
If "- " _TT'_-'.':_--? •

,,'#-/7

NASa. Technic_aI _M-emo-_dum.!O_6484--_ _Jl __ - _'_ _ "_'--<-¢/S _

.................... .-: .... lqP

-_ ....."--'Bounds.............. and Slmulatlon_...............".......ResuIts .....of 32_-ary.......and

64-ary QuadratureAmplitude Modulation
for Broadband-ISDN via Satellite

Muli Kifle ....

National Aeronauticsand Space Administration

Lewis Research Center

Cleveland, Ohio

and

Mark Vanderaar

Sverdrup Technology, Inc.
Lewis Research Center Group

Brook Park, Ohio

February 1994

0d/ A

_- = .... -.

(NASA-TM-I0648_} BOUNDS AND

SIMULATION RESULTS OF 32-ARY AND

64-ARY QUADRATURE AMPLITUDE

MODULATION FOR BROADBAND-ISDN VIA

SATELLITE (NASA) 1_ p

Uncl as
.-- =

G3/17 0207565

https://ntrs.nasa.gov/search.jsp?R=19940020613 2020-06-16T16:28:56+00:00Z





Bounds and Simulation Results of 32-ary and 64-ary Quadrature

Amplitude Modulation for Broadband-ISDN via Satellite

Muli Kite
NASA Lewis Research Center

21000 Brookpark Rd.
Cleveland, Ohio 44135

Mark Vanderaar*

Sverdrup Technology, Inc.
2001 Aerospace Parkway
Brook Park, Ohio 44142

Abstract - Union bounds and Monte Carlo simulation Bit-Error-

Rate (BER) performance results are presented for various 32-ary
and 64-ary Quadrature Amplitude Modulation (QAM) schemes.
Filtered and unfiltered modulation formats are compared for the
best packing arrangement in peak power limited systems. It is
verified that circular constellations which populate as many
symbols as possible at the peak magnitude offer the best
performance. For example a 32-ary QAM scheme based on
concentric circles offers about 1.05 dB better peak power
improvement at a BER of 10 -6 over the scheme optimized for
average power using triangular symbol packing. This peak
power improvement increases to 1.25 dB for comparable 64-ary
QAM schemes.

This work is serves as a precursor to determine the feasibility of
a combined modem/codec that can accommodate Broadband

Integrated Services Digital Network (B-ISDN) at a rate of
155.52 Mbps through typical transponder bandwidths of 36 MHz
and 54 MHz.

I. INTRODUCTION

In order for B-ISDN to be successfully used across

satellite links, techniques must be developed to
accommodate the data rates using existing satellite

transponders. Present and planned transponders and
ground terminals commonly have either 36, 54, or 72
MHz bandwidths [1]. The state-of-the-art in bandwidth

and power efficient modems for B-ISDN achieves the
155.52 Mbps through a 72 MHz INTELSAT transponder
[2]. Accommodating B-ISDN through the narrower 36 and
54 MHz bandwidths requires a significant increase in
bandwidth efficiency without incurring too severe of a

power penalty. The theoretically minimum power required
for error-free transmission of 155.52 Mbps through linear
54 and 36 MHz transponders is approximately 3.44 dB

Eb/No and 6.43 dB Eb/No, respectively. In practice, these
limits are not achievable with reasonable hardware

complexity. In terms of bandwidth, assuming 40% raised

cosine pulse-shaping, 32-ary QAM could transmit 155.52
Mbps in 43.55 MHz. Thus, if overhead for error-corrective
coding is accounted for, 32-ary QAM is suitable for
transmitting 155.52 Mbps in 54 MHz transponders. Under
the same assumptions, 64-ary QAM appears suitable for
36 MHz transponders. The goal is to obtain practical
schemes that have power performance on the same order
as that of QPSK. It is expected that the increase in
bandwidth efficiency will result in a power penalty
that can be
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absorbed through the use of advanced High Power
Amplifiers (HPAs) such as hybrid solid state / TWT
amplifiers or increased ground terminal antenna sizes.

Section II of this paper discusses some system issues
concerning nonlinear signal amplification. Section III
discusses the effect of shaping filters in the nonlinear
environment. Section IV develops the modulation
schemes used. Section V develops and evaluates
analytical bounds on the performance of the modulation
schemes. Time domain simulation results are presented
and compared to the bounds in Section VI. Finally,
conclusions are drawn from the results that point towards
future work.

II. HIGH POWER AMPLIFIER CHARACTERISTICS

The performance of High Power Amplifiers (HPAs) for
satellite communications is bounded by both average

prime (satellite DC) power and peak transmitted (RF)
power. One overall system design goal for satellite I-IPAs
is to obtain the highest data throughput for the minimum
satellite prime power. For this reason, HPAs are designed
for the maximum efficiency (the ratio of RF power out to
DC power in) and linearity (AM to AM and AM to PM
distortion measurements). However, as RF devices, HPAs
will always have residual nonlinear characteristics,
particularly near saturation. In the case of single channel
per HPA systems, the nonlinearities can be significantly
reduced through the use of predistortion and equalization
techniques. References [3] - [7] address the details of
predistortion and equalization in QAM systems.

For this study, it will be assumed that the overall transmit
chain including the HPA can be modelled by an ideal
clipping limiter. The amplitude response of an ideal
clipping limiter can be described as

GPin, Pin < Pin satPout = Pcut sat, Pin -> Pin sat

where G is the power gain of the transmitter Pin in the

input power, Pout is the output power, Pin sat is the input

power that saturates the amplitude response of the
transmitter, and Pout sat is the output power at input

saturation and beyond.

Figure 1 illustrates that the gain is linear up to the
saturated value of the HPA. A similar assumption can be



madefor describing the amplitude to phase response as
constant throughout the operating range, contributing no

phase distortion to the system. The limiter response
implies that peak power is an important design criteria for
a modulation scheme. Further,_ due to the "linearized"
nature of the overall channel, non-constant envelope
schemes such as QAM are good choice for overall
bandwidth and power efficiency. It should be noted that a

real system, even after linearization and predistordon,
will not have the theoretical ideal limited response due to

hardware imperfections. This "implementation loss" is
expected to be of greater concern for the higher order
modulations studied here.

Pout

Pout sat-

Pin sat
Pin

FIGURE 1 : IDEAL CLIPPING LIMITER RESPONSE

HI. BASEBAND FILTERING CONSIDERATIONS

In a practical communications system, the baseband
modulated data is typically filtered at both the modulator
and demodulator to meet allocated bandwidth

requirements. These pulse shaping filters are designed to
minimize bandwidth without introducing intersymbol
interference (ISI). A common shaping filter is the square
root raised cosine (SRRC) pulse shape. The frequency
response of the SRRC is defined by

xTs ,
• x(1-B)+4B 0_< _[< 1-B

n(1-13)0,+413L_k 1+13_ fhfh-

where Ts is the symbol period in seconds, B is the rolloff

rate, and fh is the half-amplitude frequency which equals

1/2T s. The impulse response of the SRRC is

where

Fro (1-[3)t] Ix (1+13)t]
¢c = sin and 8 = _s

[ Ts J Ts

Further, h(O) = 1 and

)
413=i,,, -o3
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As mentioned, using the SRRC can significantly reduce
the amount of bandwidth required to transmit the
modulated signals. However, the SRRC filtered
waveform is more sensitive than an unfiltered waveform

to symbol timing offset and jitter.

Another important repercussion of filtering is that the

peak power level is no longer associated with a
constellation point but rather a signal trajectory
associated with the filtered waveform. Figure 2 shows the
effect of filtering a QPSK signal constellation with 40%
SRRC pulse shaping. Without filtering, the peak signal
amplitude was the square root of two. The figure shows
that a number of filtered trajectories exceed that level.

-I

!

-1 0 1
In-Phase

FIGURE 2: FILTERED QPSK TRAJECTORIES

Since the largest amplitude trajectory must be
accommodated in the linear portion of the clipping
channel, it defines the operating region of the
modulation. It is therefore useful to determine the

maximum of this trajectory in comparison to the peak
constellation point in order to obtain a ratio that
corresponds to a link margin loss due to filtering. The
peak excursions of a signalling constellation occurs when
a certain series of symbol pulse shapes add. This peak
excursion value is found by adding samples of the SRRC

2



that are offset by one symbol time. This can be

represented by

a

h_j = _ h(j + is), j = 1,2,3 ..... s
i=l

A_k = max (h_m)

where s is the number of samples per Symbol and a is the

number of symbols considered, or aperture. The power of

Apeak needs to be compared to the peak power in the
unfiltered two-dimensional modulation. If the unfiltered

modulation waveform's power is normalized to the square
root of 2, the peak filtered to unfiltered power ratio, Pr, is

simply

Pr--4A2k+ A_k =Attar
q_

Table 1 lists Pr for a set of root raised cosine filtered

signals with various rolloff factors. The SRRC was
evaluated with an aperture that spanned 20 symbols. The
table indicates that as the rolloff factors decrease, the

peak signal power increases. For a rolloff factor of 0.1,
the increase in peak power is 4.58 dB. For a more
practical rolloff factor of 0.4 the increase in peak power
is 3.62 dB. However, smaller rolloff factors result in less

spectral occupancy. This decreased spectral occupancy in
turn results in a reduction of the noise bandwidth that is
manifested in an increase in Es/N o. The table also lists

the Pn, the increase in Es/No, as compared to a baseline

"unfiltered" system that is defined to have a noise
bandwidth that spans the main lobe of the signalling
constellation. The last column in the table lists Pnet, the

net increase in required peak power, calculated as the
increase in peak power minus the reduction in noise
power. As the table shows, for all rolloff factors this is

approximately 2 dB.

TABLE 1

EFFECT OF SRCC FILTER/NG ON PEAK POWER

B Pr Pr (dB) Pn (dB) Pnet (dB)

0.1 2.87 4.58 2.60 1.98

0.2 2.63 4.20 2.22 1.99

0.3 2.45 3.88 1.87 2.01

0.4 2.30 3.62 1.55 2.07

0.5 2.16 3.34 1.25 2.09

0.6 2.02 3.06 0.97 2.09

0.7 1.90 2.79 0.71 2.08

0.8 1.83 2.63 0.46 2.17

0.9 1.79 2.53 0.22 2.31

1.0 1.69 2.27 0.00 2.27

There may be some techniques to limit the significant

degradation caused by the peak trajectory power. For

example, in an error corrective coded system, the symbol

sequences may be constrained so as to prevent the
highest excursions from occuring. Also, the effect caused
by clipping the highest excursion on both the BER and
bandwidth efficiency should be examined. In either case,

the degradation may drop below 2 dB.

IV.MODULATION FORMATS AND BIT-TO-SYMBOL

MAPPINGS

Two types of 64-ary and 32-ary constellations are
considered for evaluation. The first type has symbols

arranged on concentric circles, the second has symbols
arranged on a triangular grid, and the third type has
symbols arranged on a rectangular grid [9]. In two-
dimensions the arrangement on the triangular grid (called

hexagonal packing) results in the best symbol error rate
for average power limited systems. However, this is not
necessarily the case in peak power limited systems. The
32-ary circular QAM design consists of three circles with
four, eleven, and seventeen signals corresponding to the
center circle, middle circle, and outside circle,

respectively as shown in Figure 3. Similarly, for the
64-ary QAM signal sets , the circular design consists of
four circles with six, twelve, nineteen, and twenty seven

signals corresponding to the inner circle, second larger
circle, third larger circle , and outside circle,

respectively as shown Figure 4. The circular designs were
chosen to approximate a uniform signal distribution as in
[9]. A small improvement in performance may be gained
by modifying the radii and rotations of the concentric
circles. Further, Figures 5 - 8 show the mapping of the

rectangular and triangular configurations of both 32-ary
QAM and 64-ary QAM signal constellations.

Unfortunately, there is no known simple technique for
optimally mapping constellation symbols to information
bits other than in the case of a "square" constellation. In

general, there are M! possible mappings. When M is
large, it becomes computationally unreasonable to search
for the best mapping. For instance: when M=32, there
will be 32!=2.6313E+35 possible constellation mappings.

A technique to heuristically find good signal mappings for
rectangular, circular, and triangular constellations was
used for this study. The performance of each mapping is
evaluated by comparing the BER curves to bounds
defined by the analytical expression of the symbol error
probability as discussed in Section V. The technique is
most easily described with the 64-ary rectangular QAM
signal constellation. First, a 16-ary gray-coded
rectangular QAM [7] is mapped on the upper right
quadrant of the IQ with only one bit of a symbol differing
from the corresponding bit of any nearest neighbors.
A mirror image of the upper right quadrant across the

Q-axis is taken to map another 16-ary gray-coded
rectangular QAM on the upper left quadrant of the IQ
plot. Similarly, a mirror image of both upper quadrants of
the IQ plot across the I-axis is again taken to map on both
bottom quadrants.
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By adding two extra bits, with four possible combinations
and one of those four assigned per quadrant, on left side
of each symbol , the optimum rectangular signal
constellation for a 64-ary QAM scheme is then

successfully constructed. Even though similar techniques
were applied in mapping the circular and triangular signal
constellations, the constellations may not be optimum
due to the nature of non-uniform distances between all

nearest neighbors of a signal set. The mappings of all the
constellations are shown in Tables 2 and 3.

17 2_ _9 _/1_3_

O O • •
57 58 62 60

O
50 _5.

• • • O

O O

FIGURE 6: 64-ary TRIANGULAR QAM

The relative performance of this mapping technique is
measured by comparing the closeness of the BER curves
of any signal constellation to the "lower" bound or
between the "lower" and random bounds that are

developed in Section V. Figures 9 - 14 show simulation
results obtained in all signal constellations. The results
of the rectangular constellation for both 32-ary QAM and
64-ary QAM schemes verified the success of the mapping
technique since the BER curves are near the bounds of
the BER curve defined by the analytical expressions.
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FIGURE 8: 64-ary RECTANGULAR QAM

V. ANALYTICAL BOUNDS ON BIT-ERROR-RATE

PERFORMANCE

The bit error probability of any M-ary modulation scheme
in Additive White Gaussian Noise (AWGN) is dependent
on both the Euclidean distance properties of the
constellation and the Hamming distance of the bit to
symbol mappings. Due to the complexity of the decision

regions in a general M-ary QAM format, an exact
analytical expression for the bit error rate is not easily
evaluated. However, using a slight modification to the

expression in [9], the upper bound on the symbol error

probability that is asymptotically tight at high signal to
noise ratios is

M-, M exp(_lSi_S312/2 2)
ps<_ 1 E E Isi_sj[, (y

i=l j = i + 1

where the standard deviation is defined as

l2Es/No

and S i is the complex signal level of the i'th'of M

symbols in the constellation. It should be noted that
Es/No can be evaluated based on peak or average signal
energies. In this study, Es is defined as the peak energy of

the modulation. As discussed in Section II adjustments
can be made to compare peak signal energy in unfiltered
or baseband filtered systems.

From the expression of the symbol error probability,
bounds on the bit error probability can be determined. An

upper bound is determined if each symbol error is
assumed to result in the maximum number of bit errors.

For an M-ary modulation format this can be written as

Pb upper =Ps

TABLE 2

SYMBOL MAPPINGS FOR 32-ary QAM SCHEME

SYMBOL BITS CIRCULAR RECTANGULAR TRIANGULAR

I q I Q 1 Q

0 00000 2.399 1.195 5.0 3.0 4.0 3.464

1 00001 2.669 0.247 5.0 1.0 2.0 3.464

2 00010 1.806 1.981 3.0 3.0 5.0 1.732

3 0(3011 0.93 1.447 3.0 l.O 3.0 1.732

4 OOlO0 0.00 2.68 1.0 5.0 0.0 3.464

5 00101 1.565 0.715 3.0 5.0 l.O -1.732

6 00110 0.968 2.499 I.O 3.0 L.O 5.196

7 00111 0.0(2 1.72 1.0 1.0 1.0 1.732

8 01000 Z139 -1.615 5.0 -3.0 5.0 -1.732

9 01001 2.578 -0.733 5.0 -I.0 6.0 0.00

10 01010 1.411 -2.279 3.0 -3.0 4.0 -3.464

11 01011 1.702 -0.245 3.0 -I.O 4.0 0.00

12 01 IO0 0.492 -2.634 1.0 -5.0 1.0 -5.196

13 01101 1.30 -1.126 3.0 -5.0 3.0 -1.732
14 Ol I I0 0.50 -0.50 1.0 -3.0 2.0 -3.464

15 01111 0.50 0.50 1.0 -1.0 2.0 0.120

16 10000 -2.669 0.247 -5.0 3.0 -5.0 1.732

17 10001 -2.399 1.195 -5.0 l.O -4.0 3.464

18 10010 -2.578 -0.733 -3.0 3.0 -6.0 0.00

19 I0011 -1702 .0.245 -3.0 1.0 -4.0 0.00
20 10100 -0.968 2.499 -1.0 5.0 -I.0 5.196

21 10101 -1.806 1.981 -3.0 5.0 -2.0 3.464

22 10110 -1.565 0.715 -1.0 3.0 -3.0 1.732

23 I0111 -0.50 0.50 -I.0 1.0 -2.0 0.00

24 110(30 -1.411 -2.279 -5.0 -3.0 -4.0 -3.464

25 11001 -2.139 -1.615 -5.0 -1.0 -5.0 -1.732

26 11010 -0.485 -1.65 -3.0 -3.0 -2.0 -3.464

27 11011 -1.30 -1.126 -3.0 -I.0 -3.0 -t.732

28 11100 0.485 -I.65 -1.0 -5.0 0.0 -3.464

29 I1101 -0.492 -2.634 -3.0 -5.0 -I.0 -5.196

30 I 1110 -0.93 1.447 -1.0 -3.0 - 1.0 1.732

31 Illll -0.50 -0.50 -1.0 -1.0 -I.0 -1.732
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TABLE 3

SYMBOL MAPPINGS FOR 64-ary QAM SCHEME

SYMBOL BITS CIRCULAR RECTANGULAR TRIANGULAR

i I Q I Q0 000000 7.07:o 1.0i0.0
1 000001 3.441 2.562 7,0 5.0 8.0 0.0

2 0013010 1.925 3.834 5.0 7.0 4.0 8,0

3 000011 1.867 2.399 5.0 5.0 5.0 6.0

4 000100 0.00 4.29 i.0 7.0 0.0 8_0

5 O00101 0.987 2.875 1.0 5.0 1.0 6.0

6 0001 I0 0.989 4.174 3.0 7.0 2.0 8.0

7 O00111 0,965 1.671 3.0 5.0 3.0 6.0

8 001000 4.225 0.745 7,0 1.0 4.0 0.0

9 0131001 3.939 1.699 7.0 3.0 7.0 2.0

I0 001010 2.947 0.746 5.0 1,0 5.0 2.0

I1 001011 2.545 1.663 5.0 3.0 6.0 4.0

12 00i I00 0.866 0.50 1.0 1.0 1.0 2.0

13 OOllOl 0.00 1.93 1.0 3.0 2.0 4.0

t4 001110 1.93 0.00 3.0 1.0 3.0 2.0

15 00111 t 1.671 0.965 3.0 3.0 4.0 4.0

16 010000 -3.441 2.562 -7.0 7.0 -I.0 I0,0

17 OlO001 -3.939 1.699 -7.0 5.0 -7.0 2.0

18 010010 -2.758 3.286 -5.0 7.0 -6.0 0.0

19 010011 -1.867 2.399 -5.0 5.0 -5.0 6.0

20 OlOlO0 .0.989 4.174 -1.0 7.0 -2.0 8.0

21 010101 0.00 3.04 -I.0 5.0 -I.0 6.0

22 010110 -1.925 3.834 -3.0 7.0 -4.0 8.0

23 Ol Ol i I .0.987 2.875 -3.0 5.0 -3.0 6.0

24 OlI000 -4.225 0.745 -7.0 1.0 -2.0 0.0

25 O11001 -2.545 1.663 -7.0 3.0 -6.0 4.0

26 O11010 -2.947 0.746 -5.0 1.0 -5.0 2.0

27 011011 -1.671 0.965 -5.0 3.0 ..4.0 4.0

28 011100 .0.866 0.50 -1.0 1.0 -I.0 2.0
29 Ol I I01 0.00 1.00 -1.0 3.0 0.0 4.0

30 011110 -1.93 0.00 -3.0 1.0 -3.0 2.0

31 011111 .0.965 1.671 -3.0 3.0 -2.0 4.0

32 I00000 3.12 -2.944 7.0 -7.0 1.0 -I0.0

33 10_01 3.715 -2.145 7.0 -5.0 7.0 -2.0

34 100010 2.357 -3.584 _.0 -7.0 6.0 0.0

35 100011 2.237 -2.059 5.0 -5.0 5.0 -6.0

36 100100 0.498 -4.261 1.0 -7.0 2.0 -8.0

37 I00101 0.50 -2.999 1.0 -5.0 1.0 .6.0

38 I001lO 1.467 -4.031 3.0 -7.0 4,0 -8.0

39 100111 1.447 -2.674 3.0 -5-0 3.0 .6.0

40 IOIOO0 4.283 -0.249 7.0 -1.0 2.0 0.0
41 10100t 4.11 -I.23 7.0 -3.0 6.0 -4.0

42 I01010 3.03 -0.251 5.0 -1.0 5.0 -2.0

43 101011 2,784 -1.221 5.0 -3.0 4.0 -4.0

44 lOll(X) 0.866 -0.50 1.0 -1.0 1.0 -2.0

45 101101 0.00 -1.93 1.0 -3.0 0.0 -4.0

46 101110 1.671 -0.965 3.0 -1.0 3.0 -2.0

47 101111 0.965 - 1.671 3.0 -3.0 2.0 -4.0

48 110000 -3.12 -2.944 -7.0 -7.0 -1.0 -!0.0

49 110001 -3.715 -2.145 -7.0 -5.0 -8.0 0.0

50 110010 -2.357 -3.584 -5.0 -7.0 -4.0 -8.0

51 110011 -2.237 -2.059 -5.0 -5.0 -5.0 -6.0

52 110100 -0.498 -4.261 -I.0 -7.0 0.0 -8.0

53 110101 -0.5 -2.999 -I.0 -5.0 -I.0 -6.0

54 110110 -1.467 -4.031 -3.0 -7.0 -2.0 -8.0

55 110111 -1.447 -2.674 -3.0 -5.0 -3.0 -6.0

56 I 1IO(X) -4.283 -0.249 -7.0 -1.0 -4.0 0.0

57 111001 -4.11 -1,23 -7.0 -3.0 -7.0 -2.0

58 111010 -3.03 .0.251 -5.0 -1.0 -5.0 -2.0

59 I 11011 -2.784 -1.221 -5.0 -3.0 -6.0 -4.0

60 111100 .0.866 -0.50 '1.0 -1.0 -1.0 -2.0

61 111101 0.00 -1.00 -1.0 -3.0 -2.0 -4.0

62 111110 -1.671 .0.965 -3.0 -1.0 -3.0 -2.0

63 111111 .0.965 -1.67! -3.0 -3.0 -4.0 -4.0

For a random mapping of bits to symbols the probability
of bit error is, as m grows large is

2 m- 1

Pb rmcbm = Ps_-_ 1

where m is the number of bits per symbol or

m = log2M

In the case where a symbol error results in only one bit
error the conversion is

6

_p I
Pb lower- s_-

These results are plotted in Figures 9 - 14 for both 32-ary
and 64-ary constellations. The solid lines represent the
bounds and the marked lines represent the results of a

time domain simulation presented in the next section. It
should be noted that Pb lower is not an actual lower bound

since it is based on an upper bound the symbol error
probability. It is, however, a good indication of the
quality of the bit to symbol mappings. In the case of 64-
ary rectangular QAM where the bit to symbol mapping is
known to be optimum, the time domain simulation
discussed in the next section and the bound agree very
well. A modification to the expression for the symbol

error probability results in an expression for the bit error
probability that takes into account the bit-to-symbol

mappings. If nij is defined as the number of bits that are

different in Si and Sj the upper bound on bit error
probability can be written as

Pb <
_f.Z_ M - 1 M exp (_Isi _sjl2:2o2)

2 V2XI Z _ niJ lsi-sjl/o
Mlog2M i=l j=i+l

The results of this expression are not plotted to maintain
clarity in the figures.

VI. BIT-ERROR-RATE SIMULATION RESULTS

The BER performance in the AWGN channel is also
evaluated by a time domain computer simulation. These
simulations are performed to obtain exact measurements
of BER that are especially useful at low signal-to-noise
ratios where the performance of an error-corrective coded
system is very sensitive to "channel" BER. Even though
the complete BER curves for the simulation results were
presented in this paper, the BER was only simulated at a
few Eb/No values for both 32-ary QAM and 64-ary QAM

signal constellations due to the relatively lengthy Monte
Carlo BER simulation times.

The simulation models for the 32-ary QAM and the 64-

ary QAM modems were constructed using the Signal

Processing Worksystem TM (SPW) [10]. The simulation
models have three main blocks: a modulator; a channel;

and a demodulator. Figure 15 is the Euclid Demodulator
that is used for all modulations. Figures 16 and 17 show

the block diagram for the 32-ary and 64-ary schemes,

respectively.
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A modulo M impulse train unit used, as a clock unit, to

drive m number of pseudo-random number generators

producing binary signal sequences. The m outputs of the

pseudo-random generators were multiplied by a factor of

two and summed together to form a symbol used to

determine the i and Q components of the incoming signal

from look-up tables. The look-up tables consistof the in-

phase (I) and the quadrature (Q) components

corresponding to the real part and imaginary part of all

members of a signal set (of either 32-ary QAM or 64-ary

QAM), respectively as shown in Table 2 and 3. An

AWGN source of zero mean and power spectral density

N/2 is used to add channel noise to the system in order to

vary the SNR. The generated sequence of AWGN

generator is added to the main signal. At the

demodulator, the transmitted symbol is determined by

calculating the Euclidian distances between the received

signal and all members of the signal set and by selecting

the one has a minimum Euclidian distance. The resulting

symbol at the demodulator then passes through a symbol-

to-bit converter unit. The BER of the system is then

calculated by comparing each bit of the resulting symbol

to corresponding bit of the original symbol.

TABLE 4

Peak and Average Eb/No at Pb=I.0E-6

Signal Constellation Unfiltered Filtered Unfiltered
PeakEb/No PeakEb/No Avg. Eb/No

32-ary (4, 1I, 17) 18.30 dB 20.37 dB 16.63 dB
Circular QAM

32-ary Rectangular 18.80 dB 20.87 dB 16.50 dB

QAM
32-ary Triangular 19.25 dB 21.32 dB 16.42 dB

QAM

64-ary (6, 12, 19,27) 21.10 dB 23.17 dB 18.98 dB

Circular QAM
64-ary Rectangular 22.45 dB 24.52 dB i 8.77 dB

QAM
64-ary Triangular 22.35 dB 24.42 dB 18.69 dB

QAM

The performance of both 32-ary QAM and 64-ary QAM

signal constellations has been evaluated by the analytical

expression of the symbol error probability as discussed in

Section V. The BER plots of the simulation results of

both signal constellations are shown in Figures 9 - 14.

For 32-ary QAM signal constellations, the (4, 11, 17)

circular is superior by about 0.95 dB to the triangular

constellation and by about 0.50 dB to the rectangular

constellations on the basis of Unfiltered Peak SNR. For

64-ary QAM signal constellations, the (6, 12, 19, 27)

circular constellation yields the best unfiltered peak SNR

performance but the triangular and rectangular

constellations are only inferior by 1.25 dB and 1.35 dB,

8
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respectively. The simulation results of both signal
constellations are summarized in Table 4 for peak and
average Eb/N o at BER of 1.0E-6. The circular

constellations thus provide the best peak SNR

performance over both triangular and rectangular signal
constellations as indicated in Table 4.

VII. CONCLUSIONS

The BER performance of both 32-ary QAM and 64-ary
QAM signal constellations over the AWGN channel has
been presented. As summarized in Table 4, the circular
constellations provide the best peak SNR performance
over both triangular and rectangular signal constellations
since the circular constellations populate as many
symbols as possible at the peak magnitude. The circular
QAM modulation schemes are thus regarded as the best
techniques for bandwidth efficiency, and the increased
power requirements to implement the schemes may be
absorbed through the use of advanced High Power
Amplifiers (HPA) such as Microwave Power Modules
(MPM). It is also shown that the effect of shaping the
baseband data results in about a 2 dB loss in signal power

due to backing off the HPA to account for filtered signal
excursions.

Topics for future study include the significant benefit of
combined modulation and coding techniques that can

further ease the power requirements over uncoded
schemes. Further, coding may be a good technique to
control the peak filtered power excursions. Also, the

results presented in this paper provide good basics for a
continuation effort in the development of a combined
modem and codec hardware that can accommodate B-

ISDN at rate of 155.52 Mbps through typical transponder
bandwidths of 36 MHz and 54 MHz.

17] S.W. Chueng, "Influenceof Signal Constellation on the
Performance of 16-ary DEQAM Transmission Through a
Regenerative Satellite Link," Int. Jou. of Satellite.
Commun., vol. 8, pp. 65-77, 1990.

[8] E. Bilgieri, et al, "Analysis and Compensation of
Nonlinearities in Digital Transmission Systems," IEEE
Jou. Se/. Commun., vol. 6, no. 1, pp. 42-51, Jan. 1989.

[9] C.M. _omas, et al, "Digital Amplitude-Phase Keying
with M-ary Alphabets," IEEE Trans. Commun., vol.
COM-22, pp. 168-180, Feb., 1974.

[10] SPW TM - The DSP Framework TM, User's Guide and
Tutorial, Comdisco Systems, Inc, 1992.

[1]

[2]

[3]

[4]

[S]

[6]

VIII. REFERENCES

D.H. Martin, "Communication Satellites 1956-1992,"
Published by The Aerospace Corporation, Dec. 1991.

F. Hemmati, S. Miller, "A B-ISDN Compatible
Modem/Codec," Proceedings of the NASA Space
Communications Technology Conference, NASA CP-
3132, pp. 247-253, Nov., 1991.

J. Tague, L. Shimoda, "High Precision Waveform
Precompensation for Optimal Digital Signaling," Final
Report to NASA LeRC, June 1992.

G. Kararn, H. Sad, "A Data Predistortion Technique with
Memory for QAM Radio Systems," IEEE Trans.
Commun., vol. 39, No. 2, pp. 366-344, Feb., 1991.

G. Feng, et al, "A Modified Adaptive Compensation
Scheme for Nonlinear Bandlimited Satellite Channels,"
Globecom '91, pp. 1551-1555, Dec. 1991.

K. Konstantinides, K. Yao, "Modelling and
Computationally Efficient Time Domain Linear
Equalisation of Nonlinear Bandlimited QPSK Satellite
Channel," lEE Proc., vol. 137, pt. I, no. 6, pp. 438-442,
Dec. 1990.

12





Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instrudions, Searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1, AGENCY USE ONLY (Leave blank) ! 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1994 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Bounds and Simulation Results of 32-ary and 64-ary Quadrature Amplitude

Modulation for Broadband-ISDN via Satellite

6. AUTHOR(S)

Muli Kite and Mark Vanderaar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

g'."SPONSORING/I_'0NITORING AGENCY NAME(S) AND ADDRESStES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-235--01--04

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8470

.... = ,

110. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-106484

11. SUPPLEMENTARY NOTES
Muli Kite, NASA Lewis Research Centerand Mark Vanderaar, Sverdrup Technology, Inc., Lewis Research Center Group, Brook Park, Ohio
44142 (work funded by NASA ContractNAS3-25266), presently at NYMA, Inc., Engineering Services Division, 2001 Aerospace Parkway,

Brook Park, Ohio 44142. Responsibleperson,Muli Kite, organizationcode 5650, (216) 433-6521.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 17

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Union bounds and Monte Carlo simulation Bit-Error-Rate (BER) performance results are presented for various 32-ary

and 64-ary Quadrature Amplitude Modulation (QAM) schemes. Filtered and unfiltered modulation formats are com-

pared for the best packing arrangement in peak power limited systems. It is verified that circular constellations which

populate as many symbols as possible at the peak magnitude offer the best performance. For example: a 32-ary QAM

scheme based on concentric circles offers about 1.05 dB better peak power improvement at a BER of 10 -6 over the

scheme optimized for average power using triangular symbol packing. This peak power improvement increases to

1.25 dB for comparable 64-ary QAM schemes. This work serves as a precursor to determine the feasibility of a com-

bined modem/codec that can accommodate Broadband Integrated Services Digital Network (B-ISDN) at a rate of

155.52 Mbps through typical transponder bandwidths of 36 MHz and 54 MHz.

14. SUBJECT TERMS

M-ary Quandrature Amplitude Modulation; Broadband-ISDN;

High Power Amplifiers; Satellite Communications

17, SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

lg. SECURITYCLASSIRCATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
13

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18

298-102


