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ABSTRACT

A major problem encountered in planning for Space Station

Freedom is the amount of maintenance that will be required.

To predict the failure rates of components and systems aboard

Space Station Freedom, the logical approach is to use data

obtained from previously flown spacecraft. In order to

determine the mechanisms that are driving the failures,

models can be proposed, and then checked to see if they

adequately fit the observed failure data obtained from a

large variety of satellites. For this particular study,
failure data and truncation times were available for

satellites launched between 1976 and 1984; no data past 1984

was available. The study was limited to electrical

subsystems and assemblies, which were studied to determine if

they followed a model resulting from a mixture of exponential
distributions.
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INTRODUCTION

In order to accurately estimate and reduce the amount of

maintenance that will be required on Space Station Freedom,

it is necessary to understand the mechanisms that cause the

failures of its components and systems. Ideally formal life

tests would be conducted, where a sample of each type of

component would be put on test under environmental and

operational conditions identical to those under which it is

to be used, and the time to failure for each would be

observed. Due to time constraints, it is not always possible

to observe all of the items until they fail; in this case

some type of censoring mechanism is employed.

There are two basic types of censoring which have been

extensively studied. Type I censoring occurs when n items

are placed on test and observed for a fixed period of time t.

Only the lifetimes of those which fail before time t are

known; the others are said to be time censored or truncated.

In this case the length of the test, t, is fixed, but the

number of failures observed, r, is random. In Type II

censoring, n items are placed on test and the test is

terminated after the rth item fails. In this case, the number

of failures, r, is fixed in advance, but the length of time

of the test, t, is a random variable. Both of these types of

censoring have been treated extensively in the literature.

See, for example, Barlow and Proschan (1975), Bain (1978),

and Lawless (1982). For information on additional types of

censoring, see McCool (1982), and Mann and Singpurwalla

(1983).

Unfortunately, the situation encountered in building

spacecraft is far from ideal. It is impossible to conduct

meaningful life tests on earth because it is not possible to

reproduce the microgravity environment. Thus to obtain data

on failure of components in microgravity, it is necessary to

turn to field data obtained from previously flown spacecraft.

The situation is further complicated by the fact that the

censoring taking place in this type of situation is neither

Type I nor Type II. It is not determined in advance how many

components will fail. Furthermore, the truncation times are
not known in advance. The lifetime of one component may be

truncated by the failure of another--for example, if the

attitude control malfunctions, the satellite may fall out of

orbit while all of its other components are still

functioning; but none of these lifetimes are observable.

Also, many components may still be operating at the last time

they are observed.
The case where both the number of failures and

truncation times are both random variables has not been

studied nearly as extensively. In fact, there is no
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consensus on what it is called. Mann and Singpurwalla (1983)

and Lawless (1982) refer to this general case as random

censoring, while the entry under "Random Censoring" in the

Encyclopedia of Statistical Sciences, Vol. 1 defines random

censoring as a completely different situation. Nevertheless,

the particular models given by Mann and Singpurwalla (1983)

and Lawless (1982) are not applicable to the satellite data

because they assume that failure times are identically
distributed.

The approach taken in this study to determine the

mechanisms that produce the failures is to propose a

mechanism, and then see how well the resulting model fits

what is actually observed in the data. If the theoretical

survival function differs significantly from the empirical

survival function, then the proposed mechanism is not what is

actually producing the failures.

THE SATELLITE DATA

The failure data for over 300 satellites was compiled by

Planning Research Corporation and originally published in

Bloomquist, et. al. (1978), with an update in 1984. This

data is currently being compiled into a data base by Loral

Space Information Systems. The data base includes each

component of each satellite, classified by subsystem and

assembly. The times for all failures are included, and

truncation times for those which did not fail.

The way the times were recorded was not consistent for

all satellites. Often assemblies are turned off and on

during the life of the satellite, so that they are not

operating for the entire life of the satellite. Some

elements, such as backup systems which are never needed,

never get turned on at all. For some of the satellites, the

times given were actual operating times for that assembly;

for others, they were merely the time since launch, or

_survival time." For the purposes of this study, operating

times and survival times were treated separately.

Since the data base was still being compiled at the time

of this study, it was necessary to limit the number of

satellites used in order to obtain some data. Since the more

recent satellites are more likely to utilize the same type of

technology as Space Station Freedom, only satellites launched

since 1976 were considered. This was a total of 28

satellites. Of these, only four had recorded operating
times; the rest had recorded survival times. The data was

further limited by considering only electronic assemblies,

because the model considered was proposed for failure of

electronic parts.
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THE PROPOSED MODEL

It is generally accepted that the lifetime of electronic

components has an exponential distribution, that is

f (t ll) = ke -At, t >0,

where I is a parameter determined by the failure rate. The

exponential distribution possesses a unique property--it has

a constant hazard rate. However, when considering many

different types of electrical assemblies on different

satellites, the odds are that the failure rates will not be

the same for all of them. Thus the failure times do not

represent a sample from a single exponential distribution,

but rather from a mixture of exponentials with varying

parameters. While each individual hazard rate is constant,
it turns out that the hazard rate of the mixture is actually

decreasing (see Barlow and Proschan (1975), p. 102).

Hecht and Hecht (1985) analyzed the original PRC data

and concluded that that the failures did indeed possess a

decreasing hazard rate. Heydorn, et. al. (1991) proposed a

model derived from a mixture of ordinary exponentials and

demonstrated that its predictions were close to the results

given in Hecht and Hecht (1985). However, they did not have

the original data, so their results depended on those given

in the Hecht and Hecht report. This study uses the model

proposed by Heydorn, et. al. and fits it to the actual

satellite data.

The model is obtained by assuming that the electronic

components do possess an exponential distribution with

parameter k. Thus for a fixed k the failures are generated

by a Poisson process with parameter _. However, kcan be

considered a random variable since the failure rates are not

the same for all components. Taking the Bayesian approach

and assuming that the prior distribution of k is uniform on

(0, _), the posterior distribution of k is a gamma

distribution, and the resulting reliability function t is

1 (I)R(t) =
t u+l

(1 + _)

where _ and T are parameters. The purpose of this study is

to find the values of the parameters _ and T which best fit

the empirical survival function.
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EMPIRICAL SURVIVAL FUNCTION

The next step is to estimate the empirical survival

function. If all of the failure times are known, then the
estimated survival function is

S(t) =
Number of observations _ t

, t k 0.n

If, however, some of the survival times are unknown, then

this must be modified. Kaplan and Meier (1958) introduced an

estimate called the product-limit (PL) estimate which

handles the case of random censoring. The estimate is

k

SpL(t) = H (I

j=l

where k is the total number of events (including both

failures and truncations) up to time t, N is the total number

of events in the test, and _j is an indicator variable defined

by

0CJ= i

if the event is a truncation

if the event is a failure

The estimate is a product, where each term can be thought of

as the conditional probability of surviving past time tj,

given survival to just prior to tj, where tj is the time of

event j. It is a step function, which steps down at each tj.

For more information on the properties of the PL estimate,

see Lawless (1982) and Peterson (1983).

The problem encountered with using the PL estimate of

the reliability function is that when many of the largest

times are truncations, none of the terms in the product

approach zero, and hence the estimate yields only a small

portion of the reliability function. For example, in the

data set for satellite operating times, there were a total of

165 observations, of which 14 were failures; the rest were

truncations. Furthermore, the 82 largest times were

truncations. This meant that the smallest term in product

was 82/83. The PL estimate of the survival function for the

operating time data is:
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The data set for satellite survival times contained 907

points, of which the last 154 were truncations. The PL
estimate of the survival function for this data ranged from

0.9989 to 0.8695.

ESTIMATING THE PARAMETERS

To find the estimates of _ and T in Equation (i) which

give the best fit to the PL estimate of the survival

function, the first approach was to use the least squares

criterion. Since (I) is a nonlinear function, the nonlinear

least squares routine in S-plus was used. Unfortunately, the

Jacobian matrix was nearly rank deficient, for a multitude of

initial values, including the estimates derived in the other

approach described below. Thus another approach had to be

used to estimate the parameters.

While the survival function given in (i) is nonlinear,

it turns out that the inverse of the hazard function

associated with it is a linear function. For a survival

function S(t), the hazard function is

dlnS(t)
h(t) = - dt

The hazard function associated with the survival function

given in (I) is

(_ + 1
h(t) -

T+t

and its inverse can be expressed as the linear function
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1 _ T + ( 1 )t "
h(t) (x + 1 _ + 1

(2)

Thus the parameters _ and T can be estimated by finding the

empirical hazard function, taking its inverse, and using

least squares to estimate the parameters of the resulting

linear equation. These coefficients can then be used to

solve for _ and T in (2).

The empirical hazard function was estimated by taking

the log of the PL estimate of the survival function, then

taking successive differences in the resulting values and

dividing by the width of the corresponding time interval to

approximate the derivative. A linear model was then fit to

the inverse of the empirical hazard function, and the

parameters _ and T were determined.

RESULTS

To begin the analysis, recall that if the mixed

exponential model is correct, the failures should have a

decreasing hazard function. Plots of the empirical hazard

function for the operating time data and survival time data

are given in Figures 1 and 2, respectively. Both plots are

extremely noisy, and neither one definitely indicates a

decreasing hazard function. No conclusions can be drawn from

these plots.

Plots of the empirical survival function and estimated

theoretical survival function for the operating time and

survival time data are given in Figures 3 and 4,

respectively. It can be seen that neither of these

demonstrates a very good fit. In particular, the empirical

survival function initially drops at a much faster rate than

the theoretical one for both sets of data. The data appears

to display early failures, or _infant mortality" that is not

adequately explained by the model. Based on these plots, the

mixed exponential model does not seem to adequately explain

the failures. A different model must be sought.

In conclusion, this research indicates that a mixture of

exponential distributions does not adequately explain

electronic failures seen in previously flown satellites. In

particular, it does not model the early failures very well.

A different model will be needed to explain the mechanism

generating the failures.
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