
x
NASA-CR-194765

NASA COOPERATIVE AGREEMENT NCCI-22

COMPUTATIONAL FLUID MECHANICS

oc/7""-

Progress Report No. 29

For the Period June 15, 1993 to December 14, 1993

F

(NASA-CR-194765) COMPUTATIONAL

FLUID MECHANICS Progress Report No.

20, 15 Jun. - ik Dec. 1993 (North

Carolin_ State Univ.) 43 p

G3/34

N94-24859

Unclas

019856?

Prepared by

H. A. Hassan

Project Coordinator

Department of Mechanical and Aerospace Engineering
Post Office Box 7910

North Carolina State University

Raleigh, North Carolina 27695-7910

https://ntrs.nasa.gov/search.jsp?R=19940020386 2020-06-16T16:33:28+00:00Z



During this period twoabstractsweresubmitted.Thefirst wassubmittedto the25thAIAA

Fluid DynamicsConference,while thesecondwassubmittedto the 12thAIAA Applied

AerodynamicsConference.Copiesof abstractsareenclosed.

References

1. Fenno,C. C., Jr. andHassan,H. A., "Direct NumericalSimulationof LeadingEdge

Recaptivity to Soundfor Flow OverParabolicCylinders".

2. Warren,E. S.,Harris, J.E.,andHassan,H. A., "A TransitionModel for High SpeedFlow".



Direct Numerical Simulation of Leading Edge

Receptivity to Sound for Flow Over

Parabolic Cylinders

Charles C. Fenno, Jr. "

H. A. Hassan _

North Carolina State University, Raleigh, .North Carolina

Abstract of Paper Proposed for the

AIAA 25th Fluid Dynamics Conference

.June 20-23, 1994

Colorado Springs, Colorado

Abstract
lJ

The compressible Navier-Stokes equations have been used to compute leading

edge receptivity of boundary layers over parabolic cylinders. Natural receptivity

at the leading edge was simulated and Tollmien-Schlichting waves were observed to

develop in response to an acoustic disturbance, applied through the farfield boundary

conditions.

To facilitate comparison with previous work. all computations were carried out at

i_,l_o =0.3. The spatial and temporal behavior of the flowfields are calculated through

the use of finite volume algorithms and Runge-Kutta integration. The results are

dominated by strong decay of the Tollmien-Schlichting wave due to the presence

of the mean flow favorable pressure gradient. The effects of numerical dissipation,

forcing frequency, and nose radius are studied. The Strouhal number is shown to

have the greatest effect on the unsteady results.
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Introduction

The aerospace design process is complicated by the wide range of factors which

affect the flight vehicle. Each of these factors, which include propulsion, structures,

and aerodynamics, must be considered at each step in the design process. Recent

research on the National Aerospace Plane (NASP) project has shown a very high

degree of interdependence among these varied design factors. The aerodynamic shape

of the vehicle forebody, for example, will act as an inlet compression structure for

the propulsion system. Therefore. the importance of a thorough understanding of

the flowfield, even though traditionally essential, has now reached an unprecedented

priority.

One of the key aspects of the flow is its transition from a stable laminar state to

one of turbulence. Important parameters such as drag, skin friction, and heat transfer

differ for laminar and turbulent flows. Small changes in the transition location can

have significant effects on the overall value of these parameters. Unfortunately, the

studv of both laminar and turbulent flows have far outpaced the understanding of the

transition mechanisms which link them. The transition phenomenon is believed to

consist of three stages. 1 The first of these is the transfer of external disturbances into

the viscous layer, which has become known as the receptivity problem. Next is the

linear growth of these disturbances, and the final stage is the nonlinear breakdown

to turbulence. The linear stability theory is well established and was first verified

experimentally by Schubauer and Skramstad. 2 Extensions of the original theory to

compressible and three dimensional flows have been made and efficient numerical

schemes have been developed. 3 Advances in describing the third, nonlinear stage

have more recently been made due largely to advances in computational capabilities.

Direct numerical simulations of the transition process have been achieved by several

authors. _' 5.6

The majority of past numerical and theoretical work in transition, however, has

relied upon simplifying assumptions such that temporal and spatial disturbances are

considered separately. Furthermore. spectral methods have been extensively em-

ployed. These spectral methods are known to have difficulties with discontinuities,

such as those found in compressible flows and flows over complex geometries. The

present work extends the capabilities of numerical solution of transitional flows by us-

ing algorithms in wide use in computational fluid dynamics (CFD) which are capable

of solving compressible flowfields. Furthermore. both spatial and temporal simula-

tion is employed. This is an extension of the work bv Fenno, Streett and Hassan r in

which the transitional flow over a flat plate was numerically simulated. Receptivity



in that .york was of the forced type, behind the leading edge. Tile more realistic

situation of pressure gradient flow and natural leading edge receptivity is addressed

in the present work. Lin. Reed and Saric s solved the case of incompressible flow

over a fiat plate with elliptic leading edge. which is characterized by a small region

of favorable pressure gradient in the leading edge region, followed by an extended

region of adverse pressure gradient. Their receptivity was of the natural type, with

the external disturbance provided by an acoustic wave. The work was extended by

Buter 'J _o include receptivity to freestream vorticity disturbances. Murdock 1° used an

incompressible spectral method to study the leading edge receptivity of flat plates to

an acoustic wave. He later extended his work to include parabolic cylinders, and thus

favorable pressure gradient. _1 The previous four references worked with the incom-

pressible problem. The current interest, however, is within the compressible regime.

The objective of this work is therefore to numerically simulate leading edge recep-

tivity of a parabolic cylinder using a compressible numerical scheme. The Mach

number considered here is 0.3, for comparisons and validation to the available body

of incompressible results.

Numerical Scheme

The governing equations are the two-dimensional, unsteady, compressible

Navier-Stokes equations. A finite volume formulation using second order accurate cen-

tral differencing is employed. The method follows the approach of Jameson, Schmidt

and Turke112 and integration is by a four stage, modified Runge-Kutta method. Third

difference explicit dissipation is used for numerical stability. The dissipation is scaled

by the local eigenvalue of the equations. Following [12], the dissipation scaling pa-

rameter is h_+}.____Zl (l)

At

where/7:_:,, i is the cell height at (i + ½,j) and At is the integration time step. In one

dimension, the time step can be written as

/_+_'J (2)
At=Ate- lu ]+a

where u is the velocity in the x direction. _ is the speed of sound and, therefore.

lul + a is ,,he maximum eigenvalue in the ,r direction. Thus the numerical dissipation

is scaled _o the local eigenvalue. However. in two dimensions.

1 I 1
_ (3)

At Ate. Aty



Simplification of eeuation{3) leadsto

_xt= (4)
(1 ,1+ a)+ (1 ,1+ ,-,i

Therefore. the isotropic dissipation obtained by using equation (4) for the scaling

term given in equation il) leads to excessive dissipation. Jou et al. 13 have shown

significant degradation of the laminar solution if excessive numerical dissipation, such

as that described above, is involved. Improved models have been developed which

use an anisotropic approach and are are only modestly more costly to solve than

the standard scheme) 4"15 Therefore an anisotropic dissipation model will also be

investigated in the present study. This involves substitution of the directional At,

shown in equation t2) for At in equation (1). Likewise. the y direction dissipation

is scaled by Aty. This results in a slight increase in required computer resources

because both directional time steps have to be either stored or recalculated at each

grid location. It should be noted that the various forms of the time step mentioned

above are for computation of the numerical dissipation only. The temporal integration

time step uses the complete At given by equation (4).

The solid waii boundary uses no-slip and adiabatic boundary conditions. Ex-

trapolation is applied at the outflow boundary, while the inflow boundary is handled

using locally steady, one-dimensional characteristic theory. The positive half domain

is solved and thus. symmetry boundary conditions are applied at the centerline.

The first step in the solution procedure is to discretize the domain such that

the relevant flow structures can be resolved. This is achieved through choice of an

appropriate grid. The streamwise resolution must be fine enough to resolve the flow

gradients in the mean flow near the leading edge. Streamwise grid spacing in this

region is one tenth of a nose radius. This spacing requirement was found by numerical

experimentation. The grid is stretched to a spacing no larger than one eighth of a dis-

turbance wavelength at the outflow in order to resolve the desired spatial disturbance.

In the body normai direction, the traditional rule is to place at least ten points in

the viscous boundary layer. In the present method, however, a more rigorous require-

ment is the need to resolve the unsteady disturbance profiles. These profiles are of the

acoustic and instability waves. The acoustic profile can be estimated with the Stokes

wave, while the instability profile is estimated by linear theory. Both of these profiles

have strong gradients and inflection points in the near wall region. A minimum of 4

to 5 points is placed before this inflection point. A further requirement is the need

to resolve the stron._ mean flow gradient at the leading edge. Grid spacing normal to

the leading edge is one hundredth of a nose radius. In the temporal direction, two



constraints must bemet. Theseare the needto resolvethe temporal frequency and
the need to meet numericai s_abitityrequirements. The more restrictive of these is
the numerical stability.

The next step is to computea mean flow. For this part of the calculation, tem-
poral accuracy is not neededand the integration is usedonly to achievea steady
state solution. Therefore.convergenceacceleration in the form of local time stepping
and residual smoothing is usedto hasten the computation.16It is extremely impor-
tant that, for the high Reynoidsnumbersemployed, a solution with smooth second
derivatives be obtained.iT

Oncethe meanflow is obtained,the unsteady forcing disturbanceis determined.
The disturbance takesthe form

_Xq= Ac t e i(c'z-''t) (5)

where a is the disturbance wavenumber, a,, is the frequency, and

Aft 6 o U,,.x_

0

-p_u_Aft
(6)

where 6o is the specified disturbance amplitude. Equation (6) is obtained from the

one dimensional, inviscid conservation of mass and momentum equations and the

definition of the speed of sound.

The fourth and final step involves superimposing the disturbance on the free-

stream at the inflow boundary of the computation domain. Thus a disturbed property,

q, is written as

q = O_ + Aq (7)

where Q_ represents the freestream value. This property becomes the inflow value

used in the characteristic boundary conditions. The governing equations are then

integrated in a time accurate manner, allowing the disturbance to continually prop-

agate into the flow. Once the disturbance has penetrated the entire field and moved

through the outflow boundary, sampling of the desired properties is performed.

Results and Discussion

Steady Results

Results are presented for a Mach number of 0.3 such that comparisons can be

made with the linear disturbance theory and other numerical results in the incom-



pressibleregime. The problem is modeledafter that of Murdock 11and the noseradius
l:/eynoidsnumber is set at R,, = i "< [0 a. .\ value of _: = 2 × l0 -a for the coeri3.cient

of third difference explicit damping was found to be sufficient to suppress odd-even

point decoupling of the solution. The isotropic dissipation defined using equation (4)

in equation (2) was initially used. Tile outflow boundary was set to R, = 5 x l0 s.

.\ firs_ order outflow extrapolation boundary condition based on Taylor series was

applied along the grid lines. The farfield boundary was placed at x =-4L upstream

of the leading edge and y = 5666 above the body at the outflow. The length of the

body within the computational domain is denoted by L, and 8 is the boundary layer

thickness at the outflow boundary. The grid size was 416 x 352, which results in a

resolution of between 374 cells per expected TS wavelength at the nose to 8 ceils per

wavelength at the outflow. The normal resolution uses a 1.65 percent stretching from

a minimum spacing of 9 = _5/35. which places 29 points in the boundary layer. The

results of the steady state solution are shown in figure 1. The figure shows the surface

vorticity defined as
c2 7-/2

g = _o. + (s)

where fi is the nondimensional vorticity and ({, 77) represent the grid coordinates. This

parameter is shown vs. the log of _, and compares well with the results of Davis. Is

Unsteady Results

The unsteady disturbance was placed on the farfield boundary conditions and

the integration was continued. This part of the computation does not use the conver-

gence acceleration methods which were used for the steady state computation. The

nondimensional disturbance frequency was set to F= 56 x 10 -_. This is defined as

F = -- (9)
u_

where : is the frequency, u is the kinematic viscosity and u_ is the freestream velocity.

The amplitude of the disturbance was set to eo = 2 x 10 -_. This is of the same order

of magnitude used by Buter and Reed ra, who studied receptivity flow over blunt

bodies and found the results to be linear up to forcing amplitudes of 4.2x 10 -2. They

attributed this to the favorable pressure gradient damping effect.

The solution is compared to the results of Murdock n in figure 2. The temporal

Fourier amplitude at the input frequency is plotted against the streamwise Reynolds

number at a constant distance from the solid boundary given by a Reynolds number

of R, = 196. Qualitative similarity is seen between the present method and Murdock's

6



spectral method results. The amplitudes showan initial strong spike near the nose.
followedby a decayand a relatively constantvalueovermost of the body. Murdock
maintainsthat the magnitude of the envelopeabout the mean is associatedwith the
Tollmien-Schlichting wave. 1°' u

The instability wave profiles are shown in figure :L normalized by the edge value

of the total fluctuation and plotted against 772. the Blasius similarity parameter. The

instability fluctuation is denoted by a double prime to distinguish it from the total

fluctuation. With the exception of the first station at R_ = 1 x l0 4, the instability

profiles are seen to take the characteristic duM lobe shape predicted by linear theory.

The overall shape is seen to change from approximately equal magnitudes in both

lobes to a dominant magnitude in the lower lobe. At about R, = 7 x l0 4, the upper

lobe has been reduced to insignificance. This single lobe shape is then seen to persist

downstream. The instability fluctuation is seen to grow from about l0 percent of

the total fluctuation at R_ = 1 x 10 4 to almost 30 percent at R, = 8 x 10 4. For

comparison, the results of linear theory are shown in figure 4. Linear theory predicts

growth ra_es, but not absolute magnitude. Thus, the profiles are normalized by their

peak value. The different profiles were obtained by using the mean flow profiles at

differen_ streamwise stations obtained from the present method to obtain solutions

using the linear theory code described in [17]. The linear theory produced similar

profiles, as expected, for stations aft of R, = 4 x 104. but produced a differing profile

at R_ = 2 :.: 104. This is most likely due to the assumption of parallel flow used by the

method, which is not valid in the leading edge region. The peak value is at a height

of r/B _ 1 for the theoretical profiles, whereas the present method profiles reach their

peak at rt3 _ 0.6. The highly two-dimensional leading edge flow is also the most likely

reason for the nonconforming profile shape at R, = 1 x 10 4 calculated by the present

method e,nd shown in figure 3. Furthermore. there is some region at the leading edge

where _he energy transfer between the long and short wavelength modes is occurring,

and the idea of the acoustic and instability waves existing as separate waveforms can

not be defended. Therefore no attempt should be made to analyze them separately.

Golds_ein 2'0argues that in the neighborhood of the leading edge, defined as

the flow cannot be described as a double-layer structure of a Stokes wave and eigen-

solutions of the Orr-Sommerfeld equation. In this region, the long wavelength free

stream disturbance is undergoing a wavelength reduction process by the non-parallel

mean flow effects until the wavelength matches the Tollmien-Schlichting wavelength.

Bevond this region, the disturbance wavelength is constant. In terms of the Reynolds



number, and using ,,heflow parameters of the presentwork. the limiting length in
equation (10) can beexpressedas

R, <_ CO(1.8 × tO4) (11)

which is in close a__reement with the point where the uncharacteristic disturbance

profile shape shown in figure 3 gives way to the proper shape.

The maximum instability fluctuation of the momentum is shown in figure 5. In

the figure, the maximum amplitude is determined over one period of the disturbance in

time and also over the body normal direction. This yields a streamwise distribution.

Three zones can be distinguished. The initial zone is very near the leading edge

and is characterized by a sharp drop in amplitude. The next zone extends to about

R, = 7 x 104 and indicates a strong increase in amplitude. The final zone extends

to the outflow and shows a relatively constant amplitude with a long wavelength

oscillation. These three zones correspond to the characteristic profile shapes given

in figure 3. The first zone is associated with the profile at R, = I x 10 4 where the

concept of separating the acoustic and instability waves is most likely not valid. The

second zone is associated with the characteristically shaped instability profiles for

1 x 10 4 < R, < R, = 7 x 10 4. The final zone, extending over the rest of the domain, is

identified by the single lobe profile shown in the last profile of figure 3 for R, = 7x i0 4.

Although the distribution shown in figure 5 is useful for identifying the zones described

above, the quantitative amplitude information it offers must be treated as suspect due

to the somewhat crude wave separation technique that was necessarily used to obtain

it. The Stokes wave. however, is the best approximation of the acoustic signature

that has been determined.

The next step in the analysis is to determine the wavenumber of the computed

instability wave. Figure 6 shows the instantaneous momentum fluctuation vs. the

streamwise direction at a normal distance defined by % = 0.6. This distance from the

wall is where the lar__est fluctuation is seen in the instability profiles of figure .3. The

long wavelength acoustic fluctuation is clearly seen in the figure, while a shorter length

oscillation of much smaller amplitude is seen in the leading edge region. The smaller

amplitude can be estimated as being about an order of magnitude smaller than the

acoustic amplitude. This is in agreement with the magnitude of the instability profiles

of figure 3. This shorter lengthscale oscillation is seen to be strongly damped beyond

about Rs=5xl0 4.

The data series iength represented by figure 6 is necessarily truncated with re-

spect to the number of wavelengths. The acoustic wavelength is approximately equal

to the body length. _hus only one wavelength is available for analysis. Furthermore,



figure 6 indicates the existenceof the instability wave for oniv a few wavelengths.
Theserestrictions causedifficulties in the ability of traditional Fourieranalysis tech-
niques to resolve wavenumbersand amplitudes.21It was there/orenecessaryto use
a technique better suited to the analysisof truncated series,tile .MaximumEntropy
Method (MEM). 22'2a'2. Corke :1 maintains that this method is best used to detect

the existence of various modes, rather than extract quantitative data. Figure 7 shows

the results of the MEM when applied to the data series defined by figure 6. The

power spectrum clearly displays three peaks. The first peak is at a wavenumber very

close to the input acoustic wavenumber. The last peak is very close to the value pre-

dicted by linear stability theory, illustrating the existence of the higher wavenumber

Tollmien-Schlichting wave. The middle peak is associated with the numerical window

function used in the analysis and is not indicative of any physical process.

The existence of the TS wave is thus illustrated by identifying its wavenumber,

at least qualitatively as seen in figure 7, and its profile shape, seen in figure 3. Its

amplitude can be deduced from figure 6 as approximately an order of magnitude

smaller than the acoustic wave and strongly damped in the streamwise direction.

There are several possible sources of this damping. Since the TS wave propagation

was successfully simulated using the present method for flat plate flows r, complete

with amplification and decay in the proper regions, it is reasonable to investigate the

fundamental differences between flat plate flow and parabolic cylinder flow for the

cause of the present TS wave damping. The first difference is the surface curvature.

It is known that a convex surface has a stabilizing effect on the stability of a boundary

layer, as compared to the flat plate. 2s' 26 However, Schlichting 26 also notes that this

influence is very small if the ratio of the boundary layer thickness to the radius of

curvature is small, as in the present case. Reshotko. 25 in his review of boundary layer

stability refers to early work of Liepmann 2r who observed that transition on convex

surfaces occurs at about the same Reynolds number as on flat plates. Therefore, while

the curvature may be contributing to the TS wave damping, it is not believed to be a

strong effect, especially" since the curvature is small away from the leading edge. An-

other factor which must be mentioned is the presence of a favorable pressure gradient.

This has a much stronger effect on the stability of the boundary laver. 2s" 26, 2s, 29 The

exploitation of a favorable pressure gradient as a transition control mechanism has

even been studied, a° Figure S compares the pressure gradient of the parabolic cylinder

and the flat plate mean flows of [7]. As expected, the pressure gradient is seen to

be much more favorable for the parabolic cylinder until approximately R, = 1 x l0 s,

beyond which the results are essentially the same. This is well beyond the point

where the short wavelength oscillation is observed in figure 6. This is strong support,

9



:here/ore.for the pressuregradientasa leadingcauseof the instability wavedamping
observed.

Dissipation Model Study

The results for the parabolic cylinder reported above used the two dimen-

sional time step defined by equation 1.4) to scale the numerical dissipation. The

anisotropic correction discussed following equation (4) was applied to the dissipa-

tion at this point. The steady state flow was recalculated and the temporally accu-

rate integration was conducted to l0 disturbance periods using an input disturbance

amplitude of Co=2 x 10 -a, as in the previous case. The acoustic amplitude at the

body is ee=8.8x 10 -a, or 44 percent of the input amplitude. Previously, this was

e, = 1.3 x 10 -a, or 6.5 percent. Figure 9 shows the TS profile for the two formulations

at R, =5 x 104. Only a small change is seen in the instability response which can eas-

ily be a result of the subtle changes in the mean flow. Thus, the improved damping

formulation allows more of the input disturbance amplitude to reach the body. but

the TS response remains essentially unchanged.

Nose Radius Study

Harnmerton and Kerschen, al utilizing asymptotic methods, have shown the level

of receptivity of a parabolic cylinder to freestream acoustic waves to be dramatically

increased for lower Strouhal number. The Strouhal number is defined as

3" = F R. (12)

and represents the ratio of nose radius to characteristic disturbance lengthscale.

Therefore, to improve the TS response, the body nose radius was decreased from

R, = i000 to R,_ =243. The Strouhal number is thus reduced from S=5.6 x 10.2 to

S = 1.36 x 10 -2 .

The results of the unsteady computation show significant differences as compared

to the R,, = 1000 case. Figure 10 shows the computed instability profiles. The

streamwise distributions are compared in figure 1 i. As before, the first profile station

at R, = 1 x 104 shows no characteristic instability shape and falls in the first zone

of sharp amplitude decay in figure 11. The next two profiles fall within the second

zone and show an initial growth of amplitude followed by a decay. Previously. only a

growth was seen. Profiles between R, = Tx 104 and R_ = 9 x 104 develop a small lower

lobe and a dominant upper lobe and lie within the third zone in figure 11. This third

zone is also characterized by amplitude growth followed by decay. The final profile

10



at R, = i.1 x l0 s shows another shift of magnitude from the upper to lower lobe and

again begins an amplitude growth which continues through the outflow boundary.

This repeating growth and decay cycle was not seen previously for the R_ = i000

case. That case does, however, show the growth portion of the first cycle before

settlin_ into a persistent single lobe shape.
v

To explain the unusual behavior for this case, the mean flow pressure gradient

distribution is displayed in figure 12 along with the distributions for the previous

R,_ = 1000 case. and for the fiat plate case. The pressure gradient, while still favorabIe.

is much less so for the present case. This is a very convincing argument for the

importance of the pressure gradient in the stability of the boundary layer. Whereas

before no discernible TS behavior was seen beyond Rs = 7 x 104, here the TS profiles

continue their characteristic shape to the outflow of the domain at Rs - 1.2 x l0 s.

Frequency Study

The previous case involved a change in both the pressure gradient and the

Strouhal number. To determine which of these changes is dominant, the final study

is of a higher input frequency, F = 230 x 10 -6 and uses the R,_ = 243 geometry. This

frequency and geometry were chosen in order to maintain the same Strouhal number,

S=5.6 x 10 -2, which was used previously with the larger nose radius and lower fre-

quency. Furthermore, a higher frequency will produce a less stable boundary layer,

as predicted by the upstream shifting of the branch points bv linear theory. Further-

more, Reed. Lin and Saric s have numerically shown a greater TS wave amplitude for

higher frequency. The amplitude distribution is shown in figure 13 and shows very

similar trends as for the lower frequency, larger nose radius results. This includes the

initial amplitude drop, followed by an amplitude increase with the TS profile devel-

opment, and then followed by a relatively unchanging amplitude for the remainder of

the domain. The difference between the cases is in the range of R_ where the various

behaviors are seen. Previously, the TS profiles were in the range 2x 104 _< Rs _ 7x 104.

whereas in this case the range is 6 x 103 < R_ _< 1.6 × 104. Thus, at a given R_, the

higher frequency yields higher TS amplitudes. Note. however, that in terms of the

nose radius, as seen in figure 14, both cases are very similar with the TS profile zone

falling between 20 and 70 nose radii aft of the leading edge. The case which used

S= 1.36×10 -2, continues to follow its unique trends under the P_ normalization, how-

ever. This serves to underline the importance of the Strouhal number, rather than

either the nose radius or frequency alone, as the important similarity parameter for

leading edge receptivity studies.

11



Concluding Remarks

The objective of the present study was met in that the compressible Navier-

Stokes equations, using a finite volume formulation, have been successfully used to

compute leading edge receptivity of boundary layer over a parabolic cylinder. Natural

leading edge receptivity was simulated and Tollmien-Schtichting waves were observed

to develop in response to an acoustic disturbance, applied through the farfield bound-

ary conditions. The 7ollmien-Schlichting waves which developed compared qualita-

tively with the results of linear disturbance theory. The wavenumber of the TS waves

was determined using the Maximum Entropy Method [MEM) and compared well

with the wavenumber predicted by linear stability theory.

The TS waves which were observed in the simulation were characterized by a

strong amplitude attenuation in the spatial direction and the source of the attenuation

was investigated. An anisotropic formulation of the artificial dissipation model was

implemented. This allowed more of the input disturbance amplitude to reach the

body, but the amplitudes were found to scale linearly to the original solution. Thus,

the numerical dissipation was not found to have a significant effect on the strong TS

wave damping.

A smaller nose radius parabolic cylinder was employed and significant changes

were seen in the unsteady results. To determine whether the changes were due to the

resulting change in pressure gradient or to the interaction of the acoustic wave with

the smaller nose radius, a higher frequency case was computed using the smaller nose

radius cylinder. The frequency was chosen such that the Strouhal number, or ratio

of nose radius to disturbance wavelength, was the same as for the lower frequency,

larger nose radius case. The solution was found to compare similarly to the original

lower frequency soiution in terms of the TS wave damping. Thus, it is concluded

that the parameter which affects the development of the I'S waves is the Strouhal

number, rather than the frequency or nose radius alone. The damping of the TS wave

for the lower Strouhal number computation was, however, still significant. Therefore,

the stabilizing effect of the favorable pressure gradient continued to have a dominant

effect on the development of the TS wave.

The present method, utilizing the compressible Navier-Stokes equations and a

finite volume scheme, has been shown to be successful in simulating leading edge

receptivity. The method has been validated in the nearly incompressible regime and

for relatively simple geometries. With this accomplished, the extension of the method

to higher Mach number flows and complex geometries is now possible. This capability

has not previously been available.
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Introduction

The study, of high speed transition is very imoor_ant for Ti:e efficient design of hypersonic

vehicles, ttvpersonic vehicles, suctl as the .\-ationai Aerospace Plane, NASP1. encounter flows

which may be transitional over a significant portion of the vt_nicle. Within this transitional
w

region, design_ parameters such as skin friction, i_eat transfer, etc.. are rapidly increasing

or are maximum. Due to ti_e current iimitations of supercomputers, the most practical

method for describing such flows are methods based on the Reynolds-Averaged Navier-

Stokes (RANS1 equations. Traditionally. transition models based on the Reynolds-Averaged

equations have consisted primarily of the modification of existing turbulence models. The

main objective of this work is the development of a transition model which incorporates

information from linear stability theory and accurately reproduces available experimental

data for transitional flows over a wide range of Mach numbers.

At Mach numbers less than about four. the transition process is dominated by first-mode

disturbances. First-mode disturbances are vorticity disturbances which are characterized

bv fluctuations in velocity. First-mode disturbances in incompressible flows are known as

Tollmien-Schlichting waves. At Mach numbers _reater than four. the transition process is

dominated by second-mode disturbances. Second-mode disturbances are acoustical distur-

bances whic1_ are characterized by large fluctuations in pressure and temperature, fluctua-

tions which are much larger than the velocity fluctuations.

Previous work by Young, et al. 1 has established a model for including the effects of first-

mode disturbances into a transition model. The work by Young, et al. 1 dealt exclusively

with incompressible flows. An objective of the present work is the extension of this model

to account for Mach number effects. Additionally. the present work includes the effects of

second-mode disturbances which dominate the transition process at hypersonic speeds.

Experimental Data

In order to determine the accuracv_ of" mocieis, it ;-_ necessary to reproduce available experi-

mental results. In the study of natural transition, flight data or data from quiet wind tunnels

is necessary. The N.\SA-I.an,ciev Mach 3.5 Pilot Low-Disturbance tunnel has emerged as

the facility capable of reproducing transitional data of the quality tilat matches flight data.

Using this tunnel, Chen et al. -_presented recovery factor measurements on a 5 _ half-angle

cone and a fiat plate. Three cases from these experiments are used for comparison with the

present model. These are

• Flow :3 - Case 5 Re = ;'.Se7/m .rt = 0.0815m

• Flow 3 - Case 6 Re = .:,.S9eT/m ._., = i).i174m

• Flow 3 - Case 7 Re = ...... ._',._._oe _/ m = 0.2166m



•.'.irh Lr.t = i;::.7_i = ',)5A..'_1%,: = ,_.36, q = _.[L-; lhe case designations are chosen

"o correspond to :i_e same cases .')=esented in i{ef.[3 I. The reference quantities given are

})oundarv-Iaver -__e cluantities..',._ of the above ,[ata pertains to the cone experiments.

[n order to determine the effect ot the secona-mode disturbances modei, experiments at

.kIacn numbers __reater than four are necessary, I(immel et al.t have carried out Mach 8

:ransition experiments over a flared and nor>flared 7-" half-angle cone. Tlmse experiments

were carried out in the AEDC T_nnei B. The AEDC wind-tunnei is not a quiet tunnel

in terms of freestream intensity levels. The freestream turbulence intensity level in the

experiments 4 was around 3.0%. however, only a small portion of this was in the second-

mode frequency, range [frequencies above 80-100 kHz). Based on this, Ref.[5] states, "a

conventional hypersonic wind tunnel can be quiet for second mode disturbances and noisy for

first mode disturbances." The vaiiditv of this statement is still an open question. Regardless,

at the present time. no second-mode dominated transition data obtained in quiet tunnels is

available. Therefore. the present model is compared to these cases, which are given as

• Mach 8 - Flared .U = ..98 Re = 6562000/m

• Mach 8 - Non-Flared .'ff = 7.98 Re = 6562000/m

Transition :N/Iodel

[f F represents the fraction of the time the flow is turbulent, then the mean velocity, U,_ is,

f,° = rC, +(t - r!f;, (1)

In the above equation. L-_ is the mean turbulent velocity and Ue is the mean non-turbulent

or laminar velocity. Measurements by Kuan and Wang _ showed that non-turbulent profiles

are not Blasius ,vrofiles for flows over fiat plates. Moreover. turbulent profiles are not the

"raditional fully-,-!eveioped profiie_,..\t any given instant, the streamwise fluctuation in the

;ransitional re__ion. _[.. is given b;..

ll. --" II -- (Tin

If u is the non-lurbulent velocit 3. :ken

and

= ,t)2 + F2({- _ (..)2 (2)

Similarly, if u is zb.e turbulent veiocity, then

--r:-. _,;a+(1 F)2(U, G,) 2 (3)

3
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File e>:gression oziven in e(_uation :3) is o?2tainea 1-f the t:me anti that in eauation 1'2),

1 - _, of the time. FhereIore

rn ffenerai, one can write
./

(_;_,})_= r(.'_.},, + (_- r_/_,4J_ + r(_ - r'_A U_."._,% (5)

The resulting expression is a result of three contributions: turbulent, non-turbulent, and

a laree-eddv component. Traditionally, transition models have only included the turbulent

cont_bution, terms resulting from non-turbulent fluctuations have not been included. The

terms ±[; A U; are a result of large eddies. Their calculation requires specification of the

turbulent and non-turbulent profiles in the transitional region. For this work. the large-eddy

term has been neglected.
The intermitteney factor. F. is obtained from the expression developed by Dhawan and

.Narasimha. _ i.e.

with

F(x] = 1-.xp (-0.411e

Z -- ,r t

,\

and ,\ is determined from the correlation

Rex

(6)

= 9 Heg__ (7)

xt is value of x at the beginning of transition. Because of this, this model requires the

specification of a transition "'point".

Turbulent Contribution

For a iulh" turbulent flow. all that is needed to close the RANS equation set is the turbulent

tl. l! pain . Bv evaluatin._ the [urbulentRevnoids stress, pai aj and the Reynolds heat flux. "'-"

Rei'noids stress, the turbulent contribution to the general transitional stress is obtained.

The turbulent contribution is the first term in Eq. 5.

The turbulent Reynolds stress is given in this work by Boussinesq's approximation which

gives.

where/tt is the eddy-viscosity and ],"is the turbulent kinetic energy per unit mass.

In this work. a one-equation model is used which specifies the eddy-viscosity as

_, = C,_vi,(,, (9)
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".'here (_':, = L_.09 is a :::odd constan: anct _:, is an ai_ebra:caily derived ien,zti_ scale. Tiffs

:_en__tn scaie;; ,:ieriveci by considerin_ the near-wait behav;or of h and characteristics of the

io_-iaw re_ion in the _'.:rbulent veiocirv boundary iaver. [-!:e turbulent viscous length scale.

,_. ;_ _iven as

. ( V/'u i il01

/(-,, -= _- :.:t [ -- exp C',.;" i

w here

Ct = 1.0.3/-5 ,c C_ = 70.0 (11)

and K is the Karman constant (0.41}. The length scale g, contains a damping factor which

takes into account the presence of the laminar sublayer in the turbulent velocity profile. The

form of the above [en._th scale was ori_nally derived bv Gaffney. r

Reynolds Heat Flux

In the energy equation, the quantity push" appears. This term is known as the Reynolds

heat flux. This term is modeled bv a gradient diffusion approximation, which gives

0I' (12)
pu"h" = - Cp at

i Ozj

where at is the turbulent diffusivity. The turbulent diffusivity can be expressed in terms of

the eddy-viscosity and a turbulent Prandtl number.

vt (13)
at -- Prt

The resulting expression for the Reynolds heat flux becomes

j)H"h H __

Pr, O.r.

where Cp is the specific heat at constant pressure, lzt is the eddy viscosity, and Prt is the

turbulent Prandtl number.

Traditionaily. the turbulent Prandtl number is taken as a constant. The value of Prt

varies in the literature but generally is chosen between 0.S and 1.0. In this work. when the

turbulent Prandtl number is chosen as a constant, the value is taken as 0.89. This was chosen

to correspond to the value used in reference [3].

There are physical consequences in choosing Prt as a constant. Bv examining Eq. 14, it is

clear that when Prt is a constant, the damping factor used is the same factor which appears

in (_. This is equivaient to treating the turbulent thermai boundary laver with the same

damping as the turbulent velocity boundary laver, even though they have different laminar

sublaver characteristics. As results will illustrate, this choice has surprising consequences

when considering quantities which are strong functions of the Prandtl number, such as the

recovery factor.

.5
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Eddy-Diffusiviw Nlodet

It is Dossible to inodei ',ke Revnoids heat flux in such a way that ti;e turbulent temperature

bounciarv iaver is damped different[) than the t,lrmflent velocity boundary laver. Based on

_he variable'turbulentPrandtl ::umber approach of Cebeci." the eddy-diffusivity model is

assumed to have the form

(1, = C'a 'V )_T t1"5)

The temperature length scale, t r. is assumed similar in form to the viscous and dissipation

length scales and is given as.

(r = C3.q (16)

where

The constants C3 and C4 were determined by comparing with the experimental turbulent

Prandtl number measurements of Meir and Rotta. 9

By defining a separate length scale for the temperature boundary layer, different damping

is obtained. The present eddy-diffusivity model implies a variable turbulent Prandtl number

of the form.

Prt : (._%a (17)
(r

where (;_ is the viscous length scale.

Non-Turbulent Fluctuations

The second term in the general transitional stress.

(t - r) (<<),: IS)

is a result of laminar or non-turbulent fluctuations..-ks stated previously, this non-turbulent

contribution has traditionally not been considered in RANS-type approaches. In this work.

the non-turbulent fluctuations considered are a result of first and second-mode disturbances.

First-Mode Disturbances

For moderate supersonic Mach numbers below approximately four. the dominant mode of

instability is the first mode. The dominant disturbance frequency at breakdown is well
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r.._ nrst-=tode disturoance havin__ t::e maxxmum ampiifica-.:'eeicred by the trequencv ot ;',_

-ion rate. [-sin_ tze work of ObremsKie: a[.. t° Walker:: _tates that _;:Is frequency can be

.7orreiated by

_a__ = 3.2 J?e,-.-- (19}
[-:

".here (,L is the velocity at the e,i__e of "he boundary iaver. Re,. is _',e Reynolds number

basea on displacement thickness, c'. ana ,,,' is the frequency.

The above expression is valid for tow speed flow but can be exten(ied, through the use

of the reference temperature method, to high speed flow. It is known:: that compressible

formulas for skin friction and heat transfer have the same form as the incompressible formulas

provided the physical properties of the fluid are evaluated at some reference temperature

between Yw and 7",. A possible definition of T* is la

__ (>)Y" - I -= 0.032M_ + 0.58 \T, 1 (20)7"._

-.'.here the e subscript denotes boundary-iayer edge quantities and w denotes wall values. By

usinu this reference temperature. \Valker's formula, i.e. Eq. 19. can be extended to higher

Macia number flows by considering the definition of the unit Reynolds number as

#"

with

= (92)

where Y* is the reference temperature evaluated from Eq. :20. The density can be approxi-

mated by notinz
t:', p, R T.

P" p'RT"

_;.nd assumin_ that the pressure ;_ approximately constant throughout :!_e boundary laver.

/_ T: (23)
_)e T"

l-he dominant first-mode frequency correlation can then be rewritten as

v.ith d" also evaluated usin,_ Re'.
,."7

By assuming a scale of ; t:, the first-mode disturbance frequency -' can be used to define

a lenzth scale.

-
':s - a- a = 0.04-0.06 (25)

.,J

7



:t is assumeci:hat the turbulent and non-t::rouient co::trib:_tions to l i:e _tress ten,or can be

_.,btaineci by combining the two [enzth scaies as

, = II - F ,-.. - F(" :26)

where __: :s the turbulent viscosity length scale. Thus. when [- = 0. i.e. before transition

Second-Mode Disturbances

Through the pioneering work of Mack. :4" is the concept of second-mode disturbances was
v

developed..-ks the boundary layer edge velocity increases above approximately .lI = 2.2, a

region of t he boundary layer becomes supersonic relative to the phase velocity. Mack showed

that when such a situation exists, multiple solutions to the inviscid stability equations arise.

These additional solutions are called the higher modes. The first of these modes is called

the second-mode and is the most unstable of the higher modes, sometimes referred to as the

Mack modes.

At relativeiv low Mach numbers, boundary layer transition is dominated by lower fre-

quencv first mode disturbances. As the Mach number increases above four, the second-mode

distur_0ances, which are higher frequency acoustical disturbances, dominate the transition

process. From Mack :_ and Stetson and Kimmel. 5 the wave lengths of the most unstable

second-mode disturbances have been shown to be about two boundary layer thicknesses.

The frequency of the second mode disturbances can be written as

:'P (27)
1

where [" is the phase velocity and I is the wavelength. For hypersonic boundary layers, this

leads to the relationship

_ 3I? z (28)\ _x 2," -
vRer

where c is a constant of propor:ionality. Combining with Eq. "27. the frequency is __iven as

(-.v Re.
_ (29)

O
cM:x

Again defining a velocity scale as in Eq. 25. a second-mode contribution to the length scale

can be defined as

which u_on substitution of Eq. "2!) above, v:eids

b :r: i30)
(U; =\'N

ORIGiNaL i_3E IS

OF POOR Qt_/_.'_i_ _



By comDarinz ',','_th ti:e :_[ach $ stabii[tv experiment o( tqimn=ei. _ ,7 ,he constant it was chosen

as 0.23..-\dditionalh. 2near stability predicts the phase ve[ocity to be aoout 0.9[/.'...\pain.

it is assumed that the _econd-mode contribution can bo or)rained by combining ts._t into ti_e

viscous length scale giving

_.. = ,i- F'! _(_-_ + _,,:,-:- .r,':._ (:31)

Results and Discussion

Numerical Method

The numerical method used to solve the equation set follows the method of Ref. [7] closelv. A

finite-volume method was used to evaluate the spatial terms in the Navier-Stokes equations.

The inviscid fluxes were computed by an upwind approach based on Roe's flux difference

splitting. *IUSCL differencing was used along with a min-mod flux limiter. Second-order

central differencing was used to evaluate the viscous fluxes. The solution was stepped in

rime using a modified four-stage Runge-Kutta scheme until a steady-state was obtained.
The determination of a steady-state was based on a density residual drop of five or more

orders of magnitude. Due to the ex-istence of a shock, grids of approximately 275x75 were

needed to adequately resolve the shock and the very thin boundary-layer region. The steady-

state was obtained with run-times on the average of 3-4 Cray Y-MP hours.

Due to the very large Reynolds numbers, as high as 8x107, the thin-layer Navier-Stokes

equations were solved. The thin-layer approximation neglects streamwise derivatives in the

viscous terms due to their small magnitude relative to the normal derivatives. This is a valid

approximation since at very large Reynolds numbers the viscous effects are restricted to a

very small region near a solid boundary. Due to the cell aspect ratios necessary to resolve

this small region, streamwise derivatives in the viscous terms have a negligible contribution.

Mach 3.5 Cases

The Mach 3.5 cases were used to determine the effectiveness of the transition model at pre-

dicting transitional flows which are characterized by first-mode dominated transition pro-

cesses. Previous work by Young et al. 1 has established the capability of the model for

low-speed flat plate flows. The Mach 3.5 cases studied were the ones carried out on the 5 °

half-an__le cone..\ flat plate case was also studied but was not presented here. The cone

experiments measured the recovery factor by determining the surface temperature under

adiabatic conditions.

The first set of results were obtained with the present model using a constant turbulent

Prandtl number. The experiment data is from the Flow 3 - Case 5 experiment which is the

first experiment of the ('hen et al.2 set. Fig. 1 compares the present model with the linear
• Tcombination models of Narasimha and ONERA/£ ER . Linear combination models assume

the viscosity can be expressed as
_z = /_i + g/: (32)



File curve iabeied .X-araslmha:-ed the e,:Dression_,;t"I ,!,,en i)v i_.q. t; ,.vhiic _i:e ON-

ER+\]C'EtRT model is based o:z a transition function, c,..,vi_ich :e_iaces F in th,, above

_,xpression. T!-is transition tu=c:ion, c,. is empiricaUy deri\eci and ;_ discussed in t{ef. [a].

Pi_. I is a plot or recovery, factor versus Revnoids number based on _he distance ,long the

surface. Fig. i demonstrates tkat the present model does a much better job of prodicting

_he len.cth of _he transition zone as wetl as the peak in the recovery factor. The laminar

region is also +oredicted weil. The Narasimha and ONERA., CERT models were ,,_mputed

with a boundary layer code and not a Navier-Stokes formulation. It is believed that the

boundary laver codes were started with a laminar profile just before the transition region

and therefore _he laminar region was never calculated. The recover}' factor was assumed to

be x/-P-7 and thus resulted in a straight line for the linear combination models. Iloth the

linear combination models and the present constant Pr_ model do a poor job of reproducing

the decreasin_ trend of the recovery factor in the fully turbulent region.

Fig. '2 compares the present results of the constant turbulent Prandtl number model to

the two-equation transition model of Wilcox. lr The Wilcox model modifies the production

and dissipation terms in the 1¢-_ turbulence model to simulate transition. The Wilcox model

does a better job of reproducing the peak in the recovery factor than the linear combination

models. However, the present model with a constant Prt does a slightly better job than the

Wilcox model in calculating the recovery factor peak and does a much better job reproducing

the transition extent. Additionally, the present method does a slightly better job in the fully

turbulent region, although both fail to predict the downward trend in the recovery factor.

The calculation of recovery factor is very sensitive to the choice of the turbulent Prandtl

number. Fig. S is a plot of the current transition model with various choices of the constant

Pr_. By varying the choice of Pr_ by as little as 0.01. very large differences result in the

calculation of the recovery factor. This is not too surprising since the recover>" factor is

such a strong function of the Prandtl number. In Fig. 3, the solid line represents lhe choice

of Prt = 0.89 which is the choice used for the linear combination models as described in

Ref. [3].
Since the recovery -_.c_or i- -ensitive to the value of P_'.. _t closer look was t;_ken at

modeling the turbulent diffusiviLv. As stated previously, using a constant turbulent Prandtl

number effectively treats the damping of the thermal boundary laver exactly the saule as the

clamping of the velocity boundary layer. This has no physical basis, especially for hiCh-speed

flows where the thermal boundary layer becomes important due to the large tmuperature

gradients in the viscous laver. Following the work of Cebeci. s the concept of a variable
turbulent Prandtl number was used to define the current eddy-diffusivity model t l2q. 15).

A typical profile of the variable turbulent Prandtl number is compared in Fig. 8 _,+ the flat-

plate measurements of Meir and Rotta. a The results of this model for the Flow .I. Case 5

<-xperiment are shown in Fig. 4..ks can be seen from the figure, tb,e experimemal ,lata in

the turbulent re_cion is aimost exactly reproduced. Even though the peak in the, recovery

factor is slightly, overpreciicted. :ke transition extent is predicted very well.

To determine if the constants used in the specification of the temperature length scale.

Eq. 16. are general, the other e::._eriments in the ._[ach 3.5 cases were computed. Fit_i. 5 is the
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:c-s_,.its or the Dresent moaei for ".ze se,.on,i case. i:!ow ._ - _'ase o. [t is clear ti:at r_he present

:::odei accurateiv reproduces the ,ransition extent, the peak in the recovery factor, and the

':r0uient re_ion. The resuits siao',; _i'e extreme differences in the predictions of the present

:::ethod and the iinear combination nzodeis.._, curious observation in the laminar region can

5e seen by examining Fig. 5. Tile e::Derimental data is aimost fiat in the laminar region while
v

"ke present method aredicts a sii_,z_.t increase in the recovery factor. The experimental results
°

-hown here were obtained with tke same test model as were the results in Fig. 4. However.

,iifferent values were measured for the recovery factor for the same Reynolds number based

on x. This seems to suggest either siight error in the measurements or the existence of

some external phenomena. Fig. 6 is the results for the Flow 3 - Case 7. Even though the

transition extent is predicted welt. poorer results are obtained in comparison with the other

two cases. There is a possible explanation for this. Each of the experiments were carried out

with the same test model..\ reasonable assumption is that the recovery factor measured

should be the same for each of the test cases for the same Re_, given that laminar flow exists

there. Fig. ? demonstrates that each of the cases measured different values for the laminar

:'ecoverv factor at the same Re_.. As seen from the figure, the Flow 3 - Case 5 experiment

measured around 0.S37 for the recovery factor, while each of the succeeding cases measured

values of about 0.840 and 0.844 respectively. This is clearly a discrepancy in the data.

If the tests were not allowed to completely reach steady-state (adiabatic wall conditions),

the measured value of the recovery factor would have been higher than the steady-state

value. Since the computations assumed adiabatic conditions, and consistent values for the

recovery factor were computed in the laminar region, it is possible that the present method

accurately predicts the steady-state value of the recovery factor for the laminar, transitional,

and turbulent regions.
The transitional results presented by Chen et al. 2 are well predicted bv the present model.

Moreover, the results of the current model illustrate the inadequacies of using a constant

turbulent Prandtl number for cases that present recovery factor data. Evidently, the current

"ransition model is the only modei presently known, that correctly reproduces the trend in

- e.,.')e, L,,ents.he turbulent re_,zion for these , , _ _. zr

Mach 8 Cases

' , _ " the effectiveness of the present model in predictingThe ._lach 8 cases were used to cle.e.mme

transitional flows which are characterized by second-mode dominated transition processes.

The experiments were carried out by Kenneth Stetson and Roger Kimmel at the AEDC

, Arnold Engineering Deveiopmen¢ Center) tunnel B and were reported in Ref. [4].

The first case considered is the flared cone case. The surface is flared to produce a con-

,r_ant adverse pressure gradient. F!._. 9 presents the results for the present model without

"he second-mode contribution given in Eq. 31. The results are presented as the dimensional

surface heat flux versus distance aiong the surface. The laminar and the fully turbulent re-

eion are slightly underpredicted for this case. Fig. 10 shows the same results for the present

"ransition modeI with the second-mode contribution. \Vith this second-mode contribution.

[1

ORIGINAL PAGE IS

OF POOR QUALITY



-:re laminar data is predictea correct:'., ltoweve:. _ile tutlv-tur0uient region is s_iii un_erpre-

!icted. Since ,.he surface was cooled. :" was determined that the modeled near-waii behavior

,i the turbulent kinetic energy, given ::_ Ref. - Appendix D]. needed modification..\ factor

,:,i ,/r_ was used in the present model to include effects of wail temperature and to account

:or 'the fact tb.at the near-wail behavior was originally modeled in Ref. [7] for adiabatic flows.

The inciusion of this factor results in "ile following expression for the constant which appears

!n the turbulent viscous length scale _Eq. I0/.

(33)

Fig. 11 is the results of the present model with the near-wall modification. The experimental

data is reproduced very well. The experimental data seems to imply that the heat flux

in the turbulent region is either fiat or is decreasing. This seems to be reinforced by the

calculations in Ref. [17]. However, Kimmet 4 points out that, "An adverse pressure gradient in

incompressible flow causes boundary laver thickness to increase and heat transfer to decrease

compared to zero-pressure gradient values, but the opposite trends occur in compressible

flow. This is primarily because of changes in streamtube size and Mach number in pressure

gradients in compressible flow. Consequently, wall shear and heat transfer decrease more

slowh" with x in an adverse pressure gradient than in zero pressure gradient. A strong

enough adverse gradient causes heat transfer and wall shear to increase in the x-direction."

Additionally'. Kimmel 4 states that the error in the measurements could have been as high as

=10_. It is therefore possible that the increase in the heat transfer shown by the present

method in the turbulent region is accurate.
The second case of the Mach 8 experiments was the non-flared T0 half-angle cone. Fig. 12

presents the results of the current transitional model with the second-mode contribution as
well as the near-wall modification. Tlie results are presented as non-dimensional heat flux

versus non-dimensional distance along the surface. The transitional and turbulent regions

are reproduced auite well. The discrepancy in ,,he laminar region is most likely e::Derimental

error since there is large scatter and no clear transition point. It is also possible that the

!aminar discrepancy is a result of the high levels of freestream turbulence.

.-ks the comparisons with the hypersonic cases demonstrate, the second-mode model per-

forms quite well.

Conclusions

The present transition model is based on the fact that the stress in the transitional re,on can

!:,e expressed as a function of the turbulent and non-turbulent stresses. The noaqurbulent

stress is due to the presence of laminar fluctuations which are a result of first and second-

:.node oscillations. This work has successfully formulated a method in which these laminar

disturbances can be accounted for in the computation of a high-speed transitional flow.

The previous work of Young et al. _ !:as demonstrated the effectiveness of the first-mode
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, ontribution for low-s.oeefl /tows. [;.e ;_resent work demonstrates that _}:e mociet can Oe

_x_ended to hi_h-spee_i flows t hrou_.n the use of tile reference temperature method.
The present work _=uccessfullv demonstrates that seconc_i-mode disturbances can also be

included-into the transition model usin_ a form similar to the first-mode disturbance model.

The resulting transition model accurately reproduces available experimental data for transi-

tional flows. Tile model has been shown to predict first-mode dominated transitional flows

very accurately and performed better than previous modeling attempts. Additionally, the

moctel has bee_a shown to accurately predict hypersonic transitional flows which are charac-

terized by second-mode dominated transition.
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