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Executive Summary

In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In parucu-

lar, We concentrated on design and implementation of a new distributed real-time system called R-.S'hell.

The design objective of R-Shell is to provide computing support for space programs that havo large.

complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the con-

cept of scheduling agents, which reside in the application run-time environment, and are customized to

provide just those resource management functions which are needed by the specific application. With this

approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality,

while still not burdening application programmers with heavy responsibility for resource management.

In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe

a preliminary prototype of R-Shell system.

1 Overview of the Approach

Real-time systems are generally designed and implemented using an entirely static approach. The system

designers identify all of the functions which the system needs to perform, and create a set of tasks to

perform these functions. The system designers design and implement these tasks, and then use several

test runs to determine the worst-case timing requirements of each task. Then they create a statically

predetermined schedule, using algorithms such as the cyclic executive, which ensures that every task will

meet its deadline. The system is then tested exhaustively to minimize the possibility" of tinting faults

during its operation.

While this approach has been widely, used in the past. there are inherent problems ih lryiug to

apply it to the increasingly' complex systems of toda.v, such as the Data Manao_ement Svslem of Space,

Station Freedom. Exhaustive testing is extrem,,lv exponsive, a_/d ovon theu only a limit,,d itlll()l[lll (If

confidence is obtained. Predicting tinting requiremen1_ ofla.,k- becomes il,cr,,asiugly difticu]_ _vh_,i_ _t._,

tasks become inore comf)lex, and when there is increased interaclion among ta>ks, in the f()rm ()f int,,r-lask

communication and synchronization requirements.
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Furthermore,applicationssuchasspacesystemshaveanothermajor requirement:that of handling

unexpected dynamic situations. There axe many sources of dynamic behavior, including emergency situ-

ations, mode changes, variations in workload, and faults. In space and other fife-critical applications, the

handling of emergencies and faults is crucial. Conventionally, the OS is a configuration-dependent entity,

which coordinates the allocation of resources, and handles situations such as faults using general tech-

niques which are independent of application semantics but may be dependent on resource characteristics.

such as process migration, message rerouting, and replication of remote procedure calls. The application

handles resource-related situations using techniques which may exploit application semantics, but arc' of-

ten independent of the system configuration, such as fault recovery procedures, handling memory and file

allocation errors, and version selection for imprecise computation. Thus. this static functional separation

of the O.S. and application makes efficient handling of emergencies and faults difficult.

Our R-Shell approach represents an integration of the functionality of real-time applications and of

the OS, with respect to resource management. This inte_ation is accomplished bv the use of .,chad,ling

agents. Scheduling agents reside in the application run-time environment, and are customized to provide

just those resource management functions which are needed bv the specific application. The scheduling

agent implementation is customized to the particular OS and system configuration, thus oxp]oiling 05-

level knowledge. With this approach, we avoid the need for a sophisticated OS which provi&,_ a varielv

of generalized functionality, while still not burdening application programmers with heavv re<pon_ibilitv

for resource management. Thus, instead of locking in the roles of the OS and the application, scheduling

agents allow application designers to select the kind of behavior they want.

The focal point of our R-Shell project is to address the following issues which are critical in distributed

real-time systems:

Flexible scheduling strategy: With our R-Shell approach, the scheduling policies of the system

can be modified easily by changing the scheduling agent functionality. For example, different

programming languages can provide different schedufing agents to reflect their design philosophy.

It is also easier to utilize application semantics to make more intelligent scheduling decisions. For

example, imprecise computation techniques are easily embedded in the scheduling agent.

Fully distributed scheduling: A centralized scheduler becomes a single point of failure for sys-

tems. In our R-Shell system, the scheduling is distributed to all individual nodes and applications.

if an application is itself distributed, each separate component has its own scheduling agent, and

treats its need for data from other components as resource needs. This approach also makes it

much easier and more cost-effective for applications to adapt and migrate between different execu-

tion platforms.

Use of object-oriented model: The R-Shell approach is truly object-oriented, in that each

application has its own scheduling agent, and thus makes its own scheduling decisions. If the OS

acts a centralized scheduler, the resource correctness of each application object would depend on the

OS and on the resource needs of other applications, which is not in keeping with the object-ori_nl_d

philosophy that each object should be a self-contained entity that can be desio:ned, imt)l,q_,q_l,,d

and verified independently.

With these features, the R-Shell approach caI_ addr<_> the problem, crucial 1o st)ac(' prt,eranl- <ucl_

as emergencies, mode changes, variations in work ]oad-. fault-tolerance, etc.

With the support under this grant from NASA Ame_. we have designed and implemented a proTotypo

of R-Shell. The purpose of prototyping is to te_t the feasibility of R-Shell concepts and lo provide

information for a full scale design and implementation planned in the near future. The currenl t)r,_,typ, ,



has been implemented on a UNIX-based system. We would like to stress, however, the principles reflected

and the lessons learned in the prototyping are applicable to other environments as well. In the rest of

the report, we will summarize design and implementation issues in the prototyping. We concentrate on

scheduling agents and resource managers because they are the key components in R-Shell.

2 Scheduling Agents

Scheduling agents interface between the application and operating system. They are constructed to fit

the needs of particular applications. The operating system capabilities they utilize and the functionality

which they provide to the application can both be determined by applications designers based on the

implementation platform and application requirements. However, the scheduling agents are not a part

of the application. They are part of the run-time support system provided by the software dovel_q}mont
environment.

Scheduling agents use the technique of multiple version selection in order to implelnent impr_,.i.,_

computation to deal with dynamic situations. If a particular resource set is not available for an applicat ion.

then an alternate version is chosen for execution. Imprecise computation enables applications to produce

approximate results when the time or other resources available are insufficient for producing the _,ri_inal

desired result [12, 14]. Using imprecise computation, we can design application._ which provide pr-dict,bl,,
performance degradation.

2.1 The Approach

ApplicationProgram

RequirementsFile _-_

Translator

Program }__w/SA

rshell.h /
R-Shell

Libraries

C Compiler .__

Real-Time

Application

Figure 1: R-Shell Compilation Process

In the prototype, an application is an arbitrary C program that is logically correct. A scheduling agent
is realized by inserting some code into the source code of an application program which calls routines

in R-Shell run-time libraries. This is being done by a translator which reads application requirements

from a file and then inserts the code for the scheduling agent into the application. The re¢luire, m,,nts

file may be generated by the programmer or by an application analvzer. The requirements fil_, incl_tdo_

programmer directives to allow the programmer full control of the schedulin,_ agent. Th,, n,.lifi,,d

application program with an embedded scheduling agent is then compiled with II-%hell librari,> _'¢,[_i_.]_c,,

a real-time application. See Figure 1 for a diagram of the compilation process.

The resulting real-time application ca:-. bo viowed as Figur, _ 2. Sche,!_llin_ ,,_,onts i_t,,rf,., di_,,llv

with applications as code that is inserted into each application, and rh,,tL c(,mpiled wi_h _h_. 1¢-5h-II

libraries. Scheduling agents then communicate with the R-Shell libraries via procedure call-, a- d,'-crih,,d
in Section 2.3.
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Figure 2: Sample Real-Time Application

2.2 Requirements Files

The requirements file provides several pieces of information to the scheduling agent tha_ aid in schedul-

ing the application and its procedures. Resource requirements and progranmler direc,ives haw, b,,en

incorporated into the requirements file. Resources include CPU time. memory and nel_ork bandwidth.

The programmer can also specify the quality of a function's result, the relative priority of a function

and the deadline for each procedure. An alternate version of a procedure and an exception handler can

be specified by the programmer to implement either multiple version selection and resource exception

handling. Table 1 describes each field in the requirements file.

Table 1: Requirements File Specification

Field Name Description

CPU Amount of CPU time (in seconds) required

Memory Amount of memory (in kilobytes) required

Network Amount of network bandwidth (in kilobytes) required

Quality Percent quality of the function's output

Priority Application level priority based on a relative scale

Deadline Application level deadline: the units are in seconds

Alternate Alternate function to call if a resource request

Version guarantee cannot be obtained

Exception Exception handler to call when a resource exception occurs
Handler

The requirements file was constructed at the procedure level. Application schedulin_ is a('hi,vod by

placing resource requirements on the program's main() function.

A sample requirements file is shown in Figure 3. Consider the row thai Sl)ocifio- f,_li('Tiolt main. I1

indicates that the function needs 40 units of time and 100k byte na(,morv to t)o ox,,(_11,,(t. I ?:,, (i,_:_!i,5 ,)l*h,,

result produced by main will be 100_, i.e. not an approximation. Th(, relative t)ri.ri_y i- _ ;,lt,] doadliTlo

is 200 units of time. If main fails to obtain a rr,sourc_, e_;_r'anlo,, lh,' >(']l,,d,llill_ a,_,,,i.r ,_i[I :,_,'lill_l *,_

schedule the alternate version, air_main. [f eithor of th(,se functions oAen(,ra_e a resour(_, cxc(,t)li()ti, lhoil

the user defined exception handler recover() is called. -Yh,, grid_resolve and laalfxnatrix f_ll_(li,m>



#
# Function

#
la],31

aLlt_main
Erid_resolve; 100 ; 32.m ; --- ;
half matrix ; 74 ; 32*m ; --- ;

Alternate Exception
CPU MEN IET QUAL PRI DED Version Handler

; 40 ; 100 ; --- ; 100 ; 8 ; 200 ; alt_main ; recover()

; 25 ; 160 ; --- ; 80 ; 5 ; 200 ; ; recover()
100 ; 2 ; 40 ; half_matrix(x/2) ;

50 ; 3 ; 40 ; ; resource_EH()

Figure 3: Sample Requirements File

are both aperiodic• The alternate version for grid_resolve is half_matrix(m/2). Note the parameter

m/2 in the function call. This allows the alternate version to work with a different set of parameters than

the main function. The memory requirements for these two functions are 32.m. Thus, the programmer

is allowed to specify parametric (dynamic) resource requirements as C-style expressions.

The exception handler field is used to specify a routine to be called when a resource exception occurs.

The default exception handler (proc_abort()) aborts the currently executing procedure.

2.3 R-Shell API

The apphcation programmer interface (API) is a set of routines that R-Shell provides for scheduling

agents. These routines are listed in Table 2.

Table 2: API for R-Shell Applications

Function Name Description

initialize_SA Called from main() to initialize interprocess

communication with Resource Manager

resource_request Called from each procedure with a scheduling agent

to request resource guarantees

save_environment Used by scheduling agent for procedure level scheduhng

to save currently executing environment

request_exception General purpose exception handler called when

resource guarantee cannot be obtained

notify_RM Used to notify Resource Manager of procedure completion

abort_procedure Used to abort the currently executing procedure

proc_abort Default exception handler called when a

resource exception occurs

3 Resource Managers

3.1 The Approach

In the prototype, there is a general resource manager which acts as an interfa('(_ b(,i wecn scl_e(lulin_ agenl s

and individual resource managers. Individual resources inclu(to ('Pl litnv, mel/lorv and n(,tw(>rk ban(t-



Message Process
Type ID

Message Type :

Process ID

CPU T'rne

Start Time

Deadline

Memory

Memory Used :

Bandwidth

Priority

Level

J CPU 1Time TimeStartr Deadlk'_e r Mem°ry
Priority Level

0 -> Resource request for an ape_xfic task.
1 -> Resource request for a peri(x:lic task.
2 -> Application/procedure terminalJon notification; all other fields empty.

Helps the resource managers associate resource requests with processes;
also used for allocating and contTollingresources.

CPU lime required (in seconds).

Relative start lime for the appiicatJoWprocedure (in seconds).

Relative deadline for the applicatJoWprocedure (in seconds).

Memory required(in kbytes).

Total memory already being used by the process; tracked by the scheduling agent.

Network bandwidth required (in kbytes).

Application's priority.

Level of the currently executing procedure within the application.

Figure 4: Resource Request Message Format

width. Resource managers use cooperative resource management in order to provide resource guarantees.

Scheduling agents interact with the general resource manager, which then forwards the resource

requests to individual resource managers to obtain guarantees of application resource requirements. Re-

source managers can also provide information about resource availability, and accept messages from

applications specifying information about resource usage, such as preferences for certain resources.

The approach to the dynamic scheduling problem has been that of scheduling at task arrival time.

As each task arrives, the system attempts to guarantee it. If the guarantee cannot be provided, one

possibility is that the invoker of the task can attempt to guarantee an alternate version with different

resource requirements, if one exists. This technique is called multiple version selection.

Resource managers use the concept of delayed guarantees when resources are scheduled. If a resource

request cannot be granted, then the application is notified immediately so that it can take corrective

action. If the request can be scheduled, then the application is notified only when it should start execut-

ing. This eliminates an extra acknowledgment message from going over the network and simplifies the

scheduling agent.

Resource managers send exception notification messages to applications if a guarantee cannot be

satisfied due to faults, or preemption of resources by higher priority tasks. Under these circumstances, if

the resource manager cannot maintain the guarantee, it sends a message to the application notifying it

of the resource exception. These messages enable applications to perform exception handling.

3.2 Implementation

When the resource manager starts execu!ing, it initializes its data s{ruclul'oS for scheduli]l?..;, sets u 1) lira

I.'DP socket for inter-process communica.'i,m, am] s,,ts up ,i_tl;:! hal_,llor> !_) halldlo aaxllchr,,n,_u, I"0.

The resource manager then waits for resc, ur(',, r-qua,sis t_ drriw, aI_d di>t>at('h,> _lle>_' jub>.

The format of the resource request message is shown in Figur,, .l. \\h_n a rosourc- ]'_,(lUOSt arrixo_.



it will be entered into a buffer space for the dispatcher to handle at a later time. This design was used

to keep the resource manager from missing messages. The dispatcher attempts to schedule jobs in the
request buffer.

The resource manager communicates with the scheduling agent using messages. If a job cannot be

scheduled, it is sent a REJECT message immediately; otherwise it will be sent a GOAHEADmessage at the

appropriate start time. This method of delayed guarantees is an implied guarantee while the application

is blocking on the resource request. This technique provides a graceful way to preempt applications before

they have started by simply sending a REJECT message to the application. Message types that are sent

from the resource manager to scheduling agents are listed in Table 3.

Once an application starts executing, it will execute until completion. The resource manager will
sleep until either the currently executing procedure completes on its own or exceeds its deadline. In

the latter case, the resource manager sends an ABORT message to the application thereby generating a
resource exception.

Table 3: R-Shell Message Protocol

Message Description

GOAHEAD Delayed guarantee. Procedure may start execution

REJECT Resource request cannot be guaranteed

ABORT Abort procedure level

4 The Translator

4.1 The Approach

In the prototype, the R-Shell translator is implemented as a finite state machine that parses a C program
and performs the following actions:

1. Reads the requirements file into memory (rfp. c).

2. Inserts #include "rshell.h" as the first line of code in the application program.

3. Begins parsing the application code.

The translator parses C code by looking for function declarations. The translator ignores comments

and string constants. The translator keeps track of braces { } to determine the level of code nesting.

Functions can only be declared on level 0. The translator looks for function names by looking for an
alpha-numeric string followed by a (. The translator saves the parameter list for the function call to be
used later.

When procedure main() is detected, the function call initialize_RM() is inserted as the first line

of code in the procedure. This call initializes communicatio:_ wit}. the r,,s(,urc,, manager. \VD,n a

procedure declaration is detected, the requirements file is searched _o see if lhal procedure has any

resource requirements. If a ma_ch is found, then code is genera_,'d t,, issue a resource requesl a> an if

statement. The application code is indented and placed in a n.v, lev__i of brac_>.

Return statements are then searched for to conver'( them to return_ .-Tatemenls so that proc_,dure

completion notification code can be generated, return_ is a macro d.fined in rshell .h tha_ noTifi,,s lhe



resource manager only al'ter the return value is computed. The final closing brace of a function is also

searched for to insert a notify_l_() procedure call.

4.2 Language Constructs

This section describes the code that is inserted by the translator. The C code implements the language

construct for various purposes it is designed for. This section also describes return values for functions

with scheduling agents.

4.2.1 Multiple Version Selection

if (!resource_request(

/* Resource Requirements */ )) {
return alternate_version();

} else {

/* Application code */
}

In order to implement multiple version selection, if statements are inserted into source code as blocks

around application code. If the resource request fails, then an alternate version is executod, o_horwise

control flow continues to the user application.

4.2.2 Resource Exception Handling

if (!resource_request(
/* Resource Requirements */ )) {

return request_exception();
} else {

/* Application code */
}

Resource exception handling is similar to multiple version selection. If a resource request fails, then

an exception handler is cMled. There can be a chain of failed resource requests using multiple ver-

sion selection. The final version that is called is an exception handler. The default exception handler,

request_exception() returns REQUEST_EXCEPTION to the caller without executing the procedure. The

programmer may specify their own exception handler in the requirements file. Exception handlers have

no stated resource requirements, thus they are guaranteed to execute.

4.2.3 Procedure Level Scheduling

if (setjmp(save_environment()
->environment)) {

return proc_abort("main");
} else {

/* Application code */
}
notify_RM();

Once a procedure obtains a resource guarantee, th+_, sc}ledul:,l_g agenl IIIIISl ensure lhal ltl,, r,,_(lur('e

consumption does not. exceed tim stated requirements. If any requirenient, such as ('P{" time or iii_lllorv

used, is exceeded, then the procedure is aborted.



In order to abort a procedure, the scheduling agent must save the environment of the application

just prior to executing the application code. The Unix system calls scrimp() and longjmp() are used

to achieve this. The initial call to setjmp() saves the current environment and returns 0. This causes

the if statement to fail and starts executing the application code. A subsequent call to longjmp() with

the proper environment will cause control to return to the if statement and cause setjmp() to return
1, thus aborting the procedure.

The save_environment() procedure maintains a linked list of environments so that procedures may

be aborted at any level. When a procedure finishes, it calls notify_RM() to restore the appropriate

environment and to notify the resource manager that the procedure has completed.

The default exception handler called when an application generates an exception at run-time is

proc_abort (). This exception handler simply prints an abort message and returns the value RESOURCE_EXCEPTION

to the caller. The programmer can specify their own exception handler in the requirements file.

4.2.4 Use of asynchronous I/O to control applications

Signal handlers are used to handle asynchronous I/O. Applications receive GOAHEAD, REJECT and ABORT

messages from the resource manager. See Table 3 for a description of message types. When all application

receives an ABORTmessage, it determines which procedure level to abort to. restores the environmenl st ack,

and calls longjmp() to return to the appropriate procedure.

5 Final Remarks

In most real-time systems, the OS and the application share the responsibility for resource management.

with each having its own well-defined role in the resource management process. They act as separate

units, rather than co-operating to exploit the knowledge of each or jointly implementing the desired

functionality. In R-shell, the approach is based on the concept of scheduling agents. The scheduling

agent implementation can be customized to the particular OS and system configuration, thus exploiting
OS-level knowledge.

From our experience of a prototype R-Shell system, we conclude that this approach is useful in building

flexible, fully distributed, object-oriented real-time applications.
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