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Methods are needed for evaluating the quality of Augmented Visual Displays

(AVID). Computational quality metrics will help summarize, interpolate, and

extrapolate the results of human performance tests with displays. The FLM Vision

group at NASA Ames has been developing computational models of visual processing

and using them to develop computational metrics for similar problems, for example,

1) Display modeling systems use metrics for comparing proposed displays (Martin,

Ahumada, and Larimer, 1992; Lubin, 1993).

2) Halftoning optimizing methods use metrics to evaluate the difference between the

halftone and the original (Mulligan and Ahumada, 1992).

3) Image compression methods minimize the predicted visibility of compression
artifacts (Peterson, Ahumada, and Watson, 1993; Watson, 1993).

The visual discrimination models take as input two arbitrary images A and B,

and compute an estimate of the probability that a human observer will report that A is
different from B. If A is an image that one desires to display and B is the actual

displayed image, such an estimate can be regarded as an image quality metric reflecting

how well B approximates A (Watson, 1983; Nielsen, Watson, and Ahumada, 1985).

There are additional complexities associated with the problem of evaluating the

quality of radar and IR enhanced displays for AVID tasks.

One important problem is the question of whether intruding obstacles are

detectable in such displays. Although the discrimination model can handle detection

situations by making B the original image A plus the intrusion, this detection model

makes the inappropriate assumption that the observer knows where the intrusion will

be. Effects of signal uncertainty as studied by Pelli (1985), for example, need to be added

to our models.

A pilot needs to make his decisions rapidly. Our models need to predict not just

the probability of a correct decision, but the probability of a correct decision by the time
the decision needs to be made. That is, the models need to predict latency as well as

accuracy. Luce and Green have generated models for auditory detection latencies.

Similar models are needed for visual detection.

Most image quality models are designed for static imagery. Watson has been

developing a general spatial-temporal vision model to optimize video compression

techniques. These models need to be adapted and calibrated for AVID applications.
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Radar images especially are characterized by high levels of noise. Although

detection and discrimination models have been developed for noisy images (Legge,

Kersten, and Burgess, 1987; Barrett, 1992), their features have not been integrated into
our current models.

Models have been developed within our group to predict a pilot's 3D heading

estimate from a video display (Perrone, 1992; Heeger and Jepson, 1992). These models

can be developed into quality measures relating to the pilot's ability to gather dynamic

orientation information from such displays.
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