-

-
brought to you by .. CORE
provided by NASA Technical Reports Server

I BTS2
NAGE—=T2)0

Jos068

H_ Optimal Controller Design and Reduction for the Inertial Hold Mode
of the Attitude Control System of the XTE Spacecraft

View metadata, citation and similar papers at core.ac.uk

NASA-CR-195137

(Technical Report to NASA) TU <TG EE 7

LAy
27
P. 1 Zhong Ling Xu

R. A. Gui An Zhou

- 6
(NASA-CR—195137) THE H(SUB N94-2484
INFINITY) OPTIMAL CONTROLLER DESIGN
AND REDUCTION FOR THE INERTIAL HOLD

MODE QOF THE ATTITUDE CONTROL SYSTEM unclas
Of THE XTE SPACECRAFT (Texas
univ-y 2T P 63/37 0205068

Mathematics Departmant
The University of Texas at Brownsville
80 Fort Brown/Brownsville, Texas 78520

February 5, 1994


https://core.ac.uk/display/42787919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

H_ Optimal Controller Design and Reduction for the Inertial Hold Mode of
the Attitude Control System of the XTE Spacecraft

Abstract

The Inertial Hold Mode (IHM) is one mode of the attitude control system of the X-ray
Timing Explorer spacecraft disturbed by both parametric uncertainties and external torque
disturbance. In the paper, the THM model is modified into a typical H, mixed-sensitivity
problem through choosing suitable weighting functions W (s) and Wy(s). The controller is
designed by the H,, optimization technique with the transformation of shifting the imaginary
axis. It can stabilize the plant with uncertainties from the natural frequencies of the flexible body
and the very weak damping and provide adequate disturbance rejection as a good regulator. The
gain margin and phase margin of the system are 24.03 db and 55.04°, respectively. The step
response attenuates to zero within 150 seconds. These show that the controller satisfies the
specified requirements. Since the order of the controller appears high, it is reduced to fourth
order one. The results show that the stability and the performance of the system with the reduced
controller are retained perfectly.

1. Introduction

Inertial Hold Mode (IHM), one mode of the Attitude Control System (ACS), provides
inertial pointing to support the X-ray Timing Explorer spacecraft’s science operations. In the
inertial attitude acquisition phase, it holds attitude with Kalman filter updates based on observed
(non-catalog) guide stars until the ground completes an attitude quaternion to the ACS.

THM holds the correct attitude reference constant, with the exception of small changes
to correct for velocity aberration. This allows the High Energy X-ray Timing Experiment and
the Proportional Counter Array to make observations and also keeps the spacecraft in a safe
attitude with respect to power and thermal requirements [1].

The THM model mainly consists of plant, gyro, controller and reaction wheel. The
transfer function of the flexible body not only has several parallel quadratic transfer functions
with a very weak structural damping value of 0.001, but also its natural frequencies of the
flexible body may vary +/- 25%. Such light damping may result in harmonic vibration of the
spacecraft. It is very dangerous to the spacecraft if the controller can not supply strong rejection
on the frequency bandwidth on which the natural frequencies are located.

The problem facing us is to design a controller that will stabilize the plant in the face of
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the uncertainties of the variable natural frequencies and the weak damping of the plant model,
in other word, the plant will be robust stable under the perturbations of the uncertainties. The
controller will satisfies the requirements of the stability margins from the point of view of the
classical control theory, such as Gain margin > 12 db and Phase Margin > 30 degree [2]. It
must also perform as a good regulator to provide an adequate rejection to the total torque
disturbances acting on the spacecraft. In addition, the controller should also be realized easily,
its order as low as possible.

The H,, technique is a powerful tool to handle control systems with uncertainties and
disturbances. It can maximize the level of robust stability and robust performance of the system.
By the state-space approach [3,4,5,6] to H, optimization, for which the procedure [7, 8] is
automatic and easy to use, a (sub-)optimal controller can be easily obtained. We apply the
technique to the controller system.

The order of controller designed by the H,, technique is guaranteed to be not higher than
that of the generalized plant. However, in many engineering problems, the order of the
generalized plant can be very high. This is due to the fact that the generalized plant consists of
the original plant as well as all the weighting matrices which are chosen to meet certain design
specifications. Hence, the order of the H, controller obtained by the standard state-space
approach is usually too high to be implemented in practice, and therefore it is desired to reduced
the controller order.

Many approaches have been proposed in the literature in the last decade or so [10 — 13].
However, these reduction approaches are proven to be unsatisfactory and not suitable to our
problem because the stability of the system with the reduced controller loses easily. We are
trying to find a better controller order reduction method, which will be present in another paper
soon.

Two results are presented in this paper. The first is modification of the system into a
typical mixed-sensitivity problem by choosing suitable weighting functions W(s) and W,(s), and
designing it by the H,, optimization technique with the transformation of shifting the imaginary

axis. The controller is satisfied to the specified requirements as above.
‘ The second is reduction to thé controller since its order is high. In order to retain the
stability and the performance of the system, we eliminate the zeros and poles far away from the
imaginary axis or the original point so that the frequency characteristics of the reduced controller
approaches very closely that of the original ones in the low and middle frequencies bandwidthes.
The results are shown below.

THM is actually a sampled-data model. The continuous-time model however is considered
in this paper. According our research schedule, the design of the discrete-time controller will
be extended at the next logical step.



2. Modifying THM into H_ Optimization Problem

A right-handed, orthogonal coordinate system —— Spacecraft Frame [2] have been
defined for XTE as Figure 1.

Sx
________ Sx-z
57
tanf =
-X —sy
Figure 1. Spacecraft Frame Figure 2 . B Angle

The direction of the spacecraft relative to the sun is described in terms of « angle and
3 angle of the sun vector which is running from the origin of the Spacecraft Frame towards the
sun. ¢ is defined in the Y-Z plant. {3 is defined in the X-Z plant as Figure 2. For different axis
and @B angle, some parameters in the IHM model are different.

The single axis block diagram of the JHM model mainly consists of plant, gyro,
controller and reaction wheel. It is shown below:
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Figure 3. The block diagram of THM model



The plant has two parts, rigid body and flexible body. The transfer function of the rigid
body is simple as follows:

1

G,(s) = s

) 2.1

where 1, is the moment of inertia of the rigid body.
The transfer function of the flexible body is much more complicated. It is has several
parallel quadratic transfer functions with very weak structural damping value as follows:

— 3 k;
Cl(®) = ig I, (" +2Ews+w?) 2.2)

where k; is a constant. w; is the natural frequencies of the flexible body which locate on the
frequency bandwidth of [4.3, 21.3] radian/second. However, these natural frequencies may vary
+/-25%. This wide variation will largely extend the locating range of the natural frequencies
to [3.3, 26.6] radian/second. £, is the structural damping coefficient with the possible minimum
value of 0.001. Such light damping may result in harmonic vibration of the spacecraft. It is very
dangerous to the spacecraft if the controller can not supply strong rejection on the extended
frequency bandwidth on which the natural frequencies are located.

The values of I, k; and w; are different for X, Y or Z axes and 3 = 0, 45, 90 or 150
degree. They are shown in [2].

The transfer function of the gyro is given by
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where w, is the natural frequency of the gyro with value of 27*7 radian/second and £, is the
structural damping coefficient with the value of 0.707.
The transfer function of the reaction wheel is

W
W
Gy(s) = 2.4)
where w,, is the constant with the value of 2#*10 radian/second.
Since the controller is a sample-data one in practice, the linear approximation of the

sampler and the zero order hold (ZOH) is as

Gy(s) = 'r_2s’ﬁ 2.5)



where T, is the time constant of sampler-data with the value of 0.25 second.
The linear approximation of the computational delay is

G(s) = Terp 2.6)

where T, is the computational delay with the value of 0.1 second.

The input of the model is Ty which is the total torque disturbance acting on the
spacecraft. The output is the gyro model measure 6,.

The difficulty of designing a controller for IHM mainly comes from the flexible body of
the plant. That is, it not only has several parallel quadratic transfer functions with very weak
damping, and also its natural frequencies are uncertain. In order to avoid the possible harmonic
vibration of the spacecraft, we must design a controller which will have sufficient stability
margins and can provide strong rejection to the inner perturbations from the parametric
uncertainties and external torque disturbances.

The H,_, technique is a powerful tool to handle control systems with uncertainties and
disturbances. Especially, the H,, mixed-sensitivity method is most direct and efficient to single-
input and single-output control system. But employing it necessarily requires the parametric
uncertainties to be covered by a non-parametric uncertainty model. We model the parametric
uncertainty with a single non-parametric block in order to retain the simplicity and intuition of
single-loop control.

Without considering of 1,,, the transfer functions of the flexible body for all X, Y and
Z axes at different directions are shown in Figure 4, which clearly shows that the natural
frequencies locate on the bandwidth of [4.3, 21.3] radian/second and the transfer functions of
the flexible body of Z axis at 8 = 0 degree is almost maximum. To avoid raising the order of
the system and to design a controller suitable for all three axes and all directions, we will take
the entire flexible body as an additive perturbation of the plant and find a third transfer function
as a maximum perturbation rather than a higher order one to cover it.

The non-parametric maximum additive perturbation is given as

2.3(s +6)
I, (s+18.8)(s+2E,w,s+w%)

AfS) = @.7)
where w, =~ w, because the first natural frequency of the flexible body is most harmful to
spacecraft and most needed to be rejected by the H, technique. £, is chosen to 0.1 rather than
0.001 because a too small £, may cause the system unstable.

As Figure 5 shows, the transfer function of the flexible body varying in a shadow with
the frequencies w; vary by +/- 25%. A,(s) almost covers the transfer function of the flexible



body except for some peaks. It is justified later that a simpler, unentire cover could be more
suitable than a complicated, entire one. The robustness of the controller designed by the H,
technique is still guaranteed under such a simplified perturbation cover.

For convenience, the additive perturbation (2.7) is changed into the multiplicative one

A(s)
AL(s) = =+~ 2.8
-9 =G 2.8)
where G, (s) is the transfer function of the rigid body of the plant. A (s) is more advantage than
A,(s), because it does not include I, like A(s).
Defining W,(s) as

Wi(s) = € A,(s) 2.9)

where W,(s) is a weighting function affecting robust stability and e is a constant slightly bigger
than 1, for example, e=1.05. W,(s) satisfies

|AnG) o < |WiGw)] Vo 2.10)

Now we will define another weighting function affecting robust performance, which is
denoted by W ,(s). In order to make the system possess adequate disturbance rejection, i.e., the
output is as small as possible for the given input. We choose

Wi(s) =

2
14(8:0.05) Grp(s) Gg(S) (2.11)

where we use G,(s)G,(s) because the closed-loop transfer function from torque disturbance to
gyro measure output for our system in fact is G,(s)Gy(s)(1 +GK)™', rather than (1+GK)" as in
other mixed-sensitivity problem.

The nominal system is as

G(s) = G(s) Gy(s) Gu(s) Gi(s) Gls) (2.12)

where G,,(s), G,(s), Gu(8), G,(s) and G.(s) were defined above. The torque filter is ignored in
the design. In fact, according to our experience, ignoring the ZOH G,(s) and the computational
delay G.(s) in design is helpful to increase the robustness of the system because that the
controller designed by H,, technique will have the zeros with same values as the poles of ZOH
and the delay if which are considered, while such zeros will lift the magnitude of the open loop



transfer function of the system on the frequency bandwidth on which the natural frequenies of
the flexible body locate. But now the ZOH and the delay are still retained and their influence
will be eliminated by reducing the controller in Sector 4.

Let K(s) denote the controller and consider

{|W.(1+GK)'| . + |W;GK(1+GK)'|.} < 1 (2.13)

thus a standard mixed-sensitivity problem is obtained. For the uncertainty bounded by W(s) and
the disturbance bounded by W,(s), if there exists a controller K(s) to stabilize the nominal
system G(s) and satisfy (2.13), the nominal system will be robust stable. Such an optimal
controller is easily designed by the H,, technique.

3. H_ Controller Design for IHM

Due to some poles of the nominal system G(s) and the weighting function W,(s) lying
on the imaginary axis, the H, optimization algorithm cannot be used directly. By the
transformation of shifting the imaginary axis, the controller is designed by the H,, optimization
procedure [7] as follows.

743.751,(s+.042 + .0144i)(s + .47 £4.79i)(s +8)(s + 10)(s +19. 13)(s +31.1 + 31 . 1i)(s +62.83)
s(s+ 1.155)(s+5.72)(s +31.24)(s + 14.48 £ 51.29i)(s +59.46 + 14.601)(s +40.11 £41.961)

K(s) = 3.1)

The infinity norm of the closed-loop transfer function is shown in Figure 6. The
sensitivity function S and the complementary sensitivity function T are shown in Figures 7 and
8, respectively. Figure 8 shown that there exists enough margin for T to W,(s). The robustness
of the system is satisfactory for the specified uncertainties covered by Ws(s) and for those peaks
not covered by it. It is justified that a simpler unentire cover could be more suitable than a
complicated entire one.

The open-loop transfer functions of the system for all three axes at any direction are
shown in Figure 9 when taking the controller (3.1) into Figure 1. They are almost entirely the
same in low and middle frequency bandwidthes. This implies that they have same stability
margins for all three axes at any direction. The stability margins are shown in Figure 10. The
minimum gain margin is 24.03 db and the phase margin is 55.04°, which are larger than the
expected 12 db and 30°, respectively.

Figure 11 — 13 also show that the variety of the natural frequencies w; between -25% and
25% does not greatly affect the open-loop frequency characteristics. This implies that the system
is robust stable.



The variation of the natural frequencies of the flexible body or the direction of the
spacecraft does not affect the response performance. The unit step responses for three axes are
shown in Figure 14 — 16. The responses attenuated to zero for about 150 seconds, which is
faster than that of the PID controller [2]. The maximum magnitude of the responses are not
higher than that of the PID controller. Our controller performs as a good regulator.

It is worth while to mention here that the larger stability margin could be obtained by
adjusting the weighting function W (s) and W;(s), but it would lose a little of the response
performance. The choice depends on which is more desirable. We think our choice is moderate.

4. Controller Reduction

A controller with satisfactory robust stability and performance for the spacecraft has been
designed. But its order appears high and is difficult to be realized in practice. It should be
reduced.

It is well known that the stability and performance of a system is determined by its open-
loop frequency characteristic, that is, the product of transfer functions of the controller and
generalized plant. If the characteristic is satisfied, our goal is just to find a reduced controller
with which the frequency characteristic of the open loop system approaches as close to the
original as possible.

Such reduced controllers could be found through eliminating the zeros and poles of the
controller (3.1) which are far away from the imaginary axis or the original point. A fourth order
reduced controller is given as follows

K (s) = 23.161 (s +.0424.0144i)(s+.47 £4.79)
B s(s+1.155)(s+5.72)(s +187.44)

4.1)

The frequency characteristics of the original controller and the reduced one are shown
in Figure 17. They are almost entirely the same in low and middle ffequency bandwidthes,
which implies that the stability and the performance of the system is retained. The magnitudes
of the reduced controllers are lower in the frequency bandwidth of [3.3, 26.6] radian/second.
It is also helpful to increase the robustness and rejection to the perturbations of the uncertainties
of the natural frequencies of the flexible body. We discover that the situation also happens if
ignoring ZOH and the delay in the design of the controller (3.1). Sometimes a simpler nominal
system may help to design a more robust controller.

The open loop frequency characteristics of the systems with respect to the original
controller and to the reduced controller are shown in Figure 18. They are also almost entirely



the same on low and middle frequency bandwidthes and have very similar stability margins. The
gain margin and the phase margin reach up to 22.59 db and 54.29 , respectively.

The magnitudes of the open loop frequency characteristics of the systems with respect
to the reduced controllers are lower in the frequency bandwidth of [3.3, 26.6] radian/second.
This will increase the robustness and rejection of the system to the perturbation of the variation
of the natural frequencies of the flexible body.

The unit step response of the closed-loop feedback system for Z axis at 3 = 0 degree is
shown in Figure 19. It is not greatly different from that of the original controller (3.1).

These results mean the stability and the performance have still been retained perfectly
and the reduced controller are satisfactory.

Let us discuss further a second order reduced controller as follows

3.751,.(s+.042 +.01441)
s(s+11.55)

Ky(s) = @2

The open loop frequency characteristics of the systems with respect to the original
controller and to the reduced controller are shown in Figure 20. They have slightly difference
on low and middle frequency bandwidthes. The system is also stable. As shown in Figure 21,
the gain margin and the phase margin reach up to 20.69 db and 66.83, respectively.

But the magnitudes of the open loop frequency characteristics of the systems with respect
to the reduced controllers are much higher in the frequency bandwidth of [3.3, 26.6]
radian/second. This will lose some robustness and rejection of the system to the perturbation of
the variation of the natural frequencies of the flexible body. The situation also happens for the
PID controller [2]. As a conclusion, the robustness is not sufficient for a second order controller
or a PID controller. A fourth or higher order controller should be adopted for IHM model.

The unit step response of the closed-loop feedback system with the second order reduced
controller is shown in Figure 22. It is slight different from that of the original controller (3.1).

5. Conclusions

The THM model of the attitude control system of the XTE spacecraft with both
parametric uncertainties and external torque disturbances is studied in the paper. It is modified
into a typical mixed-sensitivity problem by choosing suitable weighting functions W,(s) and
W,(s). The controller is designed by the H,, optimization technique with the transformation of
the shifted jw-axis.

The controller is satisfied entirely to the specified requirements. That is, it can stabilize



the plant in the face of the uncertainties of the natural frequencies and light damping and can
provide adequate disturbance rejection.

Since the order of the controller is high, it is reduced by eliminating the zeros and poles
far away from the imaginary axis or the original point. The results show that the stability and
the robust performance of the system with the fourth order reduced controller are retained
perfectly. But a second order reduced controller or a PID controller will lose some robustness.

As the THM model is actually controlled by computer, the further work is to design a
sampler-data controller for it.
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Bode plot of the open loop transfer function
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Fig. 9 The open loop transfer functions of the system ( 3 axes, 4 directions)
with fixed the varities of the natural frequencies.



Gm=-24.03 dB, (w= 0.04637) Pm=55.04 deg. (w=0.3852)
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Fig. 10 Gain margin G, and phase margin P_, of the system.



Bode plot of the open loop transfer function
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Fig. 11 The open loop transfer functions of the system ( Z axis, 8§ = 0 deg.)
with varying natural frequencies from -25% to 25%.



Bode plot of the open loop transfer function
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Fig. 12 The open loop transfer functions of the system ( 3 axes, 4 directions)
with varying natural frequencies to -25%.



Bode plot of the open loop transfer function
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Bode plot of controllers
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Fig. 17 The bode plots of the original and the fourth order reduced controllers
(Z axis, 8 = 0 deg.)




Gm=-22.59 dB, (w= 0.0465) Pm=54.29 deg. (w=0.3346)
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Fig. 18 Gain margin G,, and phase margin P, of the system with the fourth order
reduced controller ( Z axis, 8 = 0 deg.)
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Bode plot of controllers
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Gm=-20.69 dB, (w= 0.04484) Pm=66.83 deg. (w=0.2651)
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(Z axis, 8 = 0 deg.)
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Face Theorem for R

If'F is a holomorphic function in C whose real part and imaginary parf are affine, multilinear functions of

6
Qc R3 and fi,i=1.. .6, are the mwo-dimensional, exposed faces of Q, then ) F(f) = Im {F(Q)}
=l

Proof:

&
It is obvious that UF(f,) ¢ Im{F(Q)}
I

Suppose 3 p' € Im{F(Q)} > p' ¢ F(f;) Vi Sincep' e Im{F(Q)} I some q' €Q 3 p' = F(q'). Furthermore,
q'is an interior point of Q so that 3 a line segment / in Q > / passes through q'. / 1s parallel to the axes,
and the endpoints qg and qy, of / lic on faces f; and f;, . respectively, of Q Since F is multilinear, F(/) is a

line segment in Im{F(Q)}.

Consider any neighborhood of g, Ny = {q € f{| d(q.q) <¢, } Since F is continuous F(Ny) < F(f) and
F(Ng) = N, is a neighborhood of F(qy). Choose any point p, €N, such that p, is distinct from F(qy) and p,
€F(/) . Choose a neighborhood of p,, N, = {F(q) € F(Q)| d(q.q,) <¢, . F(q,)=p,.q, €/} Continue this
process, choosing p; from the neighborhood N;_ F(/), such that p; is distinct from p;_y, and 3 d(g;,qy) >
d(qj-1,qy)- For each p; , choose a neighborhood of p;. N; = {F(qQ)eF(Q)| d(q.q)) <¢; . F(q;) = pj . qj€/}.
Without loss of generality, assume that there are a finite number, « of such neighborhoods generated and
that p,. = F(qp).

F({) is completely covered by the union of these neighborhoods and 3 some i = k| 3 Nkl contains points
of the interior of F(fy), points from 6{F(f;)} and points in F(Q) but not in F(f). There also exists some i
=mj 3 leconlains points from F(8{f;}) and points in F(f;) where k} > m;. The preimage of each N;, i =

k
0, ..., k. intersects ;. [n particular, the set [ UN,}O F(l) is a line segment in F(Q). Since F is

i=my
multilinear, the preimage of this set contains a linc segment that is parallel to the axes. This line segment

is in Q and intersects f; only at an edge so that it must lic on some face, fj . of Q. k=t

Consider all neighborhoods N;, i >k, > N; ) F(fkl) # @. One of these neighborhoods, Nkz' contains
points from the interior of F( fkl) . points from &{F(f})} and points in F(Q) but not in F(f}). There also

exists some i =y 3 Nmzcon[ains points from F(3{f}) and points in F(f}) where ky 2 m;. The prcimage

k
of cach Nj. 1= ky.....ky . intersects {}. [n particular. the set UlNl ]ﬂ F(lyis a line segment in F(Q).

1~my

-



Since F 1s mululinear, the preimage of this set contains a line scgment that 1s paratlel to the axes Tlus

line segment is in Q and intersects {1 only at an edge so that it must lic on some face. sz‘ of Q. ky 7 Ky

Since there are a finttec number of neighborhoods, this process can be continued until we recach the point
Py and its neighborhod N, so that all points on / lic on some face of Q. Since p' € / then p' must lic on

6
some face of Q which contradicts the assumption that p' € F(f;) Vi ThusIm{F(Q)} < UF(f))
(B

6
- UF(1) = Im{F(Q)}
il

Face Theorem for R

I['F is a holomorphic function in C whose real part and imaginary part are affine. multlinear functions of

Qc R" andf;, i=1.....m are the two-dimensional, exposed faces of Q withm = C22"* then

OF) = Im{F(Q))
=1

The proof of this theorem follows from the three-dimensional case by considering each of the two-
dimensional exposed faces of Q < R", fixing all but two of the dimensions of Q at a time and applying

the method used in the proof above.




