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Abstract

Pilot aiding to improve safety and reduce pilot workload
to detect obstacles and plan obstacle-free flight paths dur-
ing low-altitude helicopter flight is desirable. Computer
vision techniques provide an attractive method of obstacle
detection and range estimation for objects within a large
field of view ahead of the helicopter. Previous rescarch
has met considerable success by using an image sequence
from a single moving camera in solving this problem. The
wajor limitations of single camera approaches are that no
range information can be obtained near the instantancons
dircetion of motion or in the absence of motion. These
linitations can be overcome through the nse of multiple
cameras. This paper presents a hybrid motion/sterco al-
gorithm which allows range refinement throngh recursive
range extimation while avoiding loss of range information
in the direction of travel. A feature-based approach is
nsed to track objects between image frames. Aun extended
Kalman filter combines knowledge of the camera motion
and measurements of a feature’s image location to recur-
sively estimate the feature’s range and to predict its lo-
cation in future images. Performance of the algorithm
will be illustrated nsing an image sequence. motion in-
formation, and independent range measurements from a
low-altitude helicopter flight experiment.

1 Introduction

To increase safety and improve mission effectiveness dur-
ing low-altitude helicopter flight, NASA Ames Rescarch
Center in conjunction with the U.S. Army has been de-
veloping antomation tools to assist pilots i detecting
obstacles and planning obstacle-free flight paths. The
most challenging mode of low-altitude flight is Nap-of-
the-Farth (NOE) flight, characterized by lateral maneu-
vers below tree-top level in order to conceal the helicopter
hehind available terrain or man-made objects.  An on-
line sensor to gather obstacle information is regnired for
pilot-aiding, during NOI flight because existing a preori
terrain data such as digital maps (1) suffer from inaccura-
cies larger than the vehicle's altitnde, (2) have insufficient
resolution to show obstacles sach as trees and buildings,
and (3) cannot easily account for changes in the terrain
such as the growth of new trees or the construction of new
buildings. Vision sensors are desirable for obtaining the
online obstacle information due to their passive nature
and relatively large field ol view.

The classification of obstacles is unnecessary for ac-
complishing the obstacie avoidance task because it is suf-

ficient to avoid all obstacles regardless of identity. [t is
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therefore reqnired only that the vision system provide po-
sition information for cach object in the field of view. In
practice the vision system attempts to compute a range
map depicting the distance to the terrain for each point
in the field of view.

A common approach to this problem makes use of
an image sequence collected from a single moving cam-
era and in some cases the camera’s motion information.
Smiall regions of interest {called features) are identified in
an image, the feature's location is tracked in successive
images, and a recursive filter s nsed to estimate range
and/for camera motion [1, 2. 3}. The authors have previ-
ously developed an algorithm of this class and evaluated

its performance with helicopter flight data as described in
[1. 5, 6]. A major limitation of this approach is that range
information cannot be obtained along the instantanecous
dircetion of motion and, in practice, reliable range infor-
mmation canuwot be obtained even for objects lving near
the direction of motion. This limitation can be overcome
through the use of multiple cameras mounted so their
baseline is roughly normal to the motion direction (7, 8.
A hybrid motion/sterco algorithm is presented in this pa-
per which allows range refinement throngh recursive range
estimation while avoiding loss of range information in the
direction of travel.

The extended Kalman filter provides a convenient
stricture for the implementation of motion/sterco range
estimation. The Kalman filter allows for range refinement
through recursive estimation.  Furthermore, the range
prediction generated during the time update serves to
constrain the search area required to locate the feature
in future imagoes.

A low-altitude helicopter flight experiment has been
conducted to obtain realistic data for evaluating the mo-
tion/sterco algorithm.  The flight experiment provides
video imagery from two monachrome video cameras, heli-
copter motion data, and camera calibration information.
True range measirements have been obtained using a
Jaser tracker to allow evaluation of the algorithm’s per-
formance.

The purpose of this paper is to describe a Kalman fil-
ter based motion /sterco ranging algorithm and to present
preliminary results obtained using data from a helicopter
fight experiment. Section 2 will discuss the Kalman filter
implementation of the motion/stereo ranging algorithm.
Scetion 3 will describe the helicopter flight experiment
and calibration of the camera system. In Section 4. pre-
liminary results obtained using the experimentat data and
the motion/stereo algorithm will be presented. Finally,
Section 5 will complete the paper with a brief discussion

and concluding remarks.
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2 Kalman Filter

The proposed algorithm nses a feature based method in
which the image is treated as a collection of tokens or fea-
tures and information {such as range) is computed only
for the individual features rather than for every point in
the image.  Currently, features are defined to be 11 x
11 square pixel image patches which exhibit a sufficiently
high intensity variance. A featore’s location in another
image 15 determined by correlation of the feature’s inten-
sity surface with the intensity surface of the other image.
The correlation surface s then interpolated in the region
near its peak. and the location of the resulting peak is
taken to be the feature’s location to subpixel aceuracy.
Features can be born with cach new image, and old fea-
tures die when they fail to be tracked between images.
Farther discnssion of feature detection and tracking can
be fonnd in Ref. [4, 9],

lu our implementation, a Kalman fitter is associated
with cach feature for determining the location of the ob-
Jeet which gives rise to the featnre. The motion /stereo
Kalman filter is an extension of the monocutar range esti-
mation Walnan filter devived inan carlier work [10]. Both
filters rely on the assumptions that all objects of interest
are stationary in an FEarth-fixed frame. and that measure-
ments of the camera’s lincar and angular velocitios are
avaitlable (from an inertial navigation svstem. for exam-
ple). The resulting state cquation is an expression of the

Coriohs equation:
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where

0 e

[w.]=| w. 0 -

g w 0
No=[r . g ‘.\]I i~ the object position relative to the cam-
eraws = e cwyew ] s the camera’s angular velocity,
and Vs the Hnear velocity, The measurement cquation

accounting for perspective projection of the object onto
the image plane s given below
; - o /
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plane and s the camera’s foeal length.

is the location of the object on the
Image Here
the camera axes have been defined with the rooaxis pass-
mg through the focal point and perpendicular to the sen-
sor array, and yo and o n the direction of the rows and
cohimuns of the sensor array, respectively. The extended
Walman blter is formed by lincarizing AN ) about the ear-

rent state estimate vielding
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To extend the Nalman lilter characterization for two cam-
vras we need additional measurement cquations relating
70 = [u'. 01", the image location of the same object in
the second camera. Lot X' be the object position rela-
tive to the sccond camera. The relationship between ihe
canteras s of the form

N = RN+ 7T
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where fis a 3 x 3 matrix and T is a vector represent-
ing the relative rotation and translation, respectively, be-
tween the two cameras’ coordinate systems and centers of
reference. Then the measurement 7' can be written as
follows

2= WX = [fylf s falaT

Ax above, we can derive a linearized measurement equa-
tion of the following form

n'x
AR(N")OX

Z =
"

I

The Kalman hlter can be computed for the system us
ing the state equation (1) and the composite linearized

measurement
I .
AR

Thus. the Kalman filter measurement npdate may be per-

Zeo=

formed based on the obstacle location in any imaging sen-
sor provided 1he location and orientation of the sensor are
known relative to the reference sensor system. The stereo
system has [our measurements and the same state equa-
tions as the monocular system.  Based npon the given
state and measurement equations, the full discrete time
extended Kalman filter equations can be derived in the
This method can be extended in the
sanie way to any number of cameras.

st 2ll|(|}| l'(l manner.

The range estimation process begins when a feature
isidentified in the image from one camera. A stereo match
is determined by searching an area in the image from the
sccond camera which is constrained by a priori values of
the minnnum and maximum range of interest. The result-
ing stereo range estimate s used to initialize the Kalman
filter. The initial value of the Kalman filter’s state co-
variance matrix may also be estimated or chosen « priore.
The range estimate is then propagated forward in time by
the Walman filter, and the predicted state vector and state
covariaince matrix give rise to a search area to be traversed
in locating the feature in the next image [9]. The Kalman
fitter uses the matched feature locations to perform its
As the Kalman filter converges.
the value of the state covariance matrix decreases leading

measurement update,

to smaller search areas and reduced computational effort.,
Given images from the two cameras over time, a variety
of tracking schemes are possible. The currently imple-
mented approach is to match cach feature (1) from the
feft camera at the current thine to the left camera at the
next time and (2) from the left camera at the current time
to the right camera at the next time. The above proce-
dhre s repeated for each feature until such time as the
feature fails to be matched.

3 Flight Experiment

The helicopter flight experiment conducted to provide raw
data and independent truth measurements for develop-
ment and validation of passive ranging algorithms is il-
lustrated e Figure 1. The resulting data set includes
video imagery from two monochrome video cameras, he-
licopter motion data from an onboard inertial navigation
system (INS) troe range measurements obtained with a
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Figure 1: Flight Experiment Overview

Figure 2: Camera Installation

laser tracker. and experimentally determined camera cal-
ibration paramecters which characterize the geonetry and
imaging properties of the camera system.

The test Cohu 6410
monochronie interlaced video cameras mounted | meter
apart on a horizontal bar attached to the nose of a Ull-60

apparatus  consists of two

Blackhawk helicopter as shown in Figure 2. The cameras
have a focal length of 6 mm, a ficll of view of 38 x 45 de-
erees and they are electronically shuttered with a 1/1000
see exposure time to reduce image sinear doe to camera
motion.  The video imagery from each camera is time-
tageed nsing a Datum 9550 video time inserter unit and
recarded nsing a Sony VO-4600 U-matic SP* video recorder
onboard the helicopter. The images are acquired at the
vate of 30 frames/see per camera. The helicopter’s motion
state is measnred by a Litton LN93 inertial navigation
system (INS) and also recorded onboard the helicopter.
A laser tracker measures the helicopter’s position during
fHight and also measures the location of the (stationary)
obstacles of interest, Synchronization of the various data
sotrees is accomplished by recording a master time index
along with each element of the data set.

digitizing  the
6
levels of gray. In addition, INS-derived motion data and

Post-flight  processing  consists of

recorded video data into 512 x 512 pixel images with 2

laser-tracker-derived position data are processed together
nsing a forward-backward fiftering techuigue {11} to en-
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sure kinematic consistency and to identify and correct for
any sensor bias or scale factor errors. The resulting un-
certainty in the motion data is approximately + 2 ft in
position, £ 0.01 deg in orientation, I 0.25 ft/sec in ve-
locity, and £ 0.3 deg/sec in angular velocity.  Filtered
motion data is desirable for development of the ranging
algorithm, but in an operational system the motion state
would be acquired directly from the INS.

The camera calibration parameters which character-
ize the camera system consist of two sets: the external
parameters which include the geometrical description of
the camera system, and the internal parameters which de-
scribe the imaging properties of the cameras. The exter-
nal parameters allow the motion state measurements to be
transformed from the helicopter body axes (as defined by
the INS) to the sensor axis system (as defined by the cam-
eras) for input to the Kalman filter. Similarly, using the
external parameters, range estimates can be transformed
back from scusor axes to body axes where they are more
useful to the pilots or to an obstacle-avoidance gudance
system. In addition, the external parameters provide the
cameras’ relative orientation, which is required for the
stereo component of the ranging algorithm. The internal
parameters define the mapping from points in the sen-
sor axis system to pixel row and column coordinates in
a digitized image. Internal parameters include the focal
tength, the pixel location where the x . axis passes through
the image planc, the effective dimensions of the pixels in-
cluding any stretching cifects cansed by the recording and
digitization process, and any distortion effects. There are
a total of six external parameters and 5 internal param-
eters {assuming no distortion) for each camera, We have
not yet found it necessary to model distortion terms with
the ranging algorithms we have tested.

A separate experiment has been performed to deter-
mine the calibration parameters. Camera calibration has
not received much attention in the literature but plays a
central role in the performance of operational vision sys-
tem. Some treatment of calibration techniques can be
found in [12, 13, 14]. The approach taken here has been
10 (1} place a grid of target points within the cameras’
field of view, (2} measure the locations of target points
relative to the helicopter body axes, (3} determine the
pixel locations of the farget points in a digitized image
taken with the camera, and (4) estimate the camera cali-
bration parameters refating the two sets of measurements
by solving a nonlinear cost minimization problem.

The calibration procedure uses a grid of horizontal
and vertical lines, the 99 intersections of which serve as
the calibration targets. A surveyor’s transit is used to de-
termine the target locations in the helicopter body axis
system with an accuracy of approximately £ 3 mm. Five
target points are measurcd directly, from which the re-
maining target locations can be interpolated. The entire
grid assembly is stationed at four different distances in
front of the cameras ranging between vight and 22 feet.

From a digitized image, the target pixel locations are
found with subpixel accuracy by compnting the interscc-
tions of curves fit to cach of the grid lines. First, the in-
tensity distribution perpendicular to one of the grid lines
at some station is examined. The intensity peak, which
is determined by locally fitting the intensity distribution
with a parabola, defines one point on the grid line. The



process is repeated for several stations along cach grid
line, and the resulting points are fit with a curve (a line or
a higher-order polynomial depending on the significance
of image distortion).  "The curves™ intersections are de-
termined mathematically to give the target locations to
snbpixel accuracy.

In the final step, the parameters are estimated by
minimizing a cost function which is a <um of squared or-
rors terms. T'wo general approaches were taken: estimat-
g the parameters for each camera separately and esti-
mating the parameters for both cameras sintnttaneonsly.
[ the first case the cost function s the sum of errors
in distance between the measured target pixel locations
and the estimated pixel locations based on the measured
body-axis locations and postulated parameter valunes, In
a variation of this cost function. penalty terms were in-
cluded for violation of Tsai’s vadial alignment constraint
[12]. This calibration procedure resulted in RMS errors
ol approximately 0.4 pixel. However. usine the resulting
calibration parameters with the measured target pixel lo-
cations to estimate the corresponding body axix locations
nsing stereo leads to large evrors. By ostimating the cal-
ibration parameters for both cameras stmuthtanconsly the
stereo ranging errors can be reduced throngh augmenta-
tiow of the cost function. Several variations of the cost
function were implemented, but little difference was ol
served in the result so long as terms were included  for
crrors in the location of target points in the image planc
and m the body axes. Weighting an crror of 0.5 pixel in
the image plane equivalently with a 0.25 inch ervor in the
body axes leads 10 an RMS crror of approximately 0.5
pixel and 0.5 inch, respectively.

4 Results

The image sequence used in gencrating the resilis Liven
in this seetion was taken with the helicoptor following a
nominalty straight llight path at a velocity of about 25
knots (12 f1/5¢¢) 20 feet above a runway, Six tricks were
positioned along the runway 16 serve as obstacles, tnitially
ranging between 500 and 1100 feet from the helicopter,

Fignre 3 shows the first and last images in a sequence of

IS0 frames taken with the left camera. Bis noted that in
spite of the nominally straight line flight path, the FOIR
(depicted by crosshairs in Figure 33 travels 30 pixels in
both the horizontal and vertical directions throughout the
nage sequence,

The mage sequence is processed  with the mo-
fion/sterco algorithm of Section 2 giving the range es-
timates to approximately 300 features in cach image, To
evaluate the algorithms performance, the average of the
range estimates for all features belonging to cach truck is
computed. These preliminary results for the five closest
trucks are given in Table 1 along with the t(rne range at
180,
corresponding results obtained with the carlier monocu-
The

preliminary results show that the initial range estimates

lrame nnmbers [0 60, 120, and For reference, the

lar ranging algorithm are also shown in Table 1.
ANE 8

are significantly better using the stereo method as ex-
pected since the trucks are both far away and close to
the PO Over time, the additional measnrements lead
to improved range estimates and the results of both
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Table 10 Preliminary Range Results

[ Range, Tt ]
Truck | Frame [[Trath | Monocular | Motion/Stereo |

A T IRE 171 189
6 399 405 431

120 316 335 350

180 | 235 227 247

B 1 G614 270 785
60 525 568 h8T

120 143 462 163

180 363 361 341

[@ | T4 267 739
60 650 5149 498

120 568 606 565

| K() 487 514 486
N 1 860 138 N/A
60 770 618 H94

120 (88 653 799

B 180 | 609 534 671
D | 991 122 955
GO 8499 995 813

120 Ki7T 594 698

180 736 863 722

methods converge toward the true range. Note that the
motion/stereo case sometimes produces less acenrate re-
sults, potentially due to the following characteristics of
the currently-implemented algorithm. Range estimates
arc not always available using the stereo motion method.
In fact there are only half as many features resulting
from the motion/sterco method as from the monocular
method, indicating fewer (though hopefully stronger) fea-
ture matches. Nometimes even apparently strong features
may fail to match in both cameras which on further exam-
ination is attributed to small-scale differences between the
images from the two cameras due to image noise and the
differences in the cameras themselves. A modification of
the tracking scheme to matel only between images taken
with the same camera or between images taken at the
same time may lead to better matching. Even if match-
ing cannot be improved, the motion/sterco results could
be enhanced by allowing range cstimates to be propa-
gated based on monocular motion only rather than killing
the feature in the cevent that a sterco match cannot be
made.  In this way, the motion/sterco algorithm grace-
fully degrades 1o the monocular algorithm when stereo
matches cannot he obtained, but stereo information is
utilized when it s avatlable.

5 Concluding Remarks

A hybrid motion/stereo range estimation algorithm has
been described which combines the strengths of sterco
methods (i.c.
Jects near the FOE) and monocular methods (i.e.. recur-

ranging without motion and ranging to ob-

sive range refinement). This motion/stereo algorithm has
been implemented as a Kalman filter. A helicopter flight
experiment. was conducted to colleet data for validation
of the algorithm. Preliminary results indicate that initial
motion/stereo range estimates are an improvement over
mitial monocular estimates and that both methods give
range results which generally approach the true range over
time. 1t was noted that some improvement in the robust-
ness of the motion/stereo algorithm could be obtained by



allowing it to degrade to

Figure 3:

the monocular algorithin for a

piven feature when a stereo match cannot be established.

In the futnre we plan to continue refinement of the mo-

vion/sterco algorithm and 1o test it with flight sequences

having curvilinear motion and images of natural terrain.
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