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ABSTRACT

In the mid 1990s, NASA will begin assembly of Space Station Freedom, a permanent
outpost in a low-earth orbit. For the station to remain in that orbit, an altitude control system must
be developed to resist the effects of atmospheric drag. One system being considered by NASA is l
called a resistojet and uses highly pressurized waste gases heated by electrical resistance to provide
thrust on the order of 1 Newton. An additional function of the resistojet is to vent waste gases :
used by the station and its inhabitants. This report focuses on resolving the issues of system
performance, flow and heater control, and materials selection and designing test procedures to
resolve, by experimentation, any remaining issues.

The conceptual model of the resistojet consists of a shell wrapped by a resistive coil with
gases flowing internally through the tube with addin’tffx,\comf;c;r?é;lts such as regulators,
transducers, and thermocouples. For system performance, the major parameters were calculated
from the desired thrust range, the pressure within the resiswggt; azgxc‘i e%g( go_}s‘ljﬂow mode of
operation; waste gases were analyzed at 100% capacity and 552 kPa. The design team found that
any ventilation under all conditions would produce thrust, and therefore, it was decided to limit the
design of the ventilation function. The design team proceeded with a simplified model to
determine the nozzle throat diameter and chamber diameter.

The controller design for the resistojet system is unique in that it uses a “trial-and-error”
process to control and maintain the performance of the resistojet system. The use of the MRAC
(Model Reference Adaptive Control) system has already proven itself in the attitude control of the
Exosat satellite. The MRAC system easily adapts to unknown variables, allowing it to obtain
correct impulses while the composition of the waste gases varies over time.

A systematic procedure was used to conduct the materials selection for the resistojet, and
the materials were optimized for environmental resistance and cost. The corrosion resistence of
Molybdenum disilicide (MoSi2), an electrical heating alloy, was singled out as the only element
resistant at high temperatures to all of the waste gases because of its “self-healing” properties.
Eventually however, plantinium was selected for the heating element of the coil, while MoSi2
remained the selected material for the other components. An addition of 10% ceramics is,\re W
to control the brittle behavior of MoSi2 for industrial application. In the overall consideration of
the design, the cost and manufacturing issues of a MoSi2 heating element was judged to be
impractical and non-cost effective. The final coil design consists of a platinum wire with MgO
insulation and a MoSi? sheath for corrosion resistance. The selection of MoSi2 and ceramics in
place of platinium parts (except for the coil) results in a estimated cost savings of 98% in materials
and greater resistance against corrosion. The design team also chose to incorporate Inconel 600
for the plume shield and the casing because of its excellent properties for applications in space.and
superior corrision resistant properties. The materials selection of the resistojet components

optimizes the design for waste gas ventilation.
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BACKCGROUND

When Space Station Freedom is finally launched into orbit and assembled, it is
expected to remain in orbit for a duration of 30 years. There is a problem, however, with
keeping the station at its designated altitude due to the fact that it is in a micro-gravity, as
opposed to zero-gravity, environment. A small amount of drag acts on objects residing in
low-earth orbit, inevitably pulling them in towards the earth if no equal and opposite force is
applied. NASA has put considerable time and effort into the research and development of a
system to maintain and control the altitude of Freedom. Spending cuts to NASA's budget
has deemed it necessary to find a low cost system with the most efficient use of
consumables.

One such system makes use of a resistojet to provide small amounts of thrust to the
station over relatively long periods of time. The resistojet uses waste gases being
discharged by other systems on the station as propellant which it heats by electric resistance
to provide additional impulse. To decide whether this system will meet the needs of the
space station, issues concerning system performance, flow and heater control, and materials
selection must be resolved.

CLARIFICATION OF PROBLEM

The basic design for a resistojet already exists; the problem lies in tailoring it to meet
the specific needs of the space station and use the available resources. The resistojet must
not only perform the function of providing impulse for altitude control, but it must also vent
all of the waste gases that accumulate onboard the station. The systems controlling the
heater and theAM&&gas%ﬁust maximize the amount of gas being vented while
providing the desired impulse. Interaction of the gases with each other and variability of the
composition from cycle to cycle must also be considered.

Materials conventional to resistojet design may not meet the requirements for
temperature range or the environment of space and will need to be selected carefully. Also
requiring appropriate selection is the electric resistance heating element that will be used to
heat the gases for calculated expansion. The placement of the heater within the chamber, the
size and shape of the nozzle, and the shielding of exhaust plumes are additional problems
that will need to be resolved. Procedures for testing resistojet performance must be
developed and test apparatus designed in order to help resolve issues unable to be solved by



analytical means. A specification sheet in Appendix A clarifies the constraints and
functional requirements for the resistojet.

SPECIFICATIONS

The majority of the specifications listed in Appendix A are seif-explanatory and do
not require justification; however, the design team felt that the requirements crucial to
embodiment are deserving of some degree of justification.

The chamber, heating element, and nozzle will be exposed to variable compositions
of the five waste gases being considered. Non-corrosive, non-oxidizing materials must be
selected, particularly for the heating element, the performance of which could be severely
affected by oxidation due to sases such as CO2 and water vapor.

Considering the issue of safety, it was decided to include in the design an emergency
shut-off system powered by an independent source should the resistojet encounter a
problem such as over-heating, over-pressurization, or fire within the chamber. To
determine if any of these conditions exist, diagnostic capability would also need 1o be
included in the design; however, the main function of a diagnostic system would be to aid
crewmembers and ground controllers in determining when and what maintenance may be
necessary.

EFUNCTION DESCRIPTION

As mentioned previously, the resistojet must perform the two primary functions of
providing impulse for altitude control and venting the maximum amount of waste gases
possible.

The process by which it will accomplish these begins with the flow of waste gases
from a storage tank to the resistojet chamber (See Figure 1). The high pressure at which the
gases leave the tank requires that the gases pass through a regulator which must bring the
pressure down to a value appropriate for passing through the chamber. Once inside the
chamber, the gases are heated by electric resistance, accelerated by a converging-diverging
nozzle, and expelled through the nozzle exit; thus providing impulse, a function of thrust
over time, and venting waste gases simultaneously.



Temperature and flow rate control require the placement of temperature and pressure
transducers at specific points along the jet, such as at the entrance to the chamber and the
entrance to the nozzle. The thrust must also be monitored for control and diagnostc
purposes. Appendix B displays the resistojet process in the form of a functon structure.

Waste

Gases Pressure  LoadCell Thermocouples

Transducer

Electronic / i | . ﬂ

Pressure Regulator ; 5

Computer Le—
< MRAC »| PCU

Figure 1. Resistojet process. Waste gases pass through the pressure regulator flow
into the resistojet chamber where they are heated and released through a
nozzle.

SOLUTION VARIANTS

A comprehensive list of solution variants for each of the sub-functions described in
the previous section is shown in Appendix C. For the sub-function concerning flow
regulation, the use of a simple orifice was ruled out because it does not allow for variable
pressure. The remaining options were a mechanical and an electronic pressure regulator.
The mechanical regulator was eliminated because it is less accurate than the electronic
regulator and requires an additional electronic system to control it.

For heating of the gases, the only alternative solution to be eliminated during the
initial evaluation was that of a parallel heating mesh through which the gases would flow. It
was removed as an option because impurities in the gas mixture might clog up the mesh and
block the flow.



The use of a manometer for monitoring the pressure of the gases was eliminated as a
possible solution due to incompatibility with the micro-gravity environment. For measuring
the gas temperature, the thermister and resistance temperature device (RTD) were eliminated
because of accuracy degradation at temperatures exceeding 800°C. The use of a
thermometer is impractical and would not be able to be easily read. For monitoring
resistojet thrust, analytical means was ruled out as a solution because of lack of accuracy
and the fact that it depends upon the values determined by the pressure sensors. If the
pressure sensor fails or gives inaccurate readings, the true thrust cannot be determined.
Additionally, variation of gas composition makes analytical determination of the thrust
impractical.

Finally, for analysis and control of the parameters, the proportional (P),
proportional plus derivative (PD), and proportional plus integral plus derivative (PID)
controllers were all immediately eliminated because of incompatibility with the system. The
proportional plus integral controller (PI) requires too much information about the system
and was therefore deemed impractical.

CONCEPT VARIANTS

For all of the sub-functions except that of heating the gases, only one solution
remains for each; an electronic pressure regulator for flow regulation, a pressure
transducer, a 'thcrmocouple for o measunng temperature, a load cell for measuring thrust, and '
a model reference adaptive controller (MRAC) for analysis and comrol It is only the type
of resistive heater which changcs from variant ¢ variant.

The heater solunons consist pnmanly of enstmg methods of resistive hcatmg within

a chamber or variants of these. They consist of the following and are shown graphically in
Appendix D:

(1) Heated cylindrical shell with internal and external flow

(2) Finned coils with flow running perpendicular to the coil columns

(3) Internal coil with parallel, external flow

(4) Heated spheres packed together with flow traveling in between

(5) Heated cylindrical rods with flow perpendicular to the rods

(6) Cylindrical heater spanning circumference of chamber with internal flow



Evaluation

To evaluate the six concept variants in a thorough and unbiased manner, weighting
criteria were developed and assigned weighting factors according to their importance in
satisfying the function. Criteria and weighting factors were assigned as follows:

1) Reliability .30
2) Parameter control 25
3) Heat transfer efficiency .20
4) Manufacturability A5
5) Cost A0

1.0

Reliability was given the highest weighting because of the importance of the
resistojet performing its function as needed. If the jet fails to produce the required impulse
the result of altitude loss could be detrimental to station performance. The second highest
weighting was given to parameter control because if pressure, temperature, and flow rate
cannot be maintained at the values required to provide the necessary thrust and prevent
condensation in the chamber, then the resistojet does not adequately serve its purpose.
Heat transfer efficiency received the next highest weighting and concerns both the efficiency
of the heater in converting the electrical power it receives into thermal energy and how
uniformly it heats the passing flow of gases. The second to the lowest weighting was given
to manufacturability of the heating component. The more difficult the heating element is to
make, the more costly and difficult it is to replace. Also, a simple design may already be on
the market eliminating the need to design and build a heater from scratch. Cost was given
the lowest weighting because it is not a driving force in the design of the resistojet relative
to the other criteria, but nonetheless, it is a constraint and NASA's budget for space station
is limited, therefore it was included in the criteria. Safety was originally considered as part
of the weighting criteria, but it was determined that all of the heater configurations were
rated equally for safety, thus it was climinated.

In the decision matrix shown in Appendix D, the concept variants are rated 1 to 6 on
how well they satisfy each of the weighting criterion. Then the rating is multiplied by the
weighting factor for that particular criterion and the resulting products are added together in
the SUM column. The concept variant with the highest sum best satisfies all of the
evaluation criteria. Some of the variants were given equal ratings in several areas where no
differentiation could between how well each variant satisfied the evaluation criteria.



For control, ratings were determined on the basis of how uniformly the gases could
be heated. The more evenly the gases are heated, the more accurate the temperature
measurements will be, and the better the temperature can be controlled. The heated spheres
cause the most uniform heating to occur while the cylindrical rods have the smallest surface
area and least even heating.

Cost ratings were determined on the basis of availabiiity of the heating elements.
Variants 1,3, and 6 are fairly simple designs already in existence and widely used, whereas
heated spheres are not as common and would have to be manufactured specifically for the
resistojet. Ratings for manufacturability were determined on a similar basis and also
considered the connection to the chamber casing, the connection of heater parts to each
other, surface finish, and ease of formation.

Heat transfer efficiency is a function of contact surface area and the time the gases
spend in the heat interaction area. The finned coils variant was gi~- = the lowest rating since
the flow passes right by the coils and the surface area contacted by the gases is small,
whereas the gases get heated the most by the heated shell and the spheres.

Reliability was based on the simplicity of the variant. The heaters with the fewest
components and the best working record received the highest ratings.

The heated shell with internal and external flow was selected as the final concept
based on the fact that it best satisfies the evaluation criteria. The external heater variant and
the internal coil variant follow close behind as expected given that the heated shell is a
combination of these two concepts.

Feasibility Analysi

Upon performing preliminary calculations on the rtsxsto;et using the selected

concept, the flow was restrained to the opcrau ; below. Based on
these conditions, the chamber could not exceed a 9.7 mm inside di . This geometry.
limited the internal/external heater element configuration whi d be used. In fact,
manufacturing the select- * heater configuration was seen as a highly expensive process, iflit
could be performed at all. Instead of struggling with the issue of trying to make the ;
internal/external flow configuranon work, it proved to be more feasible to work with an
internal flow heating configuration to meet the restraints of the flow. The internal flow
heating element could easily be applied by using a cylindrical sleeve with a resistive coil
wrapped around it. The analysis below justifies the selection of the internal flow heater

element configuration.



ANALYSIS OF RESISTOIET OPERATION

The resistojet analysis began by reviewing specifications, and then imposing several
operating conditions in order to develop operational parameter requirements. This method
of analysis seemed to be the most logical approach since it produced values which were
specifically tailored for this resistojet operation. Another alternative analysis method
considered was the selection of parameters based on available resistojet technology with
similar operating conditions. However, the available resistojet technology uses single -
compongr\ib fuel %tu?s and larger thrust requirements. Due to the unique nature of the
mult-component waste gas mixture and the desired low thrust range involved in this design,
the alternative approach was not used.

Furthermore, since the operation of the resistojet deals with waste gas compositions
that vary from one burn cycle to the next, the resistojet analysis was performed using100%
compositions of each gas. That is, each of the five waste gases were independently
analyzed as it flowed through the resistojet. By doing this, an operational window was
created based on the high and low values produced by each waste gas. Assuming that there
are no chemical reactions occurring within the resistojet, all mixture compositions should
produce operational values which fall within this operational window.

Review of Specificati

The specifications of immediate impact to the parameter development were the
desired thrust range, the pressure within the resistojet, and the cold flow mode of operation.
The thrust range specified for this resistojet was from a minimum of 0.22 N (50 mlbs.) to a
maximum of 1.6 N (350 mibs). In order to guarantee the minimum and maximum thrust,
the analysis was performed from minimum thrust, minus 5%, to maximum thust, plus 5%.

The desired pressure within the resistojet chamber was 552 KPa (80 psia).
However, during the thermodynamic analysis of the waste gas flow, it was discovered that
the thrust produced by the resistojet is proportional to the pressure within the resistojet
chamber and the nozzle throat area. Therefore, in order to vary dyesistojct thrust, either
the throat area or the chamber pressure would have to be varied. Since varying the throat
area seemed to produce a complex mechanical issue, it was decided that the chamber
pressure would be varied. The 552 KPa (80 psia) requirement was used at the maximum
thrust, not including the +5% thrust compensation. By choosing 552 KPa as the highest
operational pressure, the gases are maintained as ideal gases in any mode of operation. The



minimum thrust, not including the -5% compensation, required a pressure of 68.95 KPa (10
psia).

An analysis of each of the five waste gases at several temperature and pressure states
throughout the system showed that H20 and CO? are not always in their ideal gas state. At
the tank conditions, these two components are in nonideal states. However, when H2O and
CO, are transported to the resistojet and the chamber pressure is the maximum pressure
required for maximum thrust, then they become ideal. These waste gases stay ideal
regardless of the temperature setting. For this reason, the condition of maximum pressure
and no temperature control is denoted as the "cold flow" condition.

Another specification that was addressed but was not directly incorporated in the
embodiment design of the resistojet was the direct venting of waste gases. The purpose of
the resistojet is to provide thrust to the spacecraft while at the same time venting waste gases
that are produced by spacecraft operation. Based on this requirement alone, some degree of
the venting specification was met. During the analysis of the operational parameters, an
effort was made to vent as much waste gas as possible for a specified resistojet impulse.
The minimum diameter allows for venting of more waste gases if the waste gas composition

is not 100% argon.

Swerational Condit

Based on these specifications, several operational conditions were imposed in order
to provide resistojet functionality. The first operational condition began with the assumption
that all gases were in their ideal state and that any nonideal substances were a neglible part of
the compasition. This assumption is necessary in order to use the analytical formulas
developed for gas flow. In trying to insure that all the waste gases were ideal, the resistojet
pressure was maintained at 552 KPa (80 psia) or less. o T~

The second operational condition is that the flow rcmach
resistojet system. The condition of laminar flow is necessary to properly analyze and
control the heat transfer from the heating element to the gases within the resistojet. The
laminar flow condition was enforced by targeting a Reynolds' Number value of 1900 and
using the Reynolds' equation in conjuction with a mass rate equation to determine the
chamber diameter which would satisfy this condition. The equations used in this analysis
can befound in Appendix F and the calculations for the resistojet operation can be found in

ppendix G
/ Two other operational conditions are based on having negligible friction as the waste
gas interacts with the heating chamber surface. Negligible friction is necessary especially in



[

treating the flow in the chamber as Rayleigh flow and the flow in the ndzzle as isentropic
flow. These two conditions are necessary in order to simplify the flow analysis within the
resistojet. Furthermore, the operational conditions based on negligible friction increase the
operational stability of the resistojet.

Determination of Remaining P

Based on the analysis performed for expansion of the waste gases, the resistojet
dimensions for the nozzle throat diameter and the chamber diameter were determined.
Several dimension restrictions were listed in the specifications. The only dimensions
remaining are the diameter of the tube connecting the tank to the entrance of the resistojet
and the exit area of the nozzle. The diameter of the tube from the tank depends directly upon
what NASA chooses, this dimension was unknown at the time of analysis. The assumption
was made that the resistojet inlet diameter does not significantly affect the flow of the waste
gases. For this reason, the inlet tube was chosen to be half of the chamber diamete.

In searching through the available resources on resistojet technology, several
sources were found which were helpful in determining the exit area of the nozzle.

Pugmire's article contains a resistojet analysis which is very similar to the analysis using
waste gas expansion. For this reason, it was decided that the nozzle dimensions provided
by the source would be just as valid for the waste gas resistojet. Otherwise, the
determination of the nozzle exit area would have been performed using an iterative method
and a guess of the final dimension from several candidates.



OPERATIONAL CONTROL

System description.
The operation of the resistojet will be controlled by a MRAC (Modal Reference Adaptive

Control) system. A mathematical model of the resistojet system will be incorporated into an
algorithm that will then determine what changes to make in the resistojet system. The algorithm tells
the controller the amount of change that has occurred in the flow regulator and PCU (Power Control
Unit) for a given signal level. The signal levels are calibrated by test procedures performed preflight.
The algorithm also decides which parameters to change. As a default setting for the algorithm, the
control of the flow regulator will be the first to be executed. This is done because the resistojet will
respond quickly to flow regulation as opposed to temperature regulation. However, if the resistojet
cannot produce the amount of impulse needed for a given temperature and the flow regulator is at a
maximum output, the controller will then increase the temperature until the required impulse is
achieved.

Unlike other types of controllers that require an exact model of a system, the mathematical
model to be used by the MRAC system will estimate values for temperature, pressure, flow rate, and
thrust. These values are used as references for the actual values. The MRAC system is especially
suited for controlling the resistojet system because it does not have to have insight into every
parameter in the system. Since the composition of the waste gases varies over time, it would be
difficult to derive an exact model for the system. A MRAC system uses estimated values to
determine appropriate settings for proper control of the system. The MRAC system essentially
adapts to the changing conditions of the resistojet system (namely the varying waste gas
composition). The adaptive nature of the MRAC system allows it to continuously search for the
optimum settings within an allowed tolerance range by using an orderly trial-and-error process and it
allows for performance superior to that of a fixed system [Chalam, 8]. -

The basic equations that define the system operation are given in equation's la and 1b. These

are called state equations and considered the mathematical model for the resistojet system.
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. % = A% + Bu (1a)
§=Cx (1b)

Equation la is the mathematical model of the resistojet system and contains all the necessary
equations to determine the state of the system, (i.e. waste gas mass rate, pressure, etc). As
mentioned before, these states are estimated because of the variation in composition of the waste
gases. The input to the mathematical model is the pressure and impulse. The model then estimates
the pressure, flow rate, and temperature needed to attain the required impulse. It is assumed that the
initial thrust, or cold thrust, will be significant enough to be included in the system model.

Equation 1b is a matrix that contains the output conditions, which in the case of the resistojet
system is the impulse.

T —

. .
The actual states are determined by transducers placed on the resistojet system. A pressure

—

transducer will be used to measure the pressure of the gas exiting the tank and entering the resistojet.

For measuring the thrﬁé@load cell will be situated immediately behind the resistojet. The

transducer measurements will be processed and arranged into the same state equations which are

written as follows,

% = Ax +Bu (2a)
y = Cx (2b)

Subtracting equations 2a from la and 2b from 1b we obtain,

x-%=A(x-%) (3a)
y-§=Cix-X) (3b)

The difference between the actual and estimated states is then used to adjust the system settings. If
the resistojet system is stable, in that it has reached an expected thrust for example, then the
difference approaches zero. However, if the controller detects a difference between the actual and
estimated values that is beyond tolerance levels, then it will proceed to change the system
parameters, based on the algorithm, to make the difference approach zero. The control of the system

will be done by pressure regulation and temperature control.

11



The tolerance-to be allowed by the controller is assumed to be +2% of the actual thrust. This
means that the controller will maintain the actual thrust to within 2% of the desired thrust for correct
impulse.

The controller will have two modes of operation to fulfill the requirements of the space
station. The first mode of operation will be to provide a desired impulse. The impulse is attained by
having the controller record the thrust, via load cell, in real time and multiplying it by the time over
which it was recorded. This is done continuously and added cumulatively until the required impulse

is reached. Figure 2 shows an example of how the impulse is calculated.

N

Predetermined
thrust level

Thrust

Figure 2. Impulse diagram with the actual thrust recorded
over time. The impulse is calculated by multiplying
the thrust by the time over which it was recorded.

If a large impulse is required, then the controller will operate the resistojet at a predetermined level
of thrust. This thrust level can range from one fourth to one half of the rated maximum thrust.
There are two reasons for these settings, one reason is to conserve power and the other is to
minimize material degradation.

The second mode of operation is considered a "cold" mode. In this mode, the controller will

allow the resistojet to vent the waste gases at a minimum thrust. This is attained by turning the PCU

—

off and opening the pressure regulator to maximum.

12



Parameter Measurement

Pressure. A pressure transducer is placed in the flow path of the waste gases to measure

pressure and is situated near the entrance of the resistojet. The controller continuously monitors the
pressure for variations and adjusts the pressure regulator to maintain the proper pressure for a given
thrust.

Temperature. High temperature Inconel, ceramic fiber insulated, type C thermocouples are
used to measure the temperature along side of the resistojet. This type of thermocouple can
withstand harsh environments, such as space, without sacrificing accuracy. The temperature
measurements are used for determining the actual temperature of the resistojet. Since the
temperature on the outside of the resistojet is not representative of the true temperature,
approximate temperature values are calculated to determine the best estimates.

Thrust. The measurement of the thrust is achieved by the use of a load cell situated
immediately behind the resistojet with a ceramic insulator placed in between for heat protection. The
load cell emits an electrical signal when a force is exerted on it. The controller is calibrated with the
signal across all load ranges during testing. It will have a 0 to 5 Ibs (0 to 22.25 N) load range with
.005% full range repeatability.

Parameter Control

Thrust. The thrust of the resistojet is controlled by regulating the pressure of the waste gases
as they enter the resistojet. As a consequence, the amount of impulse will vary depending on the
amount of thrust, (i.e. a higher thrust would mean a shorter impulse as opposed to a lower thrust for
a longer impulse). However, since there is a limited amount of waste gases in the storage tanks
before they are refilled, a time limit will be set to get the most impulse from the available waste
gases. The amount of thrust would thus depend on the impulse limit imposed on the controller.

PCU. The temperature of the heating element would be regulated by the controller via the
PCU. The controller adjusts the temperature in accordance with impulse within a range of
temperatures up to 1400°C (2552°F). However, three settings will be used for the resistojet system.

The first is a "cold" setting in which the heating element is not heated. This will allow for "cold"

13



thrust and venting of gases with minimal impulse. The second setting will allow the controller to
maintain the temperature between 300°C and 500°C (572°F to 932°F). This temperature range will
keep the gases, primarily HyO and CO; .from condensing in the resistojet chamber and will prevent
hydrocarbon cracking when hydrocarbons are present. The last setting allows a maximum
temperature that would allow a maximum impulse.

Cable protection. All cables that connect the resistojet system to the controller will be
protected by Nextel® ceramic fiber. This fiber is able to withstand extreme temperatures and the
harsh environment of space and thus protecting the cables. A redundant cable network is connected
to the resistojet system in case of cable failure.

Emergency shutoff system. The controller serves three functions for safety of the
crewmembers as well as the space station. The first function of the controller is to continuously
monitor the status of the resistojet system via temperature and pressure. The second function is to
alert the crew and the third is to shut the resistojet system off in the event of an emergency. In the
event of a manifold rupture, for example, the controller would detect a sudden drop in pressure and
signal an alert. At the same time, the controller would automatically shut off the pressure regulator
to prevent further waste gas leakage.

Calibration. The calibration of the controller will be conducted in an Earth-based test area.
The pressure transducer will be subjected to various, known pressures. The MRAC controller will
then be calibrated at each pressure for the entire range of expected pressures. The same procedure
will also apply to the thermocouples. The thermocouples will be subjected to the various
temperatures to be expected. The test will be conducted in a vacuum environment with the ambient
temperature the same as that in space to obtain accurate output signals from the thermocouples. The
load cell will be calibrated using a set of known weights. A known set of weights will be applied to
the load cell and the signal output from the load cell will then be calibrated into the controller.

14



Selection Procedure

The selection process of materials is the next step to linking the conceptual model to design
production and optimization. This section of the report will discuss the selection procedure used.
A systematic procedure of combining environmental conditions and functional requirements with
selection criteria and material properties was used to effectively choose the appropriate materials, .
This selection process is limited to the scope of the defined conceptual system, specifically the
resistojet itself. Through the selection process, the proper materials are matched with the
conceptual model.

As detailed in the previous sections, the design conditions of the system require specific
materials. One of the primary considerations is the functional requirements. The basic functions
required by this system are ventilation and altitude control. These operations are constrained by the
demands for extended operational life and the intrinsic degrading properties of the various
propellants. Additionally, it is a necessity for the system to control any impinging contamination
of the spacecraft environment. With the adoption of these functions, the next step in optimizing the
selection of materials is to detail the environment within the system boundary. The majority of this
step has been done in the previous sections of this report. Externally, the general conditions of
operation are the near zero gravity and pressure of earth's orbit. The drag forces and their variation
are one of the sources of the motivation of the design. Internally, the resistojet will be subjected to
conditions of relatively high temperatures and pressures, along with an interface between the flow
of waste gases propellants. While the variation of operational parameters of temperature and
pressure have been defined in the previous section, the conditions of the propellants are notably
variable. To provide a base for comparison of atmospheres, a table of the various types of furnace
atmospheres are listed in the Appendix H. With these design conditions the selection process can

be continued.

Development of Selection Criteria

To procede with the embodiment of the resistojet, the design parameters were used to
develop the criteria for the selection of materials. By grouping the specifications and required
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material properties into three categories, an exhaustive list of selection factors was created (See
Appendix I). These points were then condensed into important selection factors. The selection of
the different materials were judged based on these 9 points. They are as follows:

1. Creep. The material must withstand the thermal cycling of the temperature variation
over its projected lifetime.

2. Environmental Resistance. The material must maintain an erosion corrosion
resistance of no more than a 10% loss during the projected life. Additionally, the reaction
of the multipropellant gas to the system must not produce effects which sufficiently shorten
the projected life.

3. Electrical Properties. The heating element must sufficiently convert electrical power
resistively into thermal energy.

4. Conduction. Heat transfer from the heating element to the fluid flow must be
effective. The system also must guard against thermal contamination of the space craft.

5. Temperature Capacity. The materials must maintain its structural integrity at the
maximum projected temperature of operation.

6. Quantity. The projected production will be limited to 8 units and 2 spares.

7. Manufacturability. The materials must be able to maintain a pressure tight
configuration for the projected flow of fluid. The materials choosen must be producible in
terms of the resistojet design. Previously manufactured materials are considered premium.

8. Service Life. The materials must have at least an operation life of at least 10,000
hours.

9. Cost. The materials selected will be evaluated to consider the relative costs of the
materials and their manufacture.

Design and Selection.

To begin the design and selection of materials, a list of gencral parts was developed. By
incorporating the environment and the selection criteria for each specific part, the design of the
structural members of the resistojet was possible (See Appendix I.). This section will discuss the
specific design and development of the individual parts.
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Alm;lggﬁgm The materials selected for the heating element will be the most crucial to
the success of the design. The heating element's operation is significant to the continued operation
of the resistojet. First, a material must be capable of converting electrical power resistively into
thermal energy. Additionally, the heating element must withstand high temperature corrosive
environments and thermal cycling. High temperature operation requires that the material selected
maintains its strength as temperature increases.

These types of electrical resistance alloys are known as heating alloys, and they range from
various metallic alloys of nickel or iron to pure metals and nonmetallics. The materials that are
capable of heating to the temperatures required by the design are somewhat limited (See Table 1.).
Several of the materials are limited by the requirement of operation with certain environments. For
the design of the conceptual heating element, it was assumed that the operating environment varies
by composition. The only materials that are capable of operating at the required temperature in air
are platinum, silicon carbide (SiC), and molybdenum disilicide (MoSi2). All have excellent
oxidation resistance in air at elevated temperatures. Platinum, however, is not recommended for
heating various atmospheres, specifically H2. MoSi3 is unique in this group in that it maybe used
with excellent corrosion resistance at elevated temperatures in predominately all atmospheres (See
Table 2.). The resistance to corrosion is the result of a film of silica glass that forms on the surface
of MoSi3 at 980° C [ASM Metals Handbook, p.640-648].

In comparing the high temperature strengths of platinum and MoSi2, the design team
sought to continue to evaluate the selection of a heating alloy. Research conducted by NASA and
various contractors have found that two types of grain-stabilized platinum (yttria [Y203] and
zirconia [ZrO2]) increase their creep resistance and high temperature strength [Whalen, p.540].
The research also states that ammonia causes detrimental effects to the structural integrity of
platinum. MoSi2 shows a stark contrast to platinum's strength. Pure MoSi2 at room temperature
is too brittle for reasonable use. However, by adding a mixture of 10% ceramics, the brittle
behavior is controlled for industrial application. In fact, the nonmetallic has properties described as
"self-healing" due to the plastic formation the thin silica film. This self-healing characteristic has
been credited for the successful cycling of MoSi2 from room temperature to 1650° for 20,000
cycles. Still the tensile strength of MoSi2 plus 10% ceramic additives is half of platinum and this
factor is worse for SiC which is too brittle to be considered in this application [ASM Metals
Handbook, p.640-648]. (The rest of the report will refer to MoSi2 (+ 10% ceramic additives) as
MoSi2).

17



Table 1.
Heating Alloys Applicable to the Resistojet Temperature Specifications

Approximate Melting Point Maximum Furnace
Basic Composition, % Operating Temperature
C F° C F°

Pure Metals

Molybdenum * 2605 4730 1650 3000

Platinum 1770 3216 1500 2750

Tantalum * 2975 5390 2480 4500

Tungsten * 3375 6116 1650 3000
Nonmetallic Materials

Silicon Carbide 2410 4370 1600 2900

Molybdenum Disilicide 2790 3775 1700 to 1900 3100 to 3270

MoSi2 + 10% ceramic 100 3270 1700 3100
add.

Graphite * 3650 to 3695 6610 to 6690 2205 4000

* Temperatures valid for operation in inert or vacuum environments only.
Source: ASM Metals Handbook, 1983.

The design team chose to use MoSi2 in the embodiment of the heater configuration The
judgement was based on the nonmetal's ability to maintain its structural and functional capacity at
high temperatures, specifically in the atmospheric conditions of the possible waste gases. MoSi2
is the only material that is recommended for use for all the projected waste gases aboard the station
at the temperatures specified for the design. The team considered the additional cost of the
processing and fabrication needed by MoSi2 tv be significantly less than the exorbitantly high cost
of platinum ($5,038/in3 or $6,500/1b compared to approximately $25/in3 or $30/1b) [Budinski,
p.597]. MoSi2.additionally maybe applied to structures as a plasma spray.
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Table 2
Maximum service temperatures for MoSi2 heating elements

Temperature
Atmosphere C F*
Air 1700 3100
Nitrogen 1590 2900
Argon, helium 1450 2730
Dry hydrogen 1350 2460
Moist hydrogen 1460 2660
Carbon dioxide 1590 2900
Carbon monoxide 1450 2730
Sulfur dioxide 1590 2900
Partly bumnt 1400 2550
ammonia
Methane 1350 2460

Source: ASM Metals Handbook, 1983.

Heating Element Design, The design of the heating element consists of a double helix coil
as shown in Figure 3. The coil carries the current loop and is resistively heated radially out
towards the surface of the material. This element is functionally available and has been used
successfully in previous designs. The coil apparatus consists of a platinum-rhenium (Pt-10R¢t)
heating element insulated with a magnesia (MgO) ceramic. This wire is then enclosed in a
platinium sheath. The design team seriously considered using a different material for the coil.
However, in the overall consideration of the design, the cost and manufacturing issues of a heating
element made of MoSi2 was judged to be impractical and non-cost effective. The team did opt for
a modification to the coil apparatus. In previous applications, designers had chose to change the
Pt-10Rt sheath to a grain stabilized platinuim alloy as mentioned before [Morren, p.12]. The
design team suggested the sheath consists of MoSi2 deposited by Chemical Vapor Deposistion
(CVD). An analysis of the dimensions and a schematic of the heating apparatus is contained in
Appendix J.
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Figure 3. Heater coil. The coil design consists of a platinum wire with MgO insulation and
a MoSi2 sheath. This design is one that was modified by incorporating the

MoSi2 sheath for corrosion resistance.

Heat Exchanger Design. The design team choose to coupled the heating coil with an heat
exchanger for the development of the thermal transfer process. The justification for this application
is to protect the coil material from short circuiting and insure long life. Additionally, the efficiency
of the heat transfer is not effected in a large amount. For the construction of this part, a MoSi2
machined tube to perform as the heat exchanger. The selection of MoSi2 results in a estimated cost
savings of 98% for the production of the heat exchanger [Budinski, p.597]. The part will also be
able to ;ffecd\}cly resist the corrosive effects of the majority of available waste gases, including
NH3 which severely attacks platinium components. The downside to this selection is as MoSi2
approaches its melting point (1800° C) there is evidence of plastic flow. Based on the maximum
Jevel of temperature that will occur in this system, the design team considered this factor to be
reserved for further development in their recommendations.

Nozzle, The configuration of the nozzle is contained in Figure 4. The nozzle will be made
of MoSi2 with dimensions based on the theorhetical considerations presented with the system
operation. This calculations are based on ideal flow which would produce an expansion nozzle of
a half angle of 25°. The placement of MoSi7 in the nozzle is critical to corrosion resistence. The

inlet diameter will see the greatest amount of mass flow through the system operation. Additional
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concems include the design of the external plume shield against the exiting mass flow and the
protection of the si;ace craft from contamination. These issues will be discussed in the design of
the casing.

d Themmal and Radiation Shielding, Radiation shielding defines the ability of the jet to
maintain its efficiency during high temperature operation. The level of temperature into the
subsquent shielding is on the order of 75% and 30% in previous designs of the resistojet. The
design team considers the thermal protection of the load cell to be critical to its operation. A layer
of ceramic insulation (an inch compacted MgO) was included surrounding the heater coil. This
should improve the efficiency of the heating apparatus as well as save the high cost of platinium.
Between the casing will be additional nickel coated alumina shielding from INCO® Specialty
Powder Products. The high purity nickel coating will insure the structural integrity resistence.
Alumina will also be incorporated into the mounting structure of the jet to assure thermal shielding.

Figure 4. Nozzle configuration. Based on the calculations of the operating conditions, the
dimensions of the nozzle have been produced. The material selected for the
nozzle is MoSi?.
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Casing and Plume Shield, The casing of the resistojet uses Inconel® 600 alloy to provide
the structural protccrtim for the exposure to space. Inconel 600 has excellent properties for
applications in space. The design team also choose to incorporate this alloy for the plume shield
because of its superior corrision resistant properties. The plume configuration is posed at 45%
around the edge of the jet. For the expansion of the expelled gases, this will provide the maximum
amount of protection to the space craft [Morren, p.18]. A schematic of the materials selected for

the resistojet is presented in Figure 3.

inconel 600

Nickelcosted aluminum
Prapellant inlet

J hOOOOOOOOOOSSOOOS -

———
T A

Power leads

Figure 5. Resistojet materials. The schematic shows the materials and their configuration
as preposed by the design team. MoSi7 has been choosen to replace platinum in
numerous sections of previous designs. The design team estimates a cost
savings of 98% over the use of platinium and asignifigant increase in the types of
waste gases that may be vented through the resistojet. '
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DESIGN OF TEST PROCEDURES

The testing of the entire resistojet system consists of a test apparatus set up in a vacuum
environment. The setup consists of a mock-up of the structure station onto which the resistojet
system will be attached.

A load cell is used as the measuring device for the thrust and will be situated immediately
behind the resistojet. The load cell has a Nextel® ceramic insulator to minimize or eliminate the
effects of temperature. The resistojet will be tested for the complete range of operating temperatures
and pressures specified by NASA. However, a safety margin for the resistojet will be used.

Although the maximum temperature that the heating coils will encounter is 1400°C, tests conducted
by the American Society of Metals on molybdenum disilicide concluded that the material can
withstand 20,000 temperature cycles up to 1650°C without serious degradation. In the unlikely
event that the resistojet experiences such a high temperature, there will be no permanent damage to
the resistojet itself. The pressure range that the resistojet will be tested under will be from 0 to 1000
psia. Since the design and operation of the resistojet system does not call for pressures as high as
1000 psia. the resistojet should be able to sustain the pressure for a short amount of time before
permanent damage occurs.

Other necessary testing procedures consist of quantifying the materials system to different
atmospheres. This area of design is the most aggressive of the project. The use of MoSiy,
particularly in the design of the heat exchanger, also needs to be tested. The use of MoSis in the
heating coil is not as crucial to this project. There already exists a wide base of data from previous
experimentation, and the use of the MoSi sheath is not critical to the heating coil performance. The
design team proposes that the heat exchanger be tested by developing a prototype and operating it at
the specified conditions. To perform this test, a single resistojet should be mounted in an
encapsulated ceramic mount. Thermocouples should be strategically attached to measure the actual
temperatures produced by the system, and the resistojet should be tested with the waste gases aboard
the space station. Post-firing analysis of corrosion and the microstructure will allow the prediction of
performance and operating life. These tests are important to insuring the production and cost

ffectiyenegs of the resistojets.
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CONCLUSION

A combination a ventalation and expansion of waste gases was designed for part of the
required alttude control for future spaccraft. This report focused on resolving th: ‘ssues of
resistojet which include: system performance, flow and heater control, materials selection and
design test procedures. The resistojet design was formed from a conceptual model of a shell
wrapped by a resistive coil with gases flowing internally through the tube. Major parameters were
calculated by analyzing each waste gas and show that the specified waste gas will behave ideally at
this pressure at any temperature, but water and carbon dioxide tend not to behave ideally over
different pressures. The design team designated 552 kPa and no temperature input as the "cold
flow" condition and found that any ventilation under all conditions would produce thrust.. The
design of the ventilation function was limited to recommendations. A proven "trial-and-error”
controller was selected. The Model Reference Adaptive Control system was judged to fit the
design since it will easily adapt to changes within the system. While plantinium was selected for
the heating element of the coil, other elements in the system were replaced with MoSi2 + 10%
ceramics for an estimated cost savings of 98% in materials. The materials selected for the resistojet
optimize environmental resistance and cost. Additionally, a variety of testing procedures were

selected.

Recommendations

Several recommendations can be made to further develop the full potential of resistojet
technology. One possible recommendation for future research is the possibility of using other
mixtures of waste gases such as ammonia and hydrogen. This research may encompass further
analysis into material selection.

Since a large part of the numerical analysis was  -atly simplified by using ideal gas
assumptions for the waste gases, further analysis can inc Je calculations of temperature, pressure,

mass flow rate, etc. at non-ideal conditions.

ORIGINAL PAGE IS
OF POOR QUALITY
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The resistojet in the embodiment design is limited to a thrust range no greater than 0.350
Ibs. Further testing can be done to increase the thrust range to a maximum level while still meeting
operational life requirments. Modifications can be made to the resistojet structure to help it
withstand the higher pressures so that it can be implemented to provide greater impulse. The
modifications can include stronger manifold attachments, resistojet chamber stiffening, material
selections, etc.

A more accurate way of acquiring information about the temperature and pressure of the
waste gases within the resistojet during firing can be attained by further research. Thermocouples
and pressure transducers capable of withstanding the harsh environment of the resistojet can be
implemented internally within the resistojet without adversely effecting the flow characteristics.

A key recommendation for further research is the venting of gases without producing
thrust. Two alternatives can be tested, one is the venting of waste gases at a low pressure and
temperature. The second alternative is installing two opposing bleed valves on the flow path to the
resistojet. Opposing the bleed valves can eliminate net thrust and prevent the venting from

imposing a moment on the space station.
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Appendix A

Specification Sheet
NASA Specification
Johnson Space
Center for Resistojet
_ page 1
D
Chg | W Requirements Rsp| Verify
C
1. Geometry
C Jets not to exceed: 2.4" diameter casing measure
C 3.8" dameter nozze exit measure
C 9.4" length of entire assembly measure
2. Forces
C Thrust: 50 - 350 mibs measure
C Littoff acceleration: 3.3 g pre-launch testing
Impulse: goal is 2x106 by/s over ifetime measure
3. Energy
C Power : 500 W max to heating component measure
W 125 W average measure
C Pressurized waste gases: 6 cu. fi. measure
D Multipropellant capability
4. Mateqal
D Manifolds, casing, and nozzle: non-corrosive, pre-launch testing
working temp. range -50 - 1500 °F,
compatible with all waste gases
D Failure criteria: 10% erosion over kfetime performance check
6. Signals
D Control pressure regulation measure pressure
D Temperature sensing measure temp.
D Output of watt usage measure
D Heater control and feedback pre-launch testing
W Flow rate monitoring measure flow rate
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NASA Specification
Johnéce)gt eSrpace or Resistojet
page 2
D
Chg |W Requirements Rsp| Verify
C
7. Safety
D Placed clear of EVA workstations, sensitive areas check station
D Clearance shoulkd be 6" radially around jet design
D Emergency shut-off capability built into system measure
8. Ergonomics pre-launch test
D Repairable on orbit
D Maximum of 2 crewmembers to repair pre-launch test
w Prefer repair by single individual pre-launch test
S. Production
D integrated into structure pre-launch
Cc 8 units required, 2 additional spares pre-launch test
10. Quality contro| count
Cc Lifetime: 18 yrs (10,000 thermal cycles over 18
yrs) statistical analysis
D Testable in vacuum chamber or by other means test in vacuum
11. Assembly
D Assembled and integrated into structure pre- pre-launch fit test
launch pre-launch fit test
D Modular construction test in vibration
12. Operation chamber
D Must meet NASA standards for vibration of station
13. Cost detailed cost
o] Not to exceed: $100,000 to $300,000 per jet estimate
14. Maintenance
D Diagnotic capability built into system test diagnostics
w Should have purging capability to flush
contaminants out of manifokds
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Appendix E
Assumptions

. The waste gases behave ideally within the resistojet during the expansion process.
Any condensed substances have negligible masses when compared to the ideal gases.

. Ratio of specific heat to specific volume is not pressure dependent, it is only a
function of temperature.

. The stagnation pressure and temperature at the entrance to the resistojet are the
pressure and temperature found within the waste gas tank.

. The section from the waste gas tank to the entrance of the resistojet is isothermal.

. Chemical equilibrium is established within the chamber and does not shift within the

nozzle.

. The working fluid is homogeneous and invariant in composition throughout the
chamber and the nozzle.

. The waste gas flow is steady and constant with no flow vibrations or discontinuities
within the resistojet.

. The flow is laminar throughout the expansion process.

. There is no pressure difference which exists between the inlet and outlet of the
chamber during the expansion process.

10. Optimum expansion occurs within the resistojet system. This means the flow

upstream of the nozzle throat is subsonic (M < 1), the flow at the throat is sonic (M =
1), and the flow downstream of the throat is supersonic (M > 1).

11. There are no shocks that occur within the resistojet system.

12. The friction produced between the gas and the chamber is small to negligible.
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13. The flow within the nozzle section of the resistojet is isentropic.
14. The momentum of the exhaust gases leaving the nozzle is largely in the axial
direction, with negligible momentum occuring perpendicular to the central resistojet

axis.

15. Flow is ideally expanded at nozzle exit so that the exit pressure is equal to the
ambient pressure (pe = pa)-

16. The heat is uniformly distributed to the waste gas flow from the heating element.

17.  The flow in the resistojet is choked flow, with a mach number of M= 1 existing at
the nozzle throat.
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Appendix F
Thermodynamic Analysis of Gas Flow

General Isentropic Flow

The following equations were used in analyzing the waste gas flow within the
resistojet. These equations are used in conjunction with the assumptions listed in Appendix

E.
For the isentropic flow found within the resistojet, including the nozzle, the

I _ &T— LH (1)
T, \p,) \V,

where x and y represent different points found within the isentropic flow, T

following relations apply.

represents the temperature, p represents the pressure, V represents the volume, and k
represents the specific heat ratio.
The stagnation temperature or total temperature T is defined as

v2
T,=T+
(2¢,J)

2

where T is the fluid temperature, v is the gas velocity, cp is the specific heat

constant, and J is a conversion constant. .
Similarly, the stagnation temperature Ty is related to the stagnation pressure po

using the relation

(L} k-1
L_(2)|" (¥ 3)
T P v,
By using equation (2) in conjunction with the definition of the mach number (where

a represents the speed of sound)
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v v
M=—= 4
a ~KRT “
a relation between the stagnation temperature and mach number is developed.

T, = T(l+%(k—l)M’) (5)

This equation can be use to determine mach number M in terms of temperature.
The equation then becomes

M= _2_(5_1) (6)

Isen ic Flow i

In analyzing the isentropic flow through a supersonic nozzle, the chamber

temperature is considered to be equal to the stagnation temperature and also equal to the
nozzle inlet temperature T1. The nozzle outlet temperature is denoted as T2. Using this

notation, the nozzle exit velocity is

k-1
|2 gru-(B2)"
e em-(2)" »

where k remains constant throughout the flow process and the gas constant is R.

Since the flow in the resistojet is considered to be choked flow, the maximum flow
in an isentropic expansion nozzle produces critical parameters. One of these critical
parameters is the throat pressure required for maximum flow. The equation relating the
throat pressure (critical pressure) to the inlet pressure is

k
p_[_2 [
n [(km] ®

Likewise, the equation for critical veiocity vt is
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v, = k—2+k_1RT‘ = \JkRT, )

(10)

To determine a velocity of at a point x downstream of t/hc throat, the following ratio
is used

(&-1)
&
k+1 1—{Px (11

Y. _
v, k-1 D

The most critical equations used in the analysis deals with the thrust. Normally,
thrust is a function of pressure and temperature

F=vyn+(p,- py)A, (12)

where temperature directly affects the mass rate 71 and the exit velocity v,.
However, in the case of the resistojet, the ambient pressure p, is equal to zero

because of the space environment. Further analysis of equation (12) leads to the following

2 = K-
T erhe

which reduces down to

k+l
W[ 2 Vid
- F= —_—t

A'p‘\’k—l(kﬂ) 14

because optimum expansion requires that the exit pressure p, be equivalent to the ambient
pressure which is zero. Equation (14) shows that the resistojet thrust is directly dependent
on the chamber pressure.
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Appendix G
verformance Calcylattons
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Appendix F
Corrosive Gi.. s

Typical
Type Composition, vol% Dew Point
Reducing Atmospheres N2 CO CO2 H; CH4 C F*
Exothermic unpurified 1715 J105 |5.0 125 105 +27 | +80
Exothermic purified 783 110 ... 1130 ]0S5 40 40
Endothermic B 45.1 196 104 46 103 +10 +50
Charcoal _ 7 641 1347 ... 12 -29 -20
Dissociated ammonnia 25 S P -51 -60
Carburizing Atmospheres
Endothermic+Hydrocarbon *
Endothermic+Hydrocarbon+ammonia *

* No standard composition
Source: ASM Metals Handbook, 1983.
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Appendix I

Materials Selection

SELECTION CRITERIA DEVELOPMENT
Properties
1. Mechanical 2. Physical 3. Chemical
a. Creep a. Electrical a. Conduction
b. Wear b. Conduction

¢. Melting Point

Available
1. Minimum order requirement
2. Special processing required

Economics
1. Quantity required
2. Antcipated service life
3. Fabricability

PARTS LISTS
1. Nozzle
2. Heating element
3. Heating element insulation
4. Heat exchanger
5. Heat shields
6. Mounting devices
7. Mounting insulation
8. Casing
9. Power leads

10. Gas Lines
Other: Coatings, gaskets, mounting, interfaces
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Inconel 600

Propellant inlet

-

/

Power leads

iMoly!n.ll:mlm disilicide

Heat Exchanger

Figure 1. Heater configuration. The system consist of functional elements of a coupled

resistive heater coil and heat exchanger. This design is one that was modified
by incorporating the MoSi? sheath for corrosion resistance.
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Appendix J

Heating Apparatus

This appendix presents the analysis of the heating coil. To insure that the heating element
does not short the platinium-rehdinium coil be protected by an insulating material. The
platinium-rehdinium wire will be coated with a layer of MgO ceramic. Further analysis is
necessary to specify the subsquent length of the coil and the diameter of the MoSi) wire. From
the previous data based on resistojets, the analysis is avaliable. The minimum diameter of the
wire is related to the current I through the wire and the resisitivity of the material:

412 py,
(dwire)min = (———) 17
n2 Qe

Where P, is the resistivity of the heating alloy. From this prespective, the design of the heater is
reduce to the optimization of the diameter and the heat transfer. The heat transfer is is
quantatified by the exchange of thermal energy between the propellant heat exchanger and the
heater current/voltage options. The amount of the power dissapated per unit length (P/1) is:

412 dpw/dT
(PN = ( ) Tw
Tt dw

The heater length L decreases as the quantity of the heater current divided by the heater diameter
(/dw) decreases for a fixed power. If the heater wire temperature (Ty,) increase can be assumed
to be linear, then the heater length is approxiamately:

L=(TtP)/2(dW/D( )Tw
(P¥/T) (Tmax + Tin)

The resulting dimensions is contained in the following table.



Table 1.
Heater Coil Calculations Data

Known conditions Value
Power 500 W
Current 35 Amps
Maximum Heater Temperature 1670° K
Terminal Temperature 400" K
Calculations Value
Diameter 0.060 in
Heater Length (Coil) 78.7in

Source: Punnire, p.3-5.
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