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H,. Optimal Controller Design and Reduction for the Inertial Hold Mode of

the Attitude Control System of the XTE Spacecraft

Abstract

The Inertial Hold Mode (IHM) is one mode of the attitude control system of the X-ray

Timing Explorer spacecraft disturbed by both parametric uncertainties and external torque

disturbance. In the paper, the IHM model is modified into a typical Ho_ mixed-sensitivity

problem through choosing suitable weighting functions Wl(s) and W3(s). The controller is

designed by the H_ optimization technique with the transformation of shifting the imaginary

axis. It can stabilize the plant with uncertainties from the natural frequencies of the flexible body

and the very weak damping and provide adequate disturbance rejection as a good regulator. The

gain margin and phase margin of the system are 24.03 db and 55.04 °, respectively. The step

response attenuates to zero within 150 seconds. These show that the controller satisfies the

specified requirements. Since the order of the controller appears high, it is reduced to fourth

order one. The results show that the stability, and the performance of the system with the reduced

controller are retained perfectly.

1. Introduction

Inertial Hold Mode OHM), one mode of the Attitude Control System (ACS), provides

inertial pointing to support the X-ray Timing Explorer spacecraft's science operations. In the

inertial attitude acquisition phase, it holds attitude with Kalman filter updates based on observed

(non-catalog) guide stars until the ground completes an attitude quaternion to the ACS.

IHM holds the correct attitude reference constant, with the exception of small changes

to correct for velocity aberration. This allows the High Energy X-ray Timing Experiment and

the Proportional Counter Array to make observations and also keeps the spacecraft in a safe

attitude with respect to power and thermal requirements [1].

The IHM model mainly consists of plant, gyro, controller and reaction wheel. The

transfer function of the flexible body not only has several parallel quadratic transfer functions

with a very weak structural damping value of 0.001, but also its natural frequencies of the

flexible body may vary +/- 25%. Such light damping may result in harmonic vibration of the

spacecraft. It is very dangerous to the spacecraft if the controller can not supply strong rejection

on the frequency bandwidth on which the natural frequencies are located.

The problem facing us is to design a controller that will stabilize the plant in the face of



theuncertaintiesof the variablenatural frequenciesandtheweakdampingof the plant model,
in other word, the plant will be robuststableunder theperturbationsof theuncertainties.The
controller will satisfiesthe requirementsof the stability marginsfrom the point of view of the

classicalcontrol theory, suchasGainmargin > 12db andPhaseMargin > 30 degree[2]. It
must also perform as a good regulator to provide an adequaterejection to the total torque
disturbancesacting on the spacecraft.In addition, thecontroller shouldalsobe realizedeasily,
its order as low aspossible.

The Ho. techniqueis a powerful tool to handlecontrol systemswith uncertaintiesand
disturbances.It canmaximizethelevelof robuststabilityandrobustperformanceof thesystem.

By the state-spaceapproach[3,4,5,6] to H_ optimization, for which the procedure[7, 8] is
automatic and easy to use, a (sub-)optimalcontroller can be easily obtained.We apply the
techniqueto the controller system.

Theorder of controllerdesignedby theH_ techniqueis guaranteedto benot higher than
that of the generalized plant. However, in many engineeringproblems, the order of the
generalizedplant canbevery high. This is dueto thefact thatthegeneralizedplant consistsof
the original plant aswell asall theweightingmatriceswhich arechosento meetcertaindesign
specifications.Hence, the order of the H® controller obtainedby the standardstate-space
approachisusually toohigh to be implementedin practice,andthereforeit is desiredto reduced
the controller order.

Many approacheshavebeenproposedin the literaturein the lastdecadeor so[10 -- 13].
However, thesereductionapproachesare provento be unsatisfactoryand not suitable to our
problem becausethe stability of the systemwith the reducedcontroller loseseasily. We are
trying to find a bettercontrollerorderreductionmethod,whichwill bepresentin anotherpaper
soon.

Two results are presented in this paper. The first is modification of the system into a

typical mixed-sensitivity problem by choosing suitable weighting functions Wl(s) and W3(s), and

designing it by the H** optimization technique with the transformation of shifting the imaginary

axis. The controller is satisfied to the specified requirements as above.

The second is reduction to the controller since its order is high. In order to retain the

stability and the performance of the system, we eliminate the zeros and poles far away from the

imaginary axis or the original point so that the frequency characteristics of the reduced controller

approaches very closely that of the original ones in the low and middle frequencies bandwidthes.

The results are shown below.

IHM is actually a sampled-data model. The continuous-time model however is considered

in this paper. According our research schedule, the design of the discrete-time controller will

be extended at the next logical step.
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2. Modifying IHM into H_ Optimization Problem

A right-handed, orthogonal coordinate system

defined for XTE as Figure 1.

-- Spacecraft Frame [2] have been

Sx

(PITCH) V --X

%

Figure 1 • Spacecraft Frame Figure 2 . [3Angle

The direction of the spacecraft relative to the sun is described in terms of ot angle and

/3 angle of the sun vector which is running from the origin of the Spacecraft Frame towards the

sun. a is defined in the Y-Z plant./3 is defined in the X-Z plant as Figure 2. For different axis

and/3 angle, some parameters in the IHM model are different.

The single axis block diagram of the IHM model mainly consists of plant, gyro,

controller and reaction wheel. It is shown below:

= Ie_(s2+ 2_i(.oiS+ OJ2i)

Flexible body of plant

• " It, s2 s2+2tj,%s +__!L]

Rigid Body of plant Gyro

oJw ] _ Computational I _-N(z-Y--i q
s +o_w 1"--[ Delay l_ -_ --_ I*- /

Reaction wheel Torque filter

Controller

Figure 3. The block diagram of IHM model



The plant has two parts, rigid body and flexible body. The transfer function of the rigid

body is simple as follows:

1 (2.1)
G_p(s) = I_b s 2

where Irb is the moment of inertia of the rigid body.

The transfer function of the flexible body is much more complicated. It is has several

parallel quadratic transfer functions with very weak structural damping value as follows:

" ki (2.2)
Grp(s) = i=l_] Irb (S2+2_iC0iS+C02i)

where ki is a constant, co_ is the natural frequencies of the flexible body which locate on the

frequency bandwidth of [4.3, 21.3] radiargsecond. However, these natural frequencies may vary

+/-25%. This wide variation will largely extend the locating range of the natural frequencies

to [3.3, 26.6] radian/second. _i is the structural damping coefficient with the possible minimum

value of 0..001. Such light damping may result in harmonic vibration of the spacecraft. It is very

dangerous to the spacecraft if the controller can not supply strong rejection on the extended

frequency bandwidth on which the natural frequencies are located.

The values of Ieo, lq and 6o_are different for X, Y or Z axes and _ = 0, 45, 90 or 150

degree. They are shown in [2].

The transfer function of the gyro is given by

6°2g (2.3)
Gg(s) = S2+2_g6OgS+6O2g

where _% is the natural frequency of the gyro with value of 2rc'7 radian/second and /jg is the

structural damping coefficient with the value of 0.707.

The transfer function of the reaction wheel is

Gw(S) = O_w (2.4)
8+60 w

where o_w is the constant with the value of 27r*10 radian/second.

Since the controller is a sample-data one in practice, the linear approximation of the

sampler and the zero order hold (ZOH) is as

2 (2.5)
Gz(s) = Tz--_+2
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whereTz is the time constantof sampler-datawith thevalueof 0.25 second.

The linear approximationof thecomputationaldelay is

1 (2.6)
Gc(S)= Tcs+l

whereTc is the computationaldelaywith the valueof 0.1 second.
The input of the model is Td which is the total torque disturbanceacting on the

spacecraft.The output is the gyro modelmeasure0g.

The difficulty of designing a controller for IHM mainly comes from the flexible body of

the plant. That is, it not only has several parallel quadratic transfer functions with very weak

damping, and also its natural frequencies are uncertain. In order to avoid the possible harmonic

vibration of the spacecraft, we must design a controller which will have sufficient stability

margins and can provide strong rejection to the inner perturbations from the parametric

uncertainties and external torque disturbances.

The H= technique is a powerful tool to handle control systems with uncertainties and

disturbances. Especially, the H,. mixed-sensitivity method is most direct and efficient to single-

input and single-output control system. But employing it necessarily requires the parametric

uncertainties to be covered by a non-parametric uncertainty model. We model the parametric

uncertainty with a single non-parametric block in order to retain the simplicity and intuition of

single-loop control.

Without considering of Irb, the transfer functions of the flexible body for all X, Y and

Z axes at different directions are shown in Figure 4, which clearly shows that the natural

frequencies locate on the bandwidth of [4.3, 21.3] radian/second and the transfer functions of

the flexible body of Z axis at/3 = 0 degree is almost maximum. To avoid raising the order of

the system and to design a controller suitable for all three axes and all directions, we will take

the entire flexible body as an additive perturbation of the plant and find a third transfer function

as a maximum perturbation rather than a higher order one to cover it.

The non-parametric maximum additive perturbation is given as

2.3(s+6) (2.7)
Aa(S) = I,b (s + 18.8)(s 2+2_a60aS +0_2a)

where oJa _ (.dI because the first natural frequency of the flexible body is most harmful to

spacecraft and most needed to be rejected by the H® technique. _a is chosen to 0.1 rather than

0.001 because a too small _a may cause the system unstable.

As Figure 5 shows, the transfer function of the flexible body varying in a shadow with

the frequencies co_vary by +/- 25 %. Aa(S ) almost covers the transfer function of the flexible
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body except for somepeaks.It is justified later that a simpler, unentirecover could be more
suitable than a complicated,entire one. The robustnessof the controller designedby the H=
techniqueis still guaranteedundersucha simplified perturbationcover.

For convenience,theadditiveperturbation(2.7) is changedinto the multiplicative one

Am(S) = Gn,(s) (2.8)

where Gn,(s) is the transfer function of the rigid body of the plant. Am(S) is more advantage than

Aa(S), because it does not include Irb like Aa(s).

Defining W3(s) as

W3(s) = e Am(S) (2.9)

where W3(s) is a weighting function affecting robust stability and e is a constant slightly bigger

than 1, for example, e = 1.05. W3(s) satisfies

Ilzxm(jooll IW3(jo0)l (2.10)

Now we will define another weighting function affecting robust performance, which is

denoted by Wl(S). In order to make the system possess adequate disturbance rejection, i.e., the

output is as small as possible for the given input. We choose

Wi(s) = 14(s+0"05)2Gn,(s) Gg(s) (2.11)
S

where we use Gp(s)Gg(s) because the closed-loop transfer function from torque disturbance to

gyro measure output for our system in fact is G,p(s)Gg(s)(1 +GK) 1, rather than (1 +GK) l as in

other mixed-sensitivity problem.

The nominal system is as

G(s) = Gn,(s) Gg(s) Gw(s) Gz(s) Go(s) (2.12)

where Grp(S), Gg(s), Gw(s), Gz(S) and Gc(S) were defined above. The torque filter is ignored in

the design. In fact, according to our experience, ignoring the ZOH Gz(s) and the computational

delay Go(s) in design is helpful to increase the robustness of the system because that the

controller designed by H_ technique will have the zeros with same values as the poles of ZOH

and the delay if which are considered, while such zeros will lift the magnitude of the open loop



transfer function of the systemon thefrequencybandwidthon which the natural frequeniesof
the flexible body locate.But now the ZOH and the delayarestill retainedandtheir influence
will be eliminatedby reducingthecontroller in Sector4.

Let K(s) denote the controller and consider

{IIw,(I+GK) III + llW3GK(I+GK)"II }< 1 (2.13)

thus a standard mixed-sensitivity problem is obtained. For the uncertainty bounded by W3(s) and

the disturbance bounded by Wl(s), if there exists a controller K(s) to stabilize the nominal

system G(s) and satisfy (2.13), the nominal system will be robust stable. Such an optimal

controller is easily designed by the H® technique.

3. Ho. Controller Design for IHM

Due to some poles of the nominal system G(s) and the weighting function W_(s) lying

on the imaginary axis, the H_. optimization algorithm cannot be used directly. By the

transformation of shifting the imaginary axis, the controller is designed by the H_ optimization

procedure [7] as follows.

743.75Ir_(s +-042 +'0144i)(s +'47t-4"79i)(s +8)(s + 10)(s + 19"13)(s +31" 1 + 31" li)(s +62"83) (3.1)
K(s) = s(s + 1.155)(s +5.72)(s +31.24)(s+ 14.48 +51.29i)(s +59.46 + 14.60i)(s+40.11 +41.96i)

The infinity norm of the closed-loop transfer function is shown in Figure 6. The

sensitivity function S and the complementary sensitivity function T are shown in Figures 7 and

8, respectively. Figure 8 shown that there exists enough margin for T to W3-1(s). The robustness

of the system is satisfactory for the specified uncertainties covered by W3(s) and for those peaks

not covered by it. It is justified that a simpler unentire cover could be more suitable than a

complicated entire one.

The open-loop transfer functions of the system for all three axes at any direction are

shown in Figure 9 when taking the controller (3.1) into Figure 1. They are almost entirely the

same in low and middle frequency bandwidthes. This implies that they have same stability

margins for all three axes at any direction. The stability margins are shown in Figure 10. The

minimum gain margin is 24.03 db and the phase margin is 55.04 °, which are larger than the

expected 12 db and 30 °, respectively.

Figure 11 -- 13 also show that the variety of the natural frequencies o_ between -25 % and

25 % does not greatly affect the open-loop frequency characteristics. This implies that the system

is robust stable.
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The variation of the natural frequenciesof the flexible body or the direction of the

spacecraftdoesnot affect the responseperformance.Theunit stepresponsesfor three axes are

shown in Figure 14 -- 16. The responses attenuated to zero for about 150 seconds, which is

faster than that of the PID controller [2]. The maximum magnitude of the responses are not

higher than that of the PID controller. Our controller performs as a good regulator.

It is worth while to mention here that the larger stability margin could be obtained by

adjusting the weighting function Wt(s) and W3(s), but it would lose a little of the response

performance. The choice depends on which is more desirable. We think our choice is moderate.

4. Controller Reduction

A controller with satisfactory robust stability and performance for the spacecraft has been

designed. But its order appears high and is difficult to be realized in practice. It should be

reduced.

It is well known that the stability and performance of a system is determined by its open-

loop frequency characteristic, that is, the product of transfer functions of the controller and

generalized plant. If the characteristic is satisfied, our goal is just to find a reduced controller

with which the frequency characteristic of the open loop system approaches as close to the

original as possible.

Such reduced controllers could be found through eliminating the zeros and poles of the

controller (3.1) which are far away from the imaginary axis or the original point. A fourth order

reduced controller is given as follows

K4(s) 23.16Ir_(s + .042+ .0144i)(s + .47 +4.79i)
= s(s + 1.155)(s +5.72)(s + 187.44)

(4.1)

The frequency characteristics of the original controller and the reduced one are shown

in Figure 17. They are almost entirely the same in low and middle frequency bandwidthes,

which implies that the stability and the performance of the system is retained. The magnitudes

of the reduced controllers are lower in the frequency bandwidth of [3.3, 26.6] radiardsecond.

It is also helpful to increase the robustness and rejection to the perturbations of the uncertainties

of the natural frequencies of the flexible body. We discover that the situation also happens if

ignoring ZOH and the delay in the design of the controller (3.1). Sometimes a simpler nominal

system may help to design a more robust controller.

The open loop frequency characteristics of the systems with respect to the original

controller and to the reduced controller are shown in Figure 18. They are also almost entirely
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thesameon low andmiddlefrequencybandwidthesandhavevery similar stability margins.The
gainmargin and the phasemarginreachup to 22.59 db and 54.29, respectively.

The magnitudesof theopenloop frequencycharacteristicsof the systemswith respect
to the reducedcontrollersare lower in the frequencybandwidthof [3.3, 26.6] radian/second.
This will increasetherobustnessandrejectionof the systemto theperturbationof the variation

of thenatural frequenciesof theflexible body.
Theunit stepresponseof theclosed-loopfeedbacksystemfor Z axisat/3 = 0 degreeis

shownin Figure 19. It is not greatlydifferent from that of the original controller (3.1).
Theseresultsmeanthe stability andthe performancehave still beenretainedperfectly

andthe reducedcontrolleraresatisfactory.
Let us discussfurther a secondorder reducedcontrolleras follows

3.75Ir_(s +.042 +.0144i) (4.2)
K2(s) = s(s + 11.55)

The open loop frequency characteristics of the systems with respect to the original

controller and to the reduced controller are shown in Figure 20. They have slightly difference

on low and middle frequency bandwidthes. The system is also stable. As shown in Figure 21,

the gain margin and the phase margin reach up to 20.69 db and 66.83, respectively.

But the magnitudes of the open loop frequency characteristics of the systems with respect

to the reduced controllers are much higher in the frequency bandwidth of [3.3, 26.6]

radian/second. This will lose some robustness and rejection of the system to the perturbation of

the variation of the natural frequencies of the flexible body. The situation also happens for the

PID controller [2]. As a conclusion, the robustness is not sufficient for a second order controller

or a PID controller. A fourth or higher order controller should be adopted for IHM model.

The unit step response of the closed-loop feedback system with the second order reduced

controller is shown in Figure 22. It is slight different from that of the original controller (3.1).

5. Conclusions

The IHM model of the attitude control system of the XTE spacecraft with both

parametric uncertainties and external torque disturbances is studied in the paper. It is modified

into a typical mixed-sensitivity problem by choosing suitable weighting functions Wl(s) and

W3(s). The controller is designed by the H,_ optimization technique with the transformation of

the shifted jc0-axis.

The controller is satisfied entirely to the specified requirements. That is, it can stabilize



the plant in the faceof theuncertaintiesof the natural frequenciesand light dampingand can
provideadequatedisturbancerejection.

Sincetheorder of thecontroller is high, it is reducedby eliminating thezerosand poles

far away from the imaginary axis or the original point. The results show that the stability and

the robust performance of the system with the fourth order reduced controller are retained

perfectly. But a second order reduced controller or a PID controller will lose some robustness.

As the IHM model is actually controlled by computer, the further work is to design a

sampler-data controller for it.
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Face Theorem for p3

IfF ts a holomorphtc function m C whose real part and mlagmm3; part are affine, multilinear functions of
6

Qc R 3 and fi, i=l .... 6 , are the two-dmzenmona/, e.rposedfimes of Q, then U F(fi) = lm {F(Q)}
I=1

Proof:

6

it is obvious that U F( f, ) c_ Ira{ F(Q) }
I:i

Suppose 3 p' e Im{F(Q)} 9 p' _ F(fi) V i Since p' c Im{F(Q)} 3 some q' eQ 9 p' = F(q'). Furthermore,

q' is an interior point of Q so that 3 a line segment I inQ _ i passes through q'. / is parallel to the axes,

and the endpoints ql and qb of/lie on faces ft and fb, respectively, of Q Since F is multilinear F(/) is a

line segment in Im{F(Q)}.

Consider any neighborhood ofqt, N l = {q eft I d(q,qt) < Co } Since F is continuous F(NI) c Fif O and

F(NI) = N Ois a neighborhood of F(qt). Choose any point p, eNo such that p, is distinct from F(qt) and p_

eFt/). Choose a neighborhood of p,., N, = {F(q) • F(Q)[ d(q,q,) < c , F(q, )= p,.,q, el}. Continue this

process, choosing Pi from the neighborhood Ni. 1('t F(/), such that Pi is distinct from Pi-l, and 9 d(qi,qt) >

d(qi_l,qt). For each Pi, choose a neighborhood ofPi. N i = {F(q)eF(Q)[ d(q.qi) <e i , F(qi) = Pi , qi_/} ,

Without loss of generality, assume that there are a finite number, _( of such neighborhoods generated and

that p_: = F(qb).

F(0 is completely covered by the union of these neighborhoods and 3 some i = k I 9 Nkl contains points

of the interior of F(ft). points from a(F(ft)} and points in F(Q) but not m F(ft). There also exists some i

=m I a Nmlcontains points from F(0{ft}) and points in F(f t) where k I _>m I The preimage of each N i, i =

0 ..... k 1, intersects ft. In particular, the set , NF(I) is a line segment in F(Q) Since F is
i=

multilinear, the preimage of this set contains a line segment that is parallel to the axes. This line segment

is in Q and intersects fl only at an edge so that it must lie on some face, fkl, of Q, k I ¢: t

Consider all neighborhoods Ni, i > k l, _ N i f-'/F(fk 1) ¢:- Q. One of these neighborhoods, Nk2, contains

points from the interior ofF( fkl), points from _?{F(fl) } and points in F(Q) but not in F(fl) There also

exists some i =m 2 _ Nm2contains points from F(_?{f I }) and points in F(f I ) _here k 2 >_m 2. The preimage

ofeach N i, i = k l ..... k2 , intersects fl In particular, the set , ('IF(I) is a line segment in F(Q)
I:



Since F is mullilmear, the prehnagc of Ibis sel conlains a line segment d_at _s parallel to the axcs FIn_

line segmenl is in Q and in[ersecls fl only al an edge so 1hal il nlus[ Iic on some face. fk2. ofQ. k 2 ;' k I

Since there are a finite number of neighborhoods, this process can be continued until _c reach lhc pain!

p_ and its neighborhod N K so {liar all poims on I lic on some face of Q Since p' e / then p' must lie on

6

some face of Q which contradicls the assumption dla_ p' e F(f i) V i Thuslm{ F(Q)} G UF(f, )

6

" UF(f,) = In,{F(Q)}

Face Theorem for R n

lfF is a holomorphic fimction in C whose real part and imagmar3, part at-e affine, multdtnear /hnctton.s o./

Q c R _ and fi, i=l ..... m are the t_vo-dtmensionat, exposed faces of Q with m = C:_ 2" "_ then

OF(f,)=
J=l

The proof of this theorem follows from the three-dimensional case b3 considering each of the two-

dimensional exposed faces of Q c R", fixing all but lwo of the dimensions of Q at a lime and applying

the method used in the proof above.
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