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Abstract

The compressible Navier-Stokes equations have been used to compute leading
edge receptivity of boundary layers over parabolic cylinders. Natural receptivity
at the leading edge was simulated and Tollmien-Schlichting waves were observed to
develop in response 10 an acoustic disturbance. applied through the farfield boundary
conditions.

To facilitate comparison with previous work. all computations were carried out at
M., =0.3. The spatial and temporal behavior of the flowfields are calculated through
the use of finite volume algorithms and Runge-Kutta integration. The results are
dominated by strong decay of the Tollmien-Schlichting wave due to the presence
of the mean flow favorable pressure gradient. The effects of numerical dissipation,
forcing frequency, and nose radius are studied. The Strouhal number is shown to

have the greatest effect on the unsteady results.

~Research Assistant. Mechanical and Aerospace Engineering, Student Member ATAA.
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Introduction

The aerospace design process is complicated by the wide range of factors which
affect the flight vehicle. Each of these tactors. which include propulsion. structures,
and aerodvnamics, must be considered at each step in the design process. Recent
research on the National Aerospace Plane (NASP) project has shown a very high
degree of interdependence among these varied design factors. The aerodynamic shape
of the vehicle forebody, for example. will act as an inlet compression structure for
the propulsion system. Therefore. the importance of a thorough understanding of
the flowfield, even though traditionally essential, has now reached an unprecedented
priority.

One of the key aspects of the flow is its transition from a stable laminar state to
one of turbulence. Important parameters such as drag, skin friction. and heat transfer
differ for laminar and turbulent flows. Small changes in the transition location can
have significant effects on the overall value of these parameters. Unfortunately, the
study of both laminar and turbulent flows have far outpaced the understanding of the
transition mechanisms which link them. The transition phenomenon is believed to
consist of three stages.! The first of these is the transfer of external disturbances into
the viscous layer, which has become known as the receptivity problem. Next is the
linear growth of these disturbances, and the final stage is the nonlinear breakdown
to turbulence. The linear stability theory is well established and was first verified
experimentally by Schubauer and Skramstad.? Extensions of the original theory to
compressible and three dimensional flows have been made and efficient numerical
schemnes have been developed.® Advances in describing the third. nonlinear stage
have more recently been made due largely to advances in computational capabilities.
Direct numerical simulations of the transition process have been achieved by several

authors.b» > ®

The majority of past numerical and theoretical work in transition. however, has
relied upon simplifying assumptions such that temporal and spatial disturbances are
considered separately. TFurthermore. spectral methods have been extensively em-
ploved. These spectral methods are known to have difficulties with discontinuities,
such as those found in compressible flows and flows over complex geometries. The
present work extends the capabilities of numerical solution of transitional flows by us-
ing algorithms in wide use in computational fluid dynamics (CFD) which are capable
of solving compressible flowfields. Furthermore. both spatial and temporal simula-
tion is emploved. This is an extension of the work by Fenno, Streett and Hassan” in
which the transitional flow over a flat plate was numerically simulated. Receptivity



in that work was of the forced tvpe. behind the leading edge. The more realistic
situatior of pressure gradient flow and naturai leading edge receptivity is addressed
in the present work. Lin. Reed and Saric® solved the case of incompressible ow
over a fat plate with elliptic leading edge. which is characterized by a small region
of favorabie pressure gradient in the leading edge region, followed by an extended
region of adverse pressure gradient. Their receptivity was of the natural type. with
the external disturbance provided by an acoustic wave. The work was extended by
Buter® +5 include receptivity to freestream vorticity disturbances. Murdock'® used an
incompressible spectral method to study the leading edge receptivity of flat plates to
an acoustic wave. He later extended his work to include parabolic cylinders, and thus
favorable pressure gradient.'' The previous four references worked with the incom-
pressible problem. The current interest. however, is within the compressible regime.
The objective of this work is therefore to numerically simulate leading edge recep-
tivity of a parabolic cylinder using a compressible numerical scheme. The Mach
number considered here is 0.3, for comparisons and validation to the available body

of incompressible results.

Numerical Scheme

The governing equations are the two-dimensional, unsteady, compressible
Navier-Stokes equations. A finite volume formulation using second order accurate cen-
tral differencing is employed. The method follows the approach of Jameson, Schmidt
and Turkel!? and integration is by a four stage. modified Runge-Kutta method. Third
difference explicit dissipation is used for numerical stability. The dissipation is scaled
by the local eigenvalue of the equations. Following [12], the dissipation scaling pa-
rameter s ;
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where 7 _; ; is the cell height at (2 + %,j) and \¢ is the integration time step. In one
dimension. the time step can be written as
At = Al = 3 (2)
il + a

where u is the velocity in the z direction. « is the speed of sound and, therefore.
|t} + @ is the maximum eigenvalue in the r direction. Thus the numerical dissipation
is scaled ro the local eigenvalue. However. in two dimensions.
1 1
At At At

(3)



Simplification of ecuation (3) leads to

/“_{_Ld
At = : . (4)
(Ju] + a) + (Jo] + a)

Therefore. the isotropic dissipation obtained by using equation (4) for the scaling
term given in equation (1) leads to excessive dissipation. Jou et al.!® have shown
significant degradation of the laminar solution if excessive numerical dissipation, such
as that described above, is involved. Improved models have been developed which
use an anisotropic approach and are are only modestly more costly to solve than
the standard scheme.'*'® Therefore an anisotropic dissipation model will also be
investigated in the present study. This involves substitution of the directional At,
shown in equation 12) for At in equation (1). Likewise. the y direction dissipation
is scaled by At,. This results in a slight increase in required computer resources
because both directional time steps have to be either stored or recalculated at each
grid location. It should be noted that the various forms of the time step mentioned
above are for computation of the numerical dissipation only. The temporal integration
time step uses the complete At given by equation (4).

The solid wall boundary uses no-slip and adiabatic boundary conditions. Ex-
trapolation is applied at the outflow boundary, while the inflow boundary is handled
using locally steady. one-dimensional characteristic theory. The positive half domain
is solved and thus. symmetry boundary conditions are applied at the centerline.

The first step in the solution procedure is to discretize the domain such that
the relevant flow structures can be resolved. This is achieved through choice of an
appropriate grid. The streamwise resolution must be fine enough to resolve the flow
gradients in the mean flow near the leading edge. Streamiwise grid spacing in this
region is one tenth of a nose radius. This spacing requirement was found by numerical
experimentation. The grid is stretched to a spacing no larger than one eighth of a dis-
turbance wavelength at the outflow in order to resolve the desired spatial disturbance.
In the body normai direction, the traditional rule is to place at least ten points in
the viscous boundary laver. In the present method, however, a more rigorous require-
ment is the need to resolve the unsteady disturbance profiles. These profiles are of the
acoustic and instability waves. The acoustic profile can be estimated with the Stokes
wave, while the instability profile is estimated by linear theory. Both of these profiles
have strong gradients and inflection points in the near wall region. A minimum of 4
to 5 points is placed before this inflection point. A further requirement is the need
to resolve the strong mean flow gradient at the leading edge. Grid spacing normal to
the leading edge is one hundredth of a nose radius. In the temporal direction, two



constraints must be met. These are the need to resolve the temporal frequency and
the need to meet numericai stability requirements. The more restrictive of these is
the numerical stability.

The next step is to compute a mean flow. For this part of the calculation. tem-
poral accuracy is not needed and the integration is used only to achieve a steady
state solution. Therefore. convergence acceleration in the form of local time stepping
and residual smoothing is used to hasten the computation.’® It is extremely impor-
tant that, for the high Revnoids numbers employed, a solution with smooth second
derivatives be obtained.'”

Once the mean flow is obtained, the unsteady forcing disturbance is determined.
The disturbance takes the form

(1}
—r

Aq = Ad ei(orr—wt) ('

where « is the disturbance wavenumber, w is the frequency. and

Au €0 Uno
. Av 0
~g = Ap | T | —poUoeldl (6)
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where ¢, is the specified disturbance amplitude. Equation (6) is obtained from the
one dimensional, inviscid conservation of mass and momentum equations and the

definition of the speed of sound.
The fourth and final step involves superimposing the disturbance on the free-

stream at the inflow boundary of the computation domain. Thus a disturbed property,

q, 1s written as

[d

q=Cx + ¢ (7)
where Qo represents the freestream value. This property becomes the inflow value
used in the characteristic boundary conditions. The governing equations are then
integrated in a time accurate manner, allowing the disturbance to continually prop-
agate into the flow. Once the disturbance has penetrated the entire field and moved
through the outflow boundary. sampling of the desired properties is performed.

Results and Discussion
Steady Results

Results are presented for a Mach number of 0.3 such that comparisons can be
made with the linear disturbance theory and other numerical results in the incom-

(1]



pressible regime. The problem is modeled after that of Murdock!! and the nose radius
Revnoids number is set at R, =1« 10%. A value of kK =2 <1072 for the coerficient
of third difference explicit damping was found to be sufficient to suppress odd-even
point decoupling of the solution. The isotropic dissipation defined using equation (4)
in equation (2) was initially used. The outflow boundary was set to R, =3 x 10°.
A first order outflow extrapolation boundary condition based on Taylor series was
applied along the grid lines. The farfield boundary was placed at r=—4L upstream
of the leading edge and y = 5666 above the body at the outflow. The length of the
body within the computational domain is denoted by L, and 8 is the boundary layer
thickness at the outflow boundary. The grid size was 416 x 352, which results in a
resolution of between 374 cells per expected TS wavelength at the nose to 8 cells per
wavelength at the outflow. The normal resolution uses a 1.65 percent stretching from
a minimum spacing of y =§/35. which places 29 points in the boundary layer. The
results of the steady state solution are shown in figure 1. The figure shows the surface
vorticity defined as .,
£+

: (8)
where Q is the nondimensional vorticity and (£, 7) represent the grid coordinates. This
parameter is shown vs. the log of ¢, and compares well with the results of Davis.!®

g=-0

Unsteady Results

The unsteady disturbance was placed on the farfield boundary conditions and
the integration was continued. This part of the computation does not use the conver-
gence acceleration methods which were used for the steady state computation. The
nondimensional disturbance frequency was set to F =56 x 107°. This is defined as

F=2r (9)
e,
where . is the frequency, v is the kinematic viscosity and u, is the freestream velocity.
The amplitude of the disturbance was set to €, =2 X% 10~2. This is of the same order
of magnitude used by Buter and Reed!®. who studied receptivity flow over blunt
bodies and found the results to be linear up to forcing amplitudes of +.2x107%. They
attributed this to the favorable pressure gradient damping effect.

The solution is compared to the results of Murdock!! in figure 2. The temporal
Fourier amplitude at the input frequency is plotted against the streamwise Reynolds
number at a constant distance from the solid boundary given by a Reynolds number
of R, =196. Qualitative similarity is seen between the present method and Murdock’s



spectral method results. The amplitudes show an initial strong spike near the nose.
followed bv a decay and a relatively constant value over most of the body. Murdock

maintains that the magnitude of the envelope about the mean is associated with the

Tollmien-Schlichting wave.!% 1!

The instability wave profiles are shown in figure 3. normalized by the edge value
of the total fluctuation and plotted against 1. the Blasius similarity parameter. The
instabilitv fluctuation is denoted by a double prime to distinguish it from the total
fluctuation. With the exception of the first station at By =1 X 10%, the instability
profiles are seen to take the characteristic dual lobe shape predicted by linear theory.
The overall shape is seen to change from approximately equal magnitudes in both
lobes to a dominant magnitude in the lower lobe. At about R, =7 X 104, the upper
lobe has been reduced to insignificance. This single lobe shape is then seen to persist
downstream. The instability fluctuation is seen to grow from about 10 percent of
the total fluctuation at R, = 1 x 10* to almost 30 percent at R, = 8 X 10*. For
comparison. the results of linear theory are shown in figure 4. Linear theory predicts
growth rates, but not absolute magnitude. Thus. the profiles are normalized by their
peak value. The different profiles were obtained by using the mean flow profiles at
different streamwise stations obtained from the present method to obtain solutions
using the linear theory code described in [17]. The linear theory produced similar
profiles. as expected, for stations aft of R,=14x 10%. but produced a differing profile
at R, =2.<10*. This is most likely due to the assumption of parallel flow used by the
method. which is not valid in the leading edge region. The peak value is at a height
of 7, ~ 1 for the theoretical profiles, whereas the present method profiles reach their
peak at n, = 0.6. The highly two-dimensional leading edge flow is also the most likely
reason for the nonconforming profile shape at B, =1x 10* calculated by the present
method and shown in figure 3. Furthermore. there is some region at the leading edge
where the energy transfer between the long and short wavelength modes is occurring,
and the idea of the acoustic and instability waves existing as separate waveforms can
not be derended. Therefore no attempt should be made to analyze them separately.
Goldstein®® argues that in the neighborhood of the leading edge, defined as

ro(=) (10)

w
the flow cannot be described as a double-layer structure of a Stokes wave and eigen-
solutions of the Orr-Sommerfeld equation. In this region. the long wavelength free
stream cisturbance is undergoing a wavelength reduction process by the non-parallel
mean flow effects until the wavelength matches the Tollmien-Schlichting wavelength.
Bevond this region, the disturbance wavelength is constant. In terms of the Reynolds
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number. and using the flow parameters of the present work. the limiting length in

equation (10) can be expressed as
R,<O(18x10) . (11)

which is in close agreement with the point where the uncharacteristic disturbance
profile shape shown in figure 3 gives way to the proper shape.

The maximum instability fluctuation of the momentum is shown in figure 5. In
the figure, the maximum amplitude is determined over one period of the disturbance in
time and also over the body normal direction. This yields a streamwise distribution.
Three zones can be distinguished. The initial zone is very near the leading edge
and is characterized by a sharp drop in amplitude. The next zone extends to about
R, = Tx 10* and indicates a strong increase in amplitude. The final zone extends
to the outflow and shows a relatively constant amplitude with a long wavelength
oscillation. These three zones correspond to the characteristic profile shapes given
in figure 3. The first zone is associated with the profile at R, =1 x 10* where the
concept of separating the acoustic and instability waves is most likely not valid. The
second zone is associated with the characteristically shaped instability profiles for
1x10* < R, < Ry=7x10*. The final zone, extending over the rest of the domain, is
identified by the single lobe profile shown in the last profile of figure 3 for R, =Tx10%
Although the distribution shown in figure 5 is useful for identifying the zones described
above, the quantitative amplitude information it offers must be treated as suspect due
to the somewhat crude wave separation technique that was necessarily used to obtain
it. The Stokes wave. however, is the best approximation of the acoustic signature
that has been determined.

The next step in the analysis is to determine the wavenumber of the computed
instability wave. Figure 6 shows the instantaneous momentum fluctuation vs. the
streamwise direction at a normal distance defined by n, =0.6. This distance from the
wall is where the largest fluctuation is seen in the instability profiles of figure 3. The
long wavelength acoustic fluctuation is clearly seen in the figure. while a shorter length
oscillation of much smaller amplitude is seen in the leading edge region. The smaller
amplitude can be estimated as being about an order of magnitude smaller than the
acoustic amplitude. This is in agreement with the magnitude of the instability profiles
of figure 3. This shorter lengthscale oscillation is seen to be strongly damped beyond
about R,=5x10%

The data series iength represented by figure 6 is necessarily truncated with re-
spect to the number of wavelengths. The acoustic waveiength is approximately equal
to the body length. thus only one wavelength is available for analysis. Furthermore,



figure 6 indicates the existence of the instability wave for oniv a few wavelengths.
These restrictions cause difficuities in the ability of traditional Fourier analysis tech-
niques to resolve wavenumbers and amplitudes.<! It was therefore necessary to use
a technique better suited to the analysis of truncated series, the Maximum Entropy
Method (MEM).2% 232! Corke”! maintains that this method is best used to detect
the existence of various modes. rather than extract quantitative data. Figure 7 shows
the results of the MEM when applied to the data series defined by figure 6. The
power spectrum clearly displays three peaks. The first peak is at a wavenumber very
close to the input acoustic wavenumber. The last peak is very close to the value pre-
dicted by linear stability theory. illustrating the existence of the higher wavenumber
Tollmien-Schlichting wave. The middle peak is associated with the numerical window
function used in the analysis and is not indicative of any physical process.

The existence of the TS wave is thus illustrated by identifying its wavenumber,
at least qualitatively as seen in figure 7, and its profile shape. seen in figure 3. Its
amplitude can be deduced from figure 6 as approximately an order of magnitude
smaller than the acoustic wave and strongly damped in the streamwise direction.
There are several possible sources of this damping. Since the TS wave propagation
was successfully simulated using the present method for flat plate flows”, complete
with amplification and decay in the proper regions. it is reasonable to investigate the
fundamental differences between flat plate flow and parabolic cylinder flow for the
cause of the present TS wave damping. The first difference is the surface curvature.
It is known that a convex surface has a stabilizing effect on the stability of a boundary
layer, as compared to the flat plate.?® 26 However, Schlichting®® also notes that this
influence is very small if the ratio of the boundary layer thickness to the radius of
curvature is small, as in the present case. Reshotko.?® in his review of boundary layer
stability refers to early work of Liepmann?®’ who observed that transition on convex
surfaces occurs at about the same Reynolds number as on flat plates. Therefore, while
the curvature may be contributing to the TS wave damping, it is not believed to be a
strong effect. especially since the curvature is small away from the leading edge. An-
other factor which must be mentioned is the presence of a favorable pressure gradient.
This has a much stronger effect on the stability of the boundary layer.?> 2% 2% 2% The
exploitation of a favorable pressure gradient as a transition control mechanism has
even been studied.?® Figure & compares the pressure gradient of the parabolic cylinder
and the flat plate mean flows of [7]. As expected. the pressure gradient is seen to
be much more favorable for the parabolic cylinder until approximately R, =1x 10°,
beyond which the results are essentially the same. This is well beyond the point
where the short wavelength oscillation is observed in figure 6. This is strong support,



“Yererore. for the pressure gradient as a leading cause of the instability wave damping

observed.

Dissipation Model Study

The results for the parabolic cviinder reported above used the two dimen-
sional time step defined by equation (4) to scale the numerical dissipation. The
anisotropic correction discussed following equation (4) was applied to the dissipa-
tion at this point. The steady state flow was recalculated and the temporally accu-
rate integration was conducted to 10 disturbance periods using an input disturbance
amplitude of €,=2x107%, as in the previous case. The acoustic amplitude at the
body is €,=8.8x 1073, or 44 percent of the input amplitude. Previously, this was
¢.=1.3x1073, or 6.5 percent. Figure 9 shows the TS profile for the two formulations
at B, =5x 10%. Only a small change is seen in the instability response which can eas-
Iy be a result of the subtle changes in the mean flow. Thus. the improved damping
formuiation allows more of the input disturbance amplitude to reach the body. but
the TS response remains essentially unchanged.

Nose Radius Study

Hammerton and Kerschen,®! utilizing asymptotic methods, have shown the level
of receptivity of a parabolic cylinder to freestream acoustic waves to be dramatically
increased for lower Strouhal number. The Strouhal number is defined as

and represents the ratio of nose radius to characteristic disturbance lengthscale.
Therefore, to improve the TS response. the body nose radius was decreased from
R.=1000 to R, =243. The Strouhal number is thus reduced from S=3.6x10"2 to
S=1.36x10"%.

The results of the unsteady computation show significant differences as compared
to the R, = 1000 case. Figure 10 shows the computed instability profiles. The
streamwise distributions are compared in figure 11. As before, the first profile station
at R, = 1 x 10* shows no characteristic instability shape and falls in the first zone
of sharp amplitude decay in figure 11. The next two profiles fall within the second
zone and show an initial growth of amplitude followed by a decay. Previously. only a
growth was seen. Profiles between fi;=7x 10* and R, =9x10* develop a small lower
lobe and a dominant upper lobe and lie within the third zone in figure 11. This third
zone is also characterized by amplitude growth followed by decay. The final profile
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at R, =1.1 x10° shows another shift of magnitude from the upper to lower lobe and
again begins an amplitude growth which continues through the outflow boundary.
This repeating growth and decay cycle was not seen previously for the R, = 1000
case. That case does, however, show the growth portion of the first cycle before
settling into a persistent single lobe shape.

To explain the unusual behavior for this case, the mean flow pressure gradient
distribution is displayed in figure 12 along with the distributions for the previous
R, = 1000 case. and for the flat plate case. The pressure gradient, while still favorable.
is much less so for the present case. This is a very convincing argument for the
importance of the pressure gradient in the stability of the boundary layer. Whereas
before no discernible TS behavior was seen bevond R, =7 x10*, here the TS profiles
continue their characteristic shape to the outflow of the domain at R, =1.2x10°

Frequency Study

The previous case involved a change in both the pressure gradient and the
Strouhal number. To determine which of these changes is dominant, the final study
is of a higher input frequency, F =230 x 10~° and uses the R, =243 geometry. This
frequency and geometry were chosen in order to maintain the same Strouhal number,
S§=5.6x10"2, which was used previously with the larger nose radius and lower fre-
quency. Furthermore, a higher frequency will produce a less stable boundary layer,
as predicted by the upstream shifting of the branch points by linear theory. Further-
more. Reed. Lin and Saric® have numerically shown a greater TS wave amplitude for
higher frequency. The amplitude distribution is shown in figure 13 and shows very
similar trends as for the lower frequency, larger nose radius results. This includes the
initial amplitude drop, followed by an amplitude increase with the TS profile devel-
opment. and then followed by a relatively unchanging amplitude for the remainder of
the domain. The difference between the cases is in the range of B, where the various
behaviors are seen. Previously, the TS profiles were in the range 2x10* < R, < 7x10%,
whereas in this case the range is 6 x 10* < R, < 1.6 x 10*. Thus, at a given R,, the
higher rrequency vields higher TS amplitudes. Note. however, that in terms of the
nose radius. as seen in figure 14, both cases are very similar with the TS profile zone
falling between 20 and 70 nose radii aft of the leading edge. The case which used
5=1.36x10"2. continues to follow its unique trends under the R, normalization. how-
ever. This serves to underline the importance of the Strouhal number, rather than
either the nose radius or frequency alone. as the important similarity parameter for

leading edge receptivity studies.
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Concluding Remarks

The objective of the present study was met in that the compressible Navier-
Stokes equations. using a finite volume formulation. have been successfully used to
compute leading edge receptivity of boundary layer over a parabolic cylinder. Natural
leading edge receptivity was simulated and Tollmien-Schlichting waves were observed
to develop in response to an acoustic disturbance, applied through the farfield bound-
ary conditions. The Tollmien-Schlichting waves which developed compared qualita-
tively with the resuits of linear disturbance theory. The wavenumber of the TS waves
was determined using the Maximum Entropy Method (MEM) and compared well
with the wavenumber predicted by linear stability theory.

The TS waves which were observed in the simulation were characterized by a
strong amplitude attenuation in the spatial direction and the source of the attenuation
was investigated. An anisotropic formulation of the artificial dissipation model was
implemented. This ailowed more of the input disturbance amplitude to reach the
body, but the amplitudes were found to scale linearly to the original solution. Thus,
the numerical dissipation was not found to have a significant effect on the strong TS
wave damping.

A smaller nose radius parabolic cylinder was employed and significant changes
were seen in the unsteady results. To determine whether the changes were due to the
resulting change in pressure gradient or to the interaction of the acoustic wave with
the smaller nose radius. a higher frequency case was computed using the smaller nose
radius cylinder. The frequency was chosen such that the Strouhal number, or ratio
of nose radius to disturbance wavelength, was the same as for the lower frequency,
larger nose radius case. The solution was found to compare similarly to the original
lower frequency soiution in terms of the TS wave damping. Thus, it is concluded
that the parameter which affects the development of the IS waves is the Strouhal
number. rather than the frequency or nose radius alone. The damping of the TS wave
for the lower Strouhal number computation was, however. still significant. Therefore,
the stabilizing effect of the favorable pressure gradient continued to have a dominant
effect on the development of the TS wave.

The present method. utilizing the compressible Navier-Stokes equations and a
finite volume scheme. has been shown to be successful in simulating leading edge
receptivity. The method has been validated in the nearly incompressible regime and
for relatively simple geometries. With this accomplished. the extension of the method
to higher Mach number flows and complex geometries is now possible. This capability
has not previously been available.
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Figure 1: Surface Vorticity Parameter vs. Streamwise Grid Coordinate for Present
Method and Davis(1972)

1.2—
R —— Present Method
\ - - - Murdock 11]
Flpu o.sﬂi
€e 3
0.6 . -~
0.4 i
2.00 1.50 3.00

R, x 107°
Figure 2: Fourier Amplitude of Streamwise Momentum vs. Revnolds Number for
Present Method and Murdock(1981), R, = 196
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Figure 4: Disturpance Eigenfunctions From Linear Theory
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Figure 5: Maximum Streamwise Momentum Fluctuation Minus Stokes Wave vs. Rey-
nolds Number
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Figure 6: Instantaneous Momentum Fluctuation vs. Reynolds Number for Parabolic
Cvlinder. n, = 0.6
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Figure 9: Maximum Streamwise Momentum Fluctuation Profiles Minus Stokes Wave
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Figure 10: Maximum Streamwise Momentum Fluctuation Profiles Minus Stokes Wave
for R, = 243, F =56 x 107%. 0.1 x 10° < R, < 1.1 x 10°
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Introduction

The study of high speed transition is very important for 1ne etficient design ot hyvpersonic
vehicles. Hvpersonic vehicles. such as the Nationai Aerospace Plane t NASP). encounter flows
which may be transitional over a significant portion of the venicle. Within this transitional
region. design parameters such as skin friction. heat transter. etc.. are rapidly increasing
or are maximum. Due to the current limitations of supercomputers. the most practical
method for describing such tlows are methods based on the Revnolds-Averaged Navier-
Stokes (RANS) equations. Traditionally. transition models based on the Revnolds-Averaged
equations have consisted primarily of the modification of existing turbulence models. The
main objective of this work is the development of a transition model which incorporates
‘nformation from linear stability theory and accurately reproduces available experimental
data for transitional flows over a wide range of Mach numbers.

At Mach numbers less than about four. the transition process is dominated by first-mode
disturbances. First-mode disturbances are vorticity disturbances which are characterized
bv fluctuations in velocity. First-mode disturbances in incompressible flows are known as
Tollmien-Schlichting waves. At Mach numbers greater than four. the transition process is
dominated by second-mode disturbances. Second-mode disturbances are acoustical distur-
bances which are characterized by large fluctuations in pressure and temperature. fluctua-
tions which are much larger than the velocity fluctuations.

Previous work by Young, et al.! has established a model for including the effects of first-
mode disturbances into a transition model. The work by Young. et al.! dealt exciusively
with incompressible flows. An objective of the present work is the extension of this model
to account for Mach number effects. Additionaily. the present work includes the effects of
second-mode disturbances which dominate the transition process at hypersonic speeds.

Experimental Data

In order to determine the accuracy of modaels. it i3 necessary 10 reproduce available experi-
mental results. In the study of natural transition. tight data or data trom quiet wind tunnels
is necessarv. The NASA-Langiey Mach 3.5 Pilot Low-Disturbance tunnel has emerged as
the facility capable of reproducing transitional data of the quality that matches flight data.
Using this tunnel, Chen et al.® presented recovery factor measurements on a 3° haif-angle
cone and a flat plate. Three cases from these experiments are used for comparison with the

present model. These are

o Flow 3 - Case 5 Re = 7.8e7/m r; = D.0815m
o Flow 3 - Case b Re = 5.39e7/m .= 10.1174m
o Flow 3- Case 7  Re =3.35¢7/m r, = 0.2166m

[ ]



DR Lo = IMadeef = OSK. M = 3.300g = vl . The case clesignations are cnosen
-0 correspond to the same cases presented in Ref.[3). The reference quantities given are
boundarv-laver edge quantities. 5.0 of the above (ata pertains to the cone experiments.

"1 order to determine the effect of the second-moae disturbances model. experiments at
\lacn numbers greater than four are necessary. Kimmel et al.! have carried out Mach 8
‘ransition experiments over a tlarea and non-flared 77 half-angle cone. These experiments
were carried out in the AEDC Tunnei B. The AEDC wind-tunnel is not a quiet tunnel
in terms of freestream intensitv levels. The freestream turbulence intensity level in the
experiments® was around 3.0%. nhowever. only a small portion of this was in the second-
mode frequency range ({requencies above 30-100 kHz). Based on this. Ref.[5] states, “a
conventional hypersonic wind tunnel can be quiet for second mode disturbances and noisy for
first mode disturbances.” The validity of this statement is still an open question. Regardless.
at the present time. no second-mode dominated transition data obtained in quiet tunnels is
available. Therefore. the present model is compared to these cases. which are given as

o Mach 8 - Flared M =798 Re=6562000/m
o Mach 8 - Non-Flared M =798 Re = 6562000/m

Transition Model

If T represents the fraction of the time the flow is turbulent. then the mean velocity, U, is,
Co =T + (1 =D (1)

In the above equation. [, is the mean turbulent velocity and U, is the mean non-turbulent
or laminar velocity. Measurements by Kuan and Wang® showed that non-turbulent profiles
are rot Blasius profiles for flows over flat plates. Moreover. turbulent profiles are not the
-raditional fully cieveloped pronles. At any given instant. the streamwise Huctuation in the
‘ransitional region. u.. is given b

¢

u.=u—"0n
[f u is the non-turpulent velocity. then

u; = [_—,_' - u'. — Um = u; — I‘(L,'t _ U/)

L

¥

and -
N I A AR b (2)

Simiiarly, if u is the turbulent velocity. then

ut = ut = (1= D)0 = 0y)? (3)
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The expression given in equation @i is uptainea | ol the time and that in equation (2),

1 — T : of the time. Thererore

R N B o e o (e (4)

In general. one can write

(u:-u;)r = f(u:-u;;n + (1 - I—‘p(u;ui,)g + T1-TAl AL (3)

The resulting expression is a result of three contributions: turbulent, non-turbulent. and
a large-eddy component. Traditionally, transition models have only included the turbulent
contribution. terms resulting from non-turbulent fluctuations have not been included. The
terms AL A U; are a result of large eddies. Their calculation requires specification of the
turbulent and non-turbulent profiles in the transitional region. For this work. the large-eddy
term has been neglected.

The intermittency factor. I'. is obtained from the expression developed by Dhawan and
Narasimha.® i.e.

T(z) = L—exp (—0.41152) (6)
with
I — I
A

6 =
and ) is determined from the correlation
Re W = 9 Re':‘-f (7)

z, is value of r at the beginning of transition. Because of this, this model requires the
specification of a transition “point”.

Turbulent Contribution

For a fullv turbulent flow. all that is needed to ciose the RANS equation set is the turbulent
Revnoids stress. pufu} and the Revnolds heat flux. pujh”. By evaluating the turbulent
Revnoids stress. the turbulent contribution to the general transitional stress is obtained.

The turbulent contribution is the first term in Eq. 5.
The turbulent Reynolds stress is given in this work by Boussinesq's approximation which

—_ ou; Ju; 2. Jum 2 4
— puiu = (—u' - :—51"’.%‘) - Tgéijp-k (8)

gives.

where (1, is the eddy-viscosity and k is the turbulent kinetic energy per unit mass.
In this work. a one-equation model is used which specifies the eddy-viscosity as

He = C;z :5 V‘I: Cu (9)
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vhere (', = u.09 is a4 model constant ana ¢, is an aigebraicaily derivea length scale. Tlhis
‘engtn scale is derivea by considering the near-wall behavior of k and characteristics of the
log-iaw region in the turbulent veiocitv boundary faver. [".2 turbulent viscous length scale.

t,. i3 glven as

| 110)
/

where

Cy = 10377 & C, = 0.0 (11)

and x is the Karman constant (0.41). The length scale ¢, contains a damping factor which
takes into account the presence of the laminar sublayer in the turbulent velocity profile. The
form of the above length scale was originally derived by Gaffney.”

Reynolds Heat Flux

In the energy equation. the quantity pu; ou”h” appears. This term is known as the Reynolds
heat dux. This term is modeled by a crradlent diffusion approximation. which gives

S oT

puih’ = —Cpou p— 5z, (12)

where a, is the turbulent diffusivity. The turbulent diffusivity can be expressed in terms of
the eddy-viscosity and a turbulent Prandtl number.

VUt
= — 13
e P'rt ( )
The resulting expression for the Reynolds heat flux becomes
—_— (j Mt ()T
R = = — (14
o Pr, dr; (1)

where C, is the specific heat at constant pressure. is the eddy viscosity. and Pr; is the
turbulent Prandtl number.

Traditionaily. the turbulent Pranatl number is taken 23 a constant. The value of Pr;
varies in the literature but generally is chosen between 0.8 and 1.0. In this work. when the
turbulent Prandt] number is chosen as a constant. the value is taken as 0.89. This was chosen
to correspond to the value used in reference [3].

There are physical consequences in choosing Pr; as a constant. By examining Eq. 14, it is
clear that when Pr, is a constant. the damping factor used is the same factor which appears
in ¢,. This is equivaient to treating the turbulent thermal boundary layer with the same
damping as the turbulent velocity boundary layer. even though they have different laminar
ublaver characteristics. As results will illustrate, this choice has surprising consequences
when considering quantities which are strong functions of the Prandtl number. such as the

recovery factor.

o
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Eddyv-Diffusivity Model

[t is possible 1o model the Revnoids heat Hux in such a wayv that the turbulent temperature
ent velocity boundary laver. Based on

boundarv laver is damped differentiy rhan the turoul
‘he variable turbulent Prandtl number approacn of Cebeci.” the eddy-diffusivity model is
assumed to have the form _

y = ("Ll ‘\I ktT \15)
The temperature length scale. (7. is assumed simiiar in form to the viscous and dissipation

length scales and is given as.

ky
(r =C — e -
r=C3y |l —exp Cov (16)
where
Cy = 3.12
Cy = 92.0

The constants Cs and C were determined by comparing with the experimental turbulent

Prandtl number measurements of Meir and Rotta.’
By defining a separate length scale for the temperature boundary layer, different damping
is obtained. The present eddy-diffusivity model implies a variable turbulent Prandtl number

of the form.

oy
r

P'f't = ’ (17)

~
-~

where £, is the viscous length scale.

Non-Turbulent Fluctuations

The second term in the general transitional stress.

(1=T) (uu ) (18)

2

is a result of laminar or non-turbulent fluctuations. As stated previously, this non-turbulent
contribution has traditionally not been considered in RANS-type approaches. In this work.
the non-turbulent fluctuations considered are a resuit of first and second-mode disturbances.

First-Mode Disturbances

For moderate supersonic Mach numbers below approximately four. the dominant mode of
instability is the first mode. The dominant disturbance frequency at breakdown is well
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“reaicted bv the trequency of the nrst-miode disturoance having tne maximum ampiifica-
~ion rate. Using tae work of Obremski et al..'? Walker:! <rates that tnis frequency can be

correlated bv

= 3.2 Re.” (19)

\
LRl

vhere 7, is the velocity at the eage of “he boundarv laver. Res. is the Revnolds number
hased on displacement thickness. ¢™. ana « is the frequency.

The above expression is valid for low speed flow but can be extended. through the use
of the reference temperature method. to high speed flow. It is known*® that compressible
formulas for skin friction and heat transfer have the same form as the incompressible formulas
nrovided the physical properties of the fduid are evaluated at some reference temperature
hetween T, and T.. A possible definition of T ists

r

T,
=1 = 0.032M* - 05 —’ﬂ—L)
- - 0.032.M? + 0.38 (Tc (20)

where the e subscript denotes boundary-iaver edge quantities and w denotes wall values. By
using this reference temperature. \Walker's formula. 1.e. Eq. 19. can be extended to higher
\ach number flows by considering the definition of the unit Reynolds number as

Re = 2L (21)
U
with
p o= (T (22)

where T* is the reference temperature evaluated from Eq. 20. The density can be approxi-

mated by noting

P. pe RT.
P= p-RT-
~nd assuming that the pressure iz zpproximately constant throughout the boundary layer.
rh T,
— = — (23)
De T'

The dominant first-mode frequency correlation can then be rewritten as

-~V

"2
€

= 3.2 (Rew)7t (24)

with ¢ also evaluated using Re™.
By assuming a scale of 1 k, the first-mode disturbance frequency - can be used to define

a length scale.
fre

e = a Y8 a = 0.04 —0.06 (25)

LY
r

>~
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Tt is assumed That the turbulent and non-turouient contributions 1o the stress tensor can be

sbtained by combining the two length scales as
s ¢ .
= (1 -T =1L 126)

where ¢ is the turbulent viscosity iength scale. Thus. when I’ = 1. l.e. before transition

Second-Mode Disturbances

Through the pioneering work of \ack.!* 13 the concept of second-mode disturbances was
developed. As the boundary layer edge velocity increases above approximately W = 2.2, a
region of the boundary layer becomes supersonic relative to the phase velocity. Mack showed
that when such a situation exists. multiple solutions to the inviscid stability equations arise.
These additional solutions are called the higher modes. The first of these modes is called
+he second-mode and is the most unstable of the higher modes. sometimes referred to as the
Mack modes.

At relativeiv low Mach numbers. boundary layer transition is dominated by lower fre-
quency first mode disturbances. As the Mach number increases above four, the second-mode
disturbances. which are higher frequency acoustical disturbances. dominate the transition
process. From Mack!® and Stetson and Kimmel.5 the wave lengths of the most unstable
second-mode disturbances have been shown to be about two boundary layer thicknesses.

The frequency of the second mode disturbances can be written as
Ly
A
where (', is the phase velocity and \ is the wavelength. For hypersonic boundary layers. this

leads to the reiationship

(27)

way =

i c Mz
Vx 28 = — i28)
A\ Rer
where ¢ is a constant of proportionality. Combining with Eq. 27. the frequency iz given as
I\ Re
- rV " .
o= (29)
cMzir

Again defining a velocity scale as in Eq. 25. a second-mode contribution to the length scale
can be defined as

which upon substitution of Eq. 20 above. vieids

fog = ( b) M \E (30)

C—’p ! Re

S
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3v comparing with the Mach 3 stabiiitr experiment ot immel. M 17 +he constant o was chosen
25 0.23. Additionallv. near stabilitv predicts the phase velocity to be about 0.9 (.. \Again.
'+ is assumed t=at the second-mode contribution can be obrained by combpining t sy into the
viscous length scale giving

l? = ‘1 - r\l :(TS + ‘:‘_\_{:i _' i— ’::, ('31)

i L

Results and Discussion

Numerical Method

The numerical method used to solve the equation set follows the method of Ref. [7] closely. A
fnite-volume method was used to evaluate the spatial terms in the Navier-Stokes equations.
The inviscid fluxes were computed by an upwind approach based on Roe’s flux difference
splitting. MUSCL differencing was used along with a min-mod flux limiter. Second-order
central differencing was used to evaluate the viscous fluxes. The solution was stepped in
“ime using a modified four-stage Runge-Kutta scheme until a steady-state was obtained.
The determination of a steady-state was based on a density residual drop of five or more
orders of magnitude. Due to the existence of a shock. grids of approximately 275x75 were
needed to adequately resolve the shock and the very thin boundary-layer region. The steady-
state was obtained with run-times on the average of 3-4 Cray Y-MP hours.

Due to the very large Reynolds numbers. as high as 8x107, the thin-laver Navier-Stokes
equations were solved. The thin-layer approximation neglects streamwise derivatives in the
viscous terms due to their small magnitude relative to the normal derivatives. Thisis a valid
approximation since at very large Reynolds numbers the viscous effects are restricted to a
very small region near a solid boundary. Due to the cell aspect ratios necessary to resolve
this small region. streamwise derivatives in the viscous terms have a negligible contribution.

Mach 3.5 Cases

The Mach 3.5 cases were used to determine the effectiveness of the transition model at pre-
dicting transitional flows which are characterized by first-mode dominated tramsition pro-
cesses. Previous work by Young et al.! has established the capability ot the model for
low-speed flat plate flows. The Mach 3.5 cases studied were the ones carried out on the 5°
half-angle cone. A flat plate case was also studied but was not presented here. The cone
experiments measured the recovery factor by determining the surface temperature under
adiabatic conditions.

The first set of resuits were obtained with the present model using a constant turbulent
Prandtl number. The experiment data is from the Flow 3 - Case 5 experiment which is the
first experiment of the Chen et al.? set. Fig. | compares the present model with the linear
combination models of Narasimha ana ONERA/CERT. Linear combination models assume

the viscosity can be expressed as
g o=+ [ (32)



The curve iapeled Narasimha ::ed the expression ior | _iven v ig. U wilie the ON-
FRA/CERT i=odel is based vz a lransition rumction. ¢. wnich replaces [ in the above
expression. [his transition ruzction. c. is empiricaily derivea ana is discussed in Ref. [3].
Fig. 1 is a plot of recovery tactor versus Revnoids number based on the distance along the
surface. Fig. | demonstrates tiat the present model does a much better job of predicting
rhe length of the transition zone as well as rhe peak in the recovery factor. The laminar
region is also predicted weil. The Narasimha and ONERA, CERT models were computed
with a boundary layer code ana not a Navier-Stokes formulation. [t is believed that the
houndary laver codes were started with a laminar profile just before the transition region
and therefore the laminar region was never calculated. The recovery factor was assumed to
be Pr and thus resulted in a straight line for the linear combination models. oth the
linear combination models and the present constant Pry model do a poor job of reproducing
the decreasing trend of the recovery factor in the fully turbulent region.

Fig. 2 compares the present results of the constant turbulent Prandtl number model to
the two-equation transition model of Wilcox.!” The Wilcox model modifies the production
and dissipation terms in the J-. turbulence model to simulate transition. The Wilcox model
does a better job of reproducing the peak in the recovery factor than the linear combination
models. However. the present model with a constant Pry does a slightly better job than the
Wilcox model in calculating the recovery factor peak and does a much better job reproducing
the transition extent. Additionaily, the present method does a slightly better job in the fully
turbulent region. although both fail to predict the downward trend in the recovery factor.

The calculation of recovery factor is very sensitive to the choice of the turbulent Prandtl
number. Fig. 3 is a plot of the current transition model with various choices of the constant
Pr,. By varying the choice of Pr, by as little as 0.01. verv large differences result in the
calculation of the recovery factor. This is not too surprising since the recovery factor is
such a strong function of the Prandtl number. In Fig. 3, the solid line represents the choice
of Pr, = 0.89 which is the choice used for the linear combination models as described in
Ref. [3].

Since the recovery factor iz semsitive to the value of Pr.. a cioser look was taken at
modeling the turbulent diffusivity. As stated previously. using a constant turbulent Prandtl
number effectively treats the damping of the thermal boundary layer exactly the same as the
damping of the velocity boundary layer. This has no physical basis. especially for hich-speed
flows where the thermal boundary laver becomes important due to the large temperature
gradients in the viscous laver. Following the work of Cebeci.® the concept of a variable
turbulent Prandtl number was used to define the current eddy-diffusivity model (I7q. 13).
A tvpical profile of the variable turbulent Prandt] number is compared in Fig. 3 to the flat-
plate measurements of Meir and Rotta.” The results of this model for the Flow 4. Case 5
experiment are shown in Fig. +. As can be seen from the figure. the experimental ata in
the turbulent region is aimost exactly reproduced. Even though the peak in the recovery
factor is slightly overpreaicted. the transition extent is predicted very well.

To determine if the constants used in the specification of the temperature length scale.
Eq. 16. are general. the otner experiments in the Mach 3.5 cases were computed. [ig, 5 is the
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“2anits of the present model [or =2 secona case. oW 3 - { ‘ase v. [t is ciear tzat the present
-~odel accurateiv reproduces the rransition extent. the peak in the recovery factor. and the
~rbulent region. The resuits show the extreme differences in the predictions of the present
ethod and the linear combpination models. .\ curious opservation in the laminar region can
e seen by examining Fig. 3. The experimental data is aimost Hat in the laminar region while
‘e present method predicts a slight increase in the recovery factor. The experimental results
“hown here were obtained with tre same test model as were the results in Fig. 4. However.
different values were measured for the recovery factor for the same Reynolds number based
on x. This seems to suggest either siight error in the measurements or the existence of
some external phenomena. Fig. 5 is the resuits for the Flow 3 - Case 7. Even though the
transition extent is predicted well. poorer results are obtained in comparison with the other
two cases. There is a possible explanation for this. Each of the experiments were carried out
with the same test model. .\ reasonable assumption is that the recovery factor measured
<hould be the same for each of the test cases for the same Re;. given that laminar flow exists
rhere. Fig. 7 demonstrates that each of the cases measured different values for the laminar
vecovery factor at the same Re.. s seen from the figure. the Flow 3 - Case 5 experiment
~easured around 0.837 for the recovery factor, while each of the succeeding cases measured
vaiues of about 0.340 and 0.844 respectively. This is clearly a discrepancy in the data.
[f the tests were not allowed to completely reach steady-state (adiabatic wall conditions),
the measured value of the recoverv factor would have been higher than the steady-state
value. Since the computations assumed adiabatic conditions. and consistent values for the
recovery factor were computed in the laminar region, it is possible that the present method
accurately predicts the steady-state value of the recovery factor for the laminar. transitional,
and turbulent regions.

The transitional results presented by Chen et al.? are well predicted by the present model.
\loreover, the results of the current model illustrate the inadequacies of using a constant
rurbulent Prandtl number for cases that present recovery factor data. Evidently, the current
-ransition model is the oniv mode! presently known. that correctly reproduces the trend in

3017

-he turbulent region for these experiments.

Mach 8 Cases

The Mach 8 cases were used to derermine the effectiveness of the present model in predicting
rransitional flows which are characterized by second-mode dominated transition processes.
The experiments were carried out by Kenneth Stetson and Roger Kimmel at the AEDC
' Arnoid Engineering Development Center) tunnel B and were reported in Ref. [4].

The first case considered is the flared cone case. The surface is flared to produce a con-
-rant adverse pressure gradient. [g. O presents the results for the present model without
-he second-mode contribution giver in Eq. 31. The resuits are presented as the dimensional
<urface heat flux versus distance aiong the surface. The laminar and the fully turbulent re-
sion are slightly underpredicted for this case. Fig. 10 shows the same results for the present
~ransition model with the second-mode contribution. With this second-mode contribution.

iia
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- e laminar cata is predictea cotrect:v. However. the tully-rurbuient region is stiil unaerpre-
Cicted. Since the surface was cooled. i© was determined that the modeled near-wail behavior
1 the turbuient kinetic energy. given in Ref. 7. \ppendix D]. needed modification. .\ factor
o1 “.’/?T;J was used in the present modei to inciude effects of wail temperature and to account
‘¢ the fact that the near-wail behavior was originally modeled in Ref. [7] for adiabatic flows.
The inciusion of this factor results in zhe following expression for the constant which appears

‘1 the turbulent viscous length scale (Eq. 10).

- - T,
Cy = 70.0 T.. (33)

Fig. 11 is the results of the present model with the near-wall modification. The experimental
data is reproduced very well. The experimental data seems to imply that the heat flux
in the turbulent region is either flat or is decreasing. This seems to be reinforced by the
calculations in Ref. [17]. However. Kimmel® points out that, “An adverse pressure gradient in
incompressible flow causes boundary iayer thickness to increase and heat transfer to decrease
compared 1o zero-pressure gradient values. but the opposite trends occur in compressible
Jow. This is primarily because of changes in sireamtube size and Mach number in pressure
gradients in compressible flow. Consequently. wall shear and heat transfer decrease more
slowly with x in an adverse pressure gradient than in zero pressure gradient. A strong
enough adverse gradient causes heat transfer and wall shear to increase in the x-direction.”
Additionally. Kimmel* states that the error in the measurements could have been as high as
—10%. It is therefore possible that the increase in the heat transfer shown by the present
method in the turbulent region is accurate.

The second case of the Mach 8 experiments was the non-flared 7° half-angle cone. Fig. 12
presents the results of the current transitional model with the second-mode contribution as
well as the near-wall modification. The results are presented as non-dimensional heat flux
versus non-dimensional distance along the surface. The transitional and turbulent regions
are reproduced quite well. The discrepancy in tne laminar region is most likely experimental
error since there is large scatter and no clear transition point. It is also possible that the
laminar discrepancy is a resuit of the high leveis of freestream turbulence.

As the comparisons with the hypersonic cases demonstrate. the second-mode model per-

forms quite well.

Conclusions

The present transition model is based on the fact that the stress in the transitional region can
e expressed as a function of the turbulent and non-turbulent stresses. The non-turbulent
<tress is due to the presence of laminar fluctuations which are a result of first and second-
mode oscillations. This work has successfully formulated a method in which these laminar
disturbances can be accounted for in the computation of a high-speed transitional flow.
The previous work of Young et al.! as demonstrated the effectiveness of the first-mode
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. ontribution for low-speea tlows. [l present work cemonstrates that the moael can e
~xtended to high-speed fows througn the use of the rererence temperature method.

The oresent work successtully dermonstrates that second-mode disturbances can also pe
‘2cluded into the transition model using a form simiiar to the Arst-mode disturbance model.
The resulting transition model accurately reproduces available experimental data for transi-
“ional flows. The model has been shown to predict rrst-mode dominated transitional flows
very accurately and performed better than previous modeling attempts. Additionally, the
model has been shown to accurately predict hypersonic transitional flows which are charac-

terized by second-mode dominated transition.
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Figure 3. Flow 3 - Case 5. Turbulent Prandtl Number Sensitivity
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Figure 4. Flow 3 - Case 3. One-Equation Eddy Diffusivity Model Comparison
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Figure 6. Flow 3 - Case 7. One-Equation Eddy Diffusivity Model Comparison
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