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SUMMARY
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This paper describes a new technique of passive ranging which is based on utilizing the image-

plane expansion experienced by every object as its distance from the sensor decreases. This

technique belongs in the feature/object-based family.

The motion and shape of a small window, assumed to be fully contained inside the bound-

aries of some object, is approximated by an affine transformation. The parameters of the

transformation matrix are derived by initially comparing successive images, and progressively

increasing the image time separation so as to achieve much larger triangulation baseline than

currently possible. Depth is directly derived from the expansion part of the transformation.

To a first approximation, image-plane expansion is independent of image-plane location

with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-

based method has the potential of providing a reliable range in the difficult image area around

the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide

more accurate depth information than the expansion alone, and can thus be used similarly to the

way they have been used in conjunction with the Inertial Navigation Unit (INU) and Kalman

filtering. However, the performance of a shift-based algorithm, when the shifts are derived from

the affine transformation, would be much improved compared to current algorithms because the

shifts--as well as the other parameters--can be obtained between widely separated images.

Thus, the main advantage of this new approach is that, allowing the tracked window to

expand and rotate, in addition to moving laterally, enables one to correlate images over a

very long time span which, in turn, translates into a large spatial baseline--resulting in a

proportionately higher depth accuracy•

https://ntrs.nasa.gov/search.jsp?R=19940021012 2020-06-16T13:52:31+00:00Z



ACRONYMS USED IN TEXT

FOE - Focus of Expansion

FOV - Field of View

INU - Inertial Navigation Unit

LOS . - Line of Sight

OF - Optical Flow

PSF - Point-Spread-Function

SNR - Signal-to-Noise Ratio

PSR - Peak-to-Sidelobes Ratio

TBD - Track Before Detect

TTC - Time To Collision

3-D - 3-Dimensional

AFTR - Affine Transformation

CW, CCW - Clockwise, counterclockwise
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1 INTRODUCTION

Passive ranging is an area of considerable interest for applications such as obstacle avoidance

for rotorcraft nap-of-the-earth navigation and spacecraft landing. Two main passive-ranging

methods can potentially be employed for this purpose; one based on motion and the resulting

image-plane optical flow, and the other based on stationary stereo. Both methods can be

thought of as special cases of a more general triangulation method known as "bearing-only" or

"direction-of-arrival" (e.g., [1, 2, 3, 4]). In this paper we chose to concentrate on monocular

OF-based ranging.

The motion of an imaging sensor causes each imaged point of the scene to correspondingly

describe a time trajectory on the image plane. The trajectories of all imaged points constitute

what's called the "optical flow" (OF). A forward-looking imaging sensor, such as a TV camera

or a Forward-Looking Infra-Red (FLIR), is typically used as the source of optical flow data.

The various methods of extracting depth information from the OF can be classified as belonging

into three main classed as we did in [5]. The method described in this paper can be considered

object-based or feature-based depending on the definition of features. If the features are chosen

based on some local image property, such as texture or edge, then we are dealing with a feature-

based method. If, the feature is chosen through some pre-segrnentation to be wholly contained

inside a physical object, then our new technique can be considered to be object-based; that is

how we chose to regard it in this paper.

Like all other passive-ranging methods, we assume that the scene and its illumination

sources are temporally constant (see [6]). We also assume that all points belonging to the

same object share the same range. In [5] we differentiated between detect-then-track and track-

before-detect (TBD) algorithms (akin to filtering and smoothing respectively) and pointed out

the advantages of the TBDs in terms of SNR-performance and robustness (see [7, 8, 9]). We

will return to this subject after presenting our new algorithm, and show that it is a TBD one.

The OF at any given point in the image plane consists of three kinds of motion: lateral

translation, expansion (or divergence), and rotation (curl). When considering a window of some

finite size, one can approximately describe its time evolution by an affine transformation which,

in the most general case, has six parameters: four belonging to the 2 x 2 multiplying matrix,

and two belonging to the vector of lateral translation. Most depth-estimation methods, such as

described in [10, 11], make use of the lateral motion alone. Two basic limitations are implicit

in these methods. First, they cannot perform in the image plane close to the FOE, and second,

they can only use a relatively short triangulation baseline because far-apart images would not

correlate due to the misadjustment in the other components of the affine transformation (besides

the shifts) which are not accounted for. "Triangulation baseline" is the term we use for the

distance the platform travels between the frames to be correlated. As we have shown in our

earlier work [12], the depth-error is inversely proportional to the triangulation baseline (see (18)
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ahead).

In this work I will discussmethodsof extracting depth information from the divergenceof
the OF as it is approximately obtained from the affine transformation matrix. I use the term
"divergence" (or "local divergence")to refer to the mathematical definition of the derivative-

vectoroperator denotedby V which, in this case, scalar-multiplies the velocity vector at a point.

Divergence is thus defined for an infinitesimal area and time. We use "expansion", or "global

divergence", as a short-hand for the "rate of area expansion" to denote the average divergence

over the area of some finite-size window or of an object. We will soon see why the divergence of

the velocity vector, V. v(p) at some point p actually measures the rate of area expansion (which

explains the above proliferation of terms).

Changing texture and 81ze

Size alone

Figure 1: Texture and size cues.

The idea of using divergence as a source of depth information is not new. The works

of Longuet-Higgins and Prazdny [13], Prazdny [14, 15], Koenderink [16], Koenderink and van

Doorn [17, 18], and Nelson and Aloimonos [19] elaborate quite extensively on this subject.

Recently, an interesting extension to these works was reported by Ringach and Baram in [20];

although it is field-based, it explicitly assumes that the scene is composed of objects (defined

by their borders) and derives the global divergence for all objects without the need to actually

delineate or identify them. The local- and global-divergence methods are intended for different

kinds of objects as exemplified in figure 1. The local-divergence method is intended for textured

objects with no well-defined edges, whereas the global-divergence method is intended for objects

with little or no texture but having well-defined edges. In this paper we rely upon the objects

being textured, so our algorithm roughly derives the equivalent of local divergence.

If we examine a window centered on the FOE, its translational motion is zero by definition,

but it still expands as the depth decreases, and this expansion is left as the only source of

depth information. Thus, there are two new aspects to our work; one is the direct derivation

of depth from expansion, and the other is enabling the use of a long triangulation baseline for
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evenusing just the conventionaltranslation-basedmethods (aswell asfor the expansion-based
ones). The later feature is the one that transforms this algorithm from a track-then-detect
to a TBD, becausethe accuracy (or SNR) of the final result is basedon the largest available
baseline,asopposedto (Kalman) filtering of results that wereindividually obtained basedon a
single-interframebaseline.

This is why one can consider this work to represent an extension of the existing translation-

based algorithms such as the one developed by Sridhar, Phatak, and Cheng in [10, 11] and

Sridhar, Suorsa and Hussien in [21] which derive the image-plan translations of "points of

interest" (small windows) through spatial cross-correlation between consecutive images and

subsequent Kalman filtering of their image-plane trajectories.

In order to round off the picture, we also need to refer to another closely-related area of

research represented by the work of Merhav and Bresler (see [22, 23, 24, 25]). The first three

papers primarily address image-plane motion estimation, which is, of course, equivalent to depth.

Also, they rely upon the assumption (that we do not need to make) that the image statistics in

the X and Y directions are separable. The fourth paper suggests a stochastic-gradient approach

to image-plane motion estimation which can be thought of as a precursor of the work reported

here.

As a last comment, it is noteworthy that utilizing divergence (or expansion) for depth

derivation has been largely motivated by advances in the understanding of visual processing

in humans and primates. For example, experiments with humans suggest the existence of

divergence (looming) detectors in the human visual system [26, 27, 28] as well as vorticity

detectors [28, 29, 30].

The organization of this report is as follows. Section 2 contains the theory relating Diver-

gence, Expansion, and Depth. Section 3 presents the idea of using the affine transformation to

relate objects in different frames. Section 4 presents simulation results. Section 5 presents the

practical algorithm that iterates over increased frame separation. Section 6 discusses the error

analysis.

2 OPTICAL FLOW, DIVERGENCE AND

SION

EXPAN-

The basic equations for the divergence in the image plane are derived in this section. This

derivation is based on prior work described in [13] to [201.

It is convenient to think for a moment of imaging the outside scene onto a spherical surface

because such projections are identical irrespective of the camera-axis direction. In fact, with
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Figure 2: The geometry of projection onto the image plane.

such geometry, the camera axis is defined to coincide with the line-of-sight (LOS) from the center

of the sphere to any imaged point as seen in figure 2. Another motivation for regarding the image

plane as a sphere is that this geometry is similar to that of imaging the world by a tens onto

a spherical retina, e.g., in the human eye. Let us define the coordinate system of the spherical

camera to have its origin at the sphere's center and its Z axis to pass through the imaged point

P of some object. The sphere is defined to be of unity radius. Consider the projection of P

onto the sphere at point p. At that point define the origin of an (U, V) plane tangent to the

sphere which is called local projective image plane (image plane, for short); this image plane

approximates the sphere at the point of tangency. Let us assume that P is found on a smooth

surface described by some function z = f(x, y) so that its gradient Vz = (zx, zy) exists. The

distance of any point on that surface from the sphere's center can then be approximated in the

neighborhood of P by

z ,_, Zo + Vz. (x,y), (1)

where z0 is the distance between points O and P. The relative motion of the camera with respect
A

to the scene is defined by its translational velocity V _- (Vx, Vy, Vz) and rotational velocity w =

(wx,wv,wz). It is convenient to normalize V by z0 and define (vx,vy,vz) _= (Vx, Vy, Vz)/Zo.

The motion of the camera causes the stationary point P and its surrounding to describe

a retinal velocity field (or optical flow ) around p on the image plane. We denote image-plane

projections by (u,v), to correspond with (U, V), and their temporal derivatives by (u,,vt).

Thus, the image-plane velocity vector at p is defined as v(p) _ (ut, vt) Ip • The spatial partial

derivatives of (ut,vt) are denoted by utx, ut_,,vt=,vt_. From [13] we know that the following

equations hold at p,

ttt "- --V X -- W'y , Vt = --Vy -_ td X ,
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Utz = _Z "[- VXZX , _ty ._ V Z "_ VyZy ,

_ty _ _Z _ VXZY , Vtz _ --O_Z "4- VyZx (2)

Using the above equations, the divergence at p (denoted div(p)) can be expressed as

div(p) = V. v(p) a__utz + vtu = 2vz + Vz. (vx,vv) (3)

To interpret the above equation, suppose that the camera only moves in the Z direction. In

that case vx = vy = 0 and V • v(p) = 2vz = 2Vz/zo, that is, div(p) is twice the reciprocal

of the time-to-collision (TTC) of P with the camera's center. Because of this interpretation,

div(p) is termed "immediacy" in [16] and other papers, that is, it measures the immediacy of

an imminent collision. In the opposite case, when (vx,vv) _ (0,0) and vz = 0, there can still

be a relative depth change between the camera and the patch because it is generally slanted. In

other words, div(p) will still have the same interpretation as before, except that the imminent

collision is going to be with some point on the plane tangent to the patch at P and not with the

point P itself. Thus both terms of the immediacy have a valid physical interpretation. Notice

that the rotational velocities do not appear in div(p). This is a very important (and well-known)

observation because it says that the TTC information is wholly contained in the imagery; no

additional information is needed (such as from the INU).

Nelson and Aloimonos describe in [19] a straight-forward mechanism for evaluating the

divergence from a sequence of images. In practice, this algorithm can only provide a rough

estimate of the local divergence.

The global divergence is defined (see [20]) as the average divergence over the area of each

object, and denoted by x(R) for an object whose projection onto the image plane is R (assuming,

for the moment, that its boundary OR is well defined). Thus,

x(R) a _R fR div(p) ds- _R fa v(p)ds- 1 fo= A ) A ) R v" A(R) R
v(p) • n dl, (4)

where A(R) is the object area, ds is the elemental area, dl is the elemental length along OR, n

is a unit vector normal to OR, and the equality is based on the divergence theorem. In words,

the average divergence equals the line integral of the normal component of the velocity vector

at the edge along the edge of the object. This line integral can easily be shown (see [20]) to

have an intuitive interpretation, that is,

1

x(R) = A(R)
dA(R)

dt ' (5)

i.e., the global divergence equals the temporal rate of change of the normalized object area.

To find the relationship between global divergence, expansion, and time-to-collision, con-

sider the similar-triangles equation relating the image-plane projection at (u, 0) of some point
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similar to P but located at (x = 1, y = O, z = Zo) in figure 2,

l

Zo

(6)

Taking the derivative of u with respect to z0, we find that

t/
du = -Udzo = --Vzdt = uvzdt ,

ZO ZO

(7)

Thus,
1 du

- vz (8)
u dt

If we repeat this derivation for an area change, dA, rather than for a length change, du, we

would find, using dA/A = 2du/u, that

1 dA
- 2vz (9)

A dt

Comparing (9) to (5), it is seen that X has the interpretation of twice the TTC. Thus, the

normalized (by the area) temporal rate of change of the projected area A of some object, that

is, its rate of area expansion, equals twice the TTC.

3 ESTIMATING THE RATE OF EXPANSION

In this section we introduce the affme transformation, and develop the algorithm necessary to

estimate the object's rate of expansion.

3.1 The afllne transformation

The affine transformation (AFTR) can be used to relate object's projections at different frames

(or times); its most general form is defined by six parameter. However, we intuitively judged

that four parameters should suffice because they directly convey the physically-interpretable

changes one would expect to occur. We thus define our specific AFTR by

=s + , (1o)
6 $9 (19 v-v0 b+v0

where s is a scaling (or expansion) factor, (30 =a cos(8) and S_ a= sin(0), and 0 is the angle by

which the object in I1 is CW rotated with respect to its original orientation in Io. Thus, this

AFTR maps points (u, v) from one frame (Io) onto the corresponding points (fi, b) in another

frame (11). In figure 3 we notice that, first, the object expanded about 50%, second, it rotated

about 25 o CCW, and third, it moved up and right. This is indeed the order of mappings conveyed
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Figure 3: Mapping of a point through the afflne transformation.

by the above definition although the order of scaling and rotation is immaterial. Notice that

scaling and rotation is performed around the arbitrarily-defined center point of the object located

at (u0, v0), and shifting is performed later--back to the original center point plus an incremental

shift by the vector (a, b).

3.2 Vehicle's maneuvers and image-plane motion

Uo,Vo

,V

U 1 ,V 1

U

u_,v_ u s,v 3

Figure 4: Window.

In this subsection we calculate the transformation that an object's projection undergoes as a

result of platform maneuvers so as to relate it with the AFTR as defined above. To do that, we

start from the well-known equations for the temporal derivatives of the image-plan projections

(u, v). Repeated as in [21], and adapted to our earlier notation, we have

Ul) tt 2

ut---fvx+uVz+WxT" /wv(l+_-5) +vwz

_'U U 2

vt = -fvy + vvz -w'y--f- + fwx(1 + --fi) - uwz , (11)

where f is the focal length. Now consider the shifts experienced by the corners of the window

shown in figure 4. The differences between their shifts can be used to yield rotation and expan-
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sion. The rotation of the upper side of the square (where v, = v0) during some interfrarne time

can be approximated by
Avl - Av0 Vot,,'v

- wz (12)
Ul -- _0 f

When the point (u0, Vo) coincides with the FOE, this reduces to -wz. The rotation of the left

side of the square (where Uo = us) is similarly found as

Au2 -- Auo UoWx
- wz , (13)

UO -- U2 f

which also reduces to -wz at the FOE. We have used the rotations of vertical and horizontal

lines to show that, first, they rotate slightly differently, that is, in principle, the square distorts,

and, second, this rotation approximately equals the platform roll. Comparing the two terms on

the right of (12) for equal platform roll and yaw, the yaw term is smaller by a factor of f/vo. At

a distance of, say, 50 pixels from the FOE, and with f=622 (using our camera as an example),

this factor is 12.4. Since the expansion-based algorithm suggested here is intended to mainly

enhance depth derivation around the FOE, we conclude that image-plane rotation is reasonably

approximated by platform roll.

Next, let us analyze the expansion factor. For the upper side of the square it is approximated

by

Au, - Au0 vo_x (u0 + u,)a_v
- vz + (14)

ul - u0 f f

and for the left side of the square by

Avo - Av2 uo_ (Vo + v2)wx
- vz + (15)

v0 - / / '

At the FOE, both expressions approach vz as the square size goes to zero. Again, horizontal and

vertical lines expand slightly differently, but, to a good approximation, this expansion equals vz

(the TTC). The superfluous terms are an order of magnitude smaller than vz for areas up to 50

pixels from the FOE and small angular speeds.

Our conclusion is that, over the expected range of flight scenarios, the affine transformation

represents a good approximation to the actual mapping that is taking place between different

frames. If this approximation is not adequate, one can always use the full 6 degrees of freedom

available in the general affine transformation.

3.3 What happens when scaling and rotation are ignored

In this subsection we elaborate on the importance of using the AFTR even for an algorithm

which calculates depth based on the shifts alone. Ignoring the AFTR amounts to taking it to be
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a unity matrix. This questionhasbeeninvestigatedquite extensivelyby Mostafavi and Smith
in [31, 32]. For completeness,wesummarizetheir resultshere.

For imageshavinga circularly symmetric Gaussiancorrelation function,

1 2

where r_, r_ are the spatial shifts, and A the "correlation width", the effects of non-compensated

rotation (by 0) and/or scaling (by s) are determined by the combined geometric-distortion

parazneter d,

d-a-_/[1-2scosO+s 2[m_/(1-s) 2+0 2 for smallOandsml (17)

Figure 5 shows the effect of d on the peak-to-sidelobes ratio (PSR). Peak stands for the maxi-

mum value of the cross-correlation function between two frames, and "sidelobes" stands for the

standard deviation of the cross-correlation function far from the peak. The reference image is

taken as a square of size L x L. The other (sensed) image is much larger than the reference

image. In the figure, L appears normalized by the correlation width because what counts is the

effective number of "independent" image objects. Six graphs are shown for different d values.

The graph for d = 0.087, for example, can be used for rotation alone (of 5°), or for scaling alone

(s = 1.087), or for any of their combinations such that (17) yields d = 0.087. Figure 6 similarly

shows the behavior of the registration error.

Let us use the following example to demonstrate the effect of uncompensated rotation or

scaling errors. Take speed Vx = 25 m/s, depth z0 = 120 m 2 image-plane location 10 pixels from

the FOE, a rolling maneuver of wz = 20°/s, L = 21, A = 1.5 pixels, and frame rate of 2 fr/s.

This low frame rate is used to achieve a large triangulation baseline as will be explained later.

Only two consecutive frames are used in this example.

In a single interframe time the platform rotates 10° and there is an expansion by a factor

of s = 120/(120 - 25 • 0.5) = 1.1163, so that d = 0.21. The PSR will incur a loss of _, 3 (6

dB in PSR power)--as read from figure 5. This is why, without using the AFTR, one needs to

use a higher frame rate, say, 10 fr/s. The registration error, as extrapolated from figure 6, will

increase from 0.025 to 0.070 pixels. In [12] we have found the depth error:

v/'2z2°a_' (18)
O'z-- _ '

where b is the triangulation baseline. Thus, the depth error incurred by a geometrically-

compensated algorithm (b = 12.5 m) is 4.1 m while that incurred by a non-compensated al-

gorithm (b = 2.5 m) is 57 m (out of 120 m !).

This example shows that, even in the conventional shift-based algorithm, neglecting to

compensate for the AFTR in the process of cross-correlation is costly in two ways. First, it
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either degradesthe PSRwhich may hinder locking onto the correct peak (false alarm) or impose

a short b, and second, even when correct peak detection is achieved, the depth error would

increase around tenfold.

3.4 Converging on the correct affine transformation

In this subsection we derive the equations and algorithm necessary to obtain the correct affine

transformation. The basic idea is to use Newton's equation (see [33]) iteratively to converge from

the initially-assumed transformation matrix into the correct one by minimizing an appropriate

error measure, or cost-function.

We thus start by defining the cost-function, J, as the integral over the window area, A, of

the squared difference of image gray levels, that is,

_' Ii(u, 15) Io(u,v); = _ e2dA (19)

If all points (u, v) inside the window (defined in I0) are correctly mapped into (_, b) of I1, then

the above cost should equal zero. In practice, however, we can only expect to minimize this

cost albeit not to drive it to zero. Our plan is to find the gradient and second derivatives

of J so that we can use Newton's method to solve for the minimum assuming that the cost-

function is quadratic in the four parameters to be estimated. Since this assumption only holds

approximately, it is necessary, in practice, to iterate a few times until the solution converges.

The iterative update equation for the estimated parameter vector )((k) becomes

X(k + 1) = X(k)- {V2J[X(k)]} -' VJ[2(k)], (20)

(21)

where
a

X(k)_ b
,9

0

The four components of the cost-function gradient are calculated next. Starting with the

first shift-parameter, a,

OJ 1//A Oe 1 //A _0._= -- e-_adA = e dAOa A A '

because only the Ia(fi, _3) part of e depends on a through fi, _3. Developing that relationship,

011 011 Off 011 O_

Oa Off Oa + 0_, Oa

(22)

(23)
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Similar equationsareobtained for the other three parameters by substituting them in place of a

in (23). The above four equations require the partials of fi, t3 with respect to all four parameters.

These are obtained by differentiating the two scalar equations obtained from (10), that is,

so that

= _[so(=- =o)+ (_(.- .0)] + .0 + b,

0i 0fi
--=1; --=0
Oa Oa

Off OCJ
--=0; --=1
cOb cOb

cOil

G = O_(u - u0) - SO(v - .0);

0fi

cog= so(=- _,o)+ c_(. - .0)

(24)

coil cOIl

cOo- _[so(_- uo)+ c_(. - .o)]; _ = _[c_(u- .o) - so(.- .o)] (25)

We now need the ten second derivatives of the symmetrical matrix V2J[X(k)]. In order

to simplify notation, we will drop the "dA" from the integrals, the subscript 1 from I, and the

hats from u, v; these will now be understood whenever not specified. Let us start with one of

the mixed second derivatives, say that of a and O. We thus have

(26)

After some more algebra, we get

(27)

where

= \0_) +_2-J; v=_\ ) +_-_; w=_o-g._+o,,o" (28)

The other mixed second derivatives of J are similar and can be obtained by substituting the

other parameters in place of a and 0 in (28). The second (non-mixed) derivatives can, of course,

be obtained by substituting the same parameter twice. For example, the second derivative of J

with respect to a is

= _ U \ Oa ] + V -_a + Oa Oa +e -_u _ + -_v Oa 2J (29)

Notice that the above equations require two kinds of building blocks; these are the first and

second (also mixed) spatial derivatives of the I1 image as well as the first and second (also mixed)
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derivativesof fi and _3with respect to the four transformation parameters. The imagespatial
derivativesarecalculatedby convolvingit with a simpleSobel-operator-type3 × 3 window. The
first derivativesof fi and fi wherealready calculatedfor the gradient as in (25). Differentiating
(25) once againyields 10secondderivativesfor _ and 10 for 5. Out of these20, all turn out to
be zeroexcept the following four:

02tL OV

oso0 - -so(_ - _o)- c_(. - .o) = -G;

02U 0V

_-_ = s[-c0(_ - _o)+ so(. - vo)]- a0;

02V Olt

0_0---_= o0(_- uo)- so(. - .0) =

O_v ^, 0u(30)b-_ = -_[_(u - u0)+ C0(v- .0)]=

At this point all the components necessary for a single iteration on the Newton's solution have

been derived.

4 SIMULATIONS OF THE COST-FUNCTION AND

ITS DERIVATIVES

We now want to examine the behavior of the cost-function and its derivatives as a function

of the four parameters in open loop, that is, without trying to correct the errors yet. For the

following experimental results we used simulated imagery where the scene is composed of a wall

normal to the initial flight trajectory. This wall is painted with a random Gaussian colored

noise having spatial correlation width of 2 pixels in each of the two spatial dimensions. In this

section we describe the main features of our Flight/Vision simulation and the open-loop error

measurements.

4.1 Flight/Vision simulation

We have developed a simple simulation that enables us to generate a sequence of images (im-

agery) as obtained from an optical sensor that travels and maneuvers as prescribed. This

simulation is described here.

The scenery is composed of a flat wall oriented normal to the initial LOS. The gray levels

of the wall are derived by passing a white Gaussian noise through a two-dimensional Gaussian-

shaped low-pass filter of some desired width. The wall is densely sampled by "wall-pixels"

which, when imaged onto the camera's focal plane, are much finer than the "chip-pixels" of the

camera. Typically 25 wall-pixels fall inside a single chip-pixel at the beginning of the run; this

is chosen so that the wall can approximately be considered continuous. The correlation width of

the low-pass filter above is chosen in terms of equivalent chip-pixels. In all simulations described

later we chose correlation width of 2 chip-pixels because that is a typical width for the lens"
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point-spread-function. The number of wall-pixels impinging on eachchip-pixel is proportional
to the depth squaredbecausethe camerausesa fixed angular field of view. Thus, to maintain
a constant wall brightnesson the imageplane, wehave to factor the wall brightness(or gray-
level) by the depths-squaredinverse. This compensationis nothing more than simulating the
dependenceof light radiation (power-per-area)on the inverseof the rangesquared.

The camerais initially located acrossfrom (and pointing to) the wall centerat a distance
of z0 m. It is generally flying towards the wall center and can perform any desired maneuvers

on its way. Each ray from the center of a wall-pixel to the camera's focal point (in world

coordinates) gets transformed into the camera's coordinates through the 3 × 3 rotation matrices

corresponding to yaw, pitch, and roll (e.g., see [34]). The camera coordinates of the ray are used

in the projection equations to yield the image coordinates of the ray's piercing point, that is,

u = fx ; v = f-Y, (31)
Z Z

We now assume a point-spread-function (PSF), having the shape of a chip-pixel and centered on

the (non-integer) (u, v) point, to impinge upon the grid of chip pixels. This is where interpolation

becomes necessary.

8V

_y

u0,_
bo

.uy

x

Figure 7: The interpolation method.

The method of interpolation is explained with the help of figure 7. The (u, v) point falls at

a distance of (6u, 6v) from some integer point (u0, v0). We thus assign the PSF areas intersected

by each of the 4 chip-pixels to these pixels. The corresponding areas are thus assigned as follows:

(1 - *u)(1 - $v)

(1 - 6u)_Sv

*u(1 - *v)

,Su,Sv

where (6u, 6v) are derived as

8u = u -int(u) ;

to pixel (Uo, Vo) ;

to pixel (u0, Vo + 1) ;

to pixel (Uo + 1, Vo) ;

to pixel (uo + 1, vo + 1) , (32)
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and int(.) is a function that rounds off its argument to the nearest lower integer.

As we have said above, there are, around 25 such partial contributions into every chip

pixel--each contribution resulting from the center of a wall-pixel being projected onto some

different (u, v) point. We have found that choosing the ratio between the sides of a chip-pixel

and a wall-pixel to equal 5, using a chip-pixel-size PSF, and interpolating as prescribed above,

results in a realistically-appearing textural behavior of the wall as it gets closer to the camera

during the simulated flight. Examples showing the time evolution of the imaged wall will be

shown in the sequel.

4.2 Simulation of the error equations

The error equations are, in principle, simulated as prescribed by equations (19) to (30). However,

since we are dealing with a spatially-discretized images, it is necessary to implement these

equations in a discrete form as well. There are no conceptual problems associated with replacing

integrals by summations. However, all we know about the real physical image values comes from

the pixels' gray-level data. It is important to understand that the gray-level of a pixel represents

the value of a double integral over its area (average), where the spatially-continuous radiation

emanating from the scene serves as the integrand. Another way to put it is that each pixel

collects all the photons impinging anywhere within its boundaries during its integration time

(interframe time).

Differentiating between a pixel's gray-level and the actual value of the scene at any (contin-

uous) location on the image plan is important in estimating the scene values Ii(fi, 6) as required

in (19) because (fi, _) are generally non-integers. There is no such problem in estimating I0(u, v)

because, by definition, we start from the pixel's center (integer) and thus take its gray-level as

the best estimate of the scene value at this pixel's center. For the estimation of Ii(fi, 6), we

use an interpolation method that looks identical to the one used for the imagery generation,

although it is conceptually completely different.

Referring once more to figure 7, here is the problem. Say we have an estimate for the value

of the scene at the center point of some initial pixel, that is, we have Io(uo, vo). This point has

been mapped into location (fi, _3) in image 11, and we want to estimate Ii(fi, fi). The relevant

information available from image 11 is its pixel values for the four pixels shown in the figure

because these are directly affected by the original scenery patch (of pixel size). We can think of

the value of each such pixel as a random variable crosscorrelated with 10(u0, v0) in proportion

with the intersected areas as defined by (32). This led us to use the rather ad hoc interpolation

method:

I1(fi,'5) _(1-6u)(1-6v)Ii(fio,.5o)+6v(1-_u)Ii(fio,_o+1)

+6u(1 - 6v)Ii(fio + 1,_o) + 6u_vll(fio + 1,_o + 1) (34)
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This method has the advantagethat it yields the expectedresults when (fi, _3)take on integer
values,and it providesa continuousestimate inside the convexhull definedby the valuesof the
four nearestpixels. The sameinterpolation method is used for estimating the imagevaluesas
well astheir first and secondderivatives.

4.3 Open-loop error measurements

In the first set of open-loop error simulations we investigated the error sensitivity to the scaling

factor s in isolation as a function of window size . The flight trajectory used for this set is

non-maneuvering and constant-velocity towards the center of the wall starting from a depth of

150 in at a speed of 1 m/ft. The set of 3 images (number 0, 12, and 24) are shown in figure 8 to

demonstrate the effect of expansion as the depth decreases from 150 to 138 to 126 m. Figure 9

shows the case of a 11 × 11 window size which is centered on the FOE. The first and fifth frames

are used for I0 and I1 respectively so that the baseline is b = 4 m. The figure shows four curves.

Three curves belong to the cost-function and its first and second derivatives as derived in the

previous section. The fourth curve shows the correction for s as calculated by the Newton's

algorithm of (20), that is, the third component of --{V2d[)((k)]} -1VJ[X(k)]. The four graphs

in each figure are scaled as necessary for convenient presentation. Figure 10 and figure 11 only

differ from figure 9 by the window size as indicated in their titles. Figures 12 and 13 represent

contraction--as opposed to expansion--and they serve to verify symmetry in comparison with

figures 10 and 11 respectively.

The following observations are noteworthy.

.

.

,

The absolute values of all four variables increase monotonically with the window size. The

reason is that, since the free variable is an expansion factor, it causes each pixel of the

window to shift in linear proportional to its distance from the center of the window. Thus,

the larger the window, the larger are the shift errors experienced by its pixels.

The values of the cost-function and its first and second derivatives roughly agree; this

is not obvious because each derivative is obtained directly from the corresponding image

derivatives. Low-pass-filtering of the image derivatives and the fact that we deal with

discrete pixel values and have to resort to interpolation, can account for the numerical

disparities.

The actual value of s, to be denoted s,, is shown by the vertical bars in all figures. It

is noticed that, in all 5 cases it falls closer to the minima of the cost-functions than to

the zero crossings of the first derivatives. We do not have a satisfactory explanation for

this behavior except to assume that these are noise-like inaccuracies resulting from the

quantization and interpolation operations; they clearly diminish as the window becomes

larger. It warrants commenting here that it is the zero crossing of the derivative which
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Figure 8: Frames0, 12,and 24 of simulated textured wall seenwhile flying forward.
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matters and not the minimum of the cost-function becausethat is wherethe closed-loop

systemwould convergeto.

4. The secondderivativeshowsa sharpslopechangeat s = 1; the first derivative and the cost-

function itself show corresponding behavior. The reason for that is explained by analyzing

our interpolation method as shown in figure 14 for a simple one-dimensional case. The

black dot represents the center point, (,2,,5), of one of the I0 pixels that got shifted--as a

result of expansion by some factor s > 1--to its new location in image 11. The rectangle

centered on the dot represents the original I0 pixel. This new location is shifted by 6u

with respect to where it would fall if s equaled unity. Let us take the gray-level of this

particular I0 pixel as unity with all its neighbors being zeroes. This pixel will cause the

gray-levels of image 11 to become

G0=0; al=(1-6u); G2=6u (35)

In order to generate the error curves, we sweep the value of s over some range around

s = 1. The lower rectangle in the figure represents the location of the corresponding swept

pixel for some s > 1 (denoted by s,) which is different from the actual sa. This swept

pixel is shown shifted by 6s. Interpolating for the current value of s = s,, we have

Ix(fi, C;)=G,(1-6s)+G26s=(1-6u)(!-6s)+6u6s=1-6s-6u+26u6s (36)

When s sweeps through values less than unity, i.e., s, < 1, we have

i,(G i,) = Gx(l_ l & [) + Go [ 6s [- G,(1- l ,Ss [) = (1- 6u)(1-1,Ss [) , (37)

which is always less than the corresponding result for a positive 6s.

We thus conclude that, for an expansion, when the actual s is larger than 1, sweeping s,

over values of s, > 1 always results in Ii(fi, '_) larger than those resulting from symmetrical

(around s = 1) values of s° < 1. This effect becomes more pronounced as the window

size increases because the window pixels are, on the average, farther from its center and

they experience larger 6u shifts. When the actual s is smaller than 1, we see the opposite

behavior as exemplified by figures 12 and 13. In these, the actual s is sa = 146/150 =

0.9733. It is important to realize that, since the closed-loop algorithm performs around sa

and not around s = 1, it is not affected by the above phenomenon.

5. The curves of ds give the calculated correction for the case where the error occurs (through

sweeping) in s alone. In such a case, the correction part of equation (20) simplifies to

ds- dJ/ds (38)
d2J/ds 2

It can be seen from the figures that ds approximately agrees with this equation. Also, the

discontinuities in the first _nd second derivatives at s - 1 cancel each other in (38) so that

the ds graphs do not show any discontinuity.
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Figure 15: Frames O, 4, and 8 of simulated textured wall as seen while rolling with no lateral

motion.

258



25O

2OO

150

100

5O

0

-50

-100

-1.50

-200
-0.18

Cost and its sensitivity to rotation

Vvttical bar marks Cor_ct rotation i :: /_

• i ....... .-" .... _ .... i ......... i -

.<::......... i.................................................................... ! ................................................. i...............

i i i i i i _ i-0.16 -0.14 -0.12 -0.1 -0.08 -0 06 -0.04 -0.02 0

rotation, theta [tad]

Figure 16: Sensitivity of the cost-function and its derivatives to rotation (11 × 11 window).

-20O

-40O

-6OO
-0.18

Coe_ amdits semitivity to rotation
800 ........

I ran, tow_ 21,.2! :: _ _ L

i ..............';............................'................+....................../-4..............

2*J (soLid)

;];. O.l*dJ/dt (dashed) i•...../,,..k'" _ ....i _ . i -ilO00*di(daslldot)i

i ...... O.Ol*d2J/_^2 (++++)
/. - ./'"

........... ,,:-.i ..._,e.: ........................................................................................ _ ............... ! ................

• ° i,'"

/ o-"

•p'" i
-0.16 -0.14 -0.12 -0.1 -0 08 -0 06 -0.04 -0 02 0

roumtm, tlma [rad]

Figure 17: Sensitivity of the cost-function and its derivatives to rotation (21 × 21 window).

259



2000 ¸

1500

I000

.500

-.500

-I000

-1.500
-0.18

Costmd itssensitivitytol_tatioll

.................... ..........i!!i-!!ii

.................. "" ':2._(,o_) i

.... _" .' .- ,... / . iO.| "dJ/dt:(dashed)..4OOO.dtO:lashdot): :

...................._............................................................. J).Ol d2Jldl. 2.(_) ............................

i _ i i i , J i

-0.16 -0.14 -0.12 .0.1 -0.08 -0.06 .0.04 -0.02 0

mtmion, theta [tad]

Figure 18: Sensitivity of the cost-function and its derivatives to rotation (41 x 41 window).

Cost md its sensitivily tomention
800

widow _ 21x21 _ ' "

0 ...............

=o....._i:i::::_'_.::_' oo,._,,,^__°_==='_,_"

::..'Y
' i , , = , i _ i

"60_.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

mtmion, theaa [rid]

Figure 19: Sensitivity of the cost-function and its derivatives to rotation, 21 x 21 window,

positive rotation.

260



In the next set of error measurements we investigated the error sensitivity to rotation angle

0 in isolation as a function of window sizel For this set the camera does not travel laterally; it

only rolls at -0.02 rad/fr while pointing towards the center of the wall from a constant depth

of 150 m. The set of 3 images (number 0, 4, and 8) are shown in figure 15 to demonstrate the

effect of rotation. Figure 16 shows the case of a 11 × 11 window size which is centered on the

FOE. Figures 17 and 18 correspond to windows of size 21 and 41 respectively. The first and

sixth frames are used for I0 and I1 respectively so that the total roll used in generating the first

3 figures is of -0.1 rad. Figure 19 shows a roll in the opposite direction for a symmetry check.

The same four curves as before axe shown in all figures.

The following observations can be made.

1. The absolute values of all four variables increase monotonically with the window size. The

reason here is the same that applied to the scaling-only cases. The larger the window the

larger the shifts experienced by pixels which are farther from the window center.

2. The values of the cost-function and its first and second derivatives roughly agree as for

the s curves.

3. The actual value of 0 is shown by the vertical bars in the figures. It is noticed that the

bars fall close to the minima of the cost-functions and also to the zero crossings of the first

derivatives. The larger the window, the more accurate these results are.

4. There are no marked discontinuities as found in the s curves because the reason that

caused it there does not apply here.

5. The curves of dO give the calculated correction for the case where the error occurs (through

sweeping) in 0 alone. In such a case equation (20) simplifies to

dO- dg/dO (39)
d2J/dO 2

In the figures dO approximately agrees with this equation.

In the next set of error measurements we investigated the error sensitivity to image-plane

shifts, a, in isolation as a function of window size. For this set the camera is stationary except

that it is panning at 0.0005 rad/f while pointing towards the center of the wall from a constant

depth of 150 m. Images numbers 0 and 4 axe used for I0 and I1 respectively. The panned images

are not shown because they look quite indistinguishable--being shifted only by about a pixel.

Figure 20 shows the case of a 21 × 21-size window (top) and 41 × 41-size window (bottom) when

both are centered on the FOE. The following observations can be made.

1. As opposed to the previous cases, where s or 0 served to generate the errors, here there is

very little sensitivity to the window size because the shifts are equal for all pixels within

the window of any size.
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2. The actual value of a is marked by the vertical bars in all figures. These bars fall close to

the minima of the cost-functions and also to the zero crossings of the first derivatives. As

before, the larger the window, the more accurate these results are.

3. The second-derivative discontinuities at the integer pixel shifts can be explained by argu-

ments similar to those used in the case of the s curves.

4. The curves of da give the calculated correction for the case where the error occurs (through

sweeping) in a (or b) alone. In such a case, the correction part of equation (20) simplifies

to

da- dJ/da (40)
d2J/da 2

In the figures, da approximately agrees with this equation.

5. Figure 21 shows the behavior of the cost-function curve for large shifts--where it becomes

highly non-lineax. The Newton's solution loses much of its value at such large errors.

However, convergence is still possible inside the error region defined by the nearest zero-

crossing of the first derivative on either side of the zero-error point (+4 pixels here). Inside

this region the correction still shows the right sign.
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4.4 Closed-loop performance

In this subsection we summarize the results of closed-loop runs. These runs are divided into

four groups. The first three groups parallel the open-loop cases of forward-flying, rolling, and

panning (yaw). In the fourth run there are maneuvers in all variables so we could test the

most general case. Within each group there are two kinds of parameters. One parameter is the

window size, and the other is the location of the window with respect to the FOE.

In each run the errors are corrected using the Newton's method for six iterations. Theo-

retically, Newton's method should "converge" in one shot for any ideal parabolic cost-function.

We allow for discrepancies from the ideal by (1) iterating on the solution more than once, (2)

factoring the corrections by an experimental factor of 0.75 to prevent overshoots, and then, (3)

bounding _Ss by +0.03, _58 by 4-0.03 tad, and _Sa, 6b by 4-0.75 pixels.

Each of the graphical results for all runs include five curves to show the convergence of

the cost-function, J, and the four parameters: s, 0, a, and b. In addition, there are four bars

(arbitrarily located between iteration number 4 and 5) whose ordinates show the ground-truth

values of the four parameters for ready visual comparison. The bars are marked by the parameter

symbols.
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Figure 22: Convergence for forward flying and no maneuvers at the FOE (21 x 21 window).

Let us start with the results for forward-flying with no maneuvers. The initial depth is 150

m and the velocity is 1 m/fr towards the center of the wall. The transformation parameters

are calculated at the time of frame number 4 by comparing it to frame number 0 (skipping the
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Figure 24: Convergence for forward flying and no maneuvers at the FOE (41 x 41 window).
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Figure 25: Convergence for forward flying and no maneuvers at (20,20) from the FOE (41 x 41

window).

intermediate frames). These runs are intended to demonstrate expansion alone for a window

centered on the FOE, and expansion-plus-shift for a window centered on the point (20,20) with

respect to the FOE. The following observations can be made:

1. The cost-function and all parameters practically converge in two iterations. When no

parameter correction hits its bounds, convergence is achieved in a single iteration.

2. The accuracies--especially for s--improve noticeably as the window size doubles (4 times

the window area), but they are still very good for the 21 x 21-size window. For example,

from figure 22, the correct expansion (indicated by the s bar) is 150/146=1.0274, which

corresponds to 146 frames-to-collision, whereas the converged value is s = 1.0296 which

corresponds to 135 frames-to-collision.

3. The converged shifts for the (20,20) point practically show no error. This is especially

impressive because these shifts are small----only (0.548,0.548) pixels.

Next, we present the results for roll-only flying without any forward or lateral motion. The

depth is constant at 150 m. The transformation parameters are calculated at the time of frame

number 2 by comparing it with frame number 0. the roll-angle difference is 0.04 rad between

these two frames. In these runs we demonstrate rotation alone for a window centered on the

FOE, and rotation-plus-shift for a window centered on the point (20,20) with respect to the

FOE. The following observations can be made:
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Figure 26: Convergence for roll-only maneuver at the FOE (21 × 21 window).
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Figure 27: Convergence for roll-only maneuver at (20,20) from the FOE (21 x 21 window).
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Figure 28: Convergence for roll-only maneuver at the FOE (41 x 41 window).

Convetgen_ o f ta't_ & patamet_

'_,,_ : .............-......:......_.............-............. i:............./i i _: i

0 ""...................... " .... _'_:-::".":v'::;:::.'.':.2.:'2"J"'.'; '-'2J-7-'_:_./7-.[ ................... _4._:.'7"'2_2,:27",'-'.

_.,........\_,_:._'i_.............................................i........................_........................._.......................
-1 ...................._..........................i...........................i........................_......................i.......................

-1.5 4_ ..... :: )h,-_ ....

2t , :, _ ; i
0 1 2 3 4 5 6

lttm_on tmmbet

Figure 29: Convergence for roll-only maneuver at (20,20) from the FOE (41 x 41 window).
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1. As before, the system practically converge within two iterations.

2. Although the cost-function--especially in figure 26--does not converge as close to zero as

in all other case, the parameters still converge accurately to their respective values.

3. The accuracies improve noticeably as the window size doubles. From figure 24 and fig-

ure 25, 0 virtually has zero error, while its error increases to 3.6% for the 21 × 21 window.

4. The expansion shows a transient for the (20,20) point, but it settles to zero after 2 itera-

tions.

5. The converged shifts at the (20,20) point are remarkably close to the correct ones of

(0.8,0.8) pixels.

1.5

0.5

-0.5

-1.5
0

Convergence of error & parameters

1 2 3 4 5 6

Iteration number

Figure 30: Convergence for yaw-only maneuver at the FOE (21 × 21 window).

Next, we present the results for yaw-only flying with no forward or lateral motion. The

depth is constant at 150 m. The transformation parameters axe calculated at the time of frame

number 4 by comparing it with frame number 0; the yaw-angle difference is 0.002 rad. We

translate this yaw angle by using the fact that, in our Flight/Vision simulation, the camera's

FOV is taken as 10 degrees, and it corresponds with an image of size 128 × 128. This means that

the expected shift is 6u = 1.467 pixels. Thus, in these runs, we demonstrate 6u-shift atone for

a window centered on the FOE or on the point (26,26) with respect to the FOE. The following

observations can be made:
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Figure 31: Convergence for yaw-only maneuver at (26,26) from the FOE (41 x 41 window).

1. Irrespective of the window size, or the location of the image-point with respect to the

FOE, all converged parameters are close to being error free.

2. The expansion and rotation show transients which decay to zero after two iterations.

Lastly, we present the results for a general maneuver where the velocity is 1 m/s (starting

from 150 m depth), pitch and yaw rates axe 0.0005 rad/s each, and the roll-rate is 0.02 rad/s.

The transformation parameters are calculated at the time of frame number 2 in figures 32, 33,

and 35, and at frame number 4 in figure 34 by comparison with frame number 0. The following

observations can be made:

1. The system converges within two iterations.

2. Generally, the accuracies improve with the window size.

3. The accuracy of s is around 6% for the FOE point--irrespective of the window size (21 to

61)--and it drops to 16°£ for the (20,20) point.

Summarizing the simulation results, we can conclude that the basic idea and algorithm

are solid and perform very well. Although these simulations were done in apparently noise-free

situation, they do get affected by the noise inherent in the pixel quantization.
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Figure 32: Convergence for general maneuvers at the FOE (21 x 21 window, 2-frames difference).
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Figure 33: Convergence for general maneuvers at (20,20) from the FOE (21 x 21 window, 2-

frames difference).
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Figure 34: Convergence for general maneuvers at (20,20) from the FOE (21 x 21 window, 4-

frames difference).
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Figure 35: Convergence for general maneuvers at the FOE (61 x 61 window, 2-frames difference).
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5 INCREASING THE TRIANGULATION BASE-

LINE

In this section we use the above algorithm as the core on which a farther layer is to be built

with the intention of increasing the accuracy and robustness of the practical algorithm. The

implicit assumption here is that the flight trajectory is basically non-maneuvering, or, in other

words, it is the maneuvers which will determine the maximum usable triangulation baseline.

5.1 The capture zone

Normalized Correlation peak vs. _hifl

!

i ; ; :.,oi i io.8........ !............!......................i.........._ _...............i...............i..............

\
06 0605

0.5............:=...........i..............i..............i............_........i...............i..............!............i...........

i o., ................... los............ _............ .......

0.2 ..............;.............;................ii........;..,.:................i..............i...............i.............i..............:_.............

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Sh_/window- wid',h

Figure 36: Average normalized correlation peak vs. shift, Delta in image-width fraction.

We have touched on the question of convergence in regard to figure 21. In that figure the "capture

zone" is of +4 pixels--meaning that, as long as the error is within this zone, it always has the

correct sign to drive it towards the stable solution. Thus, convergence is assured inside this

zone, although its width is not usually known---especially when more than a single parameter is

involved. It is possible, however, to estimate some lower bounds on the capture zone for each one

of the four parameters. Estimating the width of the capture zone is based on the bandwidth or

correlation width of the images. For that, we used A = 1.5 pixels in conjunction with figures 5,

6, 36, and 37. What it means is that image-plane locations 1.5 pixels apart have gray-levels

correlated with a correlation coefficient of exp{-0.50} = 0.606 (see (16).
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Figure 37: Average peak-to-sidelobe-ratio vs. shift, Delta in image-width fraction.

To estimate the capture zone, we arbitrarily assume that a PSR=7.5 is acceptable to provide

a high enough probability of detecting the correct correlation peak and a low enough probability

of false alarm (locking onto a wrong peak). This figure is equivalent to 15 dB in power ratios.

Let us assume that the window size is 21 × 21; then A of 1.5 pixels is _ 0.07 of the window-size.

From the corresponding graph in figure 37 we read that a PSR=7.5 is achieved for shifts less

than 0.063 of the window size, i.e., 4-1.32 pixels. Repeating this exercise for A = 2 would result

in a smaller capture zone of only 0.97 pixels.

A word about figures 36 and 37 is now in place. Figure 36 shows that the correlation peak

drops slowly with the shift when A is large--as expected from (16). However figure 37 shows

that the higher the A, the higher the PSR's initial value is, and the sharper its drop. This

result is attributed to the fact that, when A is large, the effective number of independent image

areas (objects) decreases. That has no effect on the mean correlation peak but it increases

the sidelobes variance. The sidelobes variance of the cross-correlation, C(r_, r,), is given by

equation (A19) of [311,

varIC(r_,r.)} = L -2 f+_f+_ g(u,v)R(u,v)n(fi, fi)dudv +

L -_ f+:f+: g(u,v)R(u- v,,,v- v,,)n(u + r,,,v + v,)dudv,
(41)

w here

(1-lu/LI)(1-IvlLI),g(u,,) = 0
(u,v) e[-L,LI×[-L,L]

otherwise ,
(42)
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is a triangular window that weighsthe integrand, L 2 is the window area used for normalization,

and (/t, fi) are the transformed (u, v) of (10). Far from the crosscorrelation peak, only the first

term of (41) prevails, and that is what we used for constructing the above figures.

To estimate the capture zone for the expansion factor, s, and the rotation, 0, we refer back

to figure 5. For the same case L//k = 14, and we see from the figure that this is achieved with

d = 0.148 which is equivalent to 8.5 ° of rotation or s = 1.148 of expansion. Overall, we have

shown that the capture zone is quite wide, and there is some optimal window size that can be

chosen for any given correlation width. Images from real scenes are highly non-stationary in the

sense that A might be small for one part of the image and large for another. However it can

never be smaller than the PSF which is why we used/k = 1.5 as a PSF-width estimate.

5.2 The iterative algorithm

In the iterative algorithm we start with frames which are close enough in time to ensure that

the errors in the four parameters fall inside the worst-case capture zone. Let us say that we

initially use frame-0 and frame-l, so the frame separation is one. The Newton's equations are

iterated upon until the error converges. The converged parameters are then used to predict the

initial values for a larger frame separation, say, between frame-0 and frame-4 (notice that the

first frame of the pair is fixed here). The same is now repeated for this new frame separation.

Thus, there are two nested iteration loops; the inner one iterates on the Newton's equations

until convergence is achieved for some fixed frame separation; the outer loop iterates through

increased frame separation. The algorithm can be summarized by the following pseudo code.

frame_separation = 1 ;

frame_O = O;

frame_l = frame_O + frame_separation;

while(frame < last_frame) {

while(error has not converged) {

solve Newton's eqs. to update

a, b, s, theta;

>

if(final error is low)

increase frame separation;

frame_l = frame_O + frame_separation;

save last parameter values;

predict initial parameter values for new frame separation;

else _ declare previous-iteration results as final; }
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When running in batch for some fixed number of frames, the outer iteration loop must stop

when the frame separation cannot be increased any more. Another condition to stop is that the

converged results of the last frame-separation are not satisfactory, as judged by some criteria.

The prediction of initial parameter values for the next (larger) frame separation is calculated

from the converged parameters of the previous frame separation using the projection equations

(31). Let us project an object of length I onto the image plane so that its projection is defined

as unity. After decreasing the depth from Zo to zl, the projection changes to sl. For a frame

separation of tl, that can be written as

fl fl
1 =-- ; Sl =--; zl=zo-Vztl, (43)

Zo gl

from which
Zo slVztl

sl - ; z0 - (44)
Zo- Vztl sl - 1

Rewriting the last equation for some s2, t2 instead off or sl, tl, and solving for s2, we get

sit1
s2 = (45)

t2-sl(t2-h)

This is how the current expansion estimate (for the current frame separation) is used to

predict the expansion estimate for a larger frame separation, t2. The other three parameters are

predicted based on linear extrapolation, so that

a2 = alt2/t_; b2 = blt2/tl; 07 = 81t2/t_ (46)

After the algorithm stops, (44) is used to calculate the current best estimate of the initial depth

z0 based on the last pair of s,, ti which corresponds to the largest triangulation baseline that

yielded convergence.

5.3 Performance of the iterative algorithm

First we ran the iterative algorithm on our simulated imagery, and then on some real imagery.

Let us start with a typical run on the simulated imagery. It is a non-maneuvering, forward-

flying case with velocity of 2 m/s. The first frame pair is made up of frame-0 and frame-2. The

window of size 21 × 21 is initially centered on pixel (74,74) which is 10 pixels away from the

FOE (which is at (64,64)) in u and v. There are 40 frames in the set. The following screen

output reports progress in the estimation of the initial depth of 150 m. Each table-like block

of numbers reports the convergence of the inner loop for the current frame separation. The

inner-loop iteration number is k and the error is denoted by err.

276



Opened forward_flying frame 0

Opened forward_flying frame 2

k,a,b,s,theta err = 0

k,a,b,s,theta err = 1

k,a,b,s,theta err = 2

k,a,b,s,theta err = 3

k,a,b,s,theta err = 4

k,a,b,s,theta err = 5

k,a,b,s,theta err = 6

k,a,b,s,theta err = 7

k,a,b,s,theta err = 8

k,a,b,s,theta err = 9

0.000000 0.000000 1.000000 0.000000 267.672333

0.440236 0.406381 1.030000 -0.005372 141.133240

0 236247 0.248784 1.021997 0.000912

0 293832 0.275524 1.020823 -0.000823

0 278676 0.270192 1.020453 -0.000340

0 283285 0.271448 1.020556 -0.000496

0 281893 0.271135 1.020525 -0.000446

0 282312 0.271216 1.020533 -0.000462

0.282187 0.271194 1.020531 -0.000457

0.282224 0.271201 1.020531 -0.000458

k,a,b,s,theta err = 10 0.282213 0.271199 1.020531 -0.000458

79.217903

83.259949

82.172791

82.425667

82.349678

82.372147

82.365257

82.367386

82.366638

Current estimate of initial depth = 198.825650

Opened forward_flying frame 5

k,a,b,s,theta err = 0 0.705533 0 677997 1.052959 -0.001145 74.528183

k,a,b,s,theta err = 1 0.708271 0 690493 1.069563 -0.000779 55.280674

k,a,b,s,theta err = 2 0.712015 0 685594 1.065833 -0.000990 55.973583

k,a,b,s,theta err = 3 0.710209 0 685661 1.066386 -0.000896 55.718666

k,a,b,s,theta err = 4 0.710757 0 685674 1.066294 -0.000920 55.761593

k,a,b,s,theta err = 5 0.710619 0 685689 1.066310 -0.000915 55.755265

k,a,b,s,theta err = 6 0.710652 0.685670 1.066307 -0.000916 55.754974

k,a,b,s,theta err = 7 0.710644 0.685671 1.066508 -0.000916 55.754597

Current estimate of initial depth = 160.812401

Opened forward_flying frame 10

k,a,b,s,theta err = 0 1.421288 1.371342 1.142033 -0.001831 73.417000

k,a,b,s,theta err = I 1.565485 1.555250 1 153044 0.000626 28.408524

k,a,b,s,theta err = 2 1.531177 1.529034 1 151938 -0.000007 27.785374

k,a,b,s,theta err = 3 1.540096 1.533858 1 152508

k,a,b,s,theta err = 4 1.537325 1.532594 1 152262

k,a,b,s,theta err = 5 1.538222 1.532950 1 152353

k,a,b,s,theta err = 6 1.537919 1.532843 1 152320

k,a,b,s,theta err = 7 1.538024 1.532876 1 152332

k,a,b,s,theta err = 8 1.537986 1.552865 I 152328

0.000302 27.518284

0.000157 27.572006

0.000221 27.549091

0.000194 27.556232

0.000205 27.555633

0.000200 27.554605
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k,a,b,s,theta err = 9 1.538000 1.532869 1.152329 0.000202 27.554232

Current estimate of initial depth = 151.294483

Opened forward_flying frame 16

k,a,b,s,theta err = 0 2.460800 2.452590 1

k,a,b,s,theta err = 1 2.784964 2.769740 1

k,a,b,s,theta err = 2 2.683191 2.691992 1

k,a,b,s,theta err = 3 2.703243 2.702418 1

k,a,b,s,theta err = 4 2.697401 2.699811 1

k,a,b,s,theta err = 5 2.698910 2.700440 1

k,a,b,s,theta err = 6 2.698529 2.700282 1

k,a,b0s,theta err = 7 2.698624 2.700322 1

k,a,b,s,theta err = 8 2.698600 2.700312 1

k,a,b,s,theta err = 9 2.698606 2.700315 1

.268244 0.000323 122.735245

.269186 -0.001672 24.976557

.270512 0.000779 17.046618

.268434 0.000409 16.436787

.268962 0.000566 16.535572

.268833 0.000553 16.499908

.268864 0.000553 16.508102

.268857 0.000553 16.506060

.268859 0.000553 16.506615

.268858 0.000553 16.506516

Current estimate of initial depth = 151.021904

Opened forward_flying frame 22

k,a,b,s,theta err = 0 3.710583 3.712933 1.411131 0.000760 268.700623

k,a,b,s,theta err = 1 4.293034 4.237146 1.417225 -0.000956 30.175304

k,a,b,s,theta err = 2 4.125841 4.143232 1.415531 -0.001404 8.244106

k,a,b,s,theta err = 3 4.139481 4.153663 1.415352 -0.000450 8.060862

k,a,b,s,theta err = 4 4.137228 4.152442 1.415281 -0.000596 8.049483

k,a,b,s,theta err = 5 4.137534 4.152607 1.415305 -0.000568 8.049872

k,a,b,s,theta err = 6 4.137496 4.152581 1.415299 -0.000574 8.049752

Current estimate of initial depth = 149.947839

Opened forward_flying frame 28

k,a,b,s,theta err =

k,a,b,s,theta err =

k,a,b,s,theta err =

k,a,b,s,theta err =

k,a,b,s,theta err =

k,a,b,s,theta err =

k,a,b,s,theta err =

0 5 265904

1 6 015904

2 5 956887

3 5 961518

4 5 960965

5 5 961043

6 5 961033

5.285103 1

6.035103 1

5.961528 1

5.965533 1

5.965257 1

5.965267 1

5.965264 1

.596075 -0.000731 522.403687

•601842 -0.001724 25.510233

•600377 0.000404 18.381941

.599840 0.000178 18.452717

.599872 0.000228 18.443174

•599865 0.000224 18.443617

.599866 0.000224 18.443457
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Figure 38: Depth convergence with iterations (increased triangulation baseline).

Current estimate of initial depth : 149.354233

Opened forward_flying frame 34

k,a,b,s,theta err :

k,a,b,s,theta err :

k,a,b,s,the%a err :

k,a,b,s,theta err =

k,a,b,s,theta err =

k,a,b,s,theta err =

k,a,b,s,theta err =

k,a,b,s,theta err =

0 7.238398 7.243535 1.835851 0.000272 938.172974

1 7.988398 7.993535 1.834242 -0.009328 124.417595

2 8.284004 8.308021 1.832178 -0.000755 30.430639

3 8.285615 8.306216 1.832047 -0.000582 30.408218

4 8.285925 8.305839 1.831991 -0.000556 30.394806

5 8.285982 8.305765 1.831979 -0.000549 30.392294

6 8.285994 8.305748 1.831976 -0.000548 30.391562

7 8.285998 8.305745 1.831976 -0.000548 30.391680

Current estimate of initial depth = 149.733168

Final estimate of initial depth = 149.733168

There are a few interesting observations to make:

1. Frame-0 is always used as the basis for comparison --initially with frame-2, then with

frames 5, 10, 16, 22, 28, and 34. The depth estimate improves with the frame separation

as shown in figure 38

2. Notice that the first line of each block represents the initial conditions for a, b, s, and 0.

In the first block, these are 0.0, 0.0, 1.0, 0.0 because we do not know any better. The

last line of each block represents the converged values which are used to predict the initiaA

conditions for the next block.

3. The error in each block starts from some value and usually drops and stabilizes. If the

initial guess falls far from the minimum but inside the capture zone, then the error starts



from a large value and drops sharply. If the initial guesshappenedto be good, then the
errors are already "converged"; this is exemplified by the secondblock belongingto the
frame pair (0,5).

4. The final result wasobtained from the image pair (0,34)--which does not necessarily repre-

sent the maximum frame separation possible. We have thus effectively used a triangulation

baseline of 68 m which constitutes a substantial fraction of the initial depth of 150 m. This

is the reason why we regard this algorithm as a track-before-detect one. In this example,

the accuracy of the final result is 0.178 percent.

We have run the algorithm on various other simulated cases--at and around the FOE. Generally,

the depth accuracies are better than 2%, and they improve as we get closer to the FOE.

Figure 39: The first "newline" image.

We now present real-data cases from our imagery set "newline'; the first image of this

sequence is shown in figure 39. The scene is that of a runway with a few surveyed trucks. The

images are of size 512 × 512, the speed is 30.17 ft/s, and the frame rate 30 per second. There

are only minor maneuvers in this flight. The convergence curve is shown in figure 40 for the

280



f f

.,,/_ --L_ .... L I i I

"_Fl..... - -_.... !-

_*I'--\--i---t........-_---t.........
I \ ! ! _ i !
l \ l i r I i ,

_----_-t----+_-,----i----_
] \l t I t

a ...... r.... I- -- _-.....
t

3 | 4 5 6

_m

Figure 40: Depth convergence with iterations for "newline" leftmost truck.

leftmost truck which is at depth of 405 ft. The frame pairs used are: frame-0 with 2, 5, 10, 16,

22, 28, 34, and 40. Each iteration uses the next-larger frame separation. The converged depth

resulting from the algorithm is 368, so that the accuracy here is of 9%. For the farther truck on

i-
t-

l

we

Figure 41: Depth convergence with iterations for "newline" leftmost truck.

the left, the algorithm ran ten iterations (last frame pair was (0,52)) and converged on a depth

of 583 ft, where the ground-truth depth is 655 ft--accuracy of 11%. The convergence curve is

shown in figure 41. The objects in these two examples show very little texture, and they are

also small and far (TTC _ 10 s) which may explain why the algorithm does not perform that

well. Still the results can be considered satisfactory.

6 ERROR ANALYSIS

In this section we analyze the depth error as achieved by combining the depth results from

lateral translation and those from expansion. We have already discussed the accuracy of the

depth derived from lateral translation which is given by (18) where a_ is given by figure 6.
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The accuracy of the depth derived from expansion is determined by that of the expansion

factor. When all the (four) parameters have converged, and thus compensated for, the case be-

comes that of nominally zero distortion and shifts. Therefore we have to examine the sensitivity

of the correlation peak value to residual errors in the expansion factor alone. This accuracy is

determined by the additive noise at the peak (denoted by CN(0, 0)). Notice that, so far, we have

neglected this noise because it is practically much smaller than the sidelobe noise which results

from the randomness of the image itself. The additive noise at the peak is given by equation

(19) of [31] which is similar to (41) but with r_ = r_ = 0 and one of the correlation functions

replaced by that of the noise, Rlv(u, v), that is,

= _-oo _-oo g(u,v)R(u,v)Rjv(u,v)dudv (47)

i
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Figure 42: Loss in correlation peak value due to residual errors in scaling factor.

For simplicity we use equal R(r_, r_) and RN(r_, r_) as given by (16). The question is now:

what is the change in the expansion factor which causes a change in the correlation peak equal

to the standard deviation, X/vat{CN(0,0)}. The correlation peak, as given by (5) of [31], is

plotted in figure 42. For the same example used earlier, where L/A = 14, and assuming an

image signal-to-noise ratio of a 100, it is found from (47) that X/var{CN(0,0)) = 0.000177. In

the figure, the point having L/A = 14 and an ordinate of -0.177 falls between the graphs of

s = 0.003 and s = 0.004. Interpolating between these, results in s = 0.00325.

had

so that

The relationship between the s error and the depth error is derived from (44), where we

sVzAt
z0 - , (48)

.s-1

dz0 ds ds
- _ (49)

Zo s(s - 1) s - 1
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Wecan thus expressthe expansion-baseddepth standard deviation as

O's ZO
o. - (5o1

s--1

= 0.00325, (50) yieldsFor s = 1.0274, as was used to create figure 10 (z0 = 150 m), and with a_

a, = 17.8 m which is close to the simulation results.

The depth information contained in the expansion factor, s, and that contained in the shifts

,(a, b), is likely to be correlated because it is the same additive noise that causes inaccuracies in

both measurements. Developing the necessary covariance matrix that relates their errors is not

an easy task, and we thus forego that job here. However, we can still write down the combining

algorithm for the initial-depth unbiased estimate, z_0, as (see [33])

go = kz, + (1 - k )zt , (51)

where z, is the expansion-based depth measurement and zt the translation- (or shifts-) based

2 of z, and 2 of zt, and by their correlation coefficientone. k is determined by the variances, a, azt

p, as
2

k = °'zt - POrztO'zs (52)

az,2 + a2zt - 2pazta_s '

and the minimum error--using this k--is then

2 2 '
= o.Nta.,( 1 _ p2)E{e } a E{(zo- =

CrNs+ o'2zt -- 2paztaz.
(53)

We know that, close to the FOE, aNo << ant so that, irrespective of p, k =,, 1, and vice

versa. This means that, even if we use some guessed p of, say, 0.5 at this point, we will still

be combining the measurements in a consistent way; that is the accurate measurement will

contribute more than the inaccurate one--although, without knowing p, the proportions will

not be optimal.

7 CONCLUDING REMARKS

In this paper we developed a new expansion-based passive-ranging algorithm that can com-

plement the existing shift-based algorithm in the image areas near the FOE. We presented

simulation and real-data results and compared them with the analysis results.

In the future we intend to develop this algorithm in two directions. One is to make it process

an image sequence in real time and produce range maps. The other is to use it to segment an

image into objects.
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