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OF Ax- _bWITH SUCCESSIVE
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ABSTRACT

We present two projection techniques for computing approximate solutions to linear sys-

tems of the form Ax.___ = _b'_, for a sequence n = 1,2,..., e.g., such as arises from time discretiza-

tion of a partial differential equation. The inexpensive approximate solutions can be used

as initial guesses for iterative solution of the system, resulting in significantly reduced com-

putational expense. Examples of two- and three-dimensional incompressible Navier-Stokes

calculations are presented in which x__represents the pressure, and A is a discrete Poisson

operator. In flows containing significant dynamic activity, these projection techniques lead

to as much as a two-fold reduction in solution time.

IThis research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681, and in part by
the NSF under Grant # ASC-9107674.





1 Introduction

We consider iterative solution of a sequence of linear problems having the form:

"P,_: Ax9 =b = , n = {1,2,...} (1)

where A is an m × m matrix, and x _ is assumed to be a solution which is evolving with

some parameter, e.g., time, in the case where (1) represents an implicit substep in numerical

solution of a time dependent partial differential equation. When A is sufficiently sparse and

not amenable to eigenfunction decomposition techniques (e.g., fast Poisson solvers), iterative

methods are generally preferable to direct factorizations, both from the standpoint of storage

and operation count. For the particular class of problems defined by (1), direct methods

benefit from amortization of the one-time cost of matrix-factorization. However, they derive

no benefit from the fact that successive problems might have very similar solutions, whereas

iterative methods can exploit this possibilty as a good iniitial guess can lead to a significant

reduction in the number of iterations required to bring the residual to within the specified

tolerance.

The idea of using information generated from previous right-hand sides to speed iterative

solution processes is not new. It is of course standard to solve only for the change in the

solution, Ax '_ -- x_'_ -x9 -1 (e.g., [1]). For Krylov based methods, more substantial gains can

potentially be attained if the residual vectors spanning K_ -1 = {_b'_-1, Abe-l,..., Aib '_-1}

are retained, and b'_ is projected onto this space, e.g., as presented by Saad [2] for a Lanczos

method and Van der Vorst [3] for the conjugate gradient method. The drawback of these

techniques is that the required basis set, K_ E T_taxi+l, might be quite large, and that there

is no clear way to continue or update the set of saved vectors for a continuing sequence of

right-hand sides.

In this paper we present two techniques for extracting information from previous prob-

lems, T'k, n - l < k _< n - 1, to generate initial guesses to the current problem, _,_. The

first approach is to simply remove any component of b '_ for which the solution is already

known, by projecting __b'_ onto the set of vectors {__bn-l,..., b '_-1} having associated solutions

{xg-f,..., x___-_ }, and to solve the problem corresponding to the component of b n orthogonal

to span{b_n-t,... ,b '_-1}. The second approach is a refinement of the first, which seeks the

best approximation to x '_ in span{z_'_-_,...,x9 -1} with respect to a norm tailored to the

convergence properties of the conjugate gradient method for the case when A is symmetric

positive definite. These procedures are superior to those derived from extrapolation (e.g.,

based on high-order interpolants in time) in that projection techniques yield the best pos-

sible approximation within a given basis set. Moreover, while extrapolation techniques run

the risk of generating a poor initial guess, this is not possible with the methods proposed



here, as ttle projection is guaranteed to reduce the error in a relevant norm provided that x '_

has some component in span{x'_-t,... ,x ''-I }. In tile case where x '_ is not well represented

ill this space tile residual will be unchanged.

The proposed projection techniques are similar to reduced basis methods used in non-

linear finite element problems [4,5]. However, the current methods can be implemented as

"black boxes", with calls to any iterative solver, "solve_A" and, for reasons to be discussed,

the forward operator ap'plication, "multiply_by_A"

The outline of the paper is as follows. In Section 2 we describe two projection techniques

for generating initial guesses $ __ x_" based on l previous solutions x k, n - 1 < k <

n - 1. In Section 3 we describe an application of the technique to the incompressible

Navier-Stokes equations and in Section 4 we present performance results for several fluid

dynamics calculations.

2 Projection Methods

2.1 Method 1

We begin by assuming that we have stored a set of vectors Ut = {-_b,,...,_} and solution

vectors Xt = {_1,--.,_} satisfying:

A__._ = _ k= {1,...,l} (2)

Though not requisite, Bt and Xt are assumed to be derived from the 1 most recent problems,

7_k, k = n -1,...,n - 1, i.e., span{Bt} = span{_,,_,,... ,-__bn_,}. To simplify the orthogonal-

ization, Bt is assmned to be orthonormal:

<b_,b_j> = 6_j , (3)

where _ij is the Kroenecker delta, and < . > is an appropriately weighted inner-product.

The algorithm is based upon the following Gram-Schmidt procedure:

At time level n, input _b'_: (4)

_k =< b_,_ >, k= 1,...,I

b_- E
solve A_ = b to tolerance e

i i

update {B_, Xt}

return x n



The computation of -_bis simply standard Gram-Schmidt orthogonalization of _.b'_ with re-

spect to Bt. The ai's are computed in a group prior to modifying _b'_. in order that, in a

parallel computation in which bn and --bk> are distributed across P processors, the global

comnmnication required for the inner-products may be carried out in a single O(log 2 P) data

exchange of an /-vector, at a cost commensurate with that of a standard inner-product. If

necessary, it is possible to employ a more stable modified Gram-Schmidt procedure [3,6] for

the computation of b, at the expense of 1 individual vector reductions. However, we have

not found this to be necessary in any application to date, probably due to the fact that

the orthogonality condition (3) results from a Gram-Schmidt procedure (below) rather than

from recursion as in the case of Krylov methods.

To complete the procedure (4), we require a mechanism for updating the basis sets

{Bl, Xt}. Initially, the sets are empty, and can be filled with the first l solutions and data.

In fact, since h 2_ hk, k = {1,...,l} by construction, the vector pair {h,_} seems like a

likely candidate to add to the basis set. However, this will not, in general, be stable because

A_ = h is not satisfied exactly. This situation can be corrected by re-computing the required

inhomogeneity, i.e., setting h = A_, and enforcing (3) via a second Gram-Schmidt procedure.

Additionally, we need a strategy for deciding which vectors to keep when the size of the basis

set exceeds available memory capacity. There are several possibilities, e.g., retaining those

vectors which repeatedly capture most of the energy in __b'_. Initial trials indicate that a

reasonable approach is to save just the solution to the current problem, x '_ = k. + _ akk_.k,

which is a near optimal linear combination of elements in the current basis set.

We summarize the update procedure as follows. If L is taken to be the maximum number

of vector pairs to be stored, i.e., l _< L, then at each time step:

If (I = L) then: b__+--- Az_'_/l[Ax_'_[] (5)

_-a _-- x---_/][az--'_l]

l=l

else: h _ Ak__

ak =<--b,'-bk >, k = 1,...,l

,--- (h- E  k )/llh- IE k-_bkll
Y;c k )tllh- Y;

l=l+l

endif

Here, ][.[[-<. >½. The procedure re-initiMizes {Bt, Xt} with the most recent solution pair

when the memory limits are exceeded, and then reconstructs a set which satisfies (2-3).
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2.2 Method 2: A-conjugate Projection

The procedure of the preceding section follows the intuitive line of reasoning that if _b'_ is

well approximated by _ = _ aj_j, then x_" will be well approximated by __ = _ aj_j. The

degree of approximation can be quantified by noting that __is the L2 projection of _b'_ onto

Bj, which implies that __ is the best approximation to x '_ in Xt with respect to the A2-norm:

[IXllA_ --< Ax_, Ax_ >½. If A is symmetric positive definite and conjugate gradient iteration

is employed, it is sensible to begin with a projection which minimizes the distance between

x n and Xt in the A-norm, []x][a =< x_,Ax >½, since the conjugate gradient method seeks

approximations which successively minimize the error in the A-norm [7].

The derivation of the resultant projection method is based upon a straightforward min-

imization procedure. Assuming as before that we have a set of previous solution vectors

Xt = {_i}, i = 1,..., l, we seek coefficients (_i such that the approximation given by

I

= __, c_iyci (6)
i=1

minimizes the error in the A-norm:

l l l

Ilxn--_ll2A = (x'_)TAx_ "_ -- 2 __oq(5:TAx_ '_) + Y]_ __,(_i_3(__Tayc_j) (7)
i=1 i=1 j=l

The minimization procedure is simplified if we insist that the __i's are A-conjugate and

normalized to satisfy:

_T A_ = '5O (8)

Requiring a vanishing first variation of (7) with respect to c_i leads to:

oq = __TAx_'_ = _T_bn , i= 1,...,l (9)

Thus, given a set of vectors Xt = {_) satisfying (8), the best approximation to x_" is found

by simply projecting b_ onto Xt. This forms the kernel of Method 2:

At time level n, input bn: (10)

o_ = _rb_"; i = 1,...,I

solve Ak_ = _ to tolerance e

zZ _--- _+ __

updat_ {21}

return gn



Notice that the storage for this procedure is roughly half that of Method 1 as it only requires

Xl, and not Bt. However, one additional A-multiply is required prior to the solve_A stage.

As before, we need a mechanism to update the set Xt. To satisfy (8) it is necessary

project the most recent solution, x '_, onto X_ and normalize the result. If we do not insist

upon a modified Gram-Schmidt procedure, this can be done with a single multiply by A as

follows. If L is taken to be the maximum number of vector pairs to be stored, i.e., l < L,

then at each time level:

If(l= L) then: il _ m'VIImnlla (11)
1 _----- 1

else: v_i -'- _T A_, i = 1,..., l

_+1 '---- (i- E o.i3/ll(i- E '_&)IIA
I_----1+1

endif

Note that in (11) the required normalization satisfies II(i- E  &)lla = (i rAi- E )½
due to the the A-conjugate relationship (8) and can therefore be computed with no additional

A multiplies.

3 Navier-Stokes Implementation

We have implemented the above projection techniques in spectral-element solution of the

incompressible Navier-Stokes equations:

0u 1 V2u in f_, (12)
0-7 +u'Vu = -Vp +

V • u = 0 in _2,

where u is the velocity vector, p the pressure, and Re = u_£ the Reynolds number based on
v

a characteristic velocity and length scale, and kinematic viscosity.

Spatial discretization is based upon decomposition of the computational domain into K

spectral elements which are locally mapped to [-1, 1]d in _d. Within each element, the

geometry, solution, and data are expanded in terms of high-order tensor-product polynomial

bases in each coordinate direction. Variational projection operators are used to discretize the

elliptic equations arising from a semi-implicit treatment of (12) and a consistent variational

formulation is used for the pressure/divergence treatment. The velocity is represen.ted by

Nth-order Lagrange polynomials on the Gauss-Lobatto-Legendre quadrature points, with

C o continuity enforced at element interfaces. The pressure is represented by polynomials of

degree N - 2 based upon the Gauss-Legendre quadrature points. Temporal discretization

is based upon an operator splitting in which the nonlinear convective terms are treated



explicitly via a characteristic/sub-cycling scheme, and the viscous and divergence operators

are treated implicitly. The discretization leads to the following linear Stokes problem to be

solved at each time step:

H _,-Dye = B£,, i=l,...,d , (13)
Diu_ = 0

Here, H is the discrete equivalent of the Helmholtz operator, { -iV2 + 1R_ _7 }; B is the mass

matrix associated with the velocity mesh; D = (D1, ..., Da) is the discrete gradient operator;

and underscore refers to basis coefficients. Further details of spectral element discretizations

for the Navier-Stokes equations may be found in [8].

The solution of (13) is simplified by a Stokes operator splitting which decouples the

viscous and pressure/divergence constraint [9]. This splitting leads to the solution of a

standard Helmholtz equation for each velocity component, while the resulting system for

1 The resulting system can bethe pressure is similar to (13) save that H is replaced by _TB.

efficiently treated by formally carrying out block Gaussian elimination (Uzawa decoupting)

for p__,leading to:

Ep_ = g_, (14)

where

d

E = -__,DiB-'D T, (15)
i--1

and g is the inhomogeneity resulting from the time-split treatment of (12). E corresponds to

a consistent Poisson operator for the pressure and, though symmetric-positive definite, is less

well conditioned than the Helmholtz problems for the velocity components. Consequently,

solution of (14) dominates the Navier-Stokes solution time. The advantage of the Stokes

splitting is that no system solves are required when applying E, as B is diagonal.

The consistent Poisson problem (14) is solved via a two-level iteration scheme developed

by Rcnquist [10] in which a coarse-grid operator is folded into a global conjugate-gradient

iteration through deflation [11,12]. The coarse (subscript c) and fine (subscript f) decompo-

sition is effected through a subdomain-motivated prolongation operator J E _,,,xK, where

m = K(N - 1) d is the number of pressure degrees-of-freedom. The column space of the

prolongation operator J is intended to approximate the span of the low eigenmodes of the

E system; for this particular problem, J maps element-piecewise-constant functions to the

m nodes of the underlying spectral element discretization. The pressure is then expressed as

P- = J_ + PI' leading to an algebraic reformulation of the original problem as solvable fine
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and coarsesubproblems,

respectively. Here Ef

E.:p_: = g_ - j E[_ jr g_ ,

E_ = jT g_ _ jT Ep_! ,

E - EJE[ 1JTE, and E_ = jTEJ.

(16)

(17)

The fine system (16)

is solved by conjugate-gradient iteration (with appropriate orthogonality conditions). Once

P--I is established, the coarse-grid problem is solved (directly) for pc, and the procedure is

complete. With appropriate application of a local, element-based preconditioner to El, the

condition number of the fine system is significantly reduced relative to the originating E

matrix.

The projection methods of Section 2 are implemented at the level of equation (14), rather

than being applied directly to (16). At each time step, we solve for the change in pressure

A_pn _ p__n_ p__n-l. Thus, in the notation of Section 2, we take A = E, x_'_ = Ap_n, and

bn =g_n__Ep_n-1.

4 Results and Conclusion

We first consider the problem of two-dimensional start-up flow past a cylinder at Re Du_ =
1/

200. The discretization consists of K = 116 spectral elements of degree N = 9 (m = 7424),

with time step At = .0168, non-dimensionalized with respect to Uoo and D. The tolerance

for the L2 norm of the pressure residual was set to 3 x 10 -6, a value commensurate with the

achievable discrete divergence of the resultant velocity field in 32-bit precision.

In Fig. 1 we plot the required number of pressure iterations per step, AlE, for the cases

L = 0, 2, and 20, using the A-conjugate projection technique of Section 2.2. For clarity,

a 50 step windowed average is presented. Over the non-dimensional time simulated, t = 0

to 150, the flow passes through three transient regimes: symmetric wake formation, wake

destabilization, and periodic (yon Karman) vortex shedding. The first and third regimes are

characterized by a high level of dynamic activity, while the second is relatively quiescent,

as illustrated in the lower half of Fig. 1 by the time trace of u at a point in the near wake

region of the cylinder. In flows devoid of dynamics, the pressure at time t n is well represented

by p___-l. Hence, little improvement results from incorporating information from more than

one time step, as seen in the quiescent regime (t __ 10 - 50). However, for flows having a

richer dynamical structure, the enriched basis of the projection method provides potential

for significant savings, as seen in the yon Karman street regime in which a two-fold reduction

in iteration count is attained for L = 20. Increasing the number of basis functions to L = 30

brings no further significant reduction in this case.
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Table 1comparesthe averageiteration countperstep in thevon Karman street regimefor
severalvaluesof Re and At. In all cases, the Method 2 (L = 20) yields a slight improvement

over Method l (L = 20) and roughly a fifty-percent reduction over the standard case (L =

0). This is typical of the performance observed in other two- and three-dimensional flows

of similar complexity. In large three-dimensional flows, the savings in pressure iterations

typically translates into a fifty-percent reduction in CPU time [13].

Table I: Iteration count for flow past a cylinder.

Re[ At Standard

100 0.01 65

200 0.01 90

100 0.04 125

200 0.04 159

Meth. 1 (ratio) Meth. 2 (ratio)

45 (.68) 39 (.59)

(.53) 43 (.48)48

65 (.52) 61 (.49)

89 (.56) 85 (.53)

As a second example, we consider the benchmark problem of computing the growth rate

of small amplitude three-dimensional Tollmien-Schlichting (TS) waves in plane Poiseuille

flow at Re = 1500, e.g. [14]. The domain consists of two-flat plates separated by a dist'ance

2h, periodic boundary conditions in the streamwise and spanwise directions with periodicity

lengths 27rh. The initial condition is a parabolic profile with unit centerline velocity, with

a superimposed three-dimensional TS wave corresponding to the least damped eigenmode

having amplitude 10 .4 and horizontal wave nmnbers a and /3 of unity. For the spectral

element calculation with K = 54, N = 7, and non-dimensional time step At = .00625, the

60

50

40

ARE30

2(1

10[
0

0.3

L=0

L=2

_0 _O-_--6_80--_T00' 120' l_10 _-

0.2

u(t)0.1

Figure 1: Pressure iteration count and time history of velocity for impulsively started flow

past a cylinder at Re = 200.



observedgrowth rate is lrn(wSE) = -.028273, compared to Im(WLT) = -.028230 predicted

by linear theory. The calculations were performed in 64-bit arithmetic and the pressure

tolerance was set to 10 -1'3 in order to observe high-order spatial and second-order temporal

convergence rates.

In Fig. 2a we compare the required number of pressure iterations for the A-conjugate

projection method (L = 80) to the standard case (L = 0). For this problem, the projection

method reduces the number of iterations from roughly 60 to as few as one per time step, with

an average of 3.3. A peak of roughly 20 iterations results when the basis set is restarted, e.g.,

at step 83. The addition of more basis vectors does not further reduce the iteration count

other than by reducing the frequency of restart. The corresponding pre-solver residual and

Navier-Stokes solution times shown in Figs. 2b and 2c indicate respective fifty- and four-

fold reductions. The computations were carried out on an eight-node Intel iPSC/860. We

note that the savings attained is typical for this particular class of problems. However, the

performance of the projection techniques for these convergence benchmarks is exceptional

and does not reflect the reduction attained in more general engineering flows.

Finally, we remark that the O(mL) memory requirement for the projection methods may

at first seem quite high. However, this must be examined in the context of the application.

First, the present application is for a general geometry Navier-Stokes solver, rather than just

a linear equation solver. Consequently, the total memory requirements are already quite high,

as it is necessary to store the grid coordinates, metrics, Jacobians, etc., as well as several

scalar and vector fields. In addition, efficient iterative solvers generally require significant

storage for preconditioners - with memory costs scaling at least as m. Thus, the relative in-

crease in memory demanded by saving a set of basis vectors may not be prohibitive. Secondly,

on dedicated distributed memory machines, these algorithms provide a classic example of

superlinear speedup; for a problem of fixed size, increasing the number of processors results

in increased memory, thus allowing an increased value of L and corresponding decrease in

.ME. Our preference is to regard this fact as a flaw in the fixed-problem-size parallel perfor-

mance metric, rather than to claim that projection techniques are a pathway to super-linear

parallel algorithms. It is nonetheless a classic example of a space-time trade-off which can

have a very real impact in many circumstances.
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