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ABSTRACT

The main objective of this design was to fulfill a need for a new airplane to replace the

aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and

Boeing 737-100 airplanes. After researching the future aimraft market, conducting extensive

trade studies, and analysis on different configurations, the AC-120 Advanced Commercial

Transport final design was achieved. The AC-120's main design features include the

Incorporation of a three lifting surface configuration which is powered by two turboprop engines.

The AC-120 is an economically sensitive aircraft which meets the new FAA Stage 3 noise

requirements, and has lower NO x emissions than current turbofan powered airplanes. The AC-

120 also improves on its contemporaries in passenger comfort, manufacturing and operating

cost.
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INTRODUCTION

Presentlythereare nearly2,100commercialtransportswhich20 yearsor olderand

nearingtheir averagelifetime limit of 25 years. In addition,newerand more stringent

environmentalregulations(i.e.Stage3 Noiseregulation)the needto replacetheagingDouglas

Dcg,Boeing737,andFokker100aircraftwilloccurdudngthenexttenyears.Therefore,a new

and economical aircraft needs to be designed to carry 100 to 150 passengers 1,500 nautical

miles to offset the expected future aircraft retirements.

Numerous preliminary designs were analyzed to find their feasibility and the practicality

to solve the problem of introducing a new commercial transport. One design involved using a

forward swept wing (see Appendix A for further details) and a second design incorporated a rear

swept mid-wing with a composite wing box (see Appendix B). Both these designs were found to

be technologically impractical and economically unfeasible, therefore continued work on these

designs was halted in order to proceed with a workable aircraft. It was decided upon that a

different approach should be taken in arriving at a solution for the problem for new short range

transport. This approach involved conducting trade studies to analyze different sections of an

aircraft to achieve a optimum design for a particular aircraft section. This process would likewise

be conducted on major sections and brought together in the end to produce a better aircraft than

those currently flying.

Due to the large amounts of time that was used in conducting analysis on the early

configurations, a detailed analysis of the final configuration of the AC-120 (The Advanced

Commercial Transport) will not be found in this report. Rather this report will focus on the trade

studies and the method that was used to achieve J=better overall commercial transport.
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STUDY OF MISSIONSPECIFICATION

The marketfor the medium range, 100 to 150 passenger aircraft is already saturated

with aircraft such as the Boeing 737, MD 90, Fokker 100, and Airbus A321. All of these were

designed by airframe companies with the intention of producing the most successful aircraft in

the market. For each of the new aircraft technological advances were introduced but, as a rule,

the new aircraft were a derivative of previous aircraft; by designing new aircraft around previous

aircraft a smaller amount of research and effort was needed, resulting in savings in time and

money. The airframe manufacturers designed new aircraft mainly by the replacement of engines,

improvement of the wing design, and wider use of computer applications.

In order to introduce a competitive aircraft to this market, the manufacturer would have

to study fuel pdce trends, allow for long range and altitude flexibility, consider noise and

environmental issues, and field length requirements. Because today's airplanes use a non-

renewable source of energy with no prospect of having new sources developed in the near

future, an airplane to be designed to fly for at least 20 years has to take in consideration the

expectation of large increase in fuel pdces. Added to this concem is the fact that most of the

wodd's fuel reserves are controlled by a few mostly unstable countries.

With airlines flying aircraft on missions ranging from a 45 minute short hop to the

maximum allowed aimraff range, a new aircraft would have to be profitable at all of this ranges in

order to be successful. A designer has to keep in mind that if the aircraft was optimized for a

single range it may became a failure on all the other ranges, which translates into being a failure

in sales. The range should also allow an aidine to fly the aircraft from any hub city to another hub

city; so when maintenance is needed, the aidine will be able to easily schedule a passenger flight

and make a prof'dinstead of ferrying the aircraft and loosing money. The altitude flexibility is tied

up with the range flexibility because it would not be needed nor economically sound to climb to

high altitudes when flying the aircraft on short range missions. But for longer missions a high
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cruisealtitudewouldbeexpectedinorderto fly above any adverse weather and be able to fly at

higher speeds.

With noise and emissions becoming a greater concern not, only in the US but around the

wodd, many countries are introducing tight regulations to protect their environment. An aircraft

designer must carefully consider a new aircraft's emissions and noise characteristics. A new

aircraft should have a state-of the art engine which would not produce large amounts of Carbon

byproducts, a function of the combustion pressure, nor Nitrogen byproducts, a function of

combustion temperature. An aircraft, specially a aircraft in the category of the aircraft previously

described, should have very low noise characteristics because it would be flying in and out of

airports located in smaller communities. These communities are getting more concerned about

the noise and emissions an aircraft produces when flying overhead and are able to pass laws

limiting the operational hours of an airport and the amount of noise and emissions an aircraft can

emit when flying into their airport. An airline operating at such a community would highly

consider these emissions when buying an aircraft.

A short range aircraft should also be able to fly airport of various field length. Large field

would not present a problem to a small aircraft, but a study on short field should be done. An

aircraft carrying up to 150 passengers may be needed to fly in and out of very short runways.

These runways may be encountered at places where there are geographical limitations and in

countries where there is little money to be spent on upgrading airport facilities. A new aircraft

should be designed to be able to fly into shorter runways pleasing not only US. airlines flying into

small places but also airlines in less fortunate countries which are likely to be operating at

smaller airports.

14



Itwasproposedbythefaculty of the Aeronautical Engineering Department of Califomia

Polytechnic State University at San Luis Obispo, that a reasonable set of performance

characteristics for an airplane of this type would be:

• cruise at Mach 0.76.

• cruise at high altitudes to fly over bad weather (cruise altitude of 36,000 ft).

• be able to fly in and out of fields as short as 5,000 ft (Sea Level, 95°F).

• have a range of 1,500 nmi for a fully loaded aircraft.

• have a large center of gravity flexibility.

After considerations, some of the above characteristics were changed because no

reason to keep them was found. For the fact that a 1,500 nmi range aircraft would not be able to

service an important route such as Chicago to Los Angeles (1513 nm_, the range of the aircraft

was to increase to 1,550 nmi. This increase would not change the aircraft design by any

substantial amount but not having this range would not allow an airline to fly from hub city to hub

city with only one stop. It is important for an aidine to be allowed the possibility of flying hub

routes because the maintenance facilities are located at the hubs. Not allowing an airline to

reschedule and aircraft into a route where it would be able to carry passengers while going to

maintenance would impose a financial burden, reducing the market for the aircraft.

Though the aircraft was to have a range of 1,550 nmi, it was expected that the airlines

would be flying this aircraft mainly on missions ranging from 500 nmi to 800 nmi. For this range,

it would not be necessary, useful or economical to climb to 36,000 ft because the aircraft would

not be flying at this altitude for more than a few minutes. The decision of was made to lower the

maximum ceiling of the aircraft to 33,000 11,an altitude where the aircraft would still be able to

fly over any adverse weather while being economically feasible.

The suggested 5,000 ft landing and take-off field was also investigated and it was

concluded that the field length could be increased to as high as 6,000 ft without loosing

competitiveness. One of the reasons for this was that the shortest major intemaUonal airport

found during the research was the Berlin's Tempelhof airport with a runway length of 6,942 ft at

15



an elevationof 164ft. Additionally, the most restringent airport in the US. where and aidine

would have an interest of flying this aircraft would be Colorado's Telluride airport with a runway

length of 5,900 ft at an altitude of 6,000 ft. Considering that it would also be possible to have this

airplane compete in the smaller aircraft segment of the market, where it would be expected to

have an aircraft that would be able to get into and out of shorter fields, and considering the

runway on less developed countries a 5,500 ft runway was chosen.

The changes on the performance characteristics were:

,, maximum cruise altitude reduced from 36,000 ft to 33,000 ft.

,, take-off and landing field length increased from 5,000 ft to 5,500 ft (Sea Level, 95°F).

,, fully loaded range increased from 1,500 nmi to 1,550 nmi.

16



MISSION PROFILE

A typicalmissionfor the AC-120 will be to fly from a major airport hub such as Atlanta,

Georgia to such destinations as Washington DC, Boston, Massachusetts, and Miami, Florida. It

is likely that the AC-120 will be used as a short hop aircraft or a feeder airplane for the major

airlines to supply passengers for longer haul flights out of major cities.

Design Cruise Altitude = 2g,000 Feet

Clim

Engine Start

Taxi, Take-off

I

escent

_ Landing, Taxi, and
Shutdown

1,550 Nautical Miles

Figure 8. Mission Profile.
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AIRCRAFT FORECAST

Eadier this year, Airbus Industde released its latest market projections in which a growth

of 2.3% in North America, 2.5% in Europe, and 4.9% in Asia (AW&ST, March 1993). Figure 9

shows the anticipated world wide acquisitions of 100 - 210 seat commercial aircraft in to the next

century. A large majority of future sales are anticipated to be in North America (37%) and Europe

(19%), but the Asian/Pacific (16%) market is growing rapidly. It is projected that neady 3000

aircraft will be sold to the Asia/Pacific market in the next 20 years, from which 1200 aircraft are

expected to be narrow body transports.

Source:AviationWeek / Airbus Industrie

World Wide Jet Transport Acquisitions

By Major Regions, 1992 - 2011

37% North America,
2,914 -

28% Rest of World 1,5: ...........;:: ........:_ :i: ::=:::

16% Asia/Pacific 1,301 19% Europe 2,267

7,995 Total Aircraft (100 -210 seats)

Figure 9. World Wide Jet Transport Acquisition.

The largest average growth in air travel is expected to be in the Asia/Pacific sector

(8.4%) and intra-Asia traffic, in which the AC-120 is designed to operate, is expected to be 21%

of the wodd air travel growth through the year of 2010 (Proctor, AW&ST 4/15/93). If this trend

continues the AC-120 can fill the void in the 100 -120 passenger market since the only other
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aircraftin this marketwill be a possibleentryof the proposed120seatRJX,a joint effort

between DASA/Aerospatiale/Alenia (Sparaco, AW&ST 4/15/93). It is expected that the 100 -

150 seat transport class aircraft, doubling to 4,600 aircraft, will be the largest aircraft group in

North America and Europe as airlines move towards increased hub operations and new regional

operations (Proctor, AW&ST 4/15/93).

A large majority of the new transport acquisitions will be due the retirements due to more

stringent noise requirements, age, and the high cost of operating cost of the older inefficient jets.

There is currently over 2,100 commercial transports over 20 years of age and only 315 new

aircraft are expect to be delivered at the end of the century (Proctor, AW&ST 4115193). This

creates a market of potentially 2,700 new aircraft that will need to be purchased in order to

replace those being taken out of service. Therefore the AC-120 will be entering a growing aircraft

market in which a demand for inexpensive and low operating cost aircraft will dora!hate irt sales.
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BENEFITS OF A THREE LIFTING SURFACE CONFIGURATION

Thethreeliftingsurfaceconfigurationoffersseveralbenefits,allof whichareutilizedby

the AC-120. AmongthesebeneFds are the ability to achieve the ideal trim angles for the

aircraft, for any CG. position; greater freedom for the designer in positioning the aircraft's

aerodynamic center;, and reduction in skin friction drag through smaller control surfaces.

The ideal trim angle for the aircraft is that angle applied to the trimming surface(s) that

results in zero control surface induced drag. For a conventional or canard aircraft configuration,

this means that the load on the control surfaces must be near zero. In the case of the

conventional aircraft, the ideal trim angle occurs when the tail has a very slight positive lift, and

the moment of the wing is balanced primarily by the mass of the aircraft. In the case of the

canard layout, it occurs when the canard carries a slight download. Both of these cases

represent unstable aircraft, furthermore, the ideal trim angle in both cases occurs at a unique CG

configuration.

In contrast, a three lifting surface configuration can be ideally trimmed for any CG

position, and thus for any static margin as well. This phenomenon can be viewed from several

different perspectives. The first results from viewing induced drag as a component of lift acting

tangent to the free stream. In trimming a three surface airplane, one of the surfaces is set at a

positive angle of attack, and the other at a negative angle of attack. Since there are an infinite

number of combinations of trimming angles for the canard and horizontal stabilizer, a set can be

found such that the opposing induced drag vectors of the two surfaces exactly cancel. If induced

drag is viewed in terms of circulation, the ideal trim condition can be viewed as that trimmed

condition that results in the cancellation of the wing tip vortices generated by the two control

surfaces. Either way this is viewed, the result is the same: no induced drag from the control

surfaces.

Another advantage to the three lifting surface configuration is that it offers the designer

an infinite number of possibilities for the control surface sizes, in positioning the aircraft's CG.
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Thisfact was used extensively in designing the AC-120. In attempting to position the CG, wing-

fuselage AC, and aircraft AC, all at one location, it was known at the start of the design process

that the AC could be located at virtually any location on the aircraft without moving the wing. In

conventional designs, an unanticipated CG location, discovered late in the design process, often

forces the designer to consider desperate fixes such as moving the wing forward or substantially

rearranging the aircraft's fixed equipment. With a three lifting surface configuration, the designer

can either leave the CG problem as is, taking advantage of the configuration' robust toleration of

CG shifts, or he can change the area of either of the control surfaces.

One of the fundamental means by which the AC-120 achieves superior drag figures is

through reduction in wetted control surface area. This is achieved by flapping the Canard and

minimizing CG shift (see Center of Gravity Travel of this report). With the canard used primarily

as a trimming entity, the entire span of the canard can be fowler flapped, leading to higher lift

coefficients and smaller areas. Canard configurations can also be flapped, but a canard aircraft

that is anything less than wildly unstable has extremely large pitching moments in the landing

configuration. The result is that a reduction in wetted surface area is not realized.

Three lifting surface configurations offer significant advantages in reducing wetted

surface area, design freedom, and trim drag. If a new aircraft design is to penetrate a market

that is already dominated by strong competitors, that design must make use of non-utilized

technologies that offer promise. AEROCOM believes that the three lifting surface configuration is

one such technology, and accordingly, included it among the features of the AC-120.
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PROPULSION SYSTEM

BACKGROUND

Historicallyturbopropshavenotenjoyedfavor with the major airframe manufacturers.

This is primarily the result of perceived difficulties to be encountered with turboprop sales,

speed infedodty to jets, and noise.

Much of the unfavorable attitude toward turboprops can be attributed to prejudice

resulting from financial losses suffered by several manufactures in the early 1960's, who

attempted to pit turboprops directly against jets; the Vanguard was a major loss for the Vickers

company (43 sold); the Bristol 175 Britannia farad marginally better due to its eady arrival (82

sold); and Lockheed redeemed the Electra's commercial sales (168) with the P-3 maritime patrol

aircraft. All of this, in hindsight, could have been anticipated. Why, then, would aircraft

companies with strong reputations such as Bristol, Vickers, and Lockheed risk their companies'

fortunes in a fool hardy gambit with turboprop aircraft? The answer is that in terms of pure logic

these companies had the right answer. The Britannia, Vanguard, and Electra all could be

operated with costs per passenger mile well below their competition, and their engenderers

believed this was a formula for a successful aircraft. Unfortunately, the flying public of that day

had been flying on propeller aircraft for neady four decades, and was thoroughly enamored with

the jet age. In contrast, today jets are the status quo, and props are the novelty, if only in a

nostalgic sense:

Of course, the standard reason given for the failure of these "end of the propeller era"

aircraft is that they were too slow. While it is true that these aircraft were not as fast as their jet

competition, they were amazingly fast for large propeller driven aircraft. They ranged in speed

from the "slow" Vickers Vanguard (425mph) to the "really slow" Bristol 175 Britannia (405mph).

On long range flights this speed deficiency resulted in delays that were quite significant (New

York to London, 40 minutes). On shorter flights, however, the delay was so small that operators

of the Lockheed Electra found it possible to schedule the same block times for flights between
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Los Angeles and San Francisco as the jets. Nonetheless, the passengers of the day would have

nothing of it; non-replenishable resources were not the issue of the day.

Of these issues, the least important, historically, has the greatest implications today:

noise. The turbojets in use on early models of the Boeing 707, Hawker Siddely Comet, and DC-

8, were hardly noise improvements on turboprop powered aircraft. In fact, of the two types, the

large turboprops of yesterday would be much more welcome in today's airspace than the

turbojets. Since then, however, turbojets have been superseded by turbofans, which are in many

cases quieter than large propfans. Like the jet, the turboprop has also changed since the 1960's,

and the new technology developed has likewise resulted in a reduction in noise.

THE TURBOPROP COMES OF AGE

There appears to be a resurgence in the popularity of turboprop aircraft. Many low

volume routes that were until recently, served by jet powered aircraft, are now being served by

smaller turboprop aircraft. The reasons for this are several: first, these aircraft are extremely

efficient, when compared to their fuel hungry jet counterparts; second, the third generation

turboprop aircraft being used on these routes are fast, when compared with older turboprops; and

finally, turboprops offer maintenance and operational efficiency unrealizable by jets.

The demise of the large turboprop powered transport took place in the heyday of the 429

cubic inch V8 automobile engine - fuel pdce was not a big concern. Despite the current lull in fuel

prices, the fuel hungry automobile and airplane will not retumo Will Rogers once said, "Buy land,

they aren't making any more of it." The same wisdom can be applied to fuel prices: Fuel prices

may go up and down, but fossil fuel's non-replenishable nature assures that the trend will always

be up.

This greater concem for fuel savings is T'eflected in the aircraft the airlines have been

choosing to fly shorter routes, where speed sacrifices can be made. Until recently, flights from

Los Angeles to San Jose could be flown on Boeing 737, or similar aircraft. Now however, these
w

flights are served by smaller more efficient turboprop aircraft, operating in the same airport

environment the jets had been. Similarly, flights from New York City to Hartford, have evolved in
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aircraftfrom the Boeing 737 to the Shorts 330 turboprop. In all these cases, the motivator has

been fuel cost.

Another reason for the reappearance of turboprop transports, operating side by side with

the jets at major airports, is technological improvements resulting in near jet speeds for propeller

driven aircraft. The cutting edge of these advances is represented by the SAAB 2000. This

aircraft utilizes swept-blade propellers, which allow considerably higher airspeeds, while reducing

noise during the landing and takeoff phases of flight considerably. The result of this type of

aircraft's superior performance is that they can operate from major airports served by jets without

impeding the flow of traffic. Their higher speed also bdngs into question the justification for

operating jets on routes that could be served by this type of aircraft: why should an operator pay

higher fuel bills for 4 minutes of time saving?

Several of the differences in operational practices between props and jets also have a

bearing on the speed issue. Delays at the gate have become a big issue with the airlines.

Because of this several air carriers, most notably Southwest, occasionally back their jet aircraft

away from the gate using thrust reversers in order to avoid ground handling delays associated

with towing the aircraft. This practice is a nuisance to airport operations because it can be

destructive of property and noisy, since high power levels are necessary. In contrast, propeller

driven aircraft can realize a shorter tumaround time due to their ability to directly reverse lower

velocity thrust, allowing this practice to occur regularly and without adverse affects.

Another issue concerning profitability is the robust nature of the turboprop powerplant.

Aircraft do not make money when they are in the hanger. The newer, quieter jet engines are

extremely delicate high performance machines that require maintenance by highly skilled people

on expensive test apparatus, in contrast, turboprops achieve their efficiency through bypass

ratio, driven, in most cases, by a turbojet core that is relatively uncomplicated.

EXTENDING TNE CONCEPT

So far, these success stories have been limited to small aircraft competing at the very

short range end of the airline market. After reviewing the obstacles associated with extending the
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conceptofa lowcost, efficient turboprop powered airplane into the 100-150 passenger short-haul

transport category, AEROCOM believes that the problems of speed and noise can be overcome.

The Mach number of 0.76, determined to be a standard operating speed for this category

of aircraft, can be met, or even exceeded using props. However, this high a velocity would

require the use of unducted fans, such as the General Electric UDF, which is a very high

technology product. Since simplicity and cost were considered to be two of the most redeeming

qualities of propeller driven aircraft, these were ruled out. On the other extreme, straight blade

propellers were ruled out because in a maintenance-friendly two engine format, they could not

reach an acceptable airspeed see Figure 10.

2500

--_ _" 2000

15oo
_. _ 1000

> 500

Propeler Diameter and Angular Velocity for Various Sweep

Angles

= 40 deg.

20 deg_

0 I I I

8 13 18 23

Propeller Diameter (it)

Figure 10. Propeller Diameter vs. Angular Speed for Various Sweep Angles.

The best alternative to these two types of propulsion was determined to be swept-blade

props, driven by conventional turboprop powe_lants. This format offers the maintenance

simplicity of conventional turboprops, with only a moderate increase in cost, due to advanced

technology blades.

One obstacle to this format is that it is impractical to meet the standard operational Mach

number of 0.76. However, it is possible to come very close: 0.7. Thus, before proceeding with
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thisformat, it was necessary to determine what kind of compromise this would represent in terms

of arrival times. A survey of the delays this would cause is summarized in Table 1.

Table 1. Time Difference between Turbojet and Pro _eller Aircraft Flying from Atlanta, GA.

WASHINGTON BOSTON DENVER
D.C.

Turbojet @ M=.76 1:05 (hr:min.) 1:52 (hr:min) 2:25 (hr:min)

Propeller @ M=.66 1:11(hr:min.) 2:04(hr:min) 2:40 (hr:min)

TIME DIFFERENCE 6 min. 12 min. 15 min.

These results were obtained by making the assumption that the entire flight would be at

cruise speed. This means that these charts over predict the speed advantage of the jets for

several reasons. Firstly, all aircraft are held to a maximum speed of 250 knots IAS below 10,000

ft., a speed that both jets and the AC-120 can meet. Secondly, the AC-120 can occasionally

expect better treatment in the airport traffic pattern due to its greater altitude and speed

flexibility. Finally, a propeller powered aircraft does not need to use a tow vehicle on departure,

shortening block to block time. W'_h all these things considered, it is conceivable that the AC-120

would suffer as little as four minutes time loss when compared with its jet powered competition.

To put this in perspective, four minutes is well within the standard deviation of arrival

times for this length of flight. Furthermore, four minutes is short enough such that any

unanticipated deviance in airport operations will result in this long of a delay. Thus, it is well

within reason to expect that with props the AC-120 would on occasion arrive ahead of its jet

powered competition.

The other major problem to be considered before proceeding with a propeller driven

aircraft was noise. The noise problem to be faced can be devided into two categories: interior

and exterior noise.

AEROCOM believes that the intedor noise problems associated with turboprops are

conquerable with an active noise control system (Antinoise). The Lotus Group in England is
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currentlyinvolvedinthedevelopmentofsucha systemfor the Cessna Caravan II aircraft, and a

representative of that company says that the system in its present form is adaptable to aircraft as

large as the Fokker F-27 (Lotus Aim To Silence, Flying 3/93). In terms of cost, antinoise also

appears to be an effective solution; the system in use on the Nissan Sunny automobile lists at

$30O.

AEROCOM believes that the use of swept-blade propellers will reduce the AC-120's

noise to the level that it will be acceptable to the requirements delineated in FAR 25, part 3, and

all anticipated changes to these rules. The high pitched whine associated with turboprop powered

airplanes is the result of high tip Mach numbers generated by the fan when it is driven at a fine

pitch for takeoff. Swept blade propellers produce lower tip Mach numbers at takeoff, due to their

sweep, and thus, lower noise. An additional means by which a propeller driven aircraft can meet

noise requirements is by virtue of its steeper climb gradient. Noise requirements are measured

by placing a fixed microphone a spedfied distance from the end of the runway, and to the sides.

If the aircraft can climb out very steeply, it is farther away from the microphones when the test

data is taken.

With the obstacles of noise and speed adequately dealt with, the decision to use swept-

blade turboprops to power the AC-120 was finalized. Table 2 summadzes the pros, cons, and

solutions that were factored into this decision. Additionally, Table 3 that follows it summarizes

the fuel benefits to be reaped from swept-blade turboprops.
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Table 2. Pros, Cons, and Fixes of Propeller Aircraft.

PROS CONS FIXES

very low fuel consumption

lower maintenance cost

lower initial cost

lower emissions due to

reduced fuel consumption

lower groundhandling costs

because no tow trucks are

necessary

greater speed and altitude

flexibility in airport traffic

patterns

speed

exterior noise

intedor noise

speed has been determined

to be insignificant for short

flights

swept-blade propellers

active noise reduction

Table 3. Fuel Benefits of Propellers.

Mission and

fuel weight.

1,550 nmi

800 nmi

Propellers

13,5 ibe

9,600 Ibs

Turbofan

16,600 Ibs

11_500 Ibs

SPECIFICS TO THE AC-120 PROPULSION SYSTEM

Savings

( passen_w*mile)

213

1/3

One specific problem in developing the AC-120 is that no engine currently exists with the

horsepower necessary to power a twin-engined aircraft of its size (8,500 HP required per engine -

refer to Preliminary Sizing section of this mpod),_Several engines exist from which a derivative

engine of the necessary performance could conceivably be produced. The Allison GMA 2100,

which is one of the most efficient turboprop engines, was chosen to fill this role. The scaled

values of the parameters for this proposed derivative engine appear in Table 4.
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Table4. PredictedEngineSpecifi'cationsfor anGMA2100Derivative.

Diameter 59in

Length

DryWeight

SpecificFuelConsumption

140in

2010Ibs

.41Ib/hp/hr

ThepropellerdiameterandengineRPMat cruiseweredeterminedby usingHamilton

Standardpropellerperformancecharts,withthetip Machnumberscaleddownbythecosineof

the tip sweep(the samemannerby whichthe effectiveMachnumberfor swept wings is

analysis resulted in the following rough- cut estimates for propellerdetermined). This

specifications:

Table 5. Propeller Specifications.

Diameter

RPM @ cruise

efficiency

CONCLUDING REMARKS

12 ~ 14 fl

I r200 ~ 1,500

0.75 ~ 0.8

The use of swept-blade turboprop technology allows the AC-120 to beat its competition

by 30% in fuel savings with only a marginal loss in speed. Numerous other advantages weighed

in the decision to power the aircraft with turboprops, as well, including, lower emissions, reduced

ground handling expense, and reduced maintenance and purchase cost.
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WEIGHT ESTIMATION

The estimation of the gross take-off weight (Wto) was computed using fuel fraction

method described in Roskam Aircraft Desion Part I. The gross take-off weight was made up by

three main components: the operational empty weight (Woe), fuel weight (Wf), and payload

weight (Wpl). Table 6 shows the major assumptions that were made during the process of

weight estimation for the airplane.

Table 6. Assumed Values in Weight Estimation

Phase Climb Cruise

Fuel consumption (Ibs/hp/hr)
L
D

Propeller efficiency

Altitude (ft)

0.5

16

0.75

N/A

0.42

18

0.85

33,000

Table 7 shows the final results from a Class I weight estimation process. To verify this

results a Class II weight estimation process was performed and results were found to be within

3% from the previous method.

Table 7. Major Component Weight of the AC-120

Operating Empty Weight (lbs)

Fuel Weight 0bs)

Payload Weight (Ibs)

Take-Off Weight (Ibs)

59,000

13,500

32r000

104,500=
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COMPONENT WEIGHT AND LOCATIONS

The aircraft would be built with proven technologies and equipped with state of the art

systems to provide passenger comfort and safety.

Systems sizes and weights were carefully chosen such that they could be fdted to

desired locations on the airplane to produced the needed center of gravity location, while still

performing efficiently. The empty weight of the aircraft was broken up into major categories:

structure, fuel, fixed equipment, crew, passenger, and cargo. These major components are

shown in Table 8.

Table 8. Main Categories Weights and Locations.

category weight (Ibs) location from root

structure

fuel

fixed equipment

passengers

cargo

chord leading edge (ft)

29,050

18,400

27,400

1,050

21,000

7,600

6.07 aft

2.37 aft

0.83 fwd

13.83 fwd

2.37 fwcl

2.37 fwd

The above combination resulted in a maximum gross take-off weight of 104,500 Ibs for

the aircraft. At this loading, the center of gravity location of the aircraft was 2.37 ft from the

datum line.

Each of the above categories consisted of vartous components. The component break

down of each category had to be known in order to calculate the category weight and locations. It

was possible to change the location of some of the components of the aircraft such as engine

position, wing location, control surface areas and locations. But all the components had

limitations and interacted with each other so various configurations were examined in order to

obtain the most appropriate combination.
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Thecomponentweightsandlocationsfor the structure and fixed equipment are shown on Tables

9 and 10.

For the structure:

Table 9. Airplane Structure Com

component

fuselage

wing

canard

weight (Ibs)

15,650

8,000

)onents Weights.

location from root

chord leading edge (fl)

6.4 aft

3.8 aft

190 39.6 fwd

horizontal tail 296 66.1 fwd

verti,cal tail 700 62.1 at1

fonNard landing gear

main landing gear

engine nacelle

386 35.6 aft

1,300 3.4 aft

600 3.6 aft
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Forthefixedequipment:

Table10.FixedEquipmentComponents Weights and Locations.

component

Flight Control System

Electrical System

Instruments and Avionics

Air Conditioning and

Pressurization System

Oxygen System

Engines

Auxilianj Power System

Flight Deck Crew Seats

Passenger Seats

Cabin Crew Seats

weight Obs)

1670

1910

1570

1120

210

14500

1050

60

location from root

chord leading edge (if)

30.7 fwd

14.7 fwd

39.6 fwd

10.3 aft

50.4 aft

4.1 fwd

57.4 aft

36.6 fwd

2,4 aft1800

45 2.4 aft

Lavatories and Water 2270

Food Provisions 220 37.4 aft

Cabin Windows 480 2.4 aft

Baggage and Cargo Equipment

Paint

34O

210

7.9 aft

30.4 aft

4.4 aft
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PRELIMINARY SIZING

The preliminary sizing was done using Roskam's method, as described in Airplane Design Part I

to begin the design process. A design plot was then constructed with the assumptions: the clean

lift coefficient of 1.5, take-off and landing distance of 5,500 ft each; the plot is shown in Figure

11.
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Figure 11. Sizing Plot Showing the Most Constringent FAR Regulation and Design Point.

The sizing plot shows a required power loading of 6.1 Ibs/hp and wing loading of 98.6

lb/sqf are needed in order to meet the aircraft specifications. From the power loading value and

the take-off weight of 104,500 Ibs, it was calculated that the AC-120 would need 17,000 hp of

thrust at take-off; and from the wing loading, it was claculated that the AC-120 would need an

wing area of 1060 ft2.
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AIRFOIL

Theairfoilchosenfor the airplane is the supercritical airfoil which is shown in Figure 12.

A supercdtical airfoil was used because of its high lift coefficients and high divergence Mach

number. Supercritical airfoils also have less abrupt stall characteristics than conventional airfoils,

higher maximum lift coefficients, and higher lift curve slope than NACA airfoils of similar

thickness ratio. An added benerd observed on supercritical airfoils was the even distribution of

the thickness along the chord. W'dh an even thickness distribution, more freedom is allowed on

the structural design of the wing. The main disadvantage of employing a supercritical airfoil is

the manufacturing of such an airfoil costs slightly more than a conventional airfoil. Secondly, due

to the higher lift generated by the wing, an increase in induced drag will result.
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Figure 12. The 75-07-15 Supercritical Airfoil Used on the AC-120.

The choice of airfoil is the 75-07-15 (chosen from Bauer, 1972), which is an airfoil with a

divergence Mach number of 0.75, a design lift coefficient of 0.7 and a maximum thickness of

0.15. Since not all of the values of the lift curve were given, it was necessary to employ an

interpolation technique (Roskam, Part VI ) to attain the missing values.
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The75-07-15airfoilhasa lift curveslopeof 5.86perradian,a Cl,max of 1.9at a Mach

numberof 0.75.It canalsoproducea cIof0.23atnoangleof attack,anditscharacteristiccurve

can be seen in Figure 13.

Cl

M = .76

[o_0 =-1.32[
Gt

Figure 13. Lift Curve to Angle of Attack of the 75-07-15 Airfoil.
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HIGH LIFT AND CONTROL SYSTEMS

The high lift systems chosen have the maximum lift coefficients given in Table 11 and

values for the geometry and position were found using Roskam Part II as a reference.

Table 1t. CL max for different conditions.

Dcl m_Y (Clean.) .1

DCl m.qx (Take Off) .31

Dcl m_v (Landing) 1.2

The geometry of the high lift devices is shown on Tables 12, 13, and 14.

FLAPS SELECTION

Fowler flaps

Ailerons

Spoiler

Table 12. Flaps Geometry.

deflection @ landing

deflection @ take-off

flapped wing area

percentage of wing chord

location

30°

10°

55%

30%

0.13 to 0.63 semi-span

Table 13. Ailerons Geometry.

Outboard

30%percentage of wing chord

location 0.75 to 0.95 semi-span

Table 14. Spoiler Geometry.

percentage of wing chord 20%

location 0.38 to 0.61 semi-span
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Manytypesof highlift deviceswereconsideredfor the use on the AC-120. Plain flaps

would require a large percentage of the wing span, double slotted flaps had a complexity that

was impractical due to the cost involved of installing such devices, so Fowler flaps were then

chosen because of their lower cost and lower complexity relative to the other choices.

The supercritical airfoil chosen has the required clean maximum lift coefficient (CI =

1.9), which is being used as a base to size the high lift devices. Using the 75-07-15 airfoil, a

landing coefficient of lift of 2.7 could be achieved on a small commercial transport without large

and complex high lift surfaces. To attain higher lift coefficients the use of either larger Fowler

flaps or leading edge slats would have been necessary. The simpler high lift system translated

into savings not only in aircraft weight but also production and maintenance costs. A summary

of different high lift devices implemented on the AC-120 wing is shown on Table 15.

The lift curves for the wing were generated.(Roskam Part VI) and Figure 14 shows the

lift coefficient curve for the clean wing and the landing configuration. It can be seen that a

maximum lift coefficient for the clean configuration was attained at an angle of attack of 12.2 °.

For fully deflected flaps, the maximum lift coefficient was attained at 9°.

CL

(Z

Figure 14. Coefficient of Lift vs. Angle of Attack for Clean Wing and for Landing-
Conditions (Fowler Flaps _ 30°).
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ByusingthesameFowlersystemat asmallerdeflection,atake-offliftcoefficientof 1.7

could be easily obtained. A larger flap deflection at take-off would have allowed the use of a

smaller wing area, but would have greatly increased the drag and requiring added engine power.

The positioning of the ailerons on the outboard sections of the wing allow the pilot to use

them for trim, lateral controls and when the auto-pilot is engaged. Spoilers were added mainly for

increasing the aircraft's angle of descent into crowded airspace or when landing in urban areas.

Table 15. Coefficient of Lift of the Wing for Different High Lift Devices (For Constant

Flapped Wing Area).

Type of High Lift Device

Supercritical Airfoil

Plain Flaps

Leading-edge Slats

Split Flaps

Fowler Flaps

Single Slotted Flaps

Double-Slotted Flaps

Double-Slotted Flaps with Leading Edge Slats

Addition of Boundary Layer Suction

CLmax

1.6

2.1

2.1

2.4

2.7

2.8

3.0

3.2

3.5
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WING DESIGN

WING SUMMARY

The final wing configuration has the geometry described in Table 16 and Figure 15. These

parameters were decided upon based on the method outlined below, in the sub-sections,

Determination of Design Conditions and Determination of Wing Parameters.

Table 16. Wing Geometric Parameters.

Wing Area 1060 f12

Aspect Ratio 9

Taper Ratio 0.33

Span 97.7 ft

Mean Average Chord

Root Chord

Tip Chord

114Chord Sweep

Leading Edge Sweep

Spanwise A.C. Location

11.76 ff

16.28 ff

5.43 ft

0.0 °

3.18 °

20.35 fl from CE
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DETERMINATION OF DESIGN CONDITIONS

In order to design the wing for the aircraft it was necessary to determine the range of

altitude the aircraft would be flying at. Though a maximum range of 1,550 nmi, (_. 3.5 hr) was

considered necessary to satisfy aidine needs, typical missions would be as short as 500 nmi (=

lhr), where it would not be economical to climb to a high altitude. Additionally, the decision to

power the aircraft with turboprops limited the speed to Mach< 0.7 and the flying altitude to less

than 33,000 ft because of adverse effects on propeller efficiency. Considering the maximum

altitude, maximum speed, and range flexibility, a variance in flying altitude of 25,000 ft to

33,000 fl was determined to be a realistic range in operating altitude for the AC-120.

The next step in the wing selection process was to determine what design altitude

between twenty five and thirty three thousand feet would result in the best average wing

performance throughout this range. The simple answer would be to design the wing for the

average of the expected altitude range, 29,000 ft. Curiosity motivated an investigation with the

aim of determining whether this hueristical approach is in fact correct. The first step was to

optimize wing area for every 1,000 ft interval between twenty five and thirty three thousand feet.

In this case, optimization means varying wing area until a maximum lift to drag ratio is observed

(mathematically: 0(CI/Cd)/c_S = 0). The wing areas used in performing this calculation are shown

in Table 17 and also in Figure 16.
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Table17.WingAreasfor O

altitude(fl)

25,000.

26,000

27,000

28,000

29,000

301000

31,000

32_000

33,000

_timum Performance at Altitude.

area (sqf)

900.4

926.5

955.1

985.5

1017.6

1051.5

1087.3

1125.2

1165.3

1200

1150

_.1100

1050
lOOO
950
9o0

85O

8OO

25

Wing Area Optimization for Various Altitudes

_- ÷ -I- t ! t I

26 27 28 29 30 31 32 33

Altitude (1000 ft)

Figure 16 -Wing Areas for Optimum Performance at Altitude.

The results show, as expected, that, for an increase in flying altitude, the optimum wing

area necessary in order to obtain a maximum Lift.:to-Drag ratio increases. In order to determine

a design altitude that would result in a wing with the best range of altitude performance, a study

of how each of the wing areas would perform at the other altitudes had to be conducted. This

involved calculating the performance for each of the above wing areas at 25,000 ft and 33,000

ft, to determine how each of the wings would perform at the extremes of the AC-120's design
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altituderange.Theaveragebetweenthe two values was taken and the results are shown in

Figure 17.

Q

17.5

17

16.5

16

15.5

22

Performance of Wing Optimized for Altitude at Different Altitudes

performance at 33,000ff

_ average

performance at 25,000fl

max@29,000fl
I I I

25 28 31 34

Design Altitude _rWing (1000 fl)

Figure 17 - Study on How a Wing Optimized for Altitudes Ranging from 25,000 ft to 33,000
ft Would Perform at 25,000 ft and 33,000 ft.

The results shown in figure six confirm that the common sense expectation is valid, as a rule of

thumb, since the maximum appears to occur at approximately 29,000 ft. However, a closer

examination of the peak of the graph reveals that the true maximum does not occur exactly at

the average altitude. The maximum is subtlely skewed to the high side, in other words, a slightly

larger wing than one designed for the average altitude will result in fractionally better

performance over the entire range surveyed. Since this difference is well within AEROCOM's

ability to accurately predict wing performance, 29,000 ft. was chosen as a design cruise altitude

for the wing.
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DETERMINATIONOFWINGPARAMETERS

WingAreaSelection

Wffha designaltitudefor the wing solidified, the next step was to determine what area

would provide the best lift to drag ratio at cruise. The ratio of lift to drag can be varied in many

differer_ ways. The most common is the so called "drag polar," which is obtained by varying an

aircraft's velocity, and has a maximum at

0(CI/Cd)/Voo = 0

this maximum is commonly referred to as the best L over D.

Another method is to vary lift to drag ratio by changing CI. This maximum occurs when

the parasite drag, Cdo is equal to the induced drag, Cdi:

a(Cl/Cd)k3Cl = 0 when Cdo = Cdi

In the derivation of the above result, it is assumed that parasite drag is not a function of

CI. This is true if, and only if, CI is varied by changing lift, since parasite drag is very dependent

on the wing area. This result is apparent from the functional relationships below:

CI = CI( wing area, lift, density, velocity ) Cdo = Cdo( wing area ........ )

Assumption: Cdo _ Cdo( CI )

During cruise, the lift of the aircraft is equal to its weight, so the maximum of this

equation realy shows what aircraft weight will produce the best lift to drag ratio - not a very useful

result. The method used by AEROCOM in varying lift to drag ratio, was to vary wing area. This

results in a maximum represented mathematically by:

0(CI/Cd)/c'_(wing area) = 0

This equation has a solution where

Cdi = Cdo + _.,d6/_wing area)

This differential equation has a closed form solution that results in an non-determinable constant,

so the maximum must be found by trial and error. In order to find an iterative solution, the lift-to-

drag ratio was calculated for wing areas ranging from 800 ft2 to 1400 ft2 at the design altitude.

The results of the study is shown on Figure 18.
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Figure 18. Optimization of the Wing for 29,000 ft.

As seen on Figure 18, for an altitude of 29,000 fl an increase in wing area resulted in an

increase in Lift-to-Drag ratio up to the maximum, which occurred at 1017 f12. Thus, 1017 ft.

became the design wing area for cruise.

Cruise, however, is only one condition of many that has an effect on the choice of wing

area. Another crucial factor in sizing the wing area is the take-off and landing conditions. The

choice of wing area must allow the aircraft to takeoff and land without requiring the use of

extremely high thrust or clumsy high lift devices, that would result in substantial cost increases.

The values for the maximum lift coefficients expected to be produced by the selected high lift

devices were calculated in High Lift Control and Control Systems, and are Cl,ma x = 1.4 for

cruise, Ci,max = 1.7 for take-off, and Cl,max = 2.7 for landing. Since these values are all

functions of wing area, the results shown required an iterative solution in conjunction with all of

the methods outlined in this section.

A sizing program was used to obtain power ratio, W/P, as a function of the wing load,

W/S, with curves showing the lift coefficients for landing and take-off, and the constraints
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necessaryforcompliancewithFederalAviationRegulations.Thetake-offweightof theaircraft

was104,500Ibsandwascomputedin Gomponerlt Weight and Locations.

The most constraining FAR requirement is for a single engine climb, which was easily

met by the AC-120. This requirement is represented by the solid line in Figure 19. Other

influential parameters include balanced field length on takeoff (dotted line), and landing distance

(vertical line). Utilizing data computed for the maximum lift coefficients in the landing and

takeoff configuration (again, this is the final result of an lterative process), the design point was

chosen at the point where both the landing and takeoff lift coefficients could be met. This

resulted in a power loading of W/p = 6.1 IbS/hp and wing loading of W/S = 98.6 Ibs/ft2.

Performance Sizing, Matching Graph
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Figure 19. Sizing Plot Showing the Most Constringent FAR Regulation and Design Point.

With a power loading of W/p = 6.1 IbS/hp and a wing loading of W/S = 98.6 Ibs/ft2, the

maximum take-off weight is 104,500 Ibs, and the wing area needed to meet the take-off and

landing field requirements is 1060 ft2.

At this point a very mild trade-off had to be made with wing area. It was intended to have

the wing area of 1017 ft2 optimized for 29,000 ft, but this would not satisfy the landing and take-
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off requirements.In orderto satisfytherequirementsthewingareawas increasedto 1060ft2,

Since, AEROCOM's ability to predict wing performance is probably not within the tolerance

represented by this difference in wing area, this was not considered to be a major sacrifice.

Taper Ratio Selection

Another step in the iterative process leading to the definition of wing parameters was the

determination of the taper ratio. An elliptical planform wing generates an Oswald's efficiency

factor of about 1, the minimum induced drag factor realizable for ordinary wings. Historically,

very few elliptical wings have ever been produced due to their cost. In contrast, a straight,

tapered wing is the cheapest to produce, and with the proper choice of taper ratio, results in only

a moderate sacrifice in Oswald's efficiency factor. A taper ratio of one-third was selected after

research indicated that this value would result in the lowest induced drag factor (8) (and thus the

highest Oswald efficiency factor), for a straight taper wing of any aspect ratio (Anderson, John

D., 1991).

Aspect Ratio Selection

At first it was believed that the best overall aircraft would be achieved with a high aspect

ratio. This belief was based on the fact that the Induced drag, which has a significant impact on

fuel bum, is inversely proportional to the aspect ratio, given by the equation,

c,2
Cd,induced = _eAR

While the equation above shows a decrease in drag for larger aspect ratios, it fails to take into

consideration the increased weight of the wing structure that always accompanies an increase in

aspect ratio. In order to better understand the tradeoffs inherent in this relationship, the fuel

weight at take-off and wing structural weight were calculated as a function of the wing's aspect

ratio. For fuel calculations, a mission of 1,500 nmi was assumed, and the lift to drag ratio, a

necessary parameter for determining the mission fuel weight, was calculated. The total fuel

needed for the mission was then calculated using the method described in Roskam Part I. The

wing structural weight was calculated using the average of two methods described in Roskam
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PartV, for each of the aspect ratios chosen as data points. The results of the calculations are

shown in Figure 20.
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Figure 20. Wing and Fuel Weight for a 1,500 nmi Mission for Various Aspect Ratios. Also
Shown is the Sum of the Wing and Fuel Weights at Take-off.

The study shows that a minimum in takeoff weight is achieved at an aspect ratio of

approximately nine. The slope of the weight curve would increase more dramatically if

divergence effects due to aeroelasticity and flutter at high apect ratios were factored into the

wing weight. Another important footnote to Figure 9 is that the chart was calculated for the

aircraft's longest mission. On flights of 500-800nm, a more typical mission for the aircraft, the

penalties off increasing the wing structural weight would further outweigh the benefits of a lower

fuel consumption.

This type of study has become an industry standard method for assessing what aspect

ratio will result in the best tradeoff between initial cost and long-term fuel savings. Generally,

short-range aircraft are designed on the low side of the curve, since lift to drag ratio benefits in

fuel consumption for such a short haul are not worth the increase in initial cost.
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Inorderto dealwiththe iterativenatureof thewingselectionprocess,additionalstudies

wereconductedto analyzethewing performance for different aspect ratios. The first of which,

shown below in Figure 21, was utilized in determining the wing areas for the previously outlined

study on aspect ratio v. weight. The data for the chart was produced in a manner identical to

that used to determine the optimum cruise wing area.
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Figure 21. Variation of Maximum Lift-to-Orag Ratio for Various Wing Areas at 29,000 ft
Altitude.

Upon conclusion of these studies AEROCOM decided to finalize the aspect ratio at 9.

This means that the aircraft has is slightly toward the lift to ratio side of the aspect ratio versus

weight curve. As stated earlier, generally short range aircraft have aspect ratios on the empty

weight side of this curve. Since the aircraft's powerplant's are less expensive than comparable

jet powered aircraft, AEROCOM felt that a small sacrifice in empty weight was justifiable.

Thickness Ratio

Another reason AEROCOM believes that a slightly high aspect ratio represents the right

tradeoff for the AC-120 is the thick wing section chosen for its wing. When the AC-120's power

plant was changed to turboprops, the resulting decrease in speed negated the necessity of using

super-crttical airfoils. Instead of abandoning the use of supercdtical airfoils, AEROCOM realized
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thatby retainingthe super-criticalwingsectionson inboardsectionsof thewing,a verythick

airfoilcould be used. A thick section is desirable because it reduces stress on the wing box, and

since cost is ultimately proportional to the magnitude of the stress the wing must handle, a thick

wing is a cheap wing. Another advantage a thick wing offers is large fuel volume, which, for the

AC-120, factors directly into its extraordinary ferry range. The sections that would be used are

15% thick super-critical, and are covered in detail in the Airfoil section of this report.

Sweep Selection

The most common masons for choosing a swept wing are drag divergence,

aeroelasticity, and fuel volume. Drawbacks to a swept wing are production cost, and structural

weight penalties. A swept wing would have been necessary if the drag divergence Mach number

for the airfoil selected was greater than the Mach number for the aircraft. The airfoil selected, a

75-07-15 supercritical airfoil, shown detail in the _ section, had a divergence Mach number

of 0.75. The aircraft was designed to fly at a Mach number of 0.68-0.70, so there was no need to

sweep the wings. The fact that swept wings are less susceptible to turbulence because of their

lower lift-curve slope was considered in the selection of the wing, but production costs were

considered to be more important than the minor benef'ds be obtained in passenger comfort.

Thus, a straight wing was determined to be the best overall solution for the AC-120.
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WINGLETS

TheAC-120will implementtheuseof wingletsbecauseof theirfavorable aerodynamic

characteristics and for the fact that they are aesthetically pleasing. Winglet design can

significantly influence the cruise performance and handling qualities of an airplane. It has been

demonstrated by wind-tunnel and flight tests, that winglets can provide increased aerodynamic

efficiency. This efficiency is achieved by the reduction of lift-induced drag without overly

penalizing structural weight (Van Dam, 1984).

Some of the most important design guidelines for winglets are: (1) A low cruise drag

coefficient; (2) High maximum lift coefficient; and (3) Docile stall characteristics. The first factor

provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The

second and third factors prevent the nonlinear changes in airplane lateral-directional stability and

control characteristics. Another important fact is minimizing adverse interference due to shock

waves in the wing-winglet junction. The use of a supercritical airfoil would minimize the adverse

Mach number effects, hence minimizing the adverse interference. The airfoil also follows the

design guidelines outlined above, making it a good choice for winglet implementation.
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PASSENGER CABIN

The AC-120 passenger cabin is designed to provide the maximum passenger comfort in

a narrow body commercial transport. The width of the interior passenger cabin was kept to a

minimum, while not comprising passenger comfort. Figure 22 shows how fuel cost will dse with

an increase in seat width. This in turn will cause the fuselage diameter to increase, thereby

creating more drag and a higher direct operating cost for the airplane.

Seat and FuelCost forVariousFuselage
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Figure 22. Variation of Seat Width and Fuel Cost for Various Fuselage Diameters.

The standard passenger layout is configured to seat 120 passenger in an all-tourist class

arrangement (Figure 23). The seats are arranged in 20 rows of seats in a six abreast

configuration and are in a 31 inch seat pitch throughout the entire cabin. With a width of 18.5

inches and 18 inch aisles, the cabin provides the widest economy seats available, comparable

only to the economy seats to be seen on the Boeing 777.
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All Tourist Class Configuration

Figure 23. Seating Configuration A

The mixed class layout is configured to carry 110 passengers, 10 seats in business class

and 100 in tourist arrangement (Figure 24). The business class seats are situated in a four

abreast arrangement and are in a 36 in pitch with seats being 21 inches wide and 25 inch aisles,

providing a comfort level equal to that of the Boeing 747 first class. The economy seating is

similar to the all tourist class configuration with 18.5 inch seats, 18 inch wide aisles, and are at

31 in. pitch in a six abreast an'angement.

Mixed Class Configuration

Figure 24. Cabin Seating Configuration B.

The interior of the passenger cabin contains removable walls that serve as class dividers

and large equipment such as lavatories and the small forward located galley are of a modular
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designthatenableseasyremovalby aidinemaintenancecrews.In bothcabinarrangements

threelavatoriescomestandard,each measuring 33 inches wide, one in the front of the airplane

and two located in the aft section of the airplane. Each aircraft has provisions for seating of up to

four flight attendants and the airplane is equipped with two galleys, one small galley in the

forward section of the cabin and one full size .galley located against the rear cabin pressure

bulkhead. The small galley in the front of the airplane is intended to service the business class

passengers, but it can be removed to provide the option for more seats or to install a mini-office

that would provide a fax machine, airphone, and small computer. One standard feature of the

AC-120 is a built-in airstair to allow passengers to unload quickly after landing in airports that

may not be equipped with jetways.

tl

Figure 25. Cabin Cross Section.
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Themainpassengerdoormeasures36by 72 inchesprovidingampleroomfor loading

and unloading of passengers. The AC-120 satisfies all FAA regulations by providing two Type I

and one Type III doors on each side of the cabin. Service doors measure 24 by 48 inches and

are located one in the front right hand side and two at the rear, one on each side servicing the

rear galley. The Type III doors are located over the wing (Two on each side) to provide

emergency evacuation of passengers and all doors have the minimum required unobstructed

access distance, 36 inches for Type I and 18 inches for Type III.
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SYSTEMS

CONTROL SYSTEM

The advantage in producing a neutral stable aircraft (Figure 26) is the lower induced

drag due to smaller control surfaces. If an aircraft was to became neutrally stable in flight, a

minimum amount of control surface deflection could create a large change in aircraft attitude, a

potentially dangerous situation. A fly-by-wire system (FWB) makes use of an on beard computer

and is used to alleviate this problem. This system can process data from the control surfaces,

attitude indicators and pilot input prior to deflecting the surfaces when performing a maneuver. If

a problem is detected, the computer can readily override the pilot's input or deflect control

surfaces to correct it.

The FBW system can provide many benefits for the AC-120. Crew workload is reduced

through the use of maneuver demand control laws and envelope protection functions. The need

for inherent stability can be relaxed to save structure weight an Improve aerodynamic

performance. Maintenance is reduced by decreasing the numbers of mechanical and hydraulic

components of the aircraft. For safety reasons, the AC-120 will utilize a triple redundant fly-by-

wire control system. This system will be integrated with hydraulic actuators used for all pdmary,

secondary, and high lift control surfaces. Pilot inputs will be sent to the flight control system and

electronically converted to control surface position commands. The commands will be

transmitted to surface actuators via three independent systems. These systems are located on

both sides and floor of the fuselage in order to reduce the chance of simultaneous accidental

failure in more than one system. Additionally with system redundancy, each control surface is

divided into three separate surfaces, and activated by separate actuators. These smaller control

surfaces allow for smaller actuators reducing unit cost and weight.

FUEL SYSTEM

AC-120 Fuel System (Figure 27) carries 365 ft3 of fuel. The majority of the fuel is

located in the left and dght main tanks outboard each engine to provide for stability (Figure 27).
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Therestiscardedinthetwoauxiliarytankslocatedinboardeachengine,werethefuel system is

capable of transferring fuel via the crossover tubes located in the dry center of the fuselage for

cruise tdm purpose. Fuel lines run from the main tank to the engine and to the auxiliary tank.

Fuel pumps are located in the left and dght auxiliary tanks to enable fuel delivery during extreme

aircraft attitudes. Sump tanks are near the inboard section of the wing to release contaminants

from the fuel tanks. Surge tanks are located at the outermost part of the wing area to condense

fuel vapor before releasing it overboard. The fueling port is located on the fight main tank for

compatibility with airport facilities. Dry bay's are located at both engine and landing gear area's to

prevent a catastrophic condition in case of a fuel line rupture or broken gear strut.

HYDRAULIC SYSTEM

Layout of the AC-120 Hydraulic System is shown in Figure 26. The hydraulic system is

powered by two independent 3000psi engine generators along with two pumps. The system

independence is necessary in case of failure in either generators or pumps. Each system is

capable of powering the ailerons, elevators, rudder, spoilers, flaps, main gear, nose gear,

steering, and brakes. The AC-120 is also provided with a auxiliary power unit capable of long

duration stand-by power to operate the hydraulic system during ground operations. Its also runs

flight controls, environmental, and fuel systems when parked in airport facilities.

ENVIRONMENTAL SYSTEM

The Environmental System located in the center portion of the fuselage is comprised of

two Air Conditioning units and a Mixing and Distribution unit. These units produce 6000 ft cabin

altitude for an aircraft cruise altitude of 33,000 ft. This is sufficient cabin conditions at high

altitudes for passenger comfort. The environmental system is run by bleed air pumps located on

each engine. The bleed air from the engines are-then fed through both the air conditioning units

and the mixing station. Air leaves the mixing station into the main air distribution source located

in the top portion of the fuselage, which extends throughout the entire cabin including the

cockpit area see Figures 28 and 29. Air from the main distribution source is then fed to individual

air ducts located in the cabin compartment for passenger use. Air is then collected at the floor

58



levelwereit issentthroughthemixinganddistributionbayfor filtration and recalculation. The air

conditioning lines are also fed through the cockpit, flight control system and lavatories were air

supply is needed more.
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PERFORMANCE

PAYLOAD RANGE

The AC-120 was designed to satisfy a 1,550 nmi mission while carrying 120 passenger

with 35 Ibs of luggage each, a crew of five, and 4,000 Ibs of payload. The fuel reserve increases

the range to 1702 nmi while still carrying the full payload described above. If a longer range is to

be expected of the aircraft, a compromise with the payload would have to be made. It was

calculated that at 42 % payload, the AC-120 will be able to reach 2,600 nmi. If there was to be

no load aboard the aircraft, such as in the case of ferrying the aircraft overseas, the aircraft

would be capable of reaching 3,300 nmi. As shown in Figure 30.
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Figure 30. Payload - Range Diagram.
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CENTEROFGRAVITYTRAVEL

TheAC-120wasdesignedsuchthatpayloadshiftswouldresultin smallaircraftcenterof gravity

shifts.This wasdoneby designingthe aircraftcabin,cargocompartment,and fuel tanks

symmetrically distributed around the empty aircraft center of gravity.

For having a passenger cabin symmetrically distributed around the empty center of gravity, any

evenly distributed passenger loading will not change the center of gravity position. If an uneven

distribution of passengers is encountered, this imbalance will result on a small center of gravity

shift. The fuel tanks were also evenly distributed around the longitudinal center of gravity of the

aircraft. As a result any percentage of maximum fuel possible could be carded by the aircraft

while not changing the center of gravity location; so there will be no in-flight center of gravity

shift due to fuel bum.

The cargo compartment was also evenly distributed around the center of gravity, allowing for a

large change in cargo center of gravity location without affecting the loaded aircraft center of

gravity. For a fully loaded aircraft, with the 4,000 Ibs payload, the cargo center of gravity position

will be allowed to vary by 9.2 ft (78.3% of the mean aerodynamic chord) while still keeping the

aircraft within its canter of gravity limits. The reduced center of gravity travel kept the AC-120

control surfaces small, which in tum reduced the parasite drag, and aircraft empty weight. A

secondary benefit of the reduced center of gravity travel was the lower induced drag due to

trimming the aircraft in flight.

The center of gravity envelope for the AC-120 is shown of Figure 31. The aft limit of the

envelope is required for landing and is a function of the main landing gear location. In order to

define the aft limit, the neutral touch down point was located. At a neutral touch down, the

aircraft center of gravity would be located vertically above the tires when the tires touch the

runway pavement. This would create a condition where there would be no tendency of the

aircraft to lower the nose, requiring excellent pilot skills in order to perform a smooth landing. For

this reason, a factor was included in the calculation of where to place the aft canter of gravity
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limit.If the centerof gravityof theaircraftwasto be placedat theaft limit,the aircraftwould

haveenoughnose-downmomentmakingthelandingeasierforthepilot.
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Figure 31 - Center of Gravity Envelope.

The forward limit of the envelope was fixed by the ability of the aircraft to lift the nose, which

would be done by the canard and tail surfaces. For having canard with flaps and a moveable

horizontal tail, the ability to rotate the aircraft did not present a problem dudng the design. At the

forward center of gravity limit, the industry standard of enough tail power to create a 4.5°/s pitch

rate during a full flap take-off was easilly achieved.
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SPEED AND RANGE COMPARISON

The AC-120 was compared to existing turboprop and jet powered aircraft on speed and range

characteristics. Both the AC-120's range of 1,550 nmi and speed of 410 knots were higher than

most of the propeller power aircraft (Figure 32), but lower than most of the jet powered aircraft..

The higher speed was .possible by the used of six bladed swept propellers. The range was a

factor of the decision to design a medium range aircraft.

Maximum True Airspeed and Range for Various Regularly Scheduled Aircraft
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Figure 32. Comparison of Speed and Range of Various Aircraft.
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PAYLOAD COMPARISlON

Various airplanes were compared against the AEROCOM AC-120 on a basis of what

percentage of the maximum take-off weight was composed by the payload. This study was done

in order to compare the profitability of the aircrafts (Figure 33). Knowing that fuel consumption is

directly related to weight, it was of great interest to design an aircraft where the payload weight

/Wtomax ratio was the largest possible

As Figure 33 shows, the AC-120 payload range is competive with other aircrafts in it's

catagory. As a comparison the BOEING 737-400 has a payload/wtoma x of 25%, whale the AC-

120 has a payload/wtoma x of 28%. This results in a higher proF_margin for the AC-120.

AEROCOM AC-120

120 passengers, Wtn m_x=104,460 Ibs

Fokker 100

107 passengers, Wtn m_=95,000 lbs

149

Boeing 737-400

passengers, Wtn mAx=124,500 lbs

Romaero Series 2500

115 passengers, Wtn m_x=93,280 Ibs

Figure 33. Payload Compadsion.
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STABILITY AND CONTROL

STABILITYDERIVATIVES

Stabilityderivativesfor the AC-120were calculatedusingthe computerprogram,

AdvancedAircraftAnalysis.Thederivativeswerecalculated for two different flight conditions:

cruise and approach which and are presented in Table 18.

Table 18. Flight Conditions.

Phase

Configuration

Altitude

Mach

Aircraft Weight (Ibs)

Static Margin (%MAC)

Approach

Flap down

Sea Level

89,200

0

Cruise

Full Stored

33_000 ft

0.68

95,950

0

The calculated longitudinal and lateral_irectional derivatives are listed in Tables 19 and

20, and these stability derivatives played important roles in sizing control surfaces and choosing

the control systems for the AC-120.

These derivatives were useful in predicting the behaviors of the airplane without actually

testing a scale model of the aircraft, therefore the results should be considered a preliminary

prediction. To increase accuracy and develop a detailed discussion of stability, it would be

necessary to perform wind tunnel testing or a flight testing program.
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Table19.LongitudinalDerivatives.

Cmu
Approach

0.09

Cruise

0.28

Cmcx -1.05 -0.95

Cm_.dot -11.1 -16.2

Cma -42.5 -48.1

CI ,j 0.16 1.1

CL_ 5.62 6.7

CLo_.dot 2.17

Cn_F 0.00

0.12

2.9

0.00

0.10CI _F

CLQ 6.34 7.4

CD_ 0.59 0.70
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Table20. Lateral- DirectionalDerivatives.

C/_.dot

Cl_

C/r

clz 

CI_s

Cnl3

Crib.dot

Cnp

Cnr

CnaA

Cnz_

Cn_

Cyp

CyJ3.dot

Gyp

CYr

Approach

-0.06

0.00

-0.69

0.42

0.12

0.00

0.07

0.00

-0.18

-0.49

-0.02

-0.10

0.006

-0.88

0.00

-0.88

0.73

0.00

0.16

Cruise

-0.11

0.01

-0.69

0.56

0.15

0.01

0.23

0.00

-0.18

-0.68

-0.02

-0.11

0.01

-1.10

0.00

-0.33

1.02

0.00

0.17
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COST ANALYSIS

The AC-120 is a commercial transport designed to compete against existing aircraft such

as the Boeing 737, Fokker 100, Bae 146, Dcg, and MD 90. The unit cost for the AC-120 was

calculated (Roskam Part VIII) to be 24.5 million in 1993 US. Dollars (USE)) and the cost is

estimated to be 26.1 million (USD) in the year 2000 when the AC-120 is expected to enter

service. The average pdce for an aircraft of this size currently ranges from 22 to 30 million

dollars, therefore the pdce of 24.5 Million for the AC-120 makes it very competitive.

When the pdce is compared in relation to take-off weight, the AC-120 demonstrates its

competitiveness in aircraft pdce against other aircraft in its class (Figure 34).

Aircraft Price vs. Take-Off Weight

30000000
Bae-NRA B737-500 B737-300

25O0000O F-100 AC-120

20000000

_15000000

101,000 104,500 115,500 118,000 124,500

Take-OffWeight(Lbs.)

10000000

5000000

0

MD90-10

139,000

Figure 34. Aircraft Price in Relation to Take-off Weight.

The AC-120 is the second lowest priced aircraft when compadson to the current flying

aircraft in the same class. The lowest pdce is $600,000 USD lower than the AC-120's price but

when compared to the MD-90, whose pdce is estimated to be 29.3 million dollars, the AC-120 is

6 million dollars less expensive.
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CurrentlytheAC-120 operates at a cost of 6 cents per passenger mile (USD) for a 1500

nautical mile mission and the cost dses to 7 cents per passenger mile for a 800 nm. mission.

Figure 35 shows a percentage breakdown of the total direct operating cost of the AC-120.

Direct Operating Cost (DOC)

2% DOC at'Finance

9%DOC of Deprec_on

_1% DOC of _lying

Figure 35. Direct Operating Cost (DOC).
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CONCLUSION

AEROCOM's inquiry into the possibilities of designing a competitive replacement for the

100 to 150 passenger short haul transports in use today resulted in an aircraft capable of

producing significant improvements in both operational and acquisition costs. However, the

aircraft that resulted cannot be considered to be a "perfect" solution because of the compromises

necessary to produce these results.

The aircraft found to be most effective at producing these results was a swept-blade

turboprop aircraft in a three lifting surface layout. The introduction of swept bladed propeller

technology has made it possible to consider turboprop transports with only marginal speed and

altitude losses as compared with conventional short haul jet transports. Additionally, no aircraft in

the airline market has yet taken advantage of the induced trim drag benefits of the three lifting

surface configuration.

Nonetheless, valid questions must be raised about a slower and lower flying turboprop's

ability to compete with faster, higher flying, and possibly more glamorous jets. AEROCOM

studies indicate that there is a significant probability these risks can be met and that the benefits

to be reaped therein, merit further investigation of this type of aircraft.
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FIRST CONCEPT

AEROCOM's first configuration was a very radical aircraft, as is apparent from Figure

36. The unusual components to this aircraft resulted from a zealous attempt at reducing drag.

The initiative towards reducing drag was centered around the concepts of natural laminar flow,

structural communality, and reduction in wetted surface area.

AEROCOM initially believed there were great benet'ds to be reaped form making use of

• natural laminar flow airfoils on all lifting surfaces. NLF airfoils require clean undisturbed air in

order to work effectively. This dictated placement of the engines in the rear. It was also a

contributing factor in the decision to use a mid-wing, since the mid-wing arrangement would

place the wing out of the dirty air from the canard. Unfortunately, it was later leamed that an

aircraft of this size has a main wing section Reynold's number that is too high for natural laminar

flow to occur.

Structural communality was believed to be a method by which the first configuration for

the AC-120 could achieve a substantial reduction in structural weight. Structural communality

refers to a reduction in weight created by using a common structure to carry loads generated by

a variety of sources. When a central location is used to support many different loads, significant

reductions in structural weight can often be achieved. The main location for structural

communality in configuration number one is directly aft of the rear pressure bulkhead. This

location handles the loads of the main gear, the vertical stabilizer, the engine nacelles, the main

wing, and the rear pressure bulkhead. Another location of structural communality is at the

junction of the canards within the fuselage, which supports the loads of the canard and landing

gear.

Unfortunately, the aircraft's swept forwErd wings negated all of the weight savings

achieved by structural communality. If an aircraft wing is modeled as a beam rigidly attached to

a wall at a certain sweep angle, it can be shown that the variance in torsional loads experienced

with changes in sweep is inversely proportional to the tangent of the sweep angle (Area and

Aspect Ratio held constant). This means that the wing proposed for the first configuration would
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experience almost 2.5 times the torsional load of a straight wing. Additionally, it should be

pointed out that this rough estimate does not even begin to take into account the aeroelastic

problems associated with a swept-forward wing. For these reasons, the wing initially chosen for

the AC-120 was not an effective solution.

Another method by which the first configuration was to achieve an improvement in drag

was to reduce the wetted area of the control surfaces. This was to be accomplished by using a

three lifting surface configuration, and by having the aircraft CG, the wing-fuselage aerodynamic

center ,and the aircraft aerodynamic center at the same place. As outlined earlier in the report,

this combination results in an aircraft that is perfectly tdmmed, and carries no loads on its control

surfaces other than that needed to balance the wing's pitching moment. Since these forces are

not large, it was thought that the control surfaces could be very small. Unfortunately, this line of

reasoning fails to consider several important points. First, the aircraft will not always be loaded at

the same location. Second, the cruise condition of the aircraft is not the only condition pertinent

to the sizing of the control surfaces.

This proved to be a major oversight. With the entire passenger cabin ahead of the wing,

the CG shift for the aircraft proved to be 10 ft., an intolerable number for nose rotation dudng

landing. An enormous tail would be required because the horizontal stabilizer would have to lift

at least the moment generated by the ten foot arm between the gear and the CG. Several

schemes were considered in an attempt to fix this problem, including elaborate fuel pumping

systems, but ultimately it was decided that this type of fix was akin to patching holes in a sunken

ship.

Since the problems encountered with CG shift, and weight were cleady unrepairable,

AEROCOM chose to abandon this concept. In tee second configuration, see appendix Se_nd

Concept, the CG shift problem was addressed, but further difficulties were encountered,

ultimately leading to its rejection, as well.
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SECOND CONCEPT

After rejecting the first AC-120 configuration, AEROCOM chose to modify that configuration to

the extent that only a few features of the original aircraft were retained. The primary difference

between the first and second aircraft is the wing location and the powerplant (Figure 37). The

change in powerplant was retained in the final aircraft, and is covered in the main report.

The primary motive for moving the wing fo_vard was to create an aircraft that would be

immune to precisely the CG difficulties encountered with the first aircraft. Thus, the second

concept has a rear swept wing with the passenger cabin and baggage compartment

symmetrically distributed about the wing box. The mid-wing was retained in order to reduce

interference drag, and because the natural laminar flow airfoils still in favor at this point in the

process require clean undisturbed flow. If the aircraft had a low wing, the canard would have

disrupted the laminar flow over the wing. A high wing, the altemative to a mid-wing, was

considered, but it was considered undesirable because of the associated penalties in induced

drag and weight.

Mid-wings, however, have their own set of problems. An airplane wing is usually located

either at the top or bottom of the fuselage in order to avoid interfedng with the passenger cabin.

Both of these configurations have the advantage that a relatively un-problematic straight carry-

through wing can be designed. In contrast, a mid-wing airplane presents a challenge in the

design of a wing box because the wing-spar loads must somehow be carded around the

passenger compartment without large increases in weight or adverse affects on passenger

comfort.

Several wing boxes were considered, the most promising of which is shown in Figure 38.

This wing box consists of two bulkheads 35 incl_es apart located at the middle of the aircraft.

This design was considered to have great potential because it utilizes the entire diameter of the

fuselage to carry across the bending loads of the wing. Since the ability of a beam to carry

bending loads is proportional to the square of the beam's height normal to the bending axis, it

was hoped that by utilizing the entire fuselage cross-section, a very thin light wing box could be

79



created.Withsuchathinstructureit was very important to obtain accurate results for the loads

within the bulkheads in order to determine their ability to resist buckling, and to determine how

effectively the bending loads were distributed within the bulkhead.

The bulkhead was first analyzed using Roark's Method of Stress and Strain (Roark,

1989). The curved reinforcements located on the underside of the carry-through section were

sized to the expected pattem of shear flow using this method. As previously mentioned, a central

key to this design was that the stresses would be fairly evenly distributed around the bulkhead. In

order to obtain a more accurate analysis of this design, a finite element analysis program,

COSMOS/M, was used to run a stress analysis of the wing box. From a reference point outside

of the airplane, the bulkhead seemed to perform well, because, as seen in Figure 39, which

depicts aimrafl stress in the take-off condition, the stresses where distributed along the fuselage.

Upon examining the conditions present in the interior of the wing box, however, the finite

element program showed that the design did not perform as expected because the shear was not

distributed within the bulkhead as was desired. Figure 40 illustrates how the aircraft's bulkhead

performed under a 1 g loading. The figure clearly depicts a very high stress concentration where

the wing joins with the bulkhead. The rest of the bulkhead, as a rule, was not under any

considerable stress. When the load was increased to 2 g's, as depicted in Figure 41, the stresses

where still not distributed about the wing box. Since stress concentrations are the bane of

composite materials, this result was unacceptable.

Since the structural difficulties associated with a mid-wing box were not dealt with

,,=_, a decision was made to abandon the second conceptual representation of the AC-120. In

the interim between this design and the final AC-120 configuration, a through reconsideration of

all AEROCOM design philosophies was conducte¢3,resulting in a much more practical aircraft.
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