subroutine

The field variable of the model subroutine is the turbulent Reynolds number, Rt
which is directly proportional to eddy viscbsity. Thus, the prediction of Rr must be correct.
An effective way of testing the turbulence subroutine is to isolate and place it in a small test
program. Receiving a converged ARC2D velocity solution field(u,v) along with the grid
geometry(x,y), the subroutine would restart and iterate until Rt converged.

The eddy viscosity, v;, was calculated with the converged Rr of the test program
and compared with the v; of ARC2D. Figure 6.8 shows the global features of the test case
which are in good agreement with that of ARC2D (Fig. 6.5). The trailing edge features of
the v; distribution for both ARC2D and test case also compare well (Fig. 6.9 and Fig.
6.10). A more detailed comparison of the Rr profiles at six locations on the more critical
top surface of the airfoil is in Figure 6.11. The matching v, distributions and Ry profiles
indicate that the subroutine in ZETA predicts eddy viscosity correctly.

Another convincing comparison is the velocity distributions u* vs y*+, which is
computed in the subroutine with the mean velocity and geometry, at mid-chord for both
ZETA and ARC2D cases (Fig. 6.12). The good agreement of the velocity profiles at mid-
chord as well as other chord stations also affirms that the model subroutine in ZETA is
producing the correct eddy viscosity for a given flow. It is also interesting to note that the
velocity profile is similar to that of a flat plate (Fig. 6.13). Although ZETA with the
Baldwin-Barth model predicts flow separation early, the above tests show that the model
subroutine is implemented correctly. The focus will be shifted to the ZETA code and its
numerical interactions with the Baldwin-Barth model subroutine.

However, it is important to note that ARC2D and the isolated model test cases are
time-average runs but ZETA is time-accurate at all time. Recommended modifications for
the time-accurate code were made to the model subroutine in ZETA. Since no known time-
accurate computation with the Baldwin-Barth model is available, the model subroutine's

numerical capability to compute time-accurately may require further examination.
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The governing equations of ZETA are the continuity equation and the vorticity

transport equation. The vorticity transport equation (Equation 2.2) has neglected a scalar

T T
N YY) °ay dy2 oxady °8y oxdy\ ‘ox

This is justified below by the order-of-magnitude analysis of S,

term, S:

For a laminar boundary layer, the boundary layer thickness is proportional to the
square root of the kinematic viscosity [17]:
3~V
This boundary layer thickness is very small compared to the chord of the airfoil. The

dimensionless d is therefore very small compared to unity. Ve is of the order d as indicated
in the numerical computations using both Baldwin-Lomax and Baldwin-Barth turbulence

models. This implies that the inverse of the turbulent Reynolds number:

1l Ve
R VvV.C

is also of the order §. Therefore, the orders of magnitude of the individual terms of S,

which is nondimensionalized with the free-stream velocity, Ve, and the chord, C, are as

follow:

Se = 2{82(1%) a2“av)+ 92 hav) Ry “au)}

ox2\Ray ay2\Rax 0xdy\Rdy/ oxdy\Rox
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Thus, S is of order one. The vorticity transport equation is of the order 1/8. Therefore,
the omission of S, in the vorticity transport equation is justified.

Having shown that the turbulence model subroutine works properly and the
derivation of the governing equations was correct, the numerical aspects of ZETA and its

interactions with the turbulence model subroutine will then be investigated.



38
6.4 The Effects of Grid

The grid has the utmost effect on computational accuracy of any case. Depending
on the numerical methods of a code, constraints or demands on the grid will be different
and sometimes conflicting. Grid requirements will also change with flow conditions. For
conventional finite difference codes, a finer grid will generally increase the accuracy of the
computation. This grid effect applies to the Baldwin-Barth model subroutine which utilizes
the finite difference formulation. However, the integro-differential approach with Fourier
series expansions of ZETA places unique demands on grid resolution.

The Baldwin-Barth numerical formulation requires good grid resolution in both
tangential and normal directions of the airfoil. To capture the flow features in the boundary
layer requires proper grid spacing, especially in the flow direction and in the near-wall
region. Having the appropriate first grid spacing off the airfoil surface is also essential. The
Baldwin-Barth subroutine requires a grid point to be inside the laminar sublayer for proper
estimation of the velocity profile [13]. The slope of the profile is used in computing the
friction velocity in the subroutine. Inaccurate approximation of the slope will cause the
calculation of y*, the damping factors, and hence eddy viscosity to be incorrect (Fig. 6.1).
Computations with a grid having the first veloéity grid point off the airfoil surface outside
of the laminar sublayer will give inaccurate flow solutions.

In contrast, the flow solver, ZETA, prefers a coarse grid with a minimum of only
about 10 to 20 grid points inside the boundary layer [10]. Testings also found that the first
radial grid point off the airfoil surface should be outside of the laminar sublayer. This
unusual grid requirement is a result of the numerical formulation in the code. When the
airfoil is impulsively started to move in the fluid, the kinematic aspect of the code computes
boundary vorticity on the first ring of vorticity grid poinfs off the surface (Fig. 2.2). This
procedure intcgratés over the viscous zone outside of the first ring to obtain the boundary
vorticity. Using the known velocities at the previous time level and the boundary

vorticities, the vorticity transport equation computes the vorticity in the remaining viscous
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zone. The boundary condition is updated at each time level. However, the kinematic aspect

of the code could not compute constant vorticity at grid points inside the laminar sublayer.
The numerical error will then accumulate as the time level advances and will have a great
impact on the accuracy of the boundary vorticity and the overall flow solution.

This premise is tested by running ZETA in the laminar mode where the effect of the
turbulence model is removed. Changing the first radial velocity grid spacings off the
surface has significant effects on the solution of the given flow (Fig. 6.14 to 6.16). The
flow separation region progressively increases as the first grid spacing decreases from
0.001 to 0.00006. The amount of separation should not change with the first radial grid
spacing. The case with more grid points inside the laminar sublayer show unreasonably
large amount of separations (Fig. 6.16). The numerical problem of updating the vorticity
boundary inside the laminar sublayer appeared to cause the flow differences. Another
probable reason for the separation differences is the higher numerical dissipation rate of
coarse grids. Numerically, the flow is more likely to remain attached on coarser grid on
which disturbances quickly dissipate.

For the same flow condition and a first grid spacing of 0.0001, systematically
reducing all the numerical eddy viscosity to 20%, 10%, and zero percent of the original
Baldwin-Barth subroutine value does not change the flow features significantly (Fig. 6.17
t0 6.19). The flows with reduced eddy viscosity behave like the normal turbulent flow.
Such behavior suggests that the flow solver may be introducing some interferences with
greater effects than the computed eddy viscosity.

7ZETA with the Baldwin-Barth model running on a grid with the first ring of grid
points outside of the laminar sublayer did not show separation (Fig. 6.20 and 6.21) but the
predicted aerodynamic loads are low. This is expected since the model requires a grid point
within the laminar sublayer. However, having any grid point in the laminar sublayer will
lead to inaccurate flow solution with ZETA. |

The conflicting grid requirements of ZETA and the Baldwin-Barth model make
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accurate flow computation difficult unless a solution to the problem is found. For the above
case using the Baldwin-Barth model (Fig. 6.2), a systematic investigation of grid size and
first grid spacing showed that a grid of 120x80 with a first grid spacing of 0.0001 gives the
best but still incorrect solution. Adding grid lines in the tangential direction did not improve
the flow solution. On the same 120x80 grid, ZETA with the Baldwin-Lomax model under-
predict the aerodynamic loads such as Cr by about 20% although it showed correct global
features(Fig. 6.6). A coarser grid is recommended when using the Baldwin-Lomax
turbulence model. A typical grid size of 80x45 was used for previous investigations of

airfoils. The first grid spacing varies slightly with Re.

6.5 The Effects of Reynolds Number

Most numerical codes have a operating range of Reynolds numbers for which the
resulting flow solutions are accurate. Generalizing from previous work, ZETA is not
expected to perform well for cases where Re is less than 2x105. No other known Reynolds
nﬁmber effect on the flow solution is reported. Codes with the Baldwin-Barth model
generally run at a Re of 2x106 or greater. Further investigation of Reynolds number effect
was performed since the Baldwin-Barth model introduces new R, and grid demands. By
running the NACA-0012 airfoil at o = 50 through a range of Reynolds numbers, it was
found that R affects ZETA with both Baldwin-Lomax and Baldwin-Barth models.

Re from 1x10% to 4x106 were tested with ZETA to examine the tangential velocity
and vorticity along the top surface ofr the airfoil. The tangential velocity and vorticity along
the airfoil surface start to fluctuate between Re of one and two millions with the Baldwin-
Lomax model (Fig. 6.22 and 6.23). The normal velocity and vorticity exhibit no such
fluctuations. There is also no fluctuation on the lower airfoil surface. The fluctuations did
not disappeared when more lines were added in the tangential direction of the grid to
improve the velocity gradient calculation. Cases with the Baldwin-Barth model showed

more severe fluctuations in the tangential surface velocity and vorticity. Fluctuations begin
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at a R of about 1x105 and becomes proportionally worse as R, increases (Fig. 6.24 and

Fig. 6.25). The Baldwin-Barth model equation is a transport equation which may be the
cause of the more severe fluctuations. Transport equations tend to accentuate disturbances
in a code. Fluctuations also existed in the laminar mode using a fine grid. There isno
evidence of fluctuations when using a coarse grids even at high Reynolds number (Fig.
6.21). Having fluctuations in the laminar mode and with both turbulence models hint that
the flow solver presently may not be able to accommodate a fine grid at higher Re.
However, the grids used for ZETA could be considered coarse for most finite difference

Navier-Stokes codes.

6.6 The Performance of Turbulence Models

For most applications of turbulence models including Baldwin-Lomax, Navier-
Stokes codes would normally over-predict Cr.. ZETA with the Baldwin-Lomax turbulence
model however has been under-predicting Cr and the predicted C_ is generally lower at
higher Re. The lift slope in Figure 6.26 was computed at R = 3.91x106 and o = 5 degrees
on a 80x45 grid. The experimental result on the figure is from Reference 2. The lower Cr,
values are consistent with ZETA's performance but the cause of the difference is not
known. The performahcc of ZETA with the zero-equation model is generally acceptable for
flows where separatioh is minimum. Flows with large separation region are common in
unsteady aerodynamic investigations where dynamic stall is often encountered. As
expected, ZETA's performance for these flows and high angle of attack flows are not as
reliable. Two of the possible causes are compressibility effect and poor performance of the
turbulence model in separated flows. The calculation of the length scale in the zero-equation
model is known to be inaccurate for separated flows and this is true in ZETA.

Though the overall performance of ZETA with the Baldwin-Lomax model is
reasonable when used properly, it remains questionable. As shown in Figure 6.17 10 6.19,

changing the eddy viscosity magnitude did not change the Baldwin-Barth flow solutions
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which are slightly separated. When the Baldwin-Lomax model is applied, the flow remains

attached. Beside the eddy viscosity magnitude, the only other factor involved is the eddy
viscosity distribution since the Baldwin-Barth subroutine can only affects the flow solution
by the computed eddy viscosity. The eddy viscosity distribution of the Baldwin-Lomax
case is typically like that of Fig. 6.7. Note that the eddy viscosity, v;, is constant in large
area near the airfoil. This is unrealistic. Examining the Qelocity distribution, the Baldwin-
Lomax case is also different from that of ZETA and ARC2D with the Baldwin-Barth model
(Fig. 6.27). The reason for the attached flow when using the Baldwin-Lomax model is
unclear. ZETA with the Baldwin-Lomax model however tends to delay flow separation
(Fig. 6.26).

There are advantages in using tﬁe Baldwin-Lomax model in ZETA. It is not time or
memory intensive. A coarse grid(80x45) can be used and tends to provide better flow
solutions than finer grids. With Baldwin-Lomax, steady and dynamic flow cases can also
be ran quickly and interactively on the CRAY Y-MP.

The Baldwin-Barth one-equation turbulence model has been implemented in mainly
finite difference codes. The solution of the model equation requires a relatively significant
addition of memory and time due to its added complexity and grid resolution requirement.
Although the Baldwin-Barth model has been proven to be reliable in many flow conditions
over airfoils, it has not been perfonnin‘g well in ZETA. As discussed in the previous
sections, disruptive fine grids and Re factors might of contributed to the poor performance
of ZETA with the Baldwin-Barth model. Therefore, extensive quantitative comparison with
experimental results was not conducted.

For a flow at Re = 3.91x100 and o = 20 degrees, the velocity contour shapes with
both turbulence models are comparable (Fig. 6.28 aﬁd 6.29) but the values are different. At
this condition, the airfoil is stalled and the surface boundary layer effects are negligible.
Flow solvers are not expected to do well in these stall cases. However, the Baldwin-Barth

turbulence model seems to perform better when the disruptive grid effect at higher R is
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small. There is no fluctuation in the flow solution. The eddy viscosity distribution of the

Baldwin-Barth model seems to be more reasonable than that of the Baldwin-Lomax model
for separated flows (Fig. 6.30 and 6.31). One reason for the unrealistic eddy viscosity
distribution of Baldwin-Lomax (Fig. 6.31) is that the subroutine imposed a maximum eddy
viscosity limit of 100 times the laminar viscosity. In the development process [10], the

Baldwin-Lomax model performed better with this imposed upper limit on eddy viscosity.

6.6.1 Aerodynamic Loads Prediction

In the prediction of aerodynamic loads: Cr, Cp, and CM, ZETA with Baldwin-
Lomax performs well with a coarse, 80x45 grid (Fig. 6.26). Even the suction peak of the
Cp distribution matches well with the experimental data (Fig. 6.32). The computation of Cp
however deteriorates with finer grids like those used for the Baldwin-Barth model. In the
same figure, the Cp distribution computed with the Baldwin-Barth model indicates that it
performs well especially near the leading edge but shows early flow separation. The G,
distribution fluctuates on the upper surfacé of the trailing edge. The fluctuation problem is
most obvious in the time convergence history of C (Fig. 6.33). ZETA with the Baldwin-
Lomax model shows no fluctuation on a coarse grid(80x45). The Cp, compares well but it
is expectedly lower than the experimental value of 0.58. It is much lower when using a
finer grid(120x80). In the Baldwin-Barth case (Fig. 6.33), the average Cr = 0.48 is low
but the peak Cp = 0.53 is comparable to the experimental Cr, = 0.58. CL does not fluctuate
on grids with the first grid point butsidc of the laminar sublayer (dy = 0.01) but this model
is not expected to perform well on such grid. The average of the fluctuating C, values is
also comparable to the experimental data before stall occurs (Fig. 6.34). However, ZETA
with the Baldwin-Barth model is presently ineffective. The model would improve ZETA's
performance in separated flows when the conflicting grid requirement is solved. Without

the high frequency fluctuations, the results with the Baldwin-Barth model are promising.



CHAPTER 7
CONCLUDING REMARKS

7.1 Conclusions
The Baldwin-Barth one-equation turbulence model has been implemented
into ZETA. The isolated turbulence model subroutine works correctly. ZETA with the
Baldwin-Barth turbulence model can not be used for practical flow applications due to their
conflicting grid requirements. Baldwin-Barth requires a point inside the laminar sublayer
but ZETA does not work well with such grid. The implementation process revealed some
limitations of ZETA and the integro-differential scheme. Major conclusions of this
investigation includes:
(1) The first grid point off the solid body surface should be outside of the
laminar sublayer to compute accurately with ZETA.
(2) For airfoils, ZETA should be run at R, greater than 2x105.
(3) A fine grid and higher Re will cause vorticity and velocity fluctuations.
(4) The grid generator used for ZETA is simple but rigid. The inability to cluster
grid lines and restriction to the use of the "O" grid hampered the study.
(5) ZETA with the Baldwin-Lomax turbulence model seems to give better
result, but the computed eddy viscosity distribution remains questionable.
7.2 Recommendations
Future development and work with ZETA should consider the use of an effective
grid generator that is independent of the code and has adaptive capability. The conflicting
grid requirement may be resolved by refining the computation of vorticity in the laminar
sublayer in ZETA. The code should be expanded to include the compressible flow case.
Recent work on vortex trapping to counteract unwanted dissipations has proven to be

promising and ZETA should have such a feature since a zonal procedure is used.
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TABLE I: Summary of Selected Test Cases

45

Study _Rcynolds Angle of First Grid Code and
Case # | Number, Re Attack, o Grid Size Spacing, dy Comments
H 1 3.91x106 50 120x80 0.0001 Z/BB
2 3.91x106 50 120x80 0.00006 ARC2D
3 3.91x106 50 120x80 0.0001 Z/BL
Isolated BB with
4 3.91x106 50 120x80 0.00006 ARC2D inputs
5 3.91x106 50 120x80 0.001 Laminar
6 3.91x106 50 120x80 0.0001 Laminar I
7 3.91x106 50 120x80 0.00006 Laminar
Z/BL with 20% of
8 3.91x106 59 120x80 0.0001 the computed v
Z/BL with 10% of
" 9 3.91x106 50 120x80 0.000? the computed v;
Z/BL with 0% of
10 3.91x100 50 120x80 0.0001 the computed v
11 3.91x106 50 120x80 0.01 Z/BB '
12 1x106 50 120x80 0.0001 Z/BL
13 2x106 50 120x80 0.0001 Z/BL
H 14 1x104 50 120x80 0.0001 Z/BB
15 5x105 50 120x80 0.0001 Z/BB
16 2x106 50 120x80 0.0001 Z/BB
i 17 3.91x106 30 80x45 0.001 Z/BL "
18 3.91x106 50 80x45 0.001 Z/BL
19 3.91x106 100 80x45 0.001 Z/BL
20 3.91x106 130 80x45 0.001 Z/BL "

Z/BB: ZETA with Baldwin-Barth(BB) turbulence model.
Z/BL: ZETA with Baldwin-Lomax(BL) turbulence model.



TABLE I, Continued
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Z/BB: ZETA with Baldwin-Barth(BB) turbulence model.

Z/BL: ZETA with Baldwin-Lomax(BL) turbulence model.

y Reynolds Angle of First Grid Code and
Case # | Number, Re Attack, o Grid Size | Spacing, dy Comments
3.91x106 150 80x45 0.001 Z/BL
3.91x106 169 80x45 0.001 Z/BL
3.91x106 200 80x45 0.001 Z/BL
1x106 200 120x80 0.0001 Z/BB
1x106 200 120x80 0.0001 Z/BL
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Figure 1.2: Example of angle of attack distribution in forward flight of twisted blade.
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Figure 6.1: Flowchart of the Baldwin-Barth subroutine.
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Figure 6.2: Velocity contours of an NACA-0012 airfoil at Re =3.91x106
and o = 50 from ZETA with Baldwin-Barth turbulence model.
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Figure 6.3: Eddy viscosity contours of an NACA-0012 airfoil at Re =3.91x106
and a = 5° from ZETA with Baldwin-Barth turbulence model.
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Figure 6.4: Velocity contours of an NACA-0012 airfoil at Re =3.91x106
and o = 59 from ARC2D with Baldwin-Barth turbulence model.

Figure 6.5: Eddy viscosity contours of an NACA-0012 airfoil at Re =3.91x106
and o = 59 from ARC2D with Baldwin-Barth turbulence model.



Figure 6.6: Velocity contours of an NACA-0012 airfoil at Re =3.91x106
and a = 59 from ZETA with Baldwin-Lomax turbulence model.
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Figure 6.7: Eddy viscosity contours of an NACA-0012 airfoil at Re =3.91x106
and o = 59 from ZETA with Baldwin-Lomax turbulence model.
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Figure 6.8: Edd}; viscosity contours of an NACA-0012 airfoil at Re =3.91x106
and a = 5° from isolated Baldwin-Barth turbulence model test ptogram.
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Figure 6.9: Trailing edge eddy viscosity contours of an NACA-0012 airfoil at
R. =3.91x106 and o = 50 from ARC2D with Baldwin-Barth model.

Figure 6.10: Trailing edge eddy viscosity contours of an NACA-0012 airfoil at
Re =3.91x106 and o = 59 from the isolated Baldwin-Barth subroutine,
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Figure 6.15: Velocity contours with first grid spacing, dy = 0.0001.
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Figure 6.17: Velocity contours with 20% of computed eddy viscosity
from the Baldwin-Barth turbulence model.

61



Figure 6.18: Velocity contours with 10% of computed eddy viscosity
from the Baldwin-Barth turbulence model.

Figure 6.19: Veloclty contours with 0% of computed eddy viscosity
from the Baldwin-Barth turbulence model.
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Figure 6.20: Velogity contours of an NACA-0012 airfoil at Re =3.91x100 and
" o = 39 from ZETA with Baldwin-Barth turbulence mode. dy = 0.01

Figure 6.21: Eddy viscosity contours of a NACAQ012 at Re =3.91x109 and
. = 59 from ZETA with Baldwin-Barth turbulence model. dy = 0.01.
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1x106

209 from ZETA with Baldwin-Barth turbulence model.

Figure 6.30: Eddy viscosity contours of an NACA-0012 airfoil at Re
and o
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APPENDIX A
LISTING OF THE BALDWIN-BARTH SUBROUTINE

Credskake s sk ool dk e sk e dke e oo o s sl ok o s ol s sl sl o o o sl aeae sl e ol ook o ol o o o ol o ke o ke o s e sl ok ok ok ok ol ok ok e

Crxdddkdkdkokododkokdkokkk TURBULENT VISCOSITY e e 3 3 2 a2 3 3 sk o e s e e o o oo o o e o e ol ok e o o dkeak ake
(Crieske bk skeake sk seale s e s s el sl sl s s ok s stk s s s ol ool ol ol oo s ok ol sk s s b o s kel ae s sl e s s e ae e e s skl o sk ok ok

SUBROUTINE BBEDDY

ONE EQUATION TURBULENCE MODEL
VERSION 1.0
BY BALDWIN AND BARTH NASA AMES R.C.

C
C
C
C o e e e e e sk dfe sk GENERAL NO’I'E e e 2 o s e o o ko
C CONSTANTS ARE GIVEN BELOW FOR THE MODEL THAT APPEARED IN
C NASA TM-102847. THE SECOND VERSION THAT APPEARED IN
C AIAA PAPER 91-0610 IS NOT USED.
PARAMETER(JDIM=120,KDIM=80)
PARAMETER(MAXJ=121 MAXK=81)

COMMON /GRD/IMAX M2 KFC KMAX N

COMMON /BB_1/TURMU(DIM KDIM),TURRE(JDIM,KDIM),RE FIRST

COMMON /BB_2/ SMIN(MAXJ,MAXK), BWT(MAXJ,MAXK),
IB(MAXJ ,MAXK) X(JDIM,KDIM),Y(JDIM ,KDIM),
XY(JDIM,KDIM 4) XYI(JDIM,KDIM),
AA(0:MAX]J,0:MAXK),AAN(MAXJ MAXK)

COMMON/BB_3/UMAXJ MAXK),V(MAXJ MAXK),FSMACH,ALPL,T,AL

COMMON/DELTA/DZ DTET,DT

COMMON /TUR1/USTAR(DIM),EDDY(JDIM,KDIM) JOTUR(JDIM),

$ YN(MAXJ KDIM),IOT,JOTB

COMMON /COE/AF,UL,VI,OMG,VSCNPL,ICTUR,ICST,ICPL

@ PP

DIMENSION Q(JDIM,KDIM 4),VORT(JDIM ,KDIM)
DIMENSION PRESS(JDIM,KDIM)
DIMENSION FNU(JDIM,KDIM),DS(JDIM, KDIM)

DIMENSION UD(MAXJ ,MAXK),VD(MAXJ,MAXK),QD(JDIM KDIM),
DIMENSION FND(KDIM), TEMPUMAXJ MAXK), TEMPV(MAXJ MAXK),
EMPS(MAXJ MAXK), TEMPMU(JDIM KDIM),
GQ(0:JDIM,0:KDIM2,2),
GQNUDIM KDIM,2 2),
DAMP1(JDIM,KDIM), DAMPIM(JDIM KDIM),
DAMP2(JDIM KDIM), WORKX(MAXK MAXY),
WORKY(MAXJ MAXK)
DIMENSION  AX(KDIM,JDIM),BX(KDIM,JDIM) CX(KDIM JDIM),
DX(KDIM,IDIM),EX(KDIM,IDIM) FX(KDIM JDIM),
AY(JDIM KDIM),BY(JDIM KDIM),CY(JDIM XKDIM),
DY(JDIM KDIM),EY JDIM,KDIM) FY (JDIM KDIM)

LOGICAL FIRST

VVVVVY

vV VyVv

DATA FIRST /. TRUE. /
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THE FOLLOWING TWO VARIABLES ARE FOR 'O’ GRID.
THEY ARE 2 AND JMAX-1 FOR 'C' GRID.

JTAIL1 =1
JTAIL2 = JMAX

THESE ARE THE CONSTANTS FOR THE MODEL APPEARING IN NASA
TM-102847.

AKARMAN = 41

CMU = .09

CIE = 1.20

C2E = 2.00

SIGE = AKARMAN**2/((C2E-C1E)*SQRT(CMU))
APLUS1 = 26.

APLUS2 = 10.

RETINF = 1.E-12

DTM IN THE MODEL IS EQUAL TO DT OF THE SOLVER AND NNIT IS
ONE FOR TIME ACCURATE SOLUTION.

NNIT =1
DTM = DT

FOR STEADY-STATE CALCULATIONS WE USUALLY TAKE A TIME STEP
IN THE TURBULENCE MODEL WHICH IS LARGER THAN THE FLOW
SOLVER(BUT NOT TOO LARGE).

IF(ICST .EQ. 0 .OR. ICST .EQ. I)'DTM = 200.*DT
IF(DTM.GT.50)DTM = 50.

**THESE CONSTANTS FOR THE SUTHERLAND'S LAW ARE NOT USED
IN THE INCOMPRESSIBLE FLOW

C2B=198.6/TINF

C2BP=C2B + 1.

IF(FIRST)THEN
FIRST = FALSE.

NNIT =1
WRITE(6,*) KARMAN CONSTANT = ,AKARMAN

WRITE(6,*) CMU =',CMU
WRITE(6,*) CIE ="CIE
WRITE(6,*)' C2E ="C2E
WRITE(6,*)' SIGMA E ="SIGE
WRITE(6,*)' APLUSI1 ="APLUS1
WRITE(6,*)' APLUS2 =", APLUS2
WRITE(6,*) RE_T INF =" RETINF
WRITE(6,*)' RE ="'RE
WRITE(6,*) JDIM , KDIM =" JDIM,KDIM
WRITE(6,*) IMAX,KMAX  ='JMAX KMAX
WRITE(6,*) MAXJMAXK  ='MAXJMAXK
WRITE(6,*)' JTAIL1JTAIL2 ="JTAIL1JTAIL2
WRITE(6.*) DTM =DT

IFJTAIL2 .EQ. IMAX)WRITE(6,*) JTAIL2 = JMAX''
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COMPUTE METRICS 79

CALL XYMETS(JMAX,KMAX X,Y XY XYJ)
DO J=1JMAX

DO K=1 KMAX

++++EOR TIME ACCURATE SOLUTION®****
DSUK) = 1.

**#*EOR NON-TIME ACCURATE SOLUTION****
DS(J.K) = 1./(1. + SQRTXYI( K)))

ENDDO

ENDDO

COMPUTE GENERALIZED DISTANCE FUNCTION WHICH IS
MINIMUM DISTANCE TO WALL.
SAME DISTANCE FUNCTION APPEARS IN AIAA PAPER 91-0721

DO J=1JMAX
DO K=1KMAX

DISTMS = 10000.

DISTML = 10000.

SMIN( X) = 10000.

IBUK) =0

DO JB=ITAIL1,JTAIL2-1
11 =JB
mM=JB+1
DXA = X(1J2,1) - X(JT1,1)
DYA = Y(IJ2,1) - YQU1,1)
SNX = -DYA
SNY = DXA
DXX1 = X K)-X(B,1)
DYY1=Y(JK)Y(B,1)
DXX2 = X( K)-X(JB+1,1)
DYY2 = YU K)-Y(B+1,1)
DXX =.5*(DXX1+DXX2)
DYY =.5*(DYY1+DYY2)
DIST1 = (DXX1**2+DYY1%*2)
DIST2 = (DXX2**2+DYY2%*2)
DISTS = MIN(DIST1,DIST2)
DISTL = MAX(DIST1,DIST2)
DOT = SNX*DXX + SNY*DYY
IF((DISTS.LE.DISTMS).AND.(DOT.GT.-1.E-10)) THEN
DISTMS = DISTS
DISTML = DISTL
SS

> = (DXA*(X(J K)-X(JJ1,1))
> + DYA*(Y( K)-Y(JJ1,1)))/(DXA**2+DYA**2)

SS = MAX(0.0,MIN(SS.,1.0))
XPT = X(JB,1) + S§*(X(JB+1,1)-X(JB,1))
YPT = Y(B,1) + S§*(Y(JB+1,1)-Y(JB,1))
SSMIN = SQRT((X(J K)-XPT)**2+(Y(J,K)-YPT)**2)
IF(SSMIN .LT. SMIN(J K))THEN
SMIN(J K) = SSMIN
BWT(J K) =SS
IBJ K) =JB
DISTMS = DISTS
DISTML = DISTL
ENDIF
ENDIF
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ENDDO 80

ENDDO
ENDDO

COMPUTE WEIGHING FACTORS FOR VELOCITY GRADIENT
CALCULATION.

DO K=1 KMAX
DO J=1JMAX
AA(JK)=00
AAN(@J.K)=00
ENDDO
ENDDO

DO J=1JMAX
DO K=1, KMAX-1
DXA = X(J,LK+1)-X(J.K)
DYA = Y(J,K+1)-Y(JK)
SNX=DYA
SNY = -DXA
IM1 =J-1
IF J EQ. 1) IM1=JMAX
AA(JM1K) = AAJMLK) + SNX*.5*(X{(J,K+1+X({J K))
AA(JK) = AA(JK) - SNX*.5*(X(J K+ 1)+X(J K))
ENDDO
ENDDO

DO J=1JMAX
JP1=J+1
IFJ .EQ.IMAX)JP1 =1
DO K=1 KMAX
DXA = X(JP1,K)-X(J,K)
DYA = Y(JP1K)-Y(J.K)
SNX =DYA
SNY =-DXA
AA(J K-1) = AA(J K-1) - SNX* 5*(X(JP1,LKHX(J.K))
AA(JK) = AA(JK) + SNX*.5*(X(JP1.K)+X(JK))
ENDDO
ENDDO
DO J=1JMAX
JP1=J+1
IFJ EQ. JIMAX)JP1 =1
DO K=1 KMAX-1
AAN(J.K) = AAN(J.K) + AA(J K)
AAN(P1,K) = AAN(JP1,K) + AA(J.K)
AAN(J . K+1) = AAN(J K+1) + AA(JK)
AAN(P1 K+1) = AAN(JP1,K+1) + AA(JK)
ENDDO ,
ENDDO

IF(JTAIL2 NE. IMAX)THEN

K=1

DO J=1JTAIL1
JJ=JMAX -J +1
TEMP1 = AAN({J ,K)
TEMP2 = AAN(JJ.K)
AAN( K) = TEMP] + TEMP2
AAN(JJ K)= TEMP2 + TEMP1
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ENDDO
ENDIF

IF(ICST .EQ. 0)THEN
PRINT*"********INI‘I’IAI‘ RUN********'
DO K=1,KMAX
DO J=1JMAX
TURRE(J,K) = RETINF
ENDDO
ENDDO
ELSE
NNIT = 1
PRm’I’#"*******RESTART***##***‘
OPEN(16)
READ(16,*) JA KA
READ(16,*) ((TURRE(J K), J=1JA), K=1,KA)
REWIND 16
ENDIF
WRITE(*,*)' FINISHED TURB MODEL INIT"
IF

DO J=JTAIL1,JTAIL2
TURRE(J,1) = 0.0
ENDDO

JX=JMAX+1
DO K=1 KMAX
SMINJX K)=SMIN(1 K)
ENDDO

##++x355CHANGE J DIRECTION FOR VELOCITIES*¥¥¥*+%**
DOK =1, KMAX
DOJ =2,JMAX
TEMPU(J K) = U(J,K)
TEMPV(J K) = V(J,K)
ENDDO
ENDDO

DOK =1,KMAX
DO J =2, IMAX
UD(J K) = TEMPU(JMAX+2-] K)
VD(J,K) = TEMPV(JMAX+2-J K)
ENDDO
UD(1,K) = U(1,X)
VD(1K) = V(1,K)
ENDDO

NOW THE MODEL
COMPUTE THE VELOCITY GRADIENT VECTOR

DO K=1 KMAX
DO J=1JMAX
QUK,1)=1.
QUJK.2) = UDJ K)
QU K,3) = VDU K)
FNU(K) = 1.
ENDDO
ENDDO
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THIS ROUTINE ACTUALLY COMPUTES THE GRADIENT OF THE MEAN
VELOCITY

CALL GRADV(MAXJ ,MAXK JDIM,KDIMJMAX KMAX JTAIL1JTAIL2,
X,Y,AA,AAN,Q.GQ,GQN)

GENERAL NOTE: THE EDDY VISCOSITY IS SUPPLIED AT HALF POINTS
IN K, NU(J K+1/2). THIS MEANS THAT SOME QUANTITIES ARE NEEDED
AT HALF POINTS AND OTHERS ARE NOT.

STEP 1. CALCULATE THE DAMPING FACTORS AT 1/2 POINTS
RATT= C1E/C2E

DO J=1JMAX
DO K=1 KMAX-1
JB =IB(.K)
WT =BWT(J K)
JJ1=)B
JJ2=JB+1
IFJB EQ.IMAX)JI2=1
WM1 =FNUQJIL1)
WM2 =FNU@JI2,1)
SSW1 = ABS(GQ@IJ1,1,1,2) - GQ(II1,1,2,1)
SSW2 = ABS(GQ@I2,1,1,2) - GQ(1J2,1,2,1))
SSW = ABS(SSW1 + WT*(SSW2-SSW1))
WNU = WMI + WT*(WM2-WM1)
RHOW = QQJJ1,1,1) + WT*(Q(JJ2,1,1)-Q(JJ11,1,1))
RA = SQRT( RE¥*(SSW/WNU + 1.E-10*FSMACH**2))
YPLS =RA*SMIN(J.K)
YPLS =MAX(YPLS,.0001)
YPLSM = RA* 5*(SMIN(J , K)+SMIN(J K+1))
IF(J .EQ. 91 .AND. K .LE. 5) PRINT*,'Y+=".YPLSM
EXPl = EXP(-(YPLS/APLUS))
EXP2 = EXP(-(YPLS/APLUS2))
DAMP1(J K) =(1.-EXP1)*(1.-EXP2)
DAMPIM(J K) = (1. - EXP(-(YPLSM/APLUS1)))*
(1. - EXP(-(YPLSM/APLUS2)))

DDY = EXP1/APLUS 1*(1.-EXP2)
+ EXP2/APLUS2*(1.-EXP1)
DD = DAMPI1(J K)
SDD = SQRT(DD)
DAMP2( K) =
RATT + (1.-RATT)*( 1/(AKARMAN*YPLS) + DD )*
(SDD + YPLS*DDY/SDD)

ENDDO

DAMP1 (J KMAX) = 1.0

DAMPIM(JJ, KMAX) = 1.0
ENDDO

C-2



C NOW SOLVE THE EQUATION
DO 500 NIT=1NNIT

DO K=1KMAX
DO J=1,JMAX
TURMU(J K) = CMU*DAMP1(J K)*TURRE(J.K)
DO

ENDDO
C F_ETA_ETA VISCOUS TERMS

DO J=1JMAX
DO K=2, KMAX-1
KP1 = K+1
KM1 =K-1
XY3P = 5*XY(J K3H+XY(J KPL,3))
XY4P = 5*(XY(J K4+ XY(J,KP1 ,4))
TTP = (XY3P*XY({J K, 3I+XY4P*XY(J K,4))

XY3M = .5*(XY(J.K,3)+XY(J KML,3))
XY4M = .5*(XY(J. K 4+XY(J KM1.4))
TTM = XY3M*XY(J K,I+XY4M*XY(J K 4))

CNUD = ( FNU(J.K)+TURMU(J K)/SIGE
> + CMU*DAMPI1(J K)*TURRE(J K)/SIGE )/RE

CDP = TTP*CNUD
CDM = TTM*CNUD

TREP = .5*(TURRE(J KP1)+TURRE(J K))
TREM = .5*(TURRE(J. KM1)+TURRE(J K})

CAP = CMU*TREP*DAMPIM(J K Y*TTP/(SIGE*RE)
CAM = CMU*TREM*DAMPIM({J KM1)*TTM/(SIGE*RE)

C THIS COMES FROM MAXIMUM PRINCIPLE ANALYSIS

BY(J K) = MIN(-CDM + CAM,0.0)
CY(J . X) = MAX( CDP - CAP,0.0) + MAX( CDM - CAM,0.0)
DY(J.X) = MIN(-CDP + CAP,0.0)

FY(J K) =- BY(J K)*TURRE(J KM1)
> -CY(J,K)*TURRE(JK )
> - DY(J.KY*TURRE(J ,KP1)

ENDDO
ENDDO

C ADVECTIVE TERMS INETA

DO J=1JMAX
DO K=2,KMAX-1
UU = (XY(J ,K,3)*QUJ K ,2)+XY(J.K4)*Q(J K 3))
SGNU = SIGN(1.,UU)
APP = .5*(1.+SGNU)
APM = 5*(1.-SGNU)
FY(JK) =FY(JK) -
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UU*( APP*(TURRE(J K)-TURRE(J,K-1)) 84
+APM*(TURRE(J K+1)-TURRE(J K)) )
BY(J K) = BY(J,K) - UU*APP
CY(J .K) = CY(J K) + UU*(APP-APM)
DY(J,K) =DY(I K) + UU*APM
ENDDO
ENDDO
PRINT*,ETA TERMS DONE'

E_XI_XI VISCOUS TERMS

DO J=1JMAX

JPI =J+1

M1 =]-1

IFJ EQ. 1) IM1 = JMAX

IFJ .EQ. IMAX)JP1 =1

DO K=2,KMAX-1
XYIP = 5*XY(JK,1)+XY(JP1 K,1))
XY2P = S*(XY(J.K2+XY(JP1 K 2))
TTP = XYIP*XY(J K, 1)+XY2P*XY(J K,2))
XYIM = 5*(XY(J K, 1)+XY(MLK,1))
XY2M = S*(XY(J K,2+XY(IM1,K,2))
TIM = XYIM*XY(J K I+XY2M*XY(J K,2))

CNUD=( FNU(J ,K+ TURMU(J K)/SIGE
+ CMU*DAMP1(J K)*TURRE(] K)/SIGE )/RE

CDP = TTP*CNUD
CDM = TTM*CNUD

TREP =.5*(TURRE(JP1,K)}+ TURRE(J K))
TREM =.5*(TURRE(JM1, K+ TURRE(J X))

CAP=CMU*TREP*.5*(DAMP1(J K)+DAMP1(JP1 K))*TTP/(SIGE*RE)
CAM=CMU*TREM*.5*(DAMP1(JM1 K)+DAMP1(J K))*TTM/(SIGE*RE)

THIS COMES FROM MAXIMUM PRINCIPLE ANALYSIS

BX(K,J) = MIN(-CDM + CAM,0.0)
CX(K,J) = MAX( CDP - CAP,0.0) + MAX( CDM - CAM,0.0)
DX(K,J) = MIN(-CDP + CAP,0.0)

FY(J K) = FY(J K) - BX(KJ)*TURRE(JM1,K)
- CX(KJ)*TURRE(JX )
- DX(K.J)*TURRE(JP1,K)

ENDDO
ENDDO

ADVECTIVE TERMS IN XI

DO J=1JMAX
Pl =J+1
IM1 =J-1
IFJ .EQ. 1) IM1 = JMAX



ann o
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IF( EQ.IMAX) JP1 =1
DO K=2,KMAX-1
UU = XY( K, 1)*QU . K2H+XY(J K 2)*QUJ.K,3))
SGNU = SIGN(1.,UU)
APP = .5*(1.+SGNU)
APM = .5*(1.-SGNU)
FY(,K)= FY(X) -
UU*(APP*(TURRE(J K)-TURRE(JM1,K))
+APM*(TURRE(P1 K)-TURRE(J X)) )
BX(K.J) = BX(K.J) - UU*APP
CX(KJ) = CX(K.)) + UU*(APP-APM)
DX(K.J) = DX(K,J) + UU*APM
ENDDO
ENDDO
PRINT*,’XI TERMS DONE'

DO K=2,KMAX-1
KM1=K-1
DO J=1JMAX
UX = GQN(U K, 1,1)
UY =GQN( K,1,2)
VX = GQN( X.2,1)
VY = GQN(1 X.2.2)

REAL PRODUCTION OF K

SS = SQRT(ABS(
2.#(UX** 2+ VX*UY+VY**2)+UY*¥2+VX**2
-.666666*(UX + VY)**2))

THIN LAYER APPROXIMATION

§S = ABS(UY-VX)
TT=(C2E*DAMP2(J K)-C1E)* SQRT(CMU*DAMP1(J K))*SS

FACT = DS(J X)*DTM
BX(K,J) = BXKJ)*FACT
CX(K.J) = CXKJ)*FACT + 1.
DX(K.J) = DX(K Jy*FACT
BY(J.K)=BY({J K)*FACT
CY(JK)=CY(JK)*FACT + 1.
DY(J.K) = DY(J,KY*FACT
FY(J K) = (FY(J K+ TT*TURRE(J K))*FACT
ENDDO
ENDDO

CALL TRIV(JDIM KDIM,1 JMAX,2 KMAX-1,BY,CY,DY FY)

DO K=2 KMAX-1
DO J=1JMAX
BY(J,K) = BX(K.J)
CY(JK) = CX(K,J)
DY(J K) = DX(KJ)
ENDDO
ENDDO
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CALL VTRIP(JDIM,KDIM,1,JMAX,2 KMAX-1, 86
BY,CY,DY FY)

DO K=2,KMAX-1

DO J=1JMAX
FX(K,J)) =FY(J.K)

ENDDO

ENDDO

NEGN =0

SUMN = 0.0

JMIN =1

KMIN = 1

FXM = ABS(FX(1,1))

DO K=2, KMAX-1
DO J=1JMAX
TURRE(J K) = TURRE(J K) + FX(K,J)
IF(ABS(FX(K,J)).GT.FXM)THEN
FhﬁNM =JABS(FX(KJ))

KMIN=K
ENDIF

THIS NEXT CHECK IS NEVER NEEDED IN PRACTICE
IF(TURRE( K).LT. 1.E-12)THEN
NEGN = NEGN + 1
TURRE(J X) = 1.E-12
FX(K,J) = 0.0
ENDIF
SUMN = SUMN + (FX(K,J))**2
ENDDO
ENDDO

SUMN = SQRT(SUMN)/FLOAT((TMAX-1)*(KMAX-1))

OUT FLOW BOUNDARY CONDITION FOR A POLAR MESH.
DO J=1JMAX
TURRE(J,1) = 0.
IF(QUJ,KMAX,2)*XY(J KMAX,3+Q(J, KMAX,3)*XY(JLKMAX 4) .GE. 0.)
TURRE(J, KMAX) = TURRE(JLKMAX-1)
ENDDO

XMU=0.0
TMAX =0.0
DO K=1 KMAX-1
DO J=1,JMAX
TMAX = MAX(TMAX, TURRE(] K))
TURMU(J K) = CMU*DAMPIM(J,K)*.5%(
TURRE(J.K)*QJ K,1)
+ TURRE(J K+1)*Q(J K+1,1))

IF (TURMU(QJ K} .GT. XMU) THEN
XMU = TURMU(J K)



500

ololeke]

WRITE(*,'(A,E12.6,A,E12.6,A E12.6,15,1X,15))
'RESID RE_T = 'SUMN,' MAX RT =, TMAX,
'RESID MAX ='FXM,JMINKMIN

WRITE(*,*) MAX TURMU = ', XMU,XMU*AL/RE," (J,K)="'JMU,KMU
CONTINUE

*4x4xxkxCHANGE J DIRECTION OF TURMU AND SET TO EDDY*## ¥k
DOK =1,KMAX
DOJ =2,IMAX
TEMPMU(J K) = TURMU(J K)
ENDDO
ENDDO

DOK =1, KMAX
DOJ=2,JMAX
EDDY(J K) = TEMPMU(JMAX+2-J K)*AL/RE
ENDDO
EDDY(1,K) = TURMU(1,K)*AL/RE
ENDDO
DO K=1 KMAX
EDDY(1,K)=.5*EDDY (2, KH+EDDY(JMAX K))
ENDDO

DOJ=1,JMAX
EDDY(J,1)=0.0
ENDDO

RETURN
END
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C#***!****ttt*******MEAN VEL(xrrY GRADIEN’I‘#*#****#ﬁ*l*****t*t**t*

(ke etk sk s o o st ok o ae o o sl o o b o ko sl s ok s ol ol ale o s ks e o b ool oo o o ok o o s e o e o ok sk ok ok ok ok ok ok

>

10

20

30

SUBROUTINE GRADV(MAXJ,MAXK JDIM,KDIM,JMAX KMAX,
JTAIL1JTAIL2.X,Y,AA ,AAN,Q,GQ,GQN)

DIMENSION AA(0:MAXJ,0:MAXK),AANMAXI MAXK)
DIMENSION Q(JDIM,KDIM 4)

DIMENSION X(JDIM KDIM),Y(JDIM,KDIM)

DIMENSION GQ(0:JDIM,0:KDIM,?2,2), GQN(JDIM,KDIM,2,2)

NOTE THE ZERO STARTING INDEX IN THE DIMENSIONS

DO 10N=1,2
DO 10 K=1, KMAX
DO 10 J=1,JMAX
GQU.KN,1)=0.0
GQUJ.KN.2)=00
GQN(@J,KN,1)=0.0
GQN(J,K.N,2) = 0.0
CONTINUE

DO 20 NN=2,3
N=NN-1
DO 20 K=1 KMAX-1
DO 20 J=1,JMAX
M1 =]J-1
IF(J EQ. 1) JM1 = JMAX
DX = X(J K+1)-X(J K)
DY = Y(J K+1)-Y( K)
SNX = DY
SNY =.DX
GQUMLKN,1) = GQUM1K N,1) + SNX*.5%(Q(J K+1,NN}+Q(J.KNN))
GQUXN,I) =GQUKN,1) - SNX*.5*(QJ K+1 NN}+Q(,K.NN))
GQ(UM1,KN.2) = GQUMLK.N,2) + SNY*.5*(Q(J.K+1 NN}+Q(J K NN))
gg(l KN2) =GQUKN?2) - SNY*.5%(QU K+1,NN)+QU,K,NN))

DO 30 NN=2,3
N=NN-1
DO 30 K=1 KMAX
DO 30 J=1JMAX
Pl=J+1
IF(J .EQ. JMAX) JP1 =1
DX = X(JP1,K)-X(J K)
DY = Y(JP1K)-Y(J K)
SNX = DY
SNY = -DX
GQU.K-1N,1) = GQUJ,K-1,N,1) - SNX*.5*(Q(JP1, K NN+Q(J K.NN))
GQUKN,1) =GQUKN,1) +SNX*.5*(QUP1KNN)}+QU.K.NN))
GQUI.K-1,N.2) = GQU K-1,N.2) - SNY*.5*(QUP1 K NN+Q(J.K.NN))
CGg(l KN.2) =GQUKN2) +SNY*5*(QUP1LKNNHQU.K,NN))
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DO 90 M=1,2
DO90N=1,2
DO 90 K=1, KMAX-1
DO 90 J=1,JMAX
JP1=J+1
IF(J .EQ. IMAX) JP1 =1
GQN(.K.N.M) = GQN(J X, NM) + GQ(J K.N.M)
GQN(JP1,K,N.M) = GQN(JP1.KNM) + GQ(J.K.NM)
GQN({ K+1 NM) = GQN(J K+1N,M) + GQUJ.,KN.M)
GQN(P1,K+1,N.M) = GQN(JP1 K+1.NM) + GQUJ.K.N.M)
CONTINUE

IFJTAIL2 .NE. JIMAX)THEN
K=1
DO 95N=1.2
DO 95J=1,JTAIL1
JI=JMAX -J +1
TEMP1 = GQN(J,K.N,1)
EMP2 = GQN(JJ,K,N,1)
GQN(J X.N,1) = TEMP1 + TEMP2
GQN(JJ K N,1)= TEMP2 + TEMP1
TEMP1 = GQN(J K.N,2)
TEMP2 = GON(JJ K.N,2)
GQN(J X N,2) = TEMP1 + TEMP2
GQN@JJ K N,2)= TEMP2 + TEMP1
CONTINUE
ENDIF

OQOOOOOOOOOOOOO b
v

DO 110N=1,2
DO 110 K=1,KMAX-1
DO 110 J=1,JMAX
GQUKXN,1) = GQU,KN,1)/AA(J.K)
GQU KN .2) = GQU,K.N.2)/AA( K)
110  CONTINUE

DO 100 N=1,2
DO 100 K=1 KMAX
DO 100 J=1,JMAX
GQN(,K.N,1) = GON(J K,N,1)/AAN(J K)
GQN(J,KN,2) = GQN( K,N,2)/AANUJ K)
100 CONTINUE

RETURN
END



90

C****ll‘*i*#*********************#**********#***********ﬁ*******#*t******

C*#****#t*****#* SC ALAR 'I'RIDIAGON Al e 3o o ol ok e s o e ol o e ol o e o sl ool o ok sl ke ake ake ak
C*******#‘#*********#t‘t#***i*i*t*****#*****###*#t*********#****#it#***

SUBROUTINE TRIV(JDIM,KDIM,JLJUXL,KU,A,B,C.F)
C
DIMENSION A(JDIM,KDIM),B(JDIM,KDIM),CUJDIM KDIM)
DIMENSION X(JDIM KDIM),FJDIM KDIM)
C
DO 10J=JLJU
X(J KL)=C(J KL)/B(J KL)
F(J KL)=F(J KLyB(J KL)
CONTINUE

KLPI =KL +1
DO 1 I=KLP1,KU
DO 20 J=ILJU
Z=1/BJ.D-AJ.D*XJ ]-1))
X3 D=CO.)*Z
FQ.D=FJ.D-AJD*FJ I-D*Z
CONTINUE

CONTINUE

10

=

KUPKL=KU+KL
DO 2 I1=KLP1, KU
I=KUPKL-I1
DO 30J=JLJU
F(J.D=FQJ.D)-X{J . )*F(J J+1)
30 CONTINUE
2 CONTINUE

RETURN
END
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C****iﬁ**l!**ill#**ll!ll‘ttll#****l‘**#***#***#************#*****i*********i#*

C****#*#***it**i SCAI.:AR PERIODIC T'RIDIAGONAL a9 e o o o e o ol e o o ek o o e e ke ol ke ok

C*******l******i#t********i**t****#**ll*******t*#**t***i***********#****

SUBROUTINE VTRIP(JDIMKDIM,J1]J2K1,K2,A.B,CF)

DIMENSION A(DIM KDIM),B(JDIM,KDIM),C(JDIM,KDIM).F (IJDIM KDIM),
> QD(DIM,KDIM),S(DIM,KDIM),FND(KDIM)

C

JA=J1+1
FORWARD ELIMINATION SWEEP

anoa

DO 1K =K1K2
FND(K) = F(J2,X)
QD(1X) = -CJ1,K)/BJ1,K)
F(J1X) = FJ1,K)/BJ1,K)
S(U1,K) =- AJ1,K)/B{J1.K)
CONTINUE

—t

DO 10J=JAJ2
DO2K=K1K2
P =1./( B(J K) + A(J,K)*QD(J-1,K))
QD{J.K) = - CJ.K)*P
F(.K) = (FJ X) - AJ,K)*F(J-1 K))*P
S(J.K) = - AJ K)*SJ-1,K)*P
CONTINUE
CONTINUE

aagw

BACKWARD PASS
=J1+12
DO3K=Kl K2
QD@J2K)=0.
SJ2K)=1.
CONTINUE

QW

DO 11 I=JAJ2
J=1-1
DO 4K = K1 K2
S(.K) = SJ.K) + QD(J K)*S(J+1,K)
QD(.K) = F(.K) + QDU K)*QD(J+1.K)
4 CONTINUE
11 CONTINUE
DO 5K =K1,K2
F(J2,K) = (FND(K) - C(J2, X)*QD(J1 K) - A(J2,K)*QD(J2-1 K))/
1 (CU2.K)*SU1K) + A(2K)*SU2-1.K) +B(U2K))
CONTINUE

BACKWARD ELIMINATION PASS
DO 12 1=JAJ2

J=1J-1

DO 6K =K1K2

F(J K) = FJ2K)*$( K) + QDU K)

6 CONTINUE
12 CONTINUE
RETURN
END
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C***ll#tt#t**************‘*****##***##***#*******ii*********‘t*ll

C******i*********ME’TRICS SUBROUTWE******i*#ti#i**#****i**t*

C*************************l‘*l'##***t***#*##***ii*i##*#*#**#***‘*

SUBROUTINE XYMETS(JMAX, KMAX,X,Y XY XYJ)

PARAMETER(JDIM=120 KDIM=80 MAXJ=121 MAXK=81)
DIMENSION X(JDIM,KDIM),Y JDIM,KDIM) XY (JDIM KDIM 4)
DIMENSION XYJ(JDIM,KDIM), WORKX(JDIM,KDIM),

$ WORKY(IDIM,KDIM)
LOGICAL PERIODIC, SHARP, CUSP

C

READ IN X, Y COORDINATES

**FORMAT FOR ONE-ELEMENT GEOM**
USE FORT.10 FOR PLOT3D

ololNeYo e

OPEN(12) _

READ(12,*) JDUM,KDUM, AL

READ(12,100) ((X(@.K), J=1JDUM), K=1,KDUM)

READ(12,100) ((Y{J K), J=1JDUM), K=1,KDUM)

REWIND 12

FORMAT(10E19.12)

** FORMAT FOR TWO-ELEMENTS GEOM**

OPEN(12)

READ(12,*) JDUM,KDUM

READ(12,*) (X(J K), J=1,JDUM), K=1 KDUM),
((YJ.K), J=1DUM), K=1,KDUM)

REWIND 12

R

CHANGE DIRECTION OF 'J' TO CLOCKWISE FOR BB MODEL

OOOOOOOOOé

DOK = 1, KMAX
DOJ =2,IMAX
WORKX(J K) = X(J K)/AL
WORKY(J K) = YJK)/AL
ENDDO
X(1,K)=X(1,KyAL
Y(1,K)=Y(1K)AL
ENDDO

DO K =1, KMAX
DOJ =2, IMAX
X(J,K) = WORKX(JMAX+2-J K)
Y({J.K) = WORKY(JMAX+2-1.K)
ENDDO
ENDDO

0

JLOW=1

JUP=JMAX

JLOW=

JUP=JMAX-1

XY4 =XXIXY3 = YXI

anNnan
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DO 11 K=1,LKMAX
DO 10 J=JLOW JUP
JP1=J+1
Mi=J-1
IFJ EQ. 1) JM1 = JUP
IF(J .EQ. JUP) JP1 = JLOW
XY(J K4 = (X(IP1LK) - XML ,K))*.5
XY(J K.3)=(YJPLK) - YOUM1LK)*.5
CONTINUE

IM=IMAX-1
IF(.NOT.PERIODIC)THEN
XY(1K4)=.5%( -3.*X(1 K) +4.*X(2.K) - X(3.K))
XY(1K,3) = .5%(-3.*Y(1 K) +4.*Y(2,K) - Y(3.K))
XY(IMAX K 4) = ( 3.*X(IMAX K) -4*X(JMK) + X(JM-1 K))*.5
XY(MAXK,3) = (3*YOMAX K) 4.*YOMK) + YOM-1K))*.5
ENDIF

CONTINUE
XY2=XETA, XY1 = YETA

DO 21 J=1JMAX
DO 20 K=2, KMAX-1
XY K,2) = (X(J.K+1) - XJK-1))*.5
XYQK,1D=(YJK+1)- YJK-1)*5
CONTINUE
XY(J,1,2) = (-3.#X(J,1) +4.#X(J,2) - XJ,)*.5
XY(J.1,1) = (-3.4Y{,1) +4.*Y(.2) -YJ 3)*.5
KM=KMAX-1
XY(J KMAX2) = (3.*X(J KMAX) 4.*X(J, KM) + X(J,KM-1))*.5
XY({J.KMAX,1) = (3.*Y(J KMAX) 4.*Y(J KM) + YJ,KM-1))*.5
CONTINUE

FOR PERIODIC GRIDS WITH SHARP OR CUSP TRAILING EDGES USE

FIRST ORDER DERIVATIVE FOR ETA TERMS, SECOND ORDER
SOMETIMES LEADS TO NEGATIVE JACOBIANS
PERIODIC = .TRUE.
SHARP = .TRUE.
CUSP = .FALSE.
IF( PERIODIC )THEN
J=1
IF( SHARP .OR. CUSP)THEN
XY(J,1,2)= -X(.1) + X(J,2)
XY(g,L,h)= -YJ.D+Y(J.2)
ENDIF
ENDIF

DO 30 K=1 KMAX
DO 30 J=1JMAX
DINV = 1./ ( XY( K 4) * XY(UK.1) - XY( K,3) * XY(JK.2))
IF(DINV .LE. 0.) THEN
PRINT*, ] K
PRINT*, XY(J K,1),XY( K.2), XY(.K,3).XY( K.4)
ENDIF
IF(DINV LE. 0.0)WRITE(6,*)JACOBIAN('J K" )= " DINV
XYJ(JX) = DINV
CONTINUE
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DO 32 K=1, KMAX
DO 32 J=1,JMAX
DINV = XYJ(J.K)

XIX = XY1, XIY=XY2,ETAX=XY3, ETAY = XY4

XY(JXK,1)= XY(J.K,1)*DINV

XY(J K,2) = - XY(J K2)*DINV

XY(J X,3)=- XY(J.K.3)*DINV

XY(JK4)= XY(JK4)*DINV
CONTINUE

RETURN
END



C#*t****#***#***i#*#******i*****#*****t**###*#t**tt****t**t***t**t

C*‘t*i*#*###**#*DEFINI’I’ION OF MAJOR VARIABLES#*****#****#**#**

C****it*#*******t*###*****#****#**i#*#*ll*#*i********#*tt*ﬁ******#1!

AA WEIGHTS FOR VELOCITY GRADIENT COMPUTATION AT CELL CENTER
AAN WEIGHTS FOR VELOCITY GRADIENT COMPUTATION AT GRID POINT
AL CHORD LENGTH
ALPI ANGLE OF ATTACK OF THE AIRFOIL
BX LHS MATRIX ENTRIES IN THE XI DIRECTION
BY LHS MATRIX ENTRIES IN THE ETA DIRECTION
BWT INTERPOLATION RATIO OF SMIN LOCATION ON THE SURFACE
CX LHS MATRIX ENTRIES IN THE XI DIRECTION
CY LHS MATRIX ENTRIES IN THE ETA DIRECTION
DAMPI THE PRODUCT OF THE DAMPING FACTORS IN BB MODEL, D1 * D2
DAMPIM THE PRODUCT OF THE DAMPING FACTORS IN BB MODEL, D1 * D2
AT MID K POINT
DAMP2 DAMPING FACTOR, F2(Y*)
DS SPATIALLY VARIABLE TIME STEP, SCALED ON METRIC JACOBIAN
DT TIME STEP
DX LHS MATRIX ENTRIES IN THE XI DIRECTION
DY LHS MATRIX ENTRIES IN THE ETA DIRECTION
EDDY EDDY VISCOSITY IN ZETA
FIRST LOGICAL: (T) THE SUBROUTINE IS CALLED FOR THE FIRST TIME
FMU LAMINAR EDDY VISCOSITY
FNU KINEMATIC VISCOSITY
FSMACH FREE STREAM MACH NUMBER
FX RHS MATRIX ENTRIES IN THE XI DIRECTION
FY RHS MATRIX ENTRIES IN THE ETA DIRECTION
GAMI GAMMA -1
GAMMA GAS CONSTANT (14)
GQ VELOCITY GRADIENTS AT CELL CENTER
GON VELOCITY GRADIENTS AT GRID POINT
B POINTER FOR SMIN
ICST FLOW INDICATOR:
0 - INITIAL RUN 1 - STEADY CASE
2/3 - PITCHING UP 4 - OSCILLATING
JDIM J DIMENSION OF THE GRID
JMAX TOTAL NUMBER OF POINTS IN XI DIRECTION
JTAIL1 FIRST SOLID BODY POINT
JTAIL2 LAST SOLID BODY POINT
KDIM K DIMENSION OF THE GRID
KMAX TOTAL NUMBER OF POINTS IN ETA DIRECTION
NNIT INDEX FOR ITERATIVE SOLUTION OF TURRE, NNIT = 1 FOR TIME
ACCURATE SOLUTION
PERIODIC  PERIODIC(T) AND NON-PERIODIC(F) OPTIONS
PI 4*ATAN(1.)
PRESS PRESSURE (PLOT3D FORMAT)
Q CONSERVATIVE VARIABLES (PLOT3D FORMAT)
RE REYNOLDS NUMBER
SMIN MINIMUM DISTANCE TO THE WALL
SS PRODUCTION OF K OR TEMPORARY VARIABLE FOR BWT
TINF INFINITY TEMPERATURE

TURMU TURBULENT EDDY VISCOSITY
TURRE TURBULENT REYNOLDS NUMBER
U TANGENTIAL VELOCITY

v NORMAL VELOCITY

VORT VORTICITY



CARTESIAN X COORDINATES OF THE GRID
METRIC TRANSFORMATIONS
XY(JK,1)=DXI/DX

XY(JK,2)=DXI/DY

XY(JKJ3)=DETA/DX
XY(JK4)=DETA/DY

JACOBIANS OF METRIC TRANSFORMATIONS
CARTESIAN Y COORDINATES OF THE GRID
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