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PREFACE

The Joint University Program for Air Transportation Research is a coordinated set of
three grants sponsored by the Federal Aviation Administration and NASA Langley Research
Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640),
Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). These
research grants, which were instituted in 1971, build on the strengths of each institution. The
goals of this program are consistent with the aeronautical interests of both NASA and the FAA
in furthering the safety and efficiency of the National Airspace System. The continued
development of the National Airspace System, however, requires advanced technology from a
variety of disciplines, especially in the areas of computer science, guidance and control theory
and practice, aircraft performance, flight dynamics, and applied experimental psychology. The
Joint University Program was created to provide new methods for interdisciplinary education to
develop research workers to solve these large scale problems. Each university submits a separate
proposal yearly and is dealt with individually by FAA and NASA. At the completion of each
research task, a comprehensive and detailed report is issued for distribution to the program
participants. Typically, this is a thesis that fulfills the requirements for an advanced degree or a
report describing an undergraduate research project. Also, papers are submitted to technical
conferences and archival journals. These papers serve the Joint University Program as visibility
to national and international audiences.

To promote technical interchange among the students, periodic reviews are held at the
schools and at an FAA or NASA facility. The 1992-1993 year-end review was held at Ohio
University, Athens, Ohio, June 17-18, 1993. At these reviews the program participants, both
graduate and undergraduate, have an opportunity to present their research activities to their peers,
to professors, and to invited guests from government and industry.

This conference publication represents the twelfth in a series of yearly summaries of the
program. (The 1991-1992 summary appears in NASA CP-3193.) Most of the material is the
effort of students supported by the research grants. Four types of contributions are included in this
publication: a summary of ongoing research relevant to the Joint University Program is presented
by each principal investigator, completed works are represented by full technical papers, research
previously in the open literature (e.g., theses or journal articles) is presented in an annotated
bibliography, and status reports of ongoing research are represented by copies of presentations
with accompanying text.

Use of trade names of manufacturers in this report does not constitute an official
endorsement of such products or manufacturers, either expressed or implied, by the National
Aeronautics and Space Administration or the Federal Aviation Administration.

Frederick R. Morrell

NASA Langley Research Center
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SUMMARY OF RESEARCH ACTIVISES

1. INTRODUCTION

One completed project and two continuing research activities are under the

sponsorship of the FAA/NASA Joint University Program as the 1992-93 period ends.

There were a number of publications during the year which are referenced in this

report. A brief summary of the continuing research project is provided.

The completed project was:

, Liu, Manly, "Tracking Aircraft around a Turn with Wind Effects", MIT Flight

Transportation Laboratory Report, FTL 93-4, June 1993.

The active research projects are:

1. ASLOTS - An Interactive Adaptive System for Automated Approach Spacing of
Aircraft.

2. Alerting in Automated and Datalink Capable Cockpits.

2. REVIEW OF CONTINUING RESEARCH ACTIVITIES

2.1 ASLOTS - Interactive, Adaptive Spacing on Final Approach

This research is aimed at providing ATC controllers concerned with approach

spacing at busy airports with a decision support system which is:

1)
2)
3)

Integrated across multiple simultaneous approaches

Interactive (so that they can direct its operation)

Adaptive (it adapts continuously to the real world situation).

The ASLOTS concept was described in last year's report. The effort during 1992-93

has been aimed at creating a high fidelity ATC simulation environment called

ATCSIM. This simulation will provide realistic motion of aircraft under typical

representation of errors from various navigation, guidance, surveillance, and ground

tracking systems, as well as the time and spatial variation of winds. It has two

components: an airborne simulation for arriving and departing aircraft, and a ground

simulation of aircraft moving on the surface of the airport. A schematic of ATCSIM

functionalities is shown in Figure 1.

ATCSIM is designed using a generalized, modular software approach which can be

easily adapted to new scenarios, and thereby provide a flexible, rapid-experimentation
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tool for researchers interested in automation of ATC processes and Human Factors

issues in ATC automation. It applies distributed processing using common

workstations on a high speed local area network, and an object-oriented, modular

approach to configuring the software which allows rapid reconfiguration of the traffic

controller's console, its display formats, and its automation functions. It is written in

standard ANSI C, uses X-windows for its graphics, Ethernet with TCP/IP protocol, and

is currently in UNIX (AT&T System 5.3). This combination allows a variety of
workstations to be used. ATCSIM will accommodate several ATC controller consoles

(each with its pseudo-pilot station).

The modularity is indicated in Figure 1 where separate modules exist for

communications, navigation and guidance, surveillance and tracking, and vehicle

motion which provide realistic representation of the flight and ground paths

followed by aircraft as they are controlled. Figure 1 also indicates that various

modules for automating any or all of the various ATC processes (e.g., Conformance,

Separation, Congestion Management, Hazard Alerting, etc.) can be developed

separately. ATCSIM runs in real-time using a fixed script of arriving traffic, or can use
Traffic Generators which construct a description of randomly arriving traffic with

control over the longer term values for the mix of types, arrival rates, altitudes or

gates, etc. Once a script is created it can be used by the experimenter for a series of

tests. It is possible to "replay" any test run in fast-time, or "fast-forward" to any

situation which is interesting. Such situations can then be the starting point for real-

time experiments, and can be "doctored" to cause certain desired traffic situations to

Occur,

While the major effort in 1992-93 has been on creating ATCSIM, attention has now

been returned to implementing ASLOTS. Current work is aimed at implementing its

features (Feasible Slot Range, Auto Rearward Shift, Centerline Adaptation,

Constrained Pattern Parameters, etc.) in an environment which will allow multiple

runway approach and landings.
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2.2 Alerting in Automated and DataUnk Capable Cockpits

Over the past few years, a variety of experiments have been performed in the MIT

Advanced Cockpit Simulator in the area of weather hazard and terrain alerting. As a

result of these experiments, it was noticed that there is a common generic thread in

implementing advanced alerting systems. The focus of this research is to explore the

idea of a general theory for Advanced Hazard Alerting in future situations where

there may be a mix of airborne and ground sensors, and a reliable datalink to

exchange information quickly. It is assumed both that pilots and controllers will be

involved in detecting and resolving any deviation required by an unexpected hazard,

and that their respective roles will be well defined.

While the different types of hazards (precipitation, wind shear, terrain, traffic)

present different inputs, there are always five sequential processes in a Hazard

Avoidance process:

o

2.

3.

4.

5.

Hazard Detection and Alerting

Communication / Display of Hazard Information
Generation and Decision on Hazard Resolution

Communication of Planned Resolution Path

Execution and Monitoring of the Resolution Path

The decision on the resolution path is assumed to be the responsibility of the

captain of the aircraft. There will be "reaction" times necessary for the execution of

each process, and the need to establish detection, intervention, and resolution criteria

which are a function of hazard detection sensor performance, display capabilities, and

aircraft state and performance capabilities. It is clear that the uncertainties in hazard

detection vary with the "probe" or "lookahead" time. Various strategies for

minimizing risk must be developed which are acceptable to both pilots and

controllers. It is intended that pilot acceptance will be explored using the MIT

Advanced Cockpit.

ANNOTATED REFERENCES OF 1992 - 93 PUBLICATIONS

Liu, Manly, Tracking Aircraft around a Turn with Wind Effects, SM Thesis,

Department of Aeronautics and Astronautics, MIT, Cambridge, MA, 02139, June 1993

Currently, it is possible for ATC to use radar tracking to estimate an aircraft's current

groundspeed and direction if it is flying a straight path, but large transient errors occur

when the aircraft begins and ends a turn. The introduction of SSR Mode S datalink

will make aircraft state information (heading, turn rate, groundspeed and direction,

etc.) available for ground-based radar trackers, but it is desirable to minimize such
transmissions. The minimal state information would be the declaration that the

aircraft is no longer in a state of straight-line flight, but is currently turning. A "Turn

Signal" indicating a left or right turn can be sent whenever the aircraft maintains a

minimum bank angle for some period (e.g., 10 ° for more than 3 seconds).



In this research, two new "Turn Tracker" algorithms are devised to use the few

radar position reports during a Turn Signal episode to estimate the initial position,

groundspeed, and direction for the new straight line segment when normal radar

tracking is resumed. The algorithms were implemented in a last-time simulation

called TASIM, and compared with performance of an existing ATC tracker. The

results show a significant reduction in average and maximum deviations of

estimated values for groundspeed and direction during the turn, and a faster

convergence on good estimates of the new groundspeed and direction along the new

straight-line path after the turn.

4.2

4.3

4.4

REFERENCES TO PUBLICATIONS, 1992 - 1993

Liu, Manly, Tracking Aircraft around a Turn with Wind Effects, SM Thesis, and

Flight Transportation Laboratory Report 93-4, Flight Transportation Laboratory, MIT,

Cambridge, MA June 1993,

Hansman, R. John; Wanke, Craig; Kuchar, James; Mykitishyn, Mark; Hahn, Edward;

Midkiff, Alan, Hazard Alerting and Situational Awareness in Advanced Air

Transport Cockpits, Paper at 18th ICAS Congress, Beijing, China, September, 1992

Wanke, Craig; Hansman, R. john, A Data Fusion Algorithm for Multi-sensor

Microburst Hazard Assessment, Preprint, AIAA Atmospheric Flight Mechanics

Conference, Hilton Head, SC, August, 1992

Wanke, Craig; Hansman, R. John, Hazard Evaluation and Operational Cockpit

Display of Grand Measured Windshear Data, AIAA Journal of Aircraft, Vol 29, No. 3,

May-June, 1992

4.5 Wanke, Craig; Kuchar, Jim; Hahn, Edward; Pritchett, Amy; Hansman, R. John, A

Graphical Workstation Based Part-Task Flight Simulator for Preliminary Rapid

Evaluation of Advanced Displays, Preprint, SAE AEROTECH Conference and

Exposition, Anaheim, CA, October, 1992
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A Graphical Workstation Based Part-Task Flight Simulator for
Preliminary Rapid Evaluation of Advanced Displays

C. Wanke, J. Kuchar, E. Hahn, A. Pritchett, and R. J. Hansman
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
Cambridge. MA USA

ABSTRACT

Advances in avionics and display technology are
significantly changing the cockpit environment in current
transport aircraft. The MIT Aeronautical Systems Lab (ASL)
has developed a part-task flight simulator specifically to study
the effects of these new technologies on flight crew situational
awareness and performance. The simulator is based on a
commercially-available graphics workstation, and can be
rapidly reconfigured to meet the varying demands of
experimental studies. The simulator has been successfully
used to evaluate graphical microburst alerting displays,
electronic instrument approach plates, terrain awareness and
_erling displays, and ATC routing amendment delivery
_through digital datalinks.

INTRODUCTION

The implementation of advanced technology has
significantly changed the cockpit environment in current
"glass cockpit" aircraft. Recent developments in display
technology, on-board processing, data storage, and datalinked
communications are likely to further alter the environment in
second and third generation "glass cockpit" aircraft. It is
important that these technologies be implemented in a manner
which will enhance both the human and systems
performances, in terms of Ix)th safety and efficiency. Because
m_lny of the changes in cockpit technology center around
information management, proper design of advanced cockpit
systems requires careful consideration of the human
performance issues, particularly in the cognitive domain.

The MIT Aeronautical Systems Lab (ASL) has
developed a part-task flight simulator specifically to study
these issues. The simulator, based on a commercially-
available graphics workstation, replicates the Electronic Flight
Instrumentation System (EFIS), Flight Management Computer
(FMC), and primary autoflight systems of a modern "glass-
cockpit" aircraft such as the Boeing 757/767 or 747-400.
Topics studied using this simulator include graphical displays
for hazardous weather information, terrain awareness and

alerting displays, datalink of ATC clearance amendments, and
electronic approach plates.

The simulator provides high fidelity representations of
electronic autoflight and instrumentation systems while
remaining low-cost, rapidly reconfigurable, and portable

enough to move to alternate sites if necessary. It allows new
displays to he d,:,'eloped quickly and evaluated through flight
simulations with active airline pilots of electronic cockpit
aircraft. This paper discusses the design, advantages, and
limitations of this approach.

DESIGN OBJECTIVES AND REQUIREMENTS

The design of the MIT Advanced Cockpit Simulator
was motivated by the need for preliminary evaluation of new
cockpit information systems. The primary area of interest is
the effect of these new systems on human cognitive
performance. This area includes such issues as information
transfer efficiency, pilot decision-making performance, and
flight crew situational awareness.

To evaluate cognitive performance issues, the autoflight
systems and primary displays which affect decision-making
needed to be simulated as exactly as possible. In addition, the
need to test many different prototype displays demanded rapid
reconfigurability. These requirements were achieved by
simulating the graphical displays on a commercially-available
graphics workstation. The simulation software was written by
the researchers in modular fashion so that different displays
could be implemented by recoding or replacing the appropriate
modules.

A further requirement was simplicity. Since only
cognitive-level issues were to be evaluated, it was assumed
that all aircraft control would be performed using autoflight
systems. Therefore. the autoflight and flight management
systems needed to be simulated, but the direct flying controls
(stick, rudder, throttles, etc.) could be omitted. For this reason
no special hardware was required beyond general-purpose
computers and some simple control panels, greatly reducing
development time and simulator set-up time.

This simplicity also defines the limitations of this
approach. Experiments involving flying performance, two- or
three-man crews, or requiring a full cockpit workload situation
are not practical with this simulator. However. this part-task
approach can be useful for preliminary evaluation of candidate
displays or procedures before a fuD-mission simulation is
attempted.

Research supported by government grant.
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THE MIT ADVANCED COCKPIT SIMULATOR

OVERVIEW - As shown schematically in Figure I. the
full version of the MIT ASL Advanced Cockpit Simulator
facility utilizes three computers and several control panels to
emulate cockpit displays, autoflight systems, and Air Traffic
Control (ATC). A Silicon Graphics IRIS 4D-25G graphics
workstation is used to display the cockpit instruments (Figure
2) and compute flight dynamics. The Control Display Unit
(CDU) is emulated by an IBM-XT computer, and a Silicon
Graphics 2400T workstation is used as an Air Traffic Control
workstation (Figure 4). The portable version of the simulator
omits the ATC workstation. Pilot input through the control
panels is detected by the IBM-XT through a data acquisition
unit. All three computers exchange data through standard RS-
232 serial communication links.

The simulator's cockpit displays are based on current
"'glass-cockpit" aircraft such as the Boeing 757/"/67 and 747-
400. The IRIS screen depicts two major cockpit displays, the
Primary Flight Display (PFD) and Electronic Horizontal
Situation Indicator (EHSI). along with several secondary
displays. Additional displays can be rapidly prototyped and
added to the simulator for evaluation. The nominal flight
displays may then be rearrangedormodified to accommodate
the new displays as needed.

Airspeed, altitude, and vertical speed are indicated on
the PFD using moving tape displays similar to those found on
the B747-400. An Electronic Attitude Director Indicator
(EADI) displays the artificial horizon, ground speed, radio
altitude, and Instrument Landing System (ILS) Iocalizer and
glideslope deviations.

The EHSI is located below the PFD. as in the B757 or
767. The EHSI is the primary navigational instrument, and the
simulator version is based on the map mode used in the
B757/767. It includes informaaon such as aircraft heading,

ground track. F'MC-programmed route, nearby airports and
navaids, and wind information. Weather radar returns can also
he displayed. A control panel is provided for setting the EHSI
display range (i0 to 320 nm) and for suppressing weather
radar returns or off-track intersections, navaids, or airports.

Flap, gear. and marker beacon light displays are
provided to the left of the EHSI. Controls allow the pilot to
set the flaps and lower or raise the landing gear during the
approach. Additional controls such as a manual pressurization
valve can be added to the simulation if a side task is necessary
to increase the ambient crew workload.

A simple perspective out-the-window view is provided
as a means by which to cue the pilot that the aircraft has
descended below the cloud deck. While in instrument

conditions, the display appears gray. Below the cloud deck. a
perspective view of the airport appears.

A Head-Up Display (HUD) is also available,
implemented over the out-the-window view (Figure 3). It uses
symbology similar to that used on a commercially available
HUD from Flight Dynamics, Inc. Roll. pitch, and heading
scales as well as a flight path symbol are displayed in
perspective format. Numeric information includes barometric
altitude, airspeed, ground speed, vertical speed, and wind
information.

AUTOFLIGHT AND FLIGHT MANAGEMENT
SYSTEMS - The CDU for entry of flight path information into
the Flight Management Computer (FMC) is simulated with an
IBM-XT computer. Several screen displays, or "pages", can
he selected: The Route page to select a destination, the Legs
page to select waypoints and vertical path constraints, and the
Direct-To page to change the immediate waypoint. The CDU
is li_ed to the EHS so that active and modified routes are
displayed both textually, on the CDU. and graphically, on the
EHSI. At first, the CDU interface used a standard computer
keyboard and monochrome monitor. At this time, a replica of
the 757/767 CDU display and keyboard is being integrated
into the system to enhance realism.

roll scale I
horizon and
heading scale - ---_ AI

,o---.. ,
0.6 _ /

_2

/

¥ , ,
OI

wind vector

reference

symbol

airspeed ._ :,, barometric
_ // altltude

- 22% , \ ,45o-B
2,8Gsr \ -7oovs .

ground speed _.._______o /\_ -_O_r t

IcalIpeedpltch scale
\ _-I flighl path vector

flight path acceleratlon ---I
L_ speed error tape

Flgure 3: Head-Up Display (HUD). The HUD is overlaid on the windscreen, as seen in Figure 2.
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Non-FMC control of the aircraft is performed through
an autopilot Mode Control Panel (MCP), similar to that used
on the Boeing 757/767. A standard set of autothrottle and

autoflight modes are available, including LNAV/VNAV flight
(following FMC-progmmmed lateral and vertical flight paths)
and the various capture ("select") and hold modes for airspeed,
heading, vertical speed, and altitude. It is also possible to
engage iocalizer and glideslope capture modes and a go-
around mode for missed approaches.

AIRCRAFT DYNAMICS - The basic aircraft flight

dynamics are based on longitudinal point-mass equations of

motion in wind axes. and simple decoupled fast-order roll
angle dynamics. The aircraft data used (provided by NASA
Langley Research Center. and used in [1]) is for a Boeing 737-
100 aircraft, and includes non-linear curve fits for CL and CD

as functions of angle-of-attack, flap position, and gear
position. The multivariable inner-loop controller designed for

this model took the form of a fully-coupled proportional-plus-
integral cascade compensator and allows the aircraft to follow

airspeed, flight path angle, and heading commands from the
autoflight systems.

The autoflight systems provide outer loop control inputs

and can operate in several different modes, ranging from
simple altitude or heading holds up to full lateral and vertical

path guidance based on the FMC programmed route.
Localizer and glideslope tracking modes can be engaged for

t'mal approach. Because outer-loop controllers for the various

autoflight modes are based on approximate frequencies and

damping ratios for the Boeing 767 aircraft control system [2],

the aircraft responds like a 767 when being controlled through
the autoflight systems.

For the experiments including microburst wind shear
events, a wind model is available including both constant wind

components and simulated microburst winds from an

analytical model [31.

ATC/EXPERIMENT CONTROL WORKSTATION -

The ATC workstation (Figure 4) is used to monitor the
progress of the aircraft's flight and to issue simulated datalink

ATC clearance amendments. A mouse-based graphical user
interface provides the ability to select and deselect

navigational information,
determine the aircraft location
relative to a scenario reference

poinL and select and specify
content and format of the scripted
ATC messages. The controller

is in contact wlth the pilot

through a wireless headset, to
simulate a standard VHF radio
link. Simulated datalink

messages are transmitted from
the ATC workstation to the

simulation computer via a serial
communications link. It should

he noted that this display was not
intended to reproduce any actual

or proposed advanced ATC

workstation: it was designed only
for simulation control.

RAPID PROTOTYPING

CAPABILITIES - Commercially

available display prototyping
software was not used in order to
reduce computational overhead.

Instead, the flight displayswere
created using software written in the C programming language
with IRIS Graphics Library primitives. This method of

implementation allows flight displays to be rapidly

reconfigured or redesigned to meet the Varying demands of
experimental studies_ T_ic_, new displays may be Created
and added to the simulator in a matter of days.

Additional software was written to enable rapid creation
of object-based charts for use with Electronic Instrument
Approach Plate studies. Since a detailed object database was
not available for use in the Advanced Cockpit Simulator. a

software package was developed for the IRIS which facilitated

the flexible, rapid creation of new chart display formats [4].

The program, called Map, allows the user to interacfively
create and modify electronic charts. Information may he

grouped together in object-oriented layers which are then

selectable by the pilot when flying the simulator. AI,50, a
mouse-driven program called WxrEdit was developed to draw

simulated weather radar reflectivity returns.
Scenarios can he set up and rapidly changed via

English- language input files, which are read by the simulator
software upon startup. These files detrme the starting aircraft
position and state, pre-programmed FMC information, and

scripted events to take place during a run. Scenario files also

indicate Map and WxrEdit Ides to be loaded at start and during
the runs.

EXPERIMENTAL PROCEDURES

In a typical experimental set up, an experimenter acting
as air traffic controller is stationed at the ATC/Experimental

Control Station and is in contact with the pilot through a
simulated VHF link. The controller monitors the progress of
the flight and issues vectors and approach clearance
amendments according to a script for each scenario.

A second experimenter, acting as the Pilot Not Flying

(PNF), is seated next to the subject pilot. In most experiments,

the PNF experimenter handles ATe communications and is

available to answer any questions about the simulator that

occur during the experiment.
The cockpit is videotaped during the experiment to

12



record ATC and intra-cockpit communications and actions. In
addition, the simulator software records all flight data and
pilot control inputs for the entire experimental run.

In order to maximize the validity of the results and
minimize simulator waining requirements, the subject pool is
normally limited to professional air carrier pilots currently
qualified on autoflight aircraft.

A typical session begins with the pilot completing a
brief background questionnaire. The experiment is described
briefly, and the subject is introduced to the simuiator displays
and controls. Practice flights are flown until the pilot feels
comfortable with the control of the simulator and its displays.
Finally. the pilot is asked to fly the simulator as responsibly as
he or she would on a normal flight, and to feel free to request
different or additional vectors from ATC. should the need
arise.

When the pilot is ready to begin, the appropriate
Instrument Approach Plates and charts are issued. Airport
information (ATIS) is also given to the pilot to describe
weather conditions and other information usually received
before an approach. Scenarios typically begin 50 to 150 nm
from the destination airport with an initial route programmed
into the aircraft's FMC and displayed on the EHSI.

After the pilot reviews the charts and feels comfortable
with the situation, the simulation is started. Amendments to
the programmed route are issued by the air traffic controller
and the pilot may control the aircraft through the Mode
Control Panel or by programming the FMC through the CDU.
A typical test matrix would require that each pilot fly 9 to 12
descent-and-approach scenarios. Most experimental scenarios
are set in the terminal area when the flight crew is busiest and
handles the most information. The entire session takes three to
four hours to complete.

When possible, the independent variables in each study
arecounterbalanced to reduce learning effects. Implicit
measures of display efficacy are obtained by observing pilot
reactions to scripted events that occurred during the flight,
such as a vector into weather or a graphical microburst alert.
In addition, subjective data is obtained through interviews with
pilots both during and after the experiment.

SURVEY OF SIMULATOR EXPERIMENTS

Several studies involving cockpit information
management have used the part-ta.__ksimulator facility. The
following list is a very brief description of several recent
projects, which highlight the advantages of the simulator; the
authors or references should be consulted for complete details
on the experimental methods and results. Note that the figures
in this section are schematic line drawings of color displays,
and therefore lack some of the detail present on the actual
displays.

Graphical microburst alerfin__ displays. [51 Several
different candidate displays for presenting microburst alerts
were evaluated with the simulator (Figure 5). The rapid
prototyping feature of the simulator was particularly useful in
this study for design of several candidate displays. Also, the
simulator was moved by van in order to do thi_experiment in a
city with both an available facility and a large subject
population, highlighting the advantage of portability.

Electronic instrument _proach plates. [6] The advent
of electronic library systems has made it possible to present
charts electronically in the cockpit. This experiment compared
several different possible formats and issues for electronic
instrument approach plates (EIAP). The Map software
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Figure 5: Graphical Mkroburst Alerting Display. Microburst
alert icons aredisplayed directly on the EHSIdisplay.

package was used to rapidly design these chart formats (Figure
6). which were then loaded and displayed by the simulator
software. Chart information is grouped by type into layers,
which can be selected or suppressed by the pilot with a switch
panel similar to theEHSI control panel.

Terrain awareness displays. [7] Another application of
electronic library systems is the presentation of terrain
information, either as part of a ground proximity warning
system or as a situational awareness display. One possible
terrain awareness display (Figure 7) could present shaded
contours. This display was also produced by the Map
software, and was compared to more traditional spot elevation
terrain representations in a piloted simulator study.

Graphical ATC datalink amendments. [g] The delivery
of ATC clearance amendments through a digital air-ground
datalink holds the potential to reduce voice congestion and
information transfer errors associated with VI--IFradio
communications. The ATC wo.r.r.r.r_tation(Figure 4) is linked
directly with the FMC and the IRIS workstation to send
datalink messages in either textual or graphical modes, and
can directly reprogram new routings into the FMC if required.
An experiment compared the effects of several types of
datalink ATE amendment presentations on flight crew
situational awareness. Figure 8 shows a datalink ATC
amendment which has been delivered and displayed on the
EHSI.

Topics for future experiments include HUDs, displays
for airborne forward-looking wind shear sensors, continued
study of terrain avoidance displays, and study of applications
of digital ground-air datalinks.
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CONCLUSIONS

A part-task advanced cockpit simulator has been

developed to evaluate the effect of advanced cockpit

information management systems on pilot cognitive
performance. The utility of this part-task approach for rapid

preliminary evaluation of new graphical displays and new
datalink applications has been demonstrated through a series

of successful experiments.

The MIT Advanced Cockpit Simulator replicates the

major autoflight and electronic flight instrumentation systems
of a modem "'glass-cockpit" transport aircraft, but does not

include manual flight controls or a cockpit mock-up. This

simplicity reduces set-up time. cost. and allows the facility to

be easily moved. Since the simulator is based on a

commercially-available graphics workstation, it can be rapidly

reconfigured and does not require special hardware. In order
to maximize the validity of the results, the subject pool is

limited to professional air carrier pilots currently qualified on

"'glass-cockpir' aircraft.
Concepts evaluated using this simulator include

graphical microburst alerting displays, electronic instrument

approach plates, terrain awareness and alerting displays, and

ATC routing anaendment delivery through digital datalinks,
Topics for future experiments include HUDs, displays for

airborne forward-looking wind shear sensors, and continued

study of terrain avoidance displays and issues associated with

digital ground-air datalinks.
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Abstract

A recursive model-based data fusion algorithm for
multi-sensor microburst hazard assessment is described.

An analytical microburst model is used to approximate the
actual windfield, and a set of"best" model parameters are

estimated from measured winds. The winds corresponding

to the best parameter set can then be used to compute

alerting factors such as microburst position, extent, and

intensity. The estimation algorithm is based on an
iterated extended Kalman filter which uses the microburst

model parameters as stale variables. Microburst state
dynamic and process noise parameters are chosen based on
measured microburst statistics. The estimation method is

applied to data from a time-varying computational
simulation of a historical microburst event to demonstrate

its capabilities and limitations. Selection of filter

parameters and initial conditions is discussed.

Computational requirements and datalink bandwidth
: considerations are also addressed.

Low altitude wind shear has been a major cause of
fatal aviation accidents in the U.S.I The localized intense

downdrafts known as microbursts are the most dangerous

form of wind shear, and pose a serious harm'd to aircraft

during takeoff or approach. In a typical microburst
encounter, an aircraft first encounters a performance-

increasing headwind. This is followed by a downdraft and

a rapid transition from headwind to tailwind, which

produce sharp losses in altitude and/or airspeed.

Several systems for detection and measurement of
microburst ha;,m'cls are currently nearing the operational

stage. Effective ground-based systems such as Terminal
Doppler Weather Radar (TDWR) and the extended Low

Level Wind Shear Alert System (LLWAS) are entering the

deployment phase. TDWRs will be located at 47 major

airports, and detect microbursts primarily by measuring
the surface wind velocity component radial to the radar and

identifying areas of radial shear.:z.3 LLWAS is a network

of anemometers which measure horizontal windspeed and

direction around the airport surface, and detect wind shear
events from differences in wind speed and direction

between sensors.'= Airborne reactive wind shear alerting

systems, currently in use, detect microburst penetration by
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comparing inertial and air data system measurements to

compute the local winds. Several types of airborne

forward-look sensor technologies are also under

development, including infrared radiometry, Doppler radars
and Doppler lidars. 5 Infrared systems measure the drop in

temperature associated with the air in the center of a

microburst, while Doppler radars and lidars measure wind

velocities along the flight path ahead of the aircraft. In

addition to new sensor developments, the development of

digital air-ground datalink capabilities such as the Mode-S
beacon system will allow microburst alert information to
be exchanged between air and ground-based systems

(Figure 1).6

As new detection systems become operational, it will

become likely that more than one sensor system will be

available in a given situation. Also, each of the

aforementioned senso r systems has some geometrical

observability problems. For example, both ground-based

and airborne Doppler radars and lidars can only measure
wind velocities radial to the sensor, not vertical winds.

The aviation hazard posed by a microburst, however, is
due to both horizontal wind shear and downdrafts in the

microburst core. Therefore, a technique for combining

data from different systems with different measurement

characteristics could improve estimates of microburst

hazards and aid alert generation.

The goal of this "data fusion" process is to provide a
microburst detection and hazard assessment capability

which is significantly better than that which can be
achieved using a single sensor. The data fusion algorithm

must provide appropriate information for alert generation,

in a timely fashion, and be feasible with regard to the
available air-ground datalink bandwidth and computational
capabilities. Previous work at MIT has focused on

IUZro_l I I I I oop_= _,r
"---]-Fit I t s_.-_"_

Figure I: Advanced Microburst Detection
and Alerting Systems
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definition of appropriate information for microburst alerts.

This work has included analytical studies to determine

appropriate microburst hazard criteria,7 and piloted parl-
task simulator studies to determine the information

requirements of the flight crew when faced with a
microburst alert situation.8.9 The conclusions of these

studies were that estimates of microburst location, extent,

and approximate intensity are required for alerting

purposes, and that microburst intensity can be quantified
well using criteria which relate to the expected aircraft

energy loss due to the microburst windfield. Therefore. a

good data fusion algorithm should be able to compute the
position and extent of a microburst, and to estimate

intensity including contributions from both horizontal
wind shear and downdrafts.

The data-fusion process can be done on a number of

levels. One approach is to merge the final products of the
sensor systems to produce improved alerts. For example.

product-level techniques have been used to integrate
TDWR and LLWAS informationt0 and to determine the

probability of hazardous wind shear given a wide range of

evidence.I I Another approach is to integrate sensors on

the data level. The data-level approach is more complex,

due to the large volume of data produced by several wind

shear sensor systems. However, if correctly implemented,

observability problems due to poor sensor geometry can
be alleviated. Data from multiple sensors can be

combined to form a "super sensor" which has improved

sensing geometry. The technique proposed in this paper

is a model-based data-level approach which attempts to

gain this observability benefit without prohibitively large
computational or data transmission requirements.

Model-Based Ant)roach

Why Use a Model?

Representation of the actual microburst windfield
with an analytical model has two major advantages.
Firstly, once the model has been "fitted" to the windfield,

the windfield can be approximated by the values of the

model parameters. Thus, if the model represents the
windfield well enough, the measured information (a large
data set) can be encapsulated in a small set of"best-fit"

model parameters. Since it is impractical (or at least
undesirable) to transmit raw data between aircraft and

ground-based systems, this is an important advantage.

Secondly, an analytical model can include additional

information which can be used to infer quantities which

cannot be directly measured, such as inferring vertical
velocities from radar-measured radial velocities.

Analytical models can be designed to satisfy basic fluid

dynamic relationships such as mass continuity, and can be
adjusted to reflect results of microburst field
measurements.

Analytical Microburst Model

The analytical microburst model used in this work

was developed at NASA Langley Research Center initially

by Oseguera and Bowles,12 and later improved by
VicroyJJ The Oseguem-Bowles-Vicroy (OBV) model

uses shaping functions to generate an axisymmetric

flowfield which satisfies the mass continuity equation and
is representative of the major characteristics of measured

microbursts. Sample winds for a constant-altitude path
through the model windfield are shown in Figure 2. The
horizontal winds exhibit the classic microburst

characteristic of a headwind increase, followed by rapid

sheafing to a tailwind. The vertical wind plot shows a

downdraft in the microburst center and smaller ulxlrafts at
the edges.

The microburst winds are uniquely defined by a set of
five parameters and three empirically-adjusted consults.
For this study, a simple ambient wind (4 additional

parameters) was added to the microburst windfield. The

model parameters are summarized in Table ]. The total
winds are given by non-linear, smooth, differentiable

functions of the parameters and a given (x.y,h) position as
follows:

U -- Umicml:m_t + U0 + Uhh

v = vmi_.,_ + v0 + Vhh

(1)

(2)

W -- Wmicrobunt (3)

U, V, and W are the Eastward, Northward, and vertical

wind velocities: h is the altitude above ground level.

"Microburst" quantities are functions of position and of
the first five parameters in Table !; these functions are

summarized in Appendix A.

The OBV model is axisymmetric, but naturally
occurring microbursts are often asymmetric.t4 In
addition, multiple microbursts have been observed to

occur close together and interact. To handle these cases,

the model was extended to allow multiple interacting
microbursts. For each microburst, another set of five
microburst model parameters (the first five in Table I) can
be added. It is assumed that the ambient wind will be
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Figure 2: Mieroburst Model Windfleld. Sample
winds for a constant-altitude flight path through the center of a

simulated microburst.
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Table 1: Modified Oseguera-Bowles-Vicroy parameters can be adequately modeled by a linear, time-
Microburs! Model Parameters invariant, continuous-time system:

Parameter Description

x9 X-coordinate (East) of microburst center (m)

Y9 Y-coordinate (North) of microburst center (m)

Um Maximum horizontal outflow speed (m/s)

Rp . Radius of maximum outflow (meters)

Zm Altitude AGL of maximum out/low (meters)

Uo Eastward ambient wind constant component (m/s)

Uh Eastward ambient wind a titude gradient (m/s/m),

vQ Northward ambient wind const, component (m/s)

Vh Northward ambient wind altitude gradient (m/s/m)

roughly constant throughout the x-y space of interest, i.e.

near the airport, and so only one set of ambient wind

parameters is used. The winds from each model

microburst are summed to get the overall model windfield;

this superposition does not violate mass continuity. In

the simulation study below, when a "two-microburst"
model is referred to it does not necessarily indicate that

there are two microbursts being detected, but that two

superimposed model microbursts are being used to
simulate a complex microburst windfield with more than

one area of high downdraft speed.

Model-Based Multi-Sensor Data Fusion

Given a suitable model, the fusion problem reduces to
estimation of the "best" set of model parameters based on
all available wind measurements. Qnce the best

parameters have been estimated, alerting factors (intensity.

extent etc.) can be derived from the analytical model

windfield corresponding to the estimated model

_t_arameters.

This estimation procedure must satisfy several

constraints to be practical. The estimation algorithm

must be recursive, to handle new measurements as they
become available. It must also account for time variation

in the model parameters, since microbursts are dynamic

phenomena with short lifetimes on the order of 15
minutes and sensor measurements will be taken at

different times. It should also be probabilistic, to take

advantage of microburst statistical characteristics from

past field studies. A Kalman filter approach is proposed
to satisfy these requirements.

Iterated Extended Kalman Filter Algorithm

Estimation Problem Structure

Kalman filtering techniques require a state-space

dynamic model of the system and a relationship between

system parameters and measured quantities. In this case,

we would like to estimate analytical model parameters
which best describe the microburst from measurements of

the winds. The analytical microburst model parameters
are therefore used as the filter state variables x(t). It was
assumed that the time evolution of the microburst

_(t) = A x(t) + B u(t) + L w(t) (4)

Deterministic inputs to the system are represented by

u(t), and w(t) is a white Gaussian process noise input.

The A, B, and L matrices define the dynamic model; they

will be discussed below. Since the state variables x(t) are

the analytical model parameters, they are related to the

wind measurements through the analytical model wind

equations. The resulting non-linear discrete-time

measurement equation is:

,.= +vk (5)

where the measurement equations hk are simply the

wind equations from the analytical model, and Vk

represents measurement noise. The state vector, x, and
error covariance matrix, P, for a single downdraft case are
defined as follows:

x =ix0 y0 Um Rr Z_ Uo Uh V0 Vh] T (6)

P = E [(x- x)(x-_)T] (7)

where '_ is the current parameter estimate. The

microburst eastward core location, xo, should not be

confused with x, the state vector. Process noise, w(t), and

measurement noise, vk, are white and gaussian with the

following characteristics:

E [(L w(t))(L w(t))l"] = L Q(t) LT _t- "c) (8)

E{v,vZ]: (9)

The aim of the filter is to produce the state estimate x

which minimizes the error covariance P. Since the

measurement equation is non-linear, this cannot be done

with a standard Kalman filter algorithm. An extended

Kalman filter (EKF) approach was chosen. The structure

and principal equations for the EKF are briefly describexl
below, based on the formulation given in Ref. 15. The

filtering algorithm for discrete-time measurements is a

two step process: (1) apply the system dynamic model to
propagate the state estimate and state estimation error
covariance between measurements, and (2) update the
estimate when new measurements arrive.

Estimate Propagation: M|croburst Dynamic

Modeling

For linear, time-invariant, continuous-time system
dynamics the propagation of the state estimate and
estimation error covariance between measurements is

governed by:

_t} = A x(t) + B u(t) (10)
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l_t) = A P(t) + l_t) A T + L Q(t) LT (11)

The A, B, L, and Q matrices define the microburst

time-evolution dynamics. Since the analytical model is

time-invariant, these parameters must come from another

source. Unfortunately, there is no simple time-varying
analytical model available. However, measured

microburst statistics can be used to approximate some

dynamics. For example, microburst radial extent tends to

increase steadily throughout the microburst lifecycle.

Analysis of data from Colorado microburst

measurementsl6, t7 indicates that the change in radial

extent vs. time can be approximated by a constant bias (a)
with additive white zero-mean gaussian noise (n):

l_p = a + n{t) (12)

where a = 0.102 km/min and the noise term has a
standard deviation of 0.15 km/min. The constant bias is

treated as a deterministic input, and the noise term leads to

a value for one element in the Q matrix. Similar

modeling may be possible for some of the other state

variables. For example, motion of the microburst core

(L,,_'o) may be related to the ambient wind parameters,
which would lead to non-zero entries in the A matrix. In

the simulations discussed below, the A matrix was

assumed to contain all zeros. The B and Q matrix
elements were set based on statistical information where

possible, and from engineering judgement when no
statistical information was available. Further research on

microburst dynamics is currently in progress.

Since the time behavior of the microburst parameters

is not well modeled, significant process noise is required.
The use of process noise to compensate for modeling

deficiencies is similar to the well-known technique of

applying a "forgetting factor" to older data in a batch least-
squares formulation. In any case, these simple dynamics

lead to sparse A, B, L, and Q matrices, and the
propagation step in the filter requires little computation.

Incorporating Measurements

When new measurements are taken, the estimate is

updated. The non-linear measurement equation, however,

makes the update process difficult. The formulation

presented here is based on the extended Kalman fdter

update with the addition of a local iteration procedure to
reduce the effects of the measurement non-linearities. 15.18

At time tk, a local iteration (over i) is performed. The ith

parameter estimate at time tk, _k:i, is updated with the

following expression:

^- [ k()( ")]A-l- A÷ ._+ A.

Xk,i÷l ---- Xk + Kk,i Zk - Xk,i - H Xk.i Xk - xk_ (13)

Xk,0--_, i=0,1 .... (14)

The Kalman gain, K, is ordinarily computed from:

.... T ^÷ Rk] -t (15)

and H k is the locally linearized measurement matrix:

(16)

In the above expressions, _ and P_, indicate the

propagated estimate and error covariance at time tk (prior
_÷

to updating), while Xk and P_ indicate the updated
estimate and covariance based on the measurement z k. The

local iteration is repeated until the scaled norm of the
parameter estirnaie does not change significantly. After
the new estimate has been produced, the updated error
covariance matrix is computed using values from the final
iteration step:

PC =[I-Kk,i Hk (xk_)] P_ (17)

Some simple testing, in which winds generated

directly from the OBV model were "identified" using this
algorithm, indicated that the iterated f'dter results in

significantly better estimates than the standard EKF; this

has also been found by other investigators, t9 A
probabilistic interpretation of this iteration based on

Bayesian maximum likelihood estimation is given in Ref.
18.

One difficulty with the above updating algorithm is

that there may be large numbers of measurements

available at a single time step (as in TDWR data, for

example), and the computation of the Kalman gain (Eqn.

15) requires inversion of an r-by-r matrix, where r is the
number of measurements. The number of computations

required to do this scales as r3. In a linear filter, a large
batch of measurements can be treated as a series of

sequential scalar measurements (occurring at infinitesmal

time spacing) without loss of information, thereby

avoiding this problem. When the measurement equation
is non-linear, the measurements cannot be incorporated

sequentially without losing a sig_n!fi_c_an!amount of
information. Therefore, an alternate form of the gain
computation is required. When the number of

measuremen_ gxse3Ld__s_ice the number of states, and the-

measurement noises are independent (diagonal Rk) it is

more efficient to use the "information form" of the gain

computation:

(PC)+ (18)

Ka = (P_t)÷I-ITR_' (19)

This form can be readily applied to the iterated EKF

update described above. Although the covariance update
must now be done inside the loop, the required matrix

inversion is only n-by-n, where n is the number of slates

(model parameters). The computational requirement now

scales linearly with r and cubically with n. In the
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simulation cases below, where r > 100 and n = 9 or 14,
this form was found to be much more efficient.

Multiple-Microburst Form

As discussed above, several model microbursts can be

superimposed to simulate a more complex windfield. In
this case, 5 new stales are added for each additional model

microburst• For i microbursts, the full state vector, x, is

defined as:

T T T ITX = Xmb.! Xmb.2 ... Xmb.i U0 Uh V0 Vh (20)

where:

= Z xXmb.i [X0.i y0.i U,,.i Rr.i m•i] (21)

In the simulations discussed below, one- and two-

microburst forms are used.

Initialization

This algorithm can incorporate multi-sensor data,
given that the microburst has previously been detected.
The assumption is made that a single sensor has detected

the event and has produced an initial parameter estimate
and associated error covariance. The initialization

algorithm therefore depends on the measurement

characteristics of the initial sensor. The general process,

however, is the same for all sensors. Quantifies that can

be directly measured are estimated from the initial data set,
and quantities which are unobservable are initialized using
statistics derived from microburst field studies.

For example, if a TDWR initially detects a
microburst, estimates of maximum outflow speed (Urn),

outflow radius (Rp), and core position (x0,y 0) can be
derived from the radial flowfield measured by TDWR. The

outflow depth Zm is an unobservable parameter, and must

be initialized from statistics. Outflow depth statistics

have been measured for 26 Colorado microbursts,20 and

the mean altitude of maximum outflow velocity was

found to be 109 meters• This value was used to initialize
the filter for the simulations discussed below; in which

TDWR was always assumed to make the initial detection•
The initial covariance mawix was diagonal, and values
were chosen based on sensor resolution criteria or

statistics where possible.

Simulation Results

Figures of Merit

As mentioned above, the important quantifies for

alerting purposes are position, extent, and approximate

intensity. The "effectiveness" of the proposed algorithm
can be defined in terms of its capability to produce these

quantities, Therefore, two figures of merit were defined.

The first concerns position and extent. Given a center

point, an "extent polygon" can be drawn for a microburst
windfield (example shown in Figure 3). 14 The vertices of

the polygon correspond to the points of maximum radial
outflow speed (measured radially outward from a center

point)• This polygon encloses the entire performance-

decreasing portion of the microburst. The ability of the

model-based algorithm to define this hazardous region can
then be evaluated by comparing the extent polygon A of

the truth windfield to the extent polygon B of the

analytical model windfield corresponding to the estimated

parameters:

Mextent- A n B (22)
AuB

This quantity has a maximum value of 1 (for an exact
match) and falls off for both underestimation and

overestimation of the extent boundaries (Figure 4). Core

position errors are also reflected, since the model extent

polygon is then laterally translated with respect to the true
extent polygon. This quantity is a function of altitude,

but the dependence was found to be very weak and only

results for a single altitude are presented in this paper.
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Figure 3: Mlcroburst extent polygon. Horizontal
windfield with outflow extent polygon superimposed.

Figure 4: Extent Figure-of-Merit. Pictorial

representation of Eqn. 22. The cross-hatched area is A _ B

and the sum of the cross-hatched and striped areas is A _ B•
Note that the model "polygon" B is a circle for the single-

microburst axisymmetric OBV model.

21



Microburst intensity was defined in terms of"F-

factor", proposed by researchers at NASA Langley

Research Center, which is based on the impact of a

microburst windfield on the total energy (kinetic plus

potential) of the aircraft. 5 It is a measure of the loss of

potential rate-of-climb (or loss of effective thrust-to-
weight ratio) due to the immediate windfield. It is

dependent on the time rate of change in the aircraft frame

of the tailwind velocity, the vertical wind velocity, and the

aircraft airspeed. Positive values of F indicate a
performance-decreasing situation, and negative values

indicate a performance-increasing situation. As typical
transport-category aircraft in landing or takeoff
configuration have excess thrust-to-weight ratios between

0.1 and 0.15, an encounter with an F-factor in excess of

that value would compel the aircraft to descend and is
therefore hazardous.

F .W_.._.._.b. (23)
g V

F, a point measurement, needs to be averaged over a

distance to give a useful indication of aircraft hazard. Past

work has determined that F averaged over I km of the
aircraft flight path yields a good hazard estimate. 7 For

evaluation purposes, however, it is desirable to assign a

single hazard number to a microburst rather than one for

each possible flight path through it. Therefore, for this
work. the hazard number was defined as follows: (l)

compute l km average F-factors for a large number of
parallel constant-altitude paths through the microburst, (2)

average the resulting values 500 m laterally across flight

paths, and (3) pick the largest averaged F-factor as the
hazard value.

This value depends strongly on the direction of the

flight paths along which F is evaluated. In the simulation

results presented below, averaged F-factoes will be
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presented for either eastbound or northbound flight paths.
In addition, F depends on altitude, and results will

therefore be presented for several altitudes. For ale/ling

purposes, however, it would be necessary to assign a
single intensity value to a detected microburst, for

example the largest value (over all directions) below a
specified maximum altitude,

Simulated Microburst True Windfield

The windfield data used to evaluate the estimation

algorithm was generated by the Terminal Area Simulation

System (TASS).21 It is a highly detailed computational
simulation of a complex multiple microburst event which

occurred at Denver-Staple/on airport on JI.dy 1 I, 1988,
This event caused one hear accident and a total of five

aircraft to make missed approaches.:'2 Windlield data

from five times during this event was available, with a

horizontal spacing of 200m and a vertical spacing of

approximately 80m. For the following analyses the

largest microburst in the event was selected (Figure 5).
The horizontal windfield has a classic microburst outflow

pattern. However, the vertical wind contours show some

complex strucnme as indicated by two separate regions of
high downdrafL neither of which coffeslxmd to the

apparent horizontal windtield center (marked with an X).
This rather complex event was chosen to test the

estimation algorithm in a challenging but realistic
situation.

OBV Model Best Fit

Figure 5.

_t,lt_ird distlni_, X (kin)

The first step for algorithm evaluation was to
determine the ability of the analytical model to match the

important characteristics of a microburst windlield,

namely the figures of merit defined above. This was done

with a deterministic non-linear batch least-squares
optimization algorithm, similar to that used in Ref. 23 to

model microburst winds with vortex rings. The "truth"

-2.5

ff -4.5

I

.5.5

_ 4

-7

E._tward dlamoe, X (k.m}

TASS-simulated windfield for 11 July 1988 microburst event at DEN. At left is a vector plot of
horizontal winds: maximum velocity shown is 18.7 m/s. At right: vertical windspeed contours. Altitude shown is 177m AGL.
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winds were taken from one time-step of the TASS model

(shown in Figure 5). The data volume included three-axis

winds at three altitudes with 200m lateral spacing for a

total of approximately 5000 data points. The

optimization procedure was a constrained version of the
standard Gauss-Newton method,24 and found the model

parameters which minimized the mean square wind error,
J:

N

j = .L _ ejX(p) ej(p) ; e(p) = V,_th - Vmoa, lp) (24)
Nj=I

where N is the number of total data points and V is

the vector of all wind points, including East, North, and

vertical components at all (x.y,z) locations. This

procedure was done with a single-microburst model (9
parameters) and with a two-microburst model (14

parameters). The resulting parameters for the single-

microburst case are given in Table 2. Note that the

approximate radius of this microburst is 1700 meters, and

the maximum outflow speed is approximately 18 m/s.

The ambient wind magnitude is small in this case.

Table 2: Single-mlcroburst least-squares
parameter fit results

x0 (m) 9528 U0 (m/s) 0.9

70 (m) -5047 U h (m/s/m) -0.001

O m (m/s) 17.8 V0 !m/.,s) 0.5

Rp (m) 1717 V h (m/s/m) -0.002

Zm (m) 68.2

The single-microburst fit produced an extent figure of
merit of 0.92. The two-microburst fit result was slightly

lower, at 0.85. As seen in Figure 5, this microburst was

fairly axisymmetric in extent, so these good results are

not surprising. However, plots of area-averaged F-factor

looking Eastward and Northward for three altitudes (Figure
5) reveal that the microburst is not symmetric in

intensity. As indicated by the "TASS windfield" points in

Figure 6, the F-factors are larger when looking northward

through the microburst than when looking eastward. This
is due to the vertical wind distribution (Figure 5,

righthand plot) which has multiple regions of high
vertical windspeeds. For this reason, the single-

microburst fit produces a single broad region of somewhat

weak vertical winds in an attempt to globally match the
windfield, and the result is that intensity is underestimated

in both directions. The two-microburst fit, on the other

hand, succeeds in matching the vertical windfield well and

duplicates the intensity of the TASS windfield well in
both directions.

For alerting purposes, both model windfields

adequately represent the actual extent; however, the single-
microburst model underestimates the intensity somewhat.

The results of previous work, however, indicate that

highly accurate intensity estimates are not critical for alert

generation.9 Based on these results, and similar results
obtained using TASS windfields from another microburst
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event, the model was judged to be acceptable for
estimation purposes.

Iterated EKF Update Simulation

The next step in algorithm evaluation was to

determine if the iterated EKF update procedure was capable
of taking sensor data (as modeled by small subsets of the

entire windlield) and producing reasonable extent and

intensity estimates. The TASS simulated winds were
again considered to be the "truth" winds, and simulated
sensor data subsets were taken from them. Assuming that
the windlqeld was frozen in time (or alternatively, no time

has lapsed between measurement sets), different
combinations of sensor data were used sequentially to
update the current estimate. Three sensors were considered

in this way: (l) TDWR data, (2) winds measured f_m the
aircraft, using inertial and air data measurements (referred
to henceforth as INS data), and (3) airborne Doppler radar

(ABDR) data.

For TDWR and ABDR data, it was assumed that the

sensor was far enough from the microburst that radial
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wind measurements could be considered parallel to each

other, and that the antenna tilt angle was horizontal so

that all data was taken at the same altitude. For example,
for an eastward-looking radar, the U-components of the

TASS windfield at a single altitude became the working
data set. TDWR measurements were taken at an altitude

of 82m AGL (the lowest TASS data altitude) for both

eastward- and northward-looking cases, and ABDR

measurements were taken from 177m and 283m AGL

TASS data. In all cases, gaussian zero-mean white noise
with a standard deviation of I m/s was added to the "truth"
data to simulate measurement noise based on TDWR

accuracy specifications.25 All radar data sets were taken at

400m range and azimuth resolution: this is poorer than
the resolution of operational radars, but reduced the

computation time required to run the simulations.

Aircraft winds (INS data sets) consisted of 3-

component winds along a straight flight path at constant
altitude. Four 200m resolution INS data sets were

defined, including eastward and northward flight paths at

177m and 283m AGE All paths passed through the

approximate center of the windfield, as marked in Figure
5. The measurement noise standard deviation used for

aircraft wind measurements was 1.4 m/s.

For simulation purposes, it was assumed that TDWR
made the initial microburst detection. Therefore, the first

step was to initialize the filter as previously described, and

then apply the iterated EKF update 1o incorporate the

TDWR measurement. The resultant parameter estimate
and error covariance were saved. Then the estimate was

updated by incorporating either an INS data set or an

ABDR data set, starting with the saved parameter estimate
and covariance matrix. Twelve total sensor fusion cases

were tested with both one-microburst and two-microburst
versions of the filter.

Single-Microburst Filter

For all cases tested, the iteration procedure used in the
update converged in 3 to 5 iterations. Results for four

representative cases are presented here:

(I) Initialization only: Eastward-looking TDWR

measurements alone (denoted TDWR-E)

(2) The results of (1) were updated using a sequence of
eastbound aircraft-measured winds taken at an altitude of

177m AGL (denoted INS-E)

(3) The results of (1) were updated using a sequence of
northbound aircraft-measured winds taken at an altitude

of 177m AGL (denoted INS-N)'

(4) The results of (1) were updated using northward-

looking airborne Doppler radar data at 177m AGL
(denoted ABDR-N)

The extent results are again good (Ta61e 3), and
illustrate the effect of fusing data from sensors with

different measurement geometries. The extent figure-of-

merit for TDWR-East is 0.85, and does not improve when

Table 3: Extent figures-of-merit: l-microburst

time-lnvurlant data fusion.

TDWR-E TDWR-E TDWR-E TDWR-E I
alone + INS-E + INS-N + ABDR-N I0.853 0.853 0.911 0.917

an eastward path of INS data is incorporated. However,

when northbound INS data or northward-looking airborne

radar data is incorporated, the extent figure-of-merit

increases to the .91 to .92 range. Since the microburst is

not exactly symmetric in extent (it is slightly larger in the

north-south direction), incorporation of northward-looking
data increases the radius parameter in the OBV model to

cover more area. This is equal to the performance

achieved by the least-squares fit computation.

The effect of multi-directional data is also visible in

the intensity results (Figure 7). As with the least-squares
results, it is clear that the single-microburst model cannot

match intensity with th_ compiexwindfield of this

microburst. The TDWR-alone result is low, and

incorporating an eastbound path of INS data actually

lowers the estimate; this is because the path does not

cross both regions of high vertical windspeed.
Incorporating a northbound path of INS data or the ABDR

data improves the estimate significantly at the higher
altitudes, from which the INS and ABDR data are taken.

Two-Microburst Filter

The two-microburst version of the filter involved

significantly more computation, since in general more
iterations were required than for the single-microburst

filter. Also, some cases did not converge consistently and
required adjustment of the initial parameters. However,

when the two-microburst fdter did converge, the results
were good. Extent figures-of-merit were between 0.85 and

0.90 for all cases. Figure 8 shows eastward intensity
values for the algorithm applied to three cases:
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(1) northward-looking TDWR data alone (TDWR-N)

(2) TDWR-N updated with eastward aircraft-measured
winds taken at 177m AGL (INS-E)

(3) TDWR-N fused northward-looking airborne radar
data at 283m AGL (ABDR-N).

Although the TDWR is looking north and the

intensity values shown are for eastbound paths, the results

for TDWR data alone are fairly good. There is some

overestimation at high altitudes. Inclusion of ABDR data
with the same look angle as the TDWR (northward)

improves the results slightly. As expected, inclusion of
the eastbound INS data provides a second measurement
direction and produces the best intensity estimates.

Full Iterated EKF Simulation

The third part of the algorithm evaluation was to
include the microburst dynamic model (the propagation
part of the f'dter) and apply the technique to time-varying

data. For this analysis, data was taken from three different
times in the evolution of the 7/11/88 microburst event.

The three data sets were spaced two minutes apart, where
the middle data set corresponds to the time-invariant data

set used in the previous section and corresponds to the

time at which the microburst was strongest.

The time spacing for this data .was larger than desired,
since TDWR data is updated at 1 min intervals and

airborne radar data would be available even more

frequently. However, it was still possible to construct
illustrative examples. The following three sample cases

assume that initial detection is made with northward-

looking TDWR. Two minutes later, three differentevents

are postulated:

A sequence of eastbound aircraft-measured

winds is downlinked In the ground and incorporated

along with a second set of TDWR data

C_e2. An aircraft traveling northbound receives the

previous TDWR estimate and updates using an airborne

Doppler radar

Case 3. An aircraft traveling eastbound receives the

previous TDWR estimate and updates using an airborne

Doppler radar

At the third time step (+4 minutes), the parameter set

is passed to the ground and an update is done using
another set of TDWR data. The data sets were derived in

the same way as for the time-invariant cases, and the

estimate and error covariance were propagated between
measurements as described above. In all cases, the single-

microburst form of the filter was used.

The extent figures-of-merit (Figure 9) are fairly good

(> 0.82) through the first two times, but are slightly
lower (0.76) in the third time step. This is due to the
distorting effect of an adjacent, weakei" microburst on the

shape of the primary microbursl. The axisymmetric
model used in the filter has difficulty representing this
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situation. There is little difference between the three

sample cases.

The intensity results (Figure I0) are similar to those

from the single-microburst time-invariant runs, in that all
of the estimates are low. As evident from the "TASS

data" curve, the actual microburst increases in strength in

the first two minute span and then decreases in the last

two minutes. Only in scenario 3, in which northbound
TDWR measurements were combined with eastbound

ABDR measurements, was the filter able to follow this

trend. The low estimates are most likely due to

difficulties matching this complex microburst with the

single-microburst filter. However, the intensity results

were somewhat sensitive to the choice of process noise
strength, which indicates a need for further study of

microburst time dynamics.

Discussion __

The simulations demonstrate the potential usefulness
of this technique, particularly for estimathlg the size and

position of the microburst hazard region. Several other

characteristics of the algorithm were also observed during
the simulation runs, although it should be noted that the
use of computational data for a single historical -'_
microburst event limits the scope of the conclusions that

can be drawn. Further simulation work is planned, using
data from actual field measurements.

The single-microburst algorithm appeared to be
numerically robust. Errors in initial conditions and

reasonable variations in choice of f'dter parameters did not

produce filter instability in either the time-invariant or the

time-varying simulations. The two-microburst form,

however, was numerically sensitive. In several cases the
filter diverged during the update iteration, and choice of

parameters such as the initial covariance matrix appeared
to have a large impact on the convergence properties of
the filter. In cases where convergence was reached the
results tended to be dependent on the actual wlndfield
shape. When the windfield had two clear downdraft

centers, the convergence was steady and the results for

both intensity and extent were good. In cases where there
was only one region of high down&aft (such as the first
time-step of TASS model data) then the two sets of

microburst parameters either became coincident, or one

microburst became very weak. This mismodeling

problem was also apparent in the diagonal elements of the
covariance matrix; the covariance elements corresponding

to the unnecessary microburst parameters grew very large.
Possible solutions to thisproblem include more

intelligent initialization based on recognized windfield

features, or running multiple filters of different types in
parallel. In any case, the improved estimation possible

from the two-microburst filter must be weighed against
the associated numerical difficulties. '

Aside from numerical robustness and algorithm

tuning issues, there are other implementation issues to be
considered. The computational requirements of the filter
need to be assessed with respect to available

computational resources. Computational load can be

decreased by thinning large data sets, at the expense of
estimation accuracy. Also, datalink bandwidth needs to be

considered. A model parameter list of 9 elements, for
example, has an associated 81 element covariance matrix

(of which only 45 are unique). It is likely that the entire

covariance matrix is not necessary to initialize the next
update step, and that some elements could be omitted

without loss of performance.

Although the algorithm has been presented in the

context of multi-sensor data fusion, it does not require ..
multiple sensors. Benefits would still be gained if it were
used with a single sensor due to the addltionaf|nff:n'matio_

contained m__odel (corr_:f fluiffdynamics; _

empirical dam). Also, the algori{_m could be Maptedio-
other fluid dynamic phenomena which can be represented
by simple analytical models.

A recursive model-based data fusion algorithm for

multi-sensor microburst hazard assessment was presented.
A simple analytical microburst model is Used to _-i

approxim_ite the actual windfield, anda "best_t_ 6f model

parameters _ estimated from measured Winds _trig aft : "
extended Kalman filtering technique. The resulting :_
parameter estimate and associated error covariance

er_ii_-uTate ihei:_nt state--6f'l_6_v-l&[ge a_! the actual
windfield, and can he usedTo_:ff-n-_iite estimates of = "

microburst position, extent, and intensity for_ert

generation. Microburst Slate dynamics and p_ess noise
parameters for the f-dter were chosen based on statistical
data from microburst field studies.

Simulated measurements for three types of sensors
were derived from a time-varyifig compu/atibnal m&iei'of
a historical microburst event. Two forms of the

algorithm were then tested, one using a single-microburst
model and one using a two-microburst model. It was

found through both time-lnvariant and time-varying
simulations that both forms of the algorithm were able to

estimate the position and extent of the simulated

microburst well. The two-microburst model produced
better intensity estimates, but suffered from numerical

robustness problems. These preliminary results arc

promising, and further work is planned including
simulations using field measurements and study of

feasibility issues such as computational requirements.
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Apnendix A: Oseguera-Bowles-Vicrov
Microburst Model Eouations

The U, V, and W wind components are functions of
position (x,y,z) and the model parameters:

u = _'---_[eC'l't_-eC:t"_'O] e[ 2{_z'_z}_/'P:_'12a, (A1)
2

v =_-Y--[eCl'z'"O-eC2l'l_]eI2(_'_2)_/r'_12 a (A2)
2

w=-_,/Zm [e c'lz''_0- 1]- z_ [eC:lz'_

- 2 rp_--_J f6 J

where the position offsets are given by

= x - x0 (A4)

= y- yo (A5)

and the radial scale factor _, is:

_ 2 am (g6)
rp(e cl - e c2)e{1/2_J

Ci and C2 are empirically adjusted constants with the
following values:

Ct = - 0.15 (A7)

C2 = - 3.2175 (A8)

and ct is a shaping parameter which was set to 2.0 for
the work presented here.
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SUMMARY OF RESEARCH

The Joint University Program in Air Transportation Systems provides opportunities

for progress by students, staff and faculty at the Avionics Engineering Center, Ohio

University. During the 1992-93 year, four conference papers and two M. S. theses were

produced; these are summarized in the bibliography below. The conference papers are

included in their entirety, for reference.

Interest in the satellite-based Global Positioning System (GPS) in the interferometric

mode implies the need for highly accurate position and velocity estimates in real time,

from multiple antennas. Such advanced applications require also an excellent knowledge

of the transmitted signal's characteristics (studies of Selective Availability and methods

for mitigation).

Differential mode operations are also implicit when interferometric GPS is applied to

aircraft approach operations (studies of ground station siting and performance).

GPS hybridization with other systems is a key element in eventual sole-means

navigational use of the system. Studies of combined GPS/Loran-C and GPS/IRS are

supporting this future priority.

GPS system availability is a pervasive concern, and is a complicated quantity related to

required user accuracy, position and time. A comprehensive coverage model is under

development.

Although specific papers were not generated in the weather-uplink research area, this

work did support a spin-off effort. Knowledge gained in the weather-uplink work is now

being applied in differential GPS uplink studies supported by FAA.

Fault detection and isolation (FDI) work continues, in direct support of GPS integrity

assurance standards being developed for FAA by RTCA. Much of the past FDI work

generated in the Joint University Program has been adopted as part of these

national/international standards.
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ANNOTATED BIBLIOGRAPHY OF 1992-93 PUBLICATIONS

1. Braasch, M. S.; Fink, A. B.; Duffus, K.: Improved Modeling of GPS Selective Availability.

Proceedings of the ION National Technical Meeting, San Francisco, CA, January 20-22, 1993.

Selective Availability (SA) represents the dominant error source for stand-alone users of

GPS. Even for DGPS, SA mandates the update rate required for a desired level of accuracy in

realtime applications. As has been witnessed in the recent literature, the ability to model this

error source is crucial to the proper evaluation of GPS-based systems. A variety of SA models

have been proposed to date; however, each has its own shortcomings. Most of these models

have been corrupted by additional error sources. This paper presents a comprehensive treatment

of the problem. The phenomenon of SA is discussed and technique is presented whereby both
clock and orbit components of SA are identifiable. Extensive SA data sets collected from Block

II satellites are presented. System Identification theory then is used to derive a robust model of

SA from the data. This theory also allows for the statistical analysis of SA. The stationarity

of SA over time and across different satellites is analyzed and its impact on the modeling
problem is discussed.

2. Braasch, S.: Realtime Mitigation of GPS SA Errors Using Loran-C. Wild Goose

Association, Annual Convention and Technical Symposium, August 24-27, 1992, Birmingham,
England.

3. Braasch, S.: Realtime Mitigation of GPS Selective Availability Using Loran-C. M.S. Thesis,

Ohio University, Department of Electrical and Computer Engineering, Athens, OH, June 1993.

The hybrid use of Loran-C with the Global Positioning System (GPS) has been shown

capable of providing a sole-means of enroute air radionavigation. By allowing pilots to fly direct

to their destinations, use of this system is resulting in significant time savings and therefore fuel

savings as well. However, a major error source limiting the accuracy of GPS is the intentional

degradation of the GPS signal known as Selective Availability (SA). SA-induced position errors

are highly correlated and far exceed all other error sources (horizontal position error: I00

meters, 95 %). Realtime mitigation of SA errors from the position solution is highly desirable.

This paper discusses how that can be achieved. The stability of Loran-C signals is exploited to

reduce SA errors. The theory behind this technique will be discussed and results using bench

and flight data will be given.

4. Skidmore, T. A.: A GPS Coverage Model. Proceeding of the ION National Technical

Meeting, Washington, DC, June 29 - July 1, 1992.

This paper summarizes the results of several case studies using the Global Positioning

System coverage model developed by Ohio University. Presented are results pertaining to

outage area, outage dynamics, and availability. Input parameters to the model include the

satellite orbit data, service area of interest, geometry requirements, and horizon and antenna

mask angles. It is shown for precision-landing Category I requirements that the planned GPS
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21 Primary SatelliteConstellationproducessignificantoutageareaandunavailability. It is also
shownthat a decreasein theuserequivalentrangeerror dramaticallydecreasesoutageareaand
improvesthe serviceavailability.

5. Waid, J. D.: Ground StationSiting Considerationfor DGPS. Proceedingsof the ION
NationalTechnicalMeeting, SanFrancisco,CA, January20-22, 1993.

6. Waid, J. D.: Developmentof an InterferometricDifferential Global Positioning System
Ground ReferenceStation. M.S. Thesis, Ohio University, Departmentof Electrical and
ComputerEngineering,Athens,OH, March 1992.

Aircraft guidanceand positioning in the final approachand landing phasesof flight
requiresa high degreeof accuracy. The Global PositioningSystemoperatingin differential
mode(DGPS)is beingconsideredfor thisapplication. Prior to implementation,all sourcesof
error mustbe considered. Multipath hasbeenshownto be the dominantsourceof error for
DGPSandtheoreticalstudieshaveverified that multipathis particularly severewithin thefinal
approachand landing regions. Becauseof aircraft dynamics, the ground stationsegmentof
DGPSis thepartof thesystemwheremultipathcanmosteffectivelybereduced. Groundstation
siting will bea keyelementin reducingmultipatherrors for a DGPSsystem. This situationcan
also be improved by using P-codeor narrow correlator C/A-code receivers along with a
multipathrejectingantenna.This paperpresentsastudyof GPSmultipatherrors for astationary
DGPSground station. A discussionof GPSmultipatherror characteristicswill be presented
alongwith someactualmultipathdata. Thedatawascollectedfor different groundstationsiting
configurationsusing P-code, standardC/A-code and narrow correlator C/A-code receiver
architecturesandtwo separateantennaconstructions.
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SUMMARY

In order for a current satellite-based navigation system (such as the Global Positioning

System, GPS) to meet integrity requirements, there must be a way of detecting erroneous
measurements, without help from outside the system. This process is called Fault Detection

and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be

done with a parity space algorithm. The best way around the fault isolation problem is not

necessarily isolating the bad measurement, but finding a new combination of measurements

which excludes it.

BACKGROUND

The objective of fault detection and isolation is to use inconsistencies in redundant

sensor measurement data to detect and isolate sensor malfunctions. If a given single

measurement is in error, it will cause the navigation solution to be in error, possibly greater

than the allowable error threshold. Outside sources may not be able to broadcast in a timely

manner that a signal is in error; for instance, if a single GPS satellite malfunctions, it could

be from 15 minutes to several hours before the information is made public in the satellite

broadcast data. Therefore, it is imperative for FDI algorithms to be able to detect and

isolate instrument errors using only data from the instruments themselves.

FDI can be implemented in any multisensor navigation system with redundant

measurements. Current work is focusing on satellite navigation using GPS, along with

hybrid systems such as GPS/Loran-C (Long Range Navigation - C) or GPS/IRS (Inertial

Reference System) [3]. FDI used specifically with GPS is also known as RAIM, or Receiver

Autonomous Integrity Monitoring [4].

To detect step errors or fast growing ramp errors, a Kalman filter will work well.

However, it will not detect a slow growing ramp error, such as might be caused by a GPS

satellite clock drift. To detect slow growing errors, the Kalman filter algorithm should be

used in parallel with a parity space algorithm.

P_ PAGE BLANK NOT FILMED
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PARITY SPACE AND ESTIMATION SPACE

Estimation space contains the actual horizontal measurement error and the alarm

threshold for a given error. However, actual positions and actual errors are not known,

given that all of the measurement data is coming from imperfect sensors. Therefore, the

work of detecting and isolating errors is done in parity space. Parity space is a mathematical

tool where measurement noise and biases are used to create a parity vector. The parity

vector determines the detection statistic, dk, which is compared to a detection threshold, To,
in order to determine whether an alarm condition exists.

Errors and biases in parity space and estimation space are related, but it is not a one

to one correspondence. The exact correspondence will be determined by measurement

geometries. For i_s_nce, with a g_d geomefry_ a large+measurement error (parity space)

will result in only a small position error (estimation space). The reverse can also be true.

Figure 1 illustrates two different slow growing ramp errors plotted in parity space ver_u_

estimation space. In case I, the detection thres_old is Crossed before the aial-m threShold,

yielding a false alarm. As the error continues to grow, the alarm threshold is crossed,

turning it into a Correct fault detection. In case II, the alarm threshold is crossed before the

detection threshold, resulting in a missed detection. As the error continues to grow, the

detection threshold is crossed, turning it into a correct fault detection. An ideal algorithm
would minimize both the number of false alarms and missed detections.

LEAST SQUARES ESTIMATOR ALGORITHM

In a least-squares approach to fault detection, the relationship between the

measurements and the user state (position) is given by:

= H_ (1)

where: = measurement vector (n-by-l)

H = data matrix (n-by-m)

I1 = user state vector (m-by-l)

It is a vector of n measurements, one from each instrument. In the case of using only

GPS satellites, it would consist of the pseudoranges. __ is the m-element user state vector,

consisting of the user position coordinates and other navigation state elements such as clock

offset with respect to GPS time. H is an n-by-m matrix which relates the measurements to
the user states.

There are three possible cases:

1) n < m • Underdetermined system

2) n = m " Exactiy determined system
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3) n > m • Overdetermined system

In the underdetermined case, a navigation solution is not possible. In the exactly

determined case, a navigation solution is possible, but fault detection is not.

Algorithms for managing the redundant measurements in an overdetermined system

form the basis of fault detection. A parity equation can be derived from equation 1, starting

with a mathematical manipulation called the QR factorization on the data matrix H (ref. 2):

H = QR (2)

H is factored into an n-by-n orthonormal matrix Q (QVQ = I) and an n-by-m upper

triangular matrix R. R contains (n-m) rows of zeros along the bottom, due to the n-m

redundant measurements in H. Substituting QR for H in equation (1) gives:

= QR_

Q'r_ : QrQR__ (3)

Q r_ = R__

Now partition R into an m-by-m upper triangular matrix U and (n-m) rows of zeros, denoted

by 0. Similarly, partition QT into Q_ (m-by-n) and Q2 ((n-m)-by-n rows).

(4)

The least squares navigation state solution is:

_. = U-1QI_ (5)

U is an upper triangular matrix. Due to the nature of the QR factorization, all matrix

elements on the diagonal must be non-zero. Therefore, U is always non-singular and this

equation always has a solution.

The parity equation is:

Q2_ = 0 (6)

The measurement vector 2_contains noise (e) and measurement biases (b_). If _ is replaced by
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(2_- e - b_), the 0 in equation (6) can be replaced by the parity vector 12.

= Q2_ - Q2 g - Q2 h

= -Q2 g - Q2h

(7)

Thus, a parity vector will be determined by the noise and bias errors. From the parity

vector, it can be determined whether an instrument is in error and an alarm should be raised.

PARITY SPACE AND DETECTION PROBABILITIES

Consider a situation with one redundant measurement. In this case, theparity vector

will be reduced to a scalar, and the detection statistic reduces to the absolute value of the

scalar. In the case where no measurement bias exists, figure 2 shows the distribution of the

parity scalar. Since there is no bias error, the position error is definitely under the alarm

threshold and the system is either in the normal operation condition or the false alarm

condition. The probability of a false alarm (PF^) is obtained by integrating the areas outside

of TD. For noise having a normal distribution (generally a good assumption), this integral is
a standard Gaussian function.

Figure 3 illustrates the case where a large measurement bias exists, making the

position error larger than the alarm threshold. In this case the system is either in the correct

fault detection condition or in the missed detection condition. The probability of a missed

detection (PMD) is the integral of the area inside To. Again, if Gaussian noise is assumed, this
is a standard Gaussian function.

PROTECTION RADIUS

The above example uses detection threshold, measurement noise, and measurement

bias error as parameters to find PF^ and P_. Accuracy requirements are stated in a form

like "the probability of exceeding 100 meters accuracy is no greater than 0.05". In order to

compare FDI results with such specifications, it helps to rearrange the procedure. This

means using the parameters alarm threshold, measurement noise, PF^, and PMD to determine

the protection radius, which is the smallest horizontal position error that is guaranteed to be

detected with the given probabilities. If all parameters are kept constant, the protection

radius will vary only as a function of satellite geometry.

The method resulting in the best protection radius uses all satellites in view.

However, many receivers are limited to six channels and are incapable of using more than

six measurements. A way around this is to search all possibilities of combinations of 5 or 6

satellites for the set with the best geometry, and use that set to find the protection radius.
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Figure 4 showsa comparisonof eachmethodfor a givenlocationover the spanof one day.
The parametersusedto generatetheseplots are: cr= 32 meters,PF^= 6.67 x I0-s, and
P_,m= 3.3 x 10 "9.

Since all aircraft carry a baroaltimeter, this can be used as another instrument to

improve the algorithm. The altimeter adds another measurement without requiring more
channels. The altimeter measurement is weighted according to its accuracy and the phase of

flight. Figure 5 shows the effect of altimeter aiding, using the same parameters as before

and an altimeter with statistics identical to the GPS satellites.

FAULT ISOLATION

The fault isolation problem is very difficult. Previous work explored fault isolation

using both a snapshot method and a time history method. Since the objective is to ensure

that the aircraft is flying with a set of good measurements, it is not necessary to isolate the

bad measurement. It is only required that the bad measurement is not used in the navigation

solution. With this in mind, Fault Detection and Exclusion (FDE) was devised.

In FDE, once an alarm is raised, the algorithm discards the present combination of
satellites and looks for the combination with the next-best geometry. If this set also raises

the alarm, the algorithm goes on to the next best set. Once a set is found that doesn't raise

the alarm, that set is used from then on for navigation. In this manner, the bad satellite is

not necessarily isolated, but it is excluded.

CONCLUSIONS

A fault detection algorithm for a multisensor navigation system has been presented.

A protection radius has been calculated using several different algorithms, with the best-of-

six plus altimeter aiding method being chosen as the best method that will work with all

receivers. The fault isolation problem has been bypassed by using fault exclusion. The only

remaining work for the algorithm is to program it into a receiver and flight test it.
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Figure 4. Worst Case Protection Radius (36N 140E)
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ABSTRACT

Selective Availability (SA) represents the dominant
error source for stand-alone users of GPS. Even for

DGPS, SA mandates the update rate required for a
desired level of accuracy in realtime applications. As
has been witnessed in the recent literature, the ability

to model this error source is crucial to the proper
evaluation of GPS-based systems. A variety of SA

models have been proposed to date; however, each has
its own shortcomings. Most of these models have been
based on limited data sets or data which have been

corrupted by additional error sources. This paper
presents a comprehensive treatment of the problem.
The phenomenon of SA is discussed and a technique is
presented whereby both clock and orbit components of
SA are identifiable. Extensive SA data sets collected

from Block II satellites are presented. System
Identification theory then is used to derive a robust
model of SA from the data. This theory also allows for
the statistical analysis of SA. The stationarity of SA
over time and across different satellites is analyzed and

its impact on the modeling problem is discussed.

INTRODUCrlON

The intentional degradation of the GPS signal known
as Selective Availability (SA) is the single largest error

source for open loop (non-differential) users of GPS.
This degradation is accomplished throughmanipulation
of the broadcast ephemeris data and through dithering
of the satellite clock (carrier frequency). Manipulation

of the satellite ephemeris data results in erroneous
computation of satellite position. This is a long term,
non-periodic error trend over the duration of the
satellite pass. Dithering of the satellite clock results in
erroneous code-phase and carrier-phase measurements.
This error trend consists of random oscillations with

periods on the order of 5 to 10 minutes.

As the recent literature has shown, a software-centered

GPS signal model is essential for the bench testing and
evaluation of a variety of GPS-based systems [Bar-
Sever, et al, 1990;, Braasch, 1990-91; Felt, 1992; Lear,

et at, 1992]. A key element in this model is the
module for SA. Several SA models have been

presented over the past few years; however, each has
been derived based on limited data sets or data which

have been corrupted by other error sources. An
accurate SA-oniy model is needed. Ideally, this model
should be able to generate the typical kinds of SA
error traces observed on any satellite at any time.
Furthermore, since the two error sources behave quite

differently, independent characterization of the orbit
and clock components of SA is required. This paper

presents work performed to address these issues.

SA DISCUSSION

SA was formally implemented by the Department of
Defense on March 25, 1990 [Anon., 1990]. At that
time, however, SA had been on experimentally for
nearly one year. Various groups reported observing
SA-like errors soon after the launch of the first Block

II satellite, SVN 14, in February of 1989 _Braasch,

1990-91; Kremer, et al, 1990].

These observations led to the development of the first
model of SA basedon actual data [Braasch, 1990-91].

In subsequent years, other researchers developed
additional SA models [Chou, 1990;, Lear, et al, 1992].
None of the investigations, however, were able to

answer some fundamental questions: 1) Is SA the same
on all satellites? 2) For a given satellite, is SA a

stationary random process? That is, do the statistical
properties of the SA vary as a function of time? 3)
Quantitatively speaking, what is orbital SA?

Presented at the Institute of Navigation 1993 National Technical Meeting. San Francisco, CA, January 20-22, 1993
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ORBIT ERROR ANALYSIS

Accurate modeling of SA requires consideration of
both the orbital and clock error components. Previous
SA investigations have focussed on the clock

component only without consideration of the orbital
component.

The ability to observe the orbital error component
relies on the data provided by various public and
private GPS tracking networks. These networks
employ a variety of GPS tracking stations which make
range measurements to the satellites. Since the

locations of the tracking stations are known, this
information can be coupled with the range
measurements to calculate the position of the satellites.

The result is the so called precise ephemeris or orbit

data. Since the precise orbits are calculated according
to where the satellites currently are located, they are
more accurate than the broadcast ephemeris data (even
without SA) which represents a prediction of where the
satellites will be in the future. This precise orbit data

is used in a variety of non-realtime GPS applications
which require the utmost of accuracy.

The precise orbit data are made available to the public
in a variety of formats and media. The data used in
this study were obtained from the National Geodetic
Survey (NGS) through the Navstar GPS Information

Center Bulletin Board and from the Scripps Institution
of Oceanography (University of California at San
Diego) through their own bulletin board service. The

various computer programs required to read the data
formats and perform the required interpolations were
provided by the NGS [Remondi, 1985; Remondi, 1989,

Remondi, 1991]. For verification, precise data were
obtained both from NGS and Scripps and compared.

During April of 1992 (days 104, 112,113), broadcast
ephemeris data were collected from 4 Block I satellites

and 11 Block II satellites. Some months later, after the

precise ephemeris data had been posted, the precise
orbits were compared with the orbits calculated using
the broadcast ephemeris. Along-track, cross-track and
radial errors were calculated and plotted. Since orbit
predictions are never perfect, errors on the order of a
few meters were expected even in the absence of SA

[Ananda, et al, 1984; Bowen, et al, 1985]. Surprisingly,
the error plots for all satellites (Block I and Block II)
were on the order of a few meters. Figures 1 through
3 show an example of orbital errors computed for
satellite 19.
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Based on these limited data sets, it would seem that

the orbital component of SA has not been
implemented. It is possible that SA was turned off at
this time. However, at the very least, a method now

exists whereby the orbital component of SA can be
observed. Further data collection efforts are planned
to determine if this lack of orbital SA is a regular

phenomenon or not.

SA (CLOCK COMPONENT) DATA
COLLECTION AND REDUCTION

Having performed the orbital error analysis, the next
phase in the study was to collect data for analysis of
the clock component of SA. /ks was noted by Lear, et
al (1992), the clock component of SA is a smooth error
trace over time and therefore carrier-phase (integrated

doppler) data must be collected for the data reduction.
This was one of the greatest drawbacks of the models

presented in Braasch (1990-91). Since only
pseudorange data were available for that study, the

data reduction process left a combination of SA and
receiver noise. Since filtering could not be performed

without imposing assumptions on the underlying SA
waveform, it was decided that a model would be

derived for the combination of SA and receiver noise

[Braasch, 1990-91]. A.,a additional problem with that
study was the fact that the data were collected (and
hence the model operated) at a data rate of 1/6 Hz.

The need for an SA-only model operating at the
standard 1 Hz rate served as the original motivation for

this study.

During the first week of December (November 30 -
December 4), 1992, integrated doppler data were
collected at a known location from 10 Block II
satellites. The data were collected at Ohio University

using a Stanford Telecommunications, Inc.. modified
Time Transfer System model "ITS-502B under the

control of a personal computer. The term "modified"
refers to the fast-sequencing version of the receiver

produced by Stanford Telecommunications, Inc. For
the pu_ of this study, the important aspect of the
modified receiver is its ability to make continuous

carrier-phase (integrated doppler) measurements with
fine resolution and low noise. The data rate was 1 I--Iz.

In order to extract the SA waveform, the following

steps were taken. First, the true ranges from the
satellite to the known antenna location were calculated

for the duration of the satellite pass. These were

subtracted from the integrated doppler measurements.
What remains are referred to as measurement residuals
and are a combination of SA, receiver clock drift,

atmospheric delay, multipath and a bias due to the

ambiguity in the integrated doppler measurements.

For environments in which the strength of the

multipath is less than the direct signal, the carrier-

phase multipath error is guaranteed to be less than 5
cm [Braasch, 1992]. Although it will not be proven
here, suffice it to say that the antenna environment
used in this study satisfies this criterion. Since a
rubidium standard was used as the time base for the

receiver, the receiver clock drift is extremely stable and

is typically modeled as a first order polynomial

[IQemer, et al, 1990]. However, since dual-frequency
measurements were not available, ionospheric delay
could not be removed. In addition, tropospheric delay

is also present. It should be recognized though, that
the delays due to the atmosphere are typically long
term trends. The result then, is the combination of

bias, clock drift and atmospheric delay can be removed

by fitting a second-order polynomial to the
measurement residuals and subtracting it out. If any

bias or long term drift component is present in SA, it
will be removed also [Braasch, 1990-91; Lear, et al,

1992]. If an extremely long term error component does
exit in the clock SA, it can only be observed if the

user clock is synchronized to GPS time [Braasch, 1990-

91]. It should also be noted that since the precise

ephemerides for the satellites were not available at the
time of this writing, broadcast ephemeris was used in

the computation of the true ranges. However, under

the assumption that the broadcast ephemeris is as
accurate as in our previous analysis, this error
component is virtually negligible. Even ff an orbital

SA component is present, it will tend to be removed
through the subtraction of the best-fitting second-order

polynomial.

The results of the data collection and reduction are

shown in figures 4 through 13. The SA error

amplitude varies from 40 to 70 meters and the
oscillations have periods on the order of 5 to 10
minutes. The variations in the data record length are

due to several factors including satellite availability.,
truncation of records due to receiver glitches and more

importantly, truncation of records in order to achieve
stationarity. More detail on this last point will be

given in a later section.

SA MODEL IDENTIFICATION

Over the past few years, various models have been used
to simulate SA. The first SA model was not based on
actual SA data but was deduced from a sample

probability distribution curve [Matchett, 1985]. The
GPS Joint Program Office (JPO) generated SA

samples and then computed the curve from these

samples. A second.order Gauss-Markov process was
postulated and the coefficients were adjusted until its
distribution curve matched the one provided by the
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JPO. The first models obtained from actual SA data
were time series models derived using System

Identification theory [Braasch, 1990-91]. Later, Chou

also implemented a second order Gauss-Markov
process but his was based upon actual SA data [Chou,
1990]. In their recent paper, Lear, et al (1992) present
several time series and analytical models also based

upon actual SA data.

For this study, System Identification theory was

employed to derive time series models in a manner
similar to that used in Braasch (1990-91). In general,
time series models are based upon the assumption that
the data of interest (SA in this case) can be modeled as
the output of a linear system (pole-zero filter) driven
by Gaussian white noise. Conceptually, derivation of
time series SA models can be thought of as a two-step

process. The first step is to send the SA data through
a filter and adjust the poles and zeros (or equivalently,
filter coefficients) such that the output is Gaussian
white noise with minimum variance (the output is

referred to as residuals). The second step is then to
compute the inverse of the filter determined in the first

step. Model identification is now complete.
Statistically equivalent SA data can then be generated
by driving the inverse filter with Gaussian white noise
(whose variance is equivalent to that of the residuals in
the first step). Kelly (1992) provides an excellent
overview of time series model identification and its

application to the problem of microwave landing
system (MLS) signal modeling.

Three decisions are inherent in the above procedure.
The first is the choice of model (filter) type. Three are

possible: 1) a pole-zero filter (giving rise to what is
known as an Autoregressive Moving Average or
ARMA model); 2) an all-pole filter (yielding an
Autoregressive or AR model); 3) an all-zero filter

(yielding a Moving Average or MA model). The
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second decision is the choice of model order. That is,

if an AR model is chosen, how many poles will be
used? The third decision is related to the first two and

involves determining if a given residual sequence is
white.

Since the primary goal in this study was to derive an

accurate SA-only model, an AR model type was
chosen. This stems from the fact that A_IT,NLa, and/ViA

models tend to be noisy. In fact, Braasch (1990-91)
concluded that an ,AaVdgiAmodel was the best model

type for the combination of SA and receiver noise.

autoregressive model of order p (referred to as an
AR(p)) is defined as follows [Marple, 1987]:

,¢

)'(11) = -__, a(k)y(n-k) + e(n) (1)
k,,!

where y is the model outpuL n is the time index, a(k)

is the kth filter coefficient, and e is the input Gaus,_ian
white noise. Note that the SA models derived from

the data will operate at 1 Hz since they are tied to the
data collection_ r_te, ........

Having made the decision to use an _ model type,
the rest of the process involved finding the optimum
model order and coefficients (pole locations). For a

given model order, many methods exist for optimizing
the coefficients [Kay, 1987; Ljung, 1987; Marple, 1987].
The one chosen in this study was the Modified
Covariance or Forward-Backward method. The second

name stems from the fact that the optimization criterion
is the minimization of forward and backward prediction

errors. AS WIU be shown later, this method performs
quite well with SA data.

Several methods exist for model order selection. The

majority of these methods have been developed for
extremely short data records. The main issue is that

one wants to derive a model for the underlying
statistical process which gave rise to the data. When

model orders are selected which are too high (i.e.

approaching the number of data points in the sample),
the result is a "fit" of the sample data record rather
than the underlying statistical process. The model
order selection method used in this study is known as

the Principle of Parsimony. The simplest acceptable

model is the one chosen..An acceptable model is the
inverse of the filter which outputs white noise when
driven with S,A. Note that if the model order is too

low, the residuals will not be white even though the
coefficients have been optimized.

The model identification, therefore, proceeds as
follows. For a given sample of SA data, the coefficient
is optimized for a first-order filter and the residuals are

5O

examined. If they are not white, then the coefficients

for a second-order filter are optimized and the

residuals are examined again. The process is repeated
until the model order and optimum coefficients are

found for which the residuals are white. This process
was performed for each of the SA data sets shown
earlier. Depending upon the data set, models of either
9 or 11 coefficients were derived.

The method for determining whiteness involved
examination of the autocorreladon function.

example is given in f_gure i4 whe_e_ihe _6Vocorrelat|on
function is plotted forth¢ residuals from the SA data

of satellite 28. ideally, the autocorreiation function of

white noise has a spike at lag 0 and is zero _'erywhere
else. However, that can be obtained only for infinite
length sequences. As a result, some minor "sidelobes"
will occur at lags other than zero for white noise

sequences which are finite. The dotted lines in the
figure represent the 99% confidence intervals for the

sidelobes. AS can be seen in the plot, the sidelobes lie

inside the confidence intervals for the most pan and
thus the model is acceptable.

Further validation of the model can be performed by
generating some waveforms and comparing the power
spectral densities (PSD's) of the generated and
collected data. An example is shown in figures 15 and

16. Figure 15 shows the waveform generated by the
SA model which was derived from the SV 28 data.

Note that if one compares the waveform to that of the

collected data (figure 13), they are not the same.
However, they are statistically equivalent. That is, the
periods and amplitudes of the generated data are the
same as for the collected data. This is better illustrated

in figure 16 where the PSD's of the two waveforms are
plotted. #although it is difficult to see, there are

actually two PSD's plotted. The solid line represents

the collected data and the dashed line represents the
generated waveform. PSD comparisons were
performed on all of the models derived from the data.
In each case the result was similar to that shown here.

A final step in model validation concerns the power in
the residuals. Recall that in step one of the model
derivation process, the goal was to find a filter which
output white noise (residuals) with minimum variance
when driven with SA. The need for minimum variance

is important from both a theoretical and practical

viewpoint. Theoretically, having residuals with
minimum variance means that the filter has been

optimized and embodies the structure (i.e. correlation
or information) of the SA. Kelly (1992) refers to this
as the filter "explaining" the data. However, from a
practical viewpoint, minimum variance is also required.

This is particularly true when trying to model random,
yet smooth, waveforms such as SA.
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Figures 17 and 18 illustrate the success of the AR
model type in this respect. The residuals plotted in
figure 17 have a standard deviation of 4.12 mm
(4.12x10 "3 m). Since this represents the amplitude of
the noise driving the model (see equation 1), it follows
that any noise-like behavior in the generated SA
waveforms will be negligible. This is verified in figure
18 which shows the smooth waveform of the generated
SA over a short time interval.

MODEL IDENTIFICATION RESULTS

Having derived ten models for SA, the question which
poses itself is: Which one do I use? Ideally, one would
like to use a single model to generate the SA from all
satellites. Multiple SA waveforms corresponding to
different satellites could then be generated simply by

driving the model with multiple Gaussian white noise
sequences. It is therefore necessary to compare the
models and the collected data to determine ff any

equivalence exists. If the collected data share similar
PSD's and their corresponding models are similar, then
a single SA model is feasible.

As mentioned in the previous section, models with
either 9 or 11 coefficients were derived from the
collected SA data. For the pu_ of comparison,
llth order models were derived for those data sets

initially giving rise to 9th order models. Although,
strictly speaking, this violates the Principle of
Parsimony, the additional complexity of having two
more coefficients is negligible.

Although they will not be listed here in their entirety,
a comparison of the coefficients for the ten models
would seem to indicate little similarity. However,
examination of their corresponding pole plots provides
more insight. An example is given in figure 19 where
the poles of two models are plotted. The models were
derived from the data sets of SV 28 and SV 25. The

ellipses around the poles indicate the two-sigma
confidence regions. Notice that for all of the poles the
confidence regions of the two models either overlap or
are in close proximity to each other. Admittedly, this
is not a strict statistical proof of model equivalence
(for that, a multivariate analysis of variance hypothesis
test is required; see Kelly 0992)). However, it is at
least an indication of model similarity.

Pole-plot comparisons were performed with all of the
models. Ewe were found to be similar. These five
were the models derived from SV's 28, 25, 19, 16 and
15. The similarity was verified through comparison of
the PSD's of collected and generated SA waveforms.
Since the five models are similar, any one of them can
be chosen and used as the SA modeL The coefficients
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for the model derived from the SV 28 data will be
Listedhere:

a(1) =-1.36192741558063
a(2) = -0.15866710938728

a(3) = +0.13545921610672
a(4) = +0.21501267664869
a(5) = +0.30061078095966

a(6) = -0.12390183286070
a(7) = +0.10063573000351

a(8) = +0.02694677520401
a(9) = -0.12898590228866
a(10) = +0.05083106570666
a(11) = -0.05600186282898

a2 = 1.6993 x 10.5 (meters 2)

a 2 ls the _¢e of the Gaussian white nbise input.
The seemingly excessive amount of significant figures
is required to ensure filter stability. Note in figure 19
that three out of the eleven poles are extremely close
to the unit circle. Truncation of the coefficients can
cause these poles to move outside the unit circle
yielding instability. It is thus very important that the
significant figures be maintained. Towards this end. it
is suggested that double-precision arithmetic be
employed in the generation of SA waveforms using this
model.

The distribution of these poles makes sense from the
point of view of filter theory. The three poles grouped
near the unit circle and the real axis represent a type
of low-pass filter with an extremely narrow bandwidth.
This is n_ry since the input to the filter is wide-
band noise and the output is extremely narrow-band
SA. Although the low frequency components dominate
the SA waveform, higher frequencies are present also
and the other poles of the model contribute to these
components.

Stationarity

As was mentioned earlier, some of the collected data
records had to be truncated in order to achieve

stationarity. A random process is said to be stationai-y
if its statistics do not change with time. Unfortunately,
some of the original collected SA records did exhibit
non-stationary behavior. Another way of viewing this
is to assume that SA is truly generated by a time series
model but that the coefficients change as a function of
time. Powerful as they are, the vast majority of model
identification techniques assume a stationary data
record. Non-stationary records are typically examined
by segmenting the data into stationary sections and
identifying a model for each one separately. The non-
stationary behavior of the data then can be determined
by examining the change in the models from segment



to segment [Marple, 1987].

Having SA with this kind of behavior makes sense, at
least from a security point of view. A non-stationary

random process is much harder to "crack" than a
stationary one. It should be pointed out, however, that
the collected data did exhibit stationarity for periods of

up to one and a half hours. Since this was the
maximum data collection period, no conclusions can be
made for longer periods. Future data collection efforts

are being planned to examine tim phenomenon more
closely. In the mean time, the SA models derived from

the data are good approximations to the truth.

CONCLUSIONS AND RECOMMENDATIONS

Simulations are often necessary in the process of

development and testing of GPS-based systems. For
those users of GPS not having the benefits of DGPS

corrections, SA represents the dominant source of

error. For would-be developers of DGPS systems, SA

dictates the trade-off between the update rate (of the
differential corrections) and system accuracy.
Simulations therefore must account for SA. In this

paper, the issue of SA analysis and modeling has been
revisited. Using post-processed, precise ephemeris
data, a technique has been described whereby the clock

and orbital components of SA can be identified
separately. For the data collected for this paper, the

orbital component of SA seems not to have been
implemented.

SA data (clock component) has been collected from
over half of the current Block II satellites and a robust

model has been derived. The model has been
demonstrated to be accurate and robust. It is

suggested that this model be implemented in GPS

receiver test equipment and in GPS-based system
simulations. Since the model is capable of generating

virtually unlimited amounts of data, the design and test
engineers need not be constrained to a few collected
wave forms.
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Alm_m

The hybrid use of Loran-C with the Global Positioning
System (GPS) has been shown capable of providing a sole-
means of enroute air radionavig_uion. By allowing pilots
to fly direct to their destinations, use of this system is
resulting in significant time savings and therefore fuel
savingsas well. However, a major error source limiting
the accuracy of GPS is the intentional degradation of the
GPS ngmd known as Selective Availability (SA). SA-
induced potation errors are highly corrrdated and far
exceed all other error sources (horizontal position error:
100meten, 95%). Rcaltime mitigation of SA errors from
the position solution is highly de_le. This paper
discusses how t_t can be achieved. The stability of

Loran-C signals is exploited to reduce=SA errors. The
theory behind this technique will be discussed and results
using bench and fright data will be given.

The hybrid use of Loran-C with the Global Positioning
System (GPS) hat been shown to be capable of providing
a sole-means of ¢mroute air radionavigalion [1].
Standardization committees such as the RTCA are

currently working on developing mimmum operatioml
performance mugta:ds for _ sy_em. By allowing pilots
to fly direct to their destimmons, me of this system will
result in significam time savingsand therefore fuel savings
aswelt. By not ¢mfming all amuaft to a small portion of
the ainpK= (which result= when using the Victor airways),
the risk of collision undoubtedly will be reduced as well.

However, a major error source limiting the accuracy of
GPS is the intmtimal degradation of the GPS signal
known as Sele_ve Availability (SA). SA manifests itself
in the form of _ orbital data broadcast by the
satellites and in dithering of the satelfite dock. The re_t
is position demmination which, according to the
_t of Defense (DoD), will be in error by one
hundred met_ 95% of the time in the horizontal plane.
Previous work performed at Ohio Universityshowed that

SA-induced pmition errors are highly correlated [2]. Since
the correlation time is on the order of minutes, it follows
that the error fails wee within the passband of the

LORAN-C

ai.,'craft's dynamic response. The result is that the aircraft
will follow the deviations induced by SA.

Realtime mitigation of SA errors from the position
solution is highly de_'able. This paper discusses how that
can be achieved. The stability of Lonm-C signals is
exploited to reduce SA errors. In the typical hybrid use of
Lonm-C and GPS, the Loran-C signal stability is not

exploited. This stems from the relatively poor absolute
accuracy of Loran-C (relative to GPS). However, it is

possible to use the stability of Loran-C positioning to
reduce SA-indueed GPS positioning errors, The theory
behind this technique will be discussed and results will be
given. First, the phcmomeonn of SA will be described.

Selective Availability

As mentioned in the introduction, SA is an intentional
corruption of the GPS signal by the DoD to limit the
accuracy available to the public. The degradation is
achieved in two ways. First, false satellite orbit
pm-amewa_ are broadcast to the users. This results in
incorrect positioning of the mtellites in the navigation
solution.Secondly, code and carrier traclang errors are
induced through dithering the satellite clock (carrier
frequm_). The erroneons orbit _ lead to
position errors which vary flowly throughout the satellite
pass. Code-phase =ridcamer-plme e_ors due to the

dithering of the m_llite clock arc random but also are
highlyconelatod.C,onelationtimesof sevend minutesare

typical.As a result,simplefilteringschemes are not
effectiveand aircraftwillfollowthe deviations.Virtually
all of the information available to date about SA has been

gathered through data collection efforts by civilian
organimtiom. The DoD, however, has stated that SA
shall be instituted in such a way as to yiedd horizontal
position errors at a 95 % level of I00 meter= [3].

Miti_afon Methodology

The heart of the mitigation scheme lies in the differences
between Loran-C and SA-indueed GPS position errors.

Loran-C position error= in general are biased and noisy.
The level of noise depends upon the receiver architecture

Wild Goose Association, Annual Convention and Technical Symposium,

August 24-27, 1992, Birmingham, England
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and specifically upon the trac_g loup bandwidth.
However, noL_ lev¢_ on the order of 5 to I0 memrs can

be achieved for airborne applications. The Loran-C

posidon bias is primarily composed of unmodeled

adcLiuonai secondary phase factors (ASF), In general the
bins does not remain constant over any given flight path
but the variation is usually quite ,low m comparison to the

clock component of GPS SA error. This phenom_on is

what maic_ Loran_ SA mLtigabon pottlblP. The

long-team stability of the Loran-C measurement, is
exploited to smooth the SA-inclimed variations in the GPS
mP,aturetne_t t.

Conceptuadly, the mitigation scheme works as follows.

The Lorzn-C sensor computes the horizontal position of

the aircraft.A vertical input isneeded and issupplied by
the baromemc aitimeter (again,a sensor which isbiased

but stable). The combination provides a three-

dimensionai l_tion of the aircraft. Range values are
computed from the GPS satellites to the Lomn-

C/altimeter position. These range values axe then the

reference qptinst which the measured GPS pseudoranges
are filtered.

Note that the technique depemis upon the assumption that

SA error is composed only of high frequency com_tents
relative to the Lonm-C bias en,or variations. Stricdy
speaking, this assumption is not vaLid since the orbital

component of SA eat'or is slowly varying. However, as was
shown in [2], the clock component of SA error has periods
on the order of five to ten minutes. As such it is a high
frequency error source relative to the non-noise

component of Loran-C error. Although this has not been

rigorously proven, flight data (to be shown later) supports

the conclusion. Thus, the technique is able to reduce the

clock component (or roughly speaking, the variance) of SA
t_ror.

The filtering is ao0omplished by complementary Kalman
filten which are applied m ear& pseudorange

_t [4,5]. The repots to ear& filter are the given
GPS pseudottnge n'zasmen_t and the corresponding
range computed from the satealite to the Lonm-

C/tltimeter position. At each nmmmrement epoch

(current time given by the index k), the complemontary
Kalman filter is executed as follows:

d; - alL1* (L,-Z_.i) (I)

p; "pLt * q _)

p;
k t =

p_*r

(3)

d; - di * tj(z,-d,') (4)

p;. (t-kppl (5)

where the subscript repref_ts the time index. The

superscripts '-'and ' +'repre,umt predicted and estimated

quantities _veiy. 'd ÷' represents the estimated

pseudorange with variance q. 'z'represems the measured

pseudonmge with error variance r. Note that r is clue =

primarily to SA. 'L' represen_ the range computed from

the satellite to the Loran-C/altimeter position. 'p'
represents the prediction or estimation error variance. 'k'

is the Kahnan gain. In equation (I), the current

pseudonmge prediction is computed by updating the

previous pseudonmge estimate with the difference
between the current and previous Loran-C/altimeter

ranges. The prediction error variance is computed in

equ_t_ion (2) told is used to compute the KaJman gain in

equation ('3). The difference between the measured and

p_ _ranges is weighted by the KaJman gain in

the computation of the current estimate (equation 4).

Finally, the current estimation error variance is computed
(equation 5).

Position Solution

Given at least four GPS pseucloranges, position may be

computed. As will be shown in the next two sections,

significant reduction m SA-error may be achieved when
using the mitigation technique justdescribed.

For both the sihiulation and flight trot r_dr_ (to be shown i :
later), the ordinary least-_uarm (OI._) estimator is used
to determine position and clock bias from the

pseudmang_. In the absence of measurement errors, the

rrJatiotmhip between _t..nlte location, receiver location,

clock bias and pseudomnge is given by:

R,. _/(x,-x)_.(y,-y)_.(z,-zf. b t6)

where l_ is the pseudonmge to the i* satellite,(x_,yt,zOare
the coordinm_ of the saw,Bite,(x,y,z)are the coordinates
of the re_iv_ arid b isthe receiverclock bias (convert_

to units of distance through multiplication by the speed of
lighO. Since the re.vet coordinates and clock bias must

be solved for simultaneously, at least four measurements
are required.

However, instead of attempting simultaneous solution of

non-linear equations, the standard technique is to solve
iterafiveJy a set of equations which have been linearized

about an initial estimated pogtion and clock bias
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(Xo,Yo,Zo,b_). This is achieved by forming a Taylor series
expansion and retaining the zeroth and first order terms:

aR_ 8Rt

R, - R. • (_x) _ I..,.,. + (_ y) _-y I..,._. (7)
aRt 0Rt

• (8z)-_71,.,._.,(Sb)-_

where t_ is the range from the satellite to the initial
position estimate. _x, ,Sy, 6z and 6b represent the
corrections to the initial estimates. If the initial estimate
is close to the truth, no iterations are required. However,
if the init_l estimate is not close, the corrections are used

to ulxlate the initial estimate and the process is repeated.
Convergence is declared if the magnitudes of the
corrections are below a desired threshold.

The partial derivatives are evaluated as follows:

aRf Xo-x (8)
u _ • all

Ox Ri-b°

ORt Yo-Y
. _ . % (9)

by R_- bo

aR, z°-Z (10)
8z R,-bo

OR, 1 = au (I1)
Ob

Substitutionof equations (8) through (II)into(7)yields:

= (8x)% + (Sy)a a * (8z)% + (Sb)¢u (12)8RI

where:

_R, = RI - R_ (13)

Four pseudorange measurements allow for the following
simultaneous set of equations:

SRl1

!l8_

8

= /¢_1 ¢22 ¢13 8y

¢31 ¢32 ¢33 ¢_ 6Z
_a4l ¢t2 ¢o a 8

(14)

which may be rewrittenmore succinctly:

(15)

The presence of measurement errors may be accounted
for by the addition of an error vector:

= H_ + e (16)

The ordinary least-squares solution is then given by:

_oza = (HrH)-1HrX (17)

After one iterationthen, the positionand clockbias

estimateisgivenby:

Yo 8y
m 4.

Z_ 8Z

b 8

(18)

To determine the feasibLiity of the technique, a simulation

was performed. A simple flight-path was mode.led with
the aircraft traveling to the east for 900 seconds at 100
meters/second, followed by a 2g turn and then returning
to the west (figure 1). For the sake of simplicity in the
calculations, a static satellite constellation was modeled.
In order to focus on the effects of SA, all other GPS error
sources were assumed to be zero. The Loran-C/altimeter
errors were modeled in the position domain by a constant
200 meter bias on each axis.

The SA model was obtained from collected data using the

System Identification procedure described in [2]. In order
to model SA rather than the combination of SA and
receiver noise, integrated Doppler data (rather than

pseudorange data) were used. The System Identification
procedure yielded a 16th order autoregressive (AR) filter.
When Gaussian whitenoise(of proper variance) isinput
to this filter model, _e output isstatistically equivalent to
the coilected SA data. An example of the output is given

in figure 2.

The positioning errors resulting from the SA corruption
are given in figures 3 and 4. Both the east and north
components of the position error exhibit similar
characteristics to the SA error on the pseudorange
measurements. As discussed earlier, the errors are highly
correlated and reach up to 100 meters. However, use of
the Loran-C/altimeter data in the complementary Kalman
filtex yields significant reduction of SA error (figures 5 and

6).
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Flight Test

Although extremely encouraging, the simulation results
were obtained using a simple model for Loran-C position

errors. In order to verify the robustness of the technique,

actual flight data was used. This is necessary since Loran-

C position error bias is spatially dependent.

The flight data employed here were collected during a trip
from Cleveland to Athens, Ohio in Fall of 1990 (figure 7).

It may be recalled that SA was temporarily turned off at

that time because of military use of civilian GPS receivers

during Operation Desert Shield [6]. As a result, the GPS

horizontal positioning accuracy is on the order of 10-20

meters [1]. For this flight, the GPS-derived position was

therefore used as a rough truth reference.

SA was generated by the model described earlier and

added to the raw GPS pseudorange measurements (figure

8). As expected, the Loran-C position error is biased but
the bias is not constant with position (figures 9 and 10).

As was done earlier, altimeter error was modeled as a

constant 200 meter bias. Raw SA-induced position errors

are as expected with large excursions and high correlation

(figures 11 and 12). Again, position errors after smoothing

are significantly reduced (figures 13 and 14). It is

important to note that even in the face of spatially varying

Loran-C position errors, the mitigation scheme continues

to perform well.

_onclusions

A technique has been described whereby the stability of

Loran-C signals are exploited to reduce SA-induced GPS

position errors. The viability of the technique has been

confirmed using simulations as well as actual flight data.

Future work will consider the possibility of realtime SA

model identification.
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ABSTRACT

This paper summarizes the results of several case
studies using the Global Positioning System coverage
model developed at Ohio University. Presented are
resultspertaining tooutagearea,outagedynamics,and
availability.Inputparameterstothemodelincludethe
satellite orbit data, service area of interest, geometry
requirements, and horizon and antenna mask angles. It
is shown for precision-landing Category I requirements
that the planned GPS 21 Primary Satellite Constellation
produces significant outage area and unavailability. It
is also shown that a decrease in the user equivalent
range error dramaticagy decreases outage area and
improves the service availability.

1. INTRODUCTION

An excellent summary documenting the impending
need for a comprehensive Global Positioning System
(GPS) satellite coverage model is given in [1]. To be

complete, this summary is repeated here:

"The continuous movement of navigation satellites with

respect to the surfaceof the earth results in continual
changes of the system coverage. There may be times
when the number of satellites in view of an aircraft near

a particular airport would be less than that required for
executing a precision approach. The periods of time
when precision approach coverage will be inadequate
at given airports must be known well in advance in
orderthat operations may be restricted.

A satellite-based precision approach system requires a
high level of availability within the service region to
ensure operational suitability of the system. At the
present time, a precise requirement for availability is
not defined; however, preliminary studies indicate that

system unavailability should be well below one minute
per day. Critical sources of unavailability result from
poor satellite geometry, planned satellite down time,
known satellite failures, and planned ground

equipment down time (e.g., a differential reference
station). Thus the majority of the satellite system
unavailability is predictable. The primary
consequence of predictable unavailability is the need
to schedule around the known outages. Since a single

satellite covers a large geographical area, a satellite
outage could potentially affect a large service area.
This would result in major operation, capacity, and
economic concerns. For instance, a one-hour outage in

a metropolitan area would result in multiple
simultaneous missed approaches and simultaneous
replanning for many aircraft in the air.

Notethatunpredictableoutagesareprimarilyasafety

concernbecauseof theirsignificanteffecton the

guidanceof aircraftduringtheapproachand landing

phase.The contributionof unpredictableoutagesto

theoverallsystemunavailabilityisanticipatedtobe

smallcompared tothepredictableoutages,butthis

assumptionmustbeverified.

A computer model would be used initially to
characterizethe coverage,and to analyze the size,

duration,and dynamicsof theoutageareasunder a

wide varietyof failurescenariosand fordifferent

systemarchitectures.Inputparameterstothemodel
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would include the service area of interest, satellite orbit
data. geometry requirements, horizon and antenna mask
angles, and satellite reliability data.

The descent of the aircraft while on an approach, along
with the movement of navigation satellites, may also
result in different optimal sets of satellites guidance at
the initiation and at the conclusion of the approach.

The impact of using a four or five channel receiver with
potential sateUite switching during the approach versus
an all-in-view receiver must be addressed. The

computer model can then be used as a tool to evaluate
different system architectures.

...The criticality of this issue is judged to be HIGH,
since coverage definition is necessary for the assurance
of adequate system performance."

In order to address the GPS coverage issues, the Ohio

University Avionics Engineering Center has been
developing a comprehensive GP$ coverage modei.=_b _
different modules that comprise the model have been
used in various applications as documented in reference
[2]. This paper summarizes the most recent
developments and highlights the model's unique
features and capabilities. The results of several case
studies are presented in order to gain an appreciation for
the types of parametric studies the model will facilitate.
The presentation concludes with a brief summary of
additional work that is necessary in order to allow the
GPS coverage model to be used as a complete system-
analysis tool. It should be emphasized that the current
model is capable of evaluating not only the present
satellite architecture, but will eventually become a tool
for designing and evaluating alternative satellite-based
navigation architectures to meet precision-approach
requirements.

2. CASE STUDIES

2.1 Introduction

This section details the results of several case studies

involving the various modules which comprise the

coverage model. For each case study presented, the test
conditions are stated and results given. This is followed

by a discussion and summary of the important
conclusions.

The two case-study scenarios analyzed by the coverage
model are summarized in Table 2.1. The parameters

displayed in the table were chosen for validation

purposes and to determine a near-global perspective on

the system performance. Although these were chosen

to be representative of the model's capabilities,
additional work is still needed in order to develop

minimum standards for time and space increments.
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Table 2.1 Case-Study Initial Conditions

Test

Conditions

Max. N Lat.

Max. SLat.

Max W Long.

Max. E Long.
Increment

Min. HDOP
Min. VDOP

Min. PDOP

AnalysisTime

Time Increment

Constellation

Test 1

(World)

90 °

.90 °

- 180 °
0 °

5°

6

24 hours

5 minutes

Optimal 21

Test 2

North America)

75 °

15 °

-170 °

-5_

6 °

2.3

9.2

24 hours

6 minutes

21 Primary

2.2 Case Study I: Counting Outages

AS a first attempt at 0utage characterization, the

duration and number of zero-failed satellite outages at

each location in the search grid were determined.

Figure 2.1 shows the Test-I (World) outage contours.
This result is essentially the same as that presented by

Jorgensen [3]. Note that, in this case, even the

complete constellation results in substantial outages.

This is due to the fundamental limitations imposed by

using the Optimal 21 Satellite Constellation. The
inclusion of this result is not intended to-_ an analysis

of the Optimal 21 Constellation, but is presented

because of its importance to the validation of our

model. The case studies shown throughout the
remainder of the paper _il be concerned exclusively

with the GPS 21 Primary Satellite C0nstel!ation [4].

2.3 Case Study II: Outage Areas versus DOP

Shown in Table 2.2 are the Vertical Dilution of

Precision (VDOP) requirements for the various

categories of approach assuming a 6-foot user

equivalent range error (95%) [5]. Table 2.3 expands

upon this for the Category 1 landing by showing the
required VDOP for different values of user equivalent

range error (UERE). Throughout the paper, the
required maximum allowable HDOP was chosen to be

four times the specified VDOP.

The effect of varying DOP requirements (VDOP

and/or HDOP) is of particular importance, especially

when considering precision-approach issues. To

determine the impact that the DOP requirement has on

outage area, the model was used to characterize the

outages based on the initial conditions set forth in Test
2 (North America). For this test, the GPS 21 Primary

Constellation (as shown in Figure 2.2) was analyzed at

three different DOP values for up to three failed
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Figure 2.2 The GPS 21 Primary Satellite Constellation.
The satellite numbering is based on the order in which

the satellite ephemeris data is entered into the model.
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satellites. Table 2.4 summarizes the worst and average
satelhte-failure combinations for each DOP condition.

Table 2.2 Vertical Accuracy as a Function of VDOP

Approach

Category

II

III

Vertical

Requirement
(feet, 95%)

13.5

5.6

VDOP

Requirement

2.3

0.9

Table 2.3

Note: Satellite numbering is based on Figure 2.2.

2.0 0.3

The most important observation that can be made
based on an analysis of the data contained in Table 2.4

is that the worst- and average-failure combinations
change as a function of HDOP and VDOP. This is

evidence to the fact that the coverage provided by the
21 Pri-mary GPS Constellation is highly nonlinear and

nonuniform. Figure 2.3 also illustrates this nonlinearity

by graphically displaying the average and worst-case

outage area as a function of DOP and the number of

failed satelliteS. To further illustrate this nonlinearity,
consider Tables 2.5 and 2.6. Shown here are the ratios

of outage--g-=da-decrease as a function of VDOP (and

UERE

fit, 95%)

.................... _ r=_T_au_/F0r example, from the worst-case
............ .- --.;.=.7 .

The Cat I Approach: VDOP and UERE single failure of Table 2.5 it can be seen that relaxing

VDOP

Requirement

Associated

l-tI_P

9.2

18.4

55.2

2.3

4.6

13.8

the (HDOP, VDOP) requirement by a factor of six

decreases the corresponding outage area by a factor of

210, with pronounced area reductions occurring in the

other cases as well. It is also interesting that DOP

relaxation has a greater effect on the average failure
combination than on the worst-case failure

combination. This may be due to the fact that the

worst-case failure combinations are highly sensitive to

DOP requirements.

Table 2.4 Worst and Average Satellite Failures

fflDOP, VDOP

(9.2, 2.3)

(18.4, 4.6)

(55.2, 13.8)

(9.2, 2.3)

(18.4, 4.6)

(55.2, 13.8)

(9.2, 2.3)

Worst

Single Failure

(22)

(8)

(22)

Worst

Double Failure

(9, 22)

(6, 9)

(20, 22)

Worst

Triple Failure

(10, 15, 22)

Average

Single Failure

(11)

(16)

(20)

Average
Double Failure

(5, 11)

(9, 20)

(5, 24)

Average

Triple Failure

(I, 8, 23)

(18.4, 4.6) (3, 6, 9) (9, 10, 16)

(55.2, 13.8) (1, 8, 22) (8, 11, 19)

Table 2.5 VDOP Relaxation and Outage Area

(The Worst-Case Satellite Failure)

Relax VDOP Relax VDOP
Number of
failed SVs (2.3 : 4.6) (2.3 : 13.8)

(1 : 2) (1 : 6)

0 30.64 752.05

1 15.08 210.10

2 5.93 25.94

3 3.37 7.91

Table 2.6 VDOP Relaxation and Outage Area

(The Average Satellite Failure)

Relax VDOP Relax VDOP
Number of
failed SVs (2.3 : 4.6) (2.3 : 13.8)

(1 : 2) (1 : 6)

0 30.64 752.05

1 20.25 356.22

2 12.66 109.91

3 8.50 44.34
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The histograms for the three-satellite failure case are
shown in Figure 2.4. These demonstrate the
distribution of failure combinations and the resulting

outage areas. In each of the histograms it can be seen
that the number of failure combinations close to the

average is much greater than those close to the
maximum. Thus, while averaging is not justified as a
stand-alone means of system parametrization, it may be
sufficient for a first-order approximation of system

performance.

2.4 Case Study HI: Outage Dynamics

A very important feature of the current model is the
ability to generate movies, or slides, which give a time-
dependent record of the outage areas. Figure 2.5 shows
the outages generated during five consecutive five-
minute intervals. The frames were generated using the
Test-2 (North America) conditions. The outage
contours are the result of failing satellites 1, 4, and 5
with a (HDOP, VDOP) requirement of (55.4, 13.8).
The slides demonstrate that huge outages can appear

and disappear very quickly. As one might expect, the
outage contours generally exhibit an easterly
movement. However, it also appears that the DOP

requirements dictate outages more than the overall
movement of the satellites. This is evidenced by the

appearance and disappearance of the large outage areas.

The implication of these results is especially important
when considering the outage-based alternate-airport
issue. For an en route aircraft navigating in the middle

of an outage area, the most probable course of action
would be to maintain course and wait for the outage to

dissipate. For an aircraft navigating in the terminal
area, the issue of landing at an alternate airport is rather
mute. Unless the primary airport is on the outside
border of an outage, the probability of finding a suitable
•alternate airport is prohibitively low. Again, the most

likely course of action would be to wait for the outage
to dissipate. The situation is somewhat analogous to an
aircraft entering a terminal with a single instrument
landing system ([LS). If the ILS were to fail during an
approach, a missed approach procedure would be taken,
followed by further instructions from the ground station

to the pilot. If an approach were being flown using
GPS and an outage occurred, a monitoring station
equipped with the GPS coverage model could quickly
determine the nature and extent of the outage. Using a

model capable of predicting the movement of the
current outage, the pilot could be advised of the best
course of action. While more work is undoubtedly

needed in this area, the ability to track outages as a

function of time should prove to be of great value in the

evaluation of satellite-based navigation systems.

2.5 Case Study IV: Availability

To determine the availability (and subsequent

unavailability) for each location in the North American
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search grid. the Markov state probabilities shown in
Table 2.7 were used [5-8].

Table 2.7 Steady-State Markov Probabilities

Number of Markov Cumulative

failed SVs Probabilities Probability

0 0.703 0.703

1 0.227 0.930

2 0.055 0.985

3 0.012 0.997
, ,,

4 0.002 0.999

5 0.00042 0.99942

6 0.000071 0.999491

In order to create an outage record of workable size in

the current computing environment, system

availability was calculated by only considering up to
three failed satellites. Thus, the maximum availability

would necessarily be limited to 0.997, or an

unavailability of 0.003 (1.000 - 0.997). This is

equivalent to a minimum system unavailability of 4.32
minutes per day. While only allowing for three
satellite failures seems somewhat prohibitive, it will be

seen in the next section that the majority of

unavailability is accounted for in just considering up to
three satellite failures. Shown in Figure 2.6 are the

unavailability contours for the North American

continent. The plots dramatize the expected

unavailability of the GPS 21 Primary Satellite
Constellation as a function of location and dilution of

precision. It is interesting to note the high degree of

location dependency in each of the contours. From the
contours it is evident that the stringent DOP

requirement of O-IDOP _- 9.2, and VDOP 1 2.3) results
in substantial unavailability (2-7 hours) whereas the

least stringent requirement (HDOP -- 55.4, and VDOP

= 13.8) results in significantly lower overall

unavailability approaching the analysis-imposed 4.32

minutes-per-day limit

The ratios of maximum and average unavailability as a
function of DOP are summarized in Table 2.8. In

comparing Table 2.8 with its counterparts for outage

area (Tables 2.5 and 2.6), we see that relaxation of the

DOP requirements has a similar nonlinear affect on
unavailability. Also, it is again seen that the effect is

greater on the average than at the extremes. In the
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next section, the model will be applied to a limited
number of important locations in order to determine if
they are representative of the entire North American
search region.

Table 2.8 VDOP Relaxation: Worst and Avg. Unavail.

Number of

failed SVs

Worst-Case

Unavailability

Average
Unavailability

Relax VDOP

(2.3 "4.6)
(1 "2)

10.92

14.65

Relax VDOP

(2.3"13.8)
(1:6)

24.92

33.11

2.6 Case Study V: Specific Airports

In an attempt to develop a benchmark for determining
the number of satellite failures needed to best quantify
the current system, the model was used to calculate the
maximum and average unavailability experienced by
the ten busiest airports in the United States (as
reported by the Aircraft Owners and Pilots
Association). Table 2.9 lists the name and location of

these airports.

Table 2.9 The AOPA Ten Busiest U.S. Airports

Airport Name Airport Location

1. Chicago O'Hare Int'l
2. Atlanta Int'l
3. Dailas/Ft. Worth Int'l

4. Los Angeles Infl
5. Santa Aria

6. Van Nuys
7. Phoenix Sky Hrbr. Infl
8. Long Beach
9. Denver Stapleton Int'l
10. Miami Int'l

41o58 ' N 87054 , W
33038' N 84"35' W
32°53 ' N 97"02' W
33056' N 118024 ' W
33040 ' N 117052 ' W
34"12' N 118"29' W
33026 ' N 112"00' W
33049' N 118"09' W
39o46 ' N 104"52' W
25047 ' N 80"17' W

Source: AOPA 1992 Fact Card (1990 Data), Aircraft
Owners and Pilots Association, Frederick, Maryland.

For these locations, the model was run for up to and

including six satellite failures. The maximum and
average unavailabilities for failing 3, 4, 5, and 6
satellites for the ten busiest general aviation airports
are shown in Table 2.10. These values are based on

the Category I requirement of (HDOP = 9.2, VDOP =
2.3) assuming a UERE of 6 ft. (95%).
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From Table 2.10 it can be seen that. on the average, the
difference in the computed unavailabiLity for running
the model to three failures is only about two percent
higher than running the model to its current limit of six
failures. This appears to indicate that, in order to obtain
a good approximation of system availability, the model
need only consider up to three satellite failures.
Naturally, as different constellations are evaluated, this
assumption may no longer be valid and will require
further investigation. It is worth noting that, while none
of these airports represent the maximum unavailability
discussed previously, they are representative of the
average of the entire search grid to within 22%, or
approximately 30 minutes of unavailability. While
seems to be a rough approximation, it may be justified
in instances where a quick check is sufficient.

Table 2.10 Unavailability Calculations

Maximum Average
Max. number Unavailability Unavailability
of failed SVs

(hours/day) (hours/day)

3 2.90 2.17

4 2.87 2.14

5 2.86 2.14

6 2.86 2.13

3. SUMMARY

The characterization of outages in the coverage
prd_,i-d_i by the Global Positionl/ig-S_,smm is of utmost
importancewhen consideringGPS as a sole means of

navigationand asa navigationaidforflyinga precision

approach. The connnued developmen_t Of the Ohio
University GPS coverage model _VilI enable detailed

parametric studies of variouscoverage issues. The
application of the model was demonstrated through
several representative case studies. These studies
showed how various Dilution of Precision (DOP)

requirements affect system performance.

Future work will include designing and running

additional simulations to determine key system
parameters. The model presented in this report will
serve as a foundation for the development of a complete

coverage model with the capacity of evaluating (and
thus designing) a robust satellite-based navigation
system.
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ABSTRACT

Aircraft guidance and positioning in the f'mal

approach and landing phases of flight requires a high

degree of accuracy. The Global Positioning System

operating in differential mode (DGPS) is being
considered for this application. Prior to

implementation, all sources of error must be
considered. Multipath has been shown to be the
dominant source of error for DGPS and theoretical

studies have verified that multipath is particularly

severe within the final approach and landing regions.

Because of aircraft d_ics, the ground station

segment of DGPS is the part of the system where

multipath can most effectively be reduced. Ground

station siting will be a key element in reducing

multipath errors for a DGPS system. This situation

can also be improved by using P-code or narrow
correlator C/A-code receivers along with a multipath

rejecting antenna. This paper presents a study of GPS

multipath errors for a stationary DGPS ground station.

A discussion of GPS multipath error characteristics

will be presented along with some actual multipath
data. The data was collected for different ground

station siting configurations using P-code, standard
C/A-code and narrow correlator C/A-code receiver

architectures and two separate antenna constructions.

INTRODUCTION

GPS soon will have the capability to provide position

information to users anywhere in the world nearly 24-

hours per day. For applications requiring precise

positioning (better than 100 meters (95%)), a stand
alone installation is not sufficient to provide adequate

positioning accuracy for civilian users. However,
differential GPS (DGPS) can provide users with sub-

meter level accuracies. Aircraft guidance and

positioning in the final approach and landing phases
of flight is a prime example of an application for

DGPS.

At Ohio University's Avionics Engineering Center, the

use of DGPS for guidance and positioning of aircraft

during final approach and landing is being

investigated. GPS by itself has many sources of error

including Selective Availability (SA), ionospheric

delay, tropospheric delay, receiver hardware errors,
receiver noise and multipath. DGPS eliminates those

errors which are common to both receivers. The

single largest source of error that remains is the error

due to muitipath [1]. If DGPS is to be used for final

approach and landing, the effects that multipath has

on the GPS range measurements must be
characterized and controlled to meet the required error

budgets. This paper will present a discussion of
different characteristics and multipath errors observed

for various antenna and receiver configurations. The

siting configurations include: ground level and ground

plane mounted hangar rooftop antenna placements

using a standard microstrip GPS antenna and an

experimental helix antenna. The above antenna

placements will be combined with separate receiver
architectures that include: P-code, standard C/A-code

and narrow correlator C/A-code receivers.
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BACKGROUND

The accuracy of GPS positioning depends on the

accuracy of the pseudor,'mge measurements. There

are many error sources which cause erroneous range

measurements. The major error sources ,are _s
follows:

• dymtmics _
• thermal noise

• specular multipath

• diffuse multipath

signal delay due to propagation through the

troposphere

sigmd delay due to propagation through the

ionosphere
error due to satellite clock offset and orbit

uncertainty
Selective Avmlability (SA)

receiver inter-channel bi_es

receiver me_urement errors

: U2LI-i_ : :

Although integrated carrier phase measurement
accuracies ,are typically on the order of two

centimeters, the code phase measurements ,are still

required for ,'unbiguity resolution. Therefore, this

paper focuses on the code phase measurement error.

The si_n_ _t_tia_ _!e_na _isa_om b!natj 0n i3f d{ffereni ....
types of sigmds: direct ,and non-direct. The direct +

signal is the signal received that travels the geometric
distance from the satellite to the receiver_ The non-

direct or multipath signal is a signal that has been
reflected or diffracted off an Object _d ,arrives at the

receiver after ihc direct signal. In general, mul!ipath

signals are weaker than the direct signals. When the

direct ,and/he multipath signals combine, the result is

a signal with the Same: frequency but having a relative

phase difference with respect to the original direct :

signal. This phase error affects both +the code

me,xsurement ,and the carrier phase measurement.

DGPS eliminates the errors in the measurements that

,are common to both receivers, but multipath has a
different effect on each receiver. This is because

multipath depends on the GPS antenna environment.

For a typical DGPS system, the receivers are not

close enough to each other to possess the same

multipath characteristics. Three categories of

multipath for the final approach and landing
environment are [2]:

• Obstacle-based at the ,airborne receiver.

• Airfr,'une-based at the ,airborne receiver.
+

• Obstacle-based at the ground reference station
receiver.

The air and ground system obstacle-based multipath
originates from the ground itself as well as from

buildings or other structures on or near the ground.

The obstacle-based multipath at the ground reference
station often arrives at the antenna from a direction

below the horizon. An effective method for

eliminating this multipath is to limit the antenna's gain

pattern so that the ,antenna is only capable of

receiving signals from above the horizon. This c_

be achieved in two ways: placing the antenna on a

large ground plane or electrically adjusting the

antenna gain pattern to attenuate any signals
below the horizon. Both of these methods will be

discussed later in the results segment of the paper.

DATA COLLECTION

GPS muitipath data collection was performed at ihe

Ohio University Airport (UNI) located near Albany,
Ohio. The area surrounding UNI is flat and free of

clutter. There are "also two large fixed structures

(hangars) that are capable of generating significant

multipath. Data was collected at two sites: site one

was located on top of the larger of the two aircraft

hangars, site two w_ locate d in a field approximately
500 meters away from the hangars and the antenna +

was placed at ground leVeL Site+_ne represents a

typical DGPS reference station siting with the hangars

being the leading multipath contributor. Site two can

be considered a benign multipath environment

because the antenna is being placed on a large ground

plane and the leading muitipath contributor is the _+

ground itself because there are no fixed obstacles

above the horizon that ,are generating multipath

signals.

Two GPS antennas were used during the data

collection, a du_-frequency microstrip antenna and an

experimental helix antenna. The experimental helix

antenna was provided by Mr. Don Spitzmesser of the

Jet Propulsion Laboratories. The antenna consists of

a 20 cm parabolic reflector and a thin wire helix
placed in the center of the reflector dish. The helix

is configured to receive both LI and L2 frequencies.

Because of the parabolic dish, the helix antenna is- ++

more directive and better masks signals that may
arrive from below the horizon. There were two GPS

receivers used for the data collection: an Ashtech P-

12 GPS receiver and a Novatel GPS CARD receiver.

The P-12 is capable of continuous tracking of LI
C/A-code and both L1 and L2 P-code. The Novatel

GPS CARD is an LI frequency, narrow correlator
C/A-code receiver.
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The measurement data for the P-12 ,and the GPS

CARD was collected ,and recorded in re,'d time using

a 386 notebook computer ,and a 286 desktop computer

respectively. Data was collected over a 120 minute

time period. Five sets of data were collected for this

_m,'dysis:

H,ang:u" Roof:

P- 12 with microstrip ,antenna

GPS Card with microstrip antenna
P-12 with Helix antenna

GPS Card with Helix antenna

Field Location:

P-12 with microstrip ,antenna on the ground

DATA PROCESSING TECHNIQUES

The combination of multipath, thermal noise,
unknown bias and receiver error was extracted from

the data using the standard code-minus-integrated

Doppler technique [3,4]. Equation 1 shows the result:

dcode - dp_,, = 2dk, no +d___a s

- dpt_-,+w + d_,a_-_,tw

- dphaw_no _ + d__tn p

- dphm_, v - A + doaw

(t)

phase-noise (d_,h..... ) values on the order of 0.1
millimeter (l-sigma) [6] ,allowing this term to be

neglected as well. The receiver phase measurement

errors (dph....... ) are ,also negligible [7]. When
compared to the code-multipath error (dco,_-mo),which
is usually on the order of meter, the carrier-phase

multipath (¢_._) and the noise (d_h..... ) terms are
very small. For this reason they c,'m be dropped from

equation (1). The integer ,ambiguity (A) is a constant
bias for the duration of the data collection, which is

not of interest for this study. Equation (1) is then

approximated by:

(dc - / =2dlo,w+ s
+dco -note+dcodt-mp+dotl "

(2)

The error due to the propagation delay through the

ionosphere can be removed through the standard dual-

frequency correction [8]:

(3)

where:

• dc.,_ is the code measurement

• dr_ = is the carner-phase (integrated doppler)
measurement

• d .... is the signal delay due to propagation

through the ionosphere

• d+o,_..... is a combination of thermal noise ,and

diffuse multipath on the pseudorange

" dr_.... _ is a combination of thermal noise and
diffuse multipath on integrated c,'u'rier phase

° dc__m,, & d_.r_, is receiver measurement noise
for code and phase measurements

• d_od_._ & d_._ is specular multipath on the

code and phase
• A is _ integer wavelength ,ambiguity

• d,_, includes receiver measurement error

For situations where - the strength of the multipath is

less than the direct signal, the carrier-phase multipath

term (dp_,) will not exceed 4.8 centimeters [5]. It
has been shown that state-of-the-art receivers exhibit

?

Noise in the data is reduced by averaging (filtering)

the code measurements against the stable c,'u-rier
measurements. This is accomplished using a

complementary Kalman filter [9]. After applying the

ionospheric correction and the complementary Kalman
filter, we arrive at the following:

- =
+ d,..,k_.v , + d,_¢,.

(4)

The next section presents the results of the data

collection and data analysis.
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DISCUSSION OF RESULTS

The results are presented in the following figures ,and
table. The filtered code-minus-cax'rier for satellites 3.

17, :rod 23 is shown in figures 2 through 25 for ,all

the receiver ,and antenna configurations being
considered. The three satellites were selected because

they include the elevation ,angles of interest: SVI7

exhibits the characteristics of a high elevation

sateil]iel SV23 represents a medium elevation s_ateiiite
and SV3 is indicative Of a lower elewttion satellite

that vanishes below the horizon during the data

collection. Figure 1 shows the elevation angles for

the satellites during the data collection. As
_mticipated, the error levels ,are correlated to the lower

elevation angles for all the test cases. Table I shows
the root mean squ,'u'ed (rms) of the multipath error in
meters for C/A-code, narrow correlator C/A-code and

P-code for each satellite for data collected on the

hangar roof and C/A-code ,and P-code for data

collected at the site away from the aircraft hangars.

The last row in the table represents the average for
the three satellites for the receiver ,and ,antenna

configuration listed in that column.

The best case for al! the scen,'u'ios ru n was_the P-code

receiver operating out in the field away from ,all
structures. The worst case was: Observed on the

hangar roof using the standard C]A-code with the
microstrip antenna. The contrast between the two

results indicates that the muiiipath does indeed enter
the antenna from below the horizon. These results

are as expected. From the data presented it is easy to

see that the lowest levels of multipath were

experienced for high elevation satellites using the P-

code measurements. This result is also expected.

In general, the measurement taken away from the

hangar showed lower rms levels of multipath for all

satellites. This kind of multipath environment may

not be available for a typical DGPS reference station

location. The hangar roof can be considered a more

typical example of a DGPS reference station site. For

this site the helix antenna produced results that were

significantly better than the microstrip antenna.

The helix antenna has the limitation of only being
able to track satellites down to an elevation angle of

10°. Another Consideration for a DGPS landing

system, P-code may not be available for all aircraft.
In the case that P-code is not available, obviously

C/A-code would have to be used. Looking at the

comparison between C/A-code and na.,-row correlator

C/A-code, the narrow correlator C/A-code exhibits

multipath with less noise and having smaller
=

magnitude than the standard C/A-code measurements.

Also it should be noted that the C/A-code errors

measured in the field are mostly caused by high-
frequency measurement noise, rather than by

multipath. Integration over time of high-frequency

noise gives rise to a random-w_dk error. It was found
that the errors measured in the field exhibit

insignificant correlations from one day to the next.

Although the helix antenna performed very well in a

multipath environment, its gain at lower elevation

angles is much less than that of the microstrip
antenna. Another concern is the stability of the phase

center of the helix antenna for carrier-phase tracking

applications. For code-phase DGPS. however, this is

not a significant problem.

Table I

FieLd Hangar Roof

Microstnp Microsmp Helix

C/A N.C.C/A P C/A N.C.C/A P
rms rms rms a'ns n'as rms

(meters) (meters) (meters) (meters) (meters) (meters)

SV3 1.2658 0.4516 0.2031 0.0996

SVI7 0.8015 0+3115 0.0685 0.0417

SV23 0.6418 0.3463 0+I809 0.0445

average 0.9030 0.3698 0.1508 0.0619

C/A P
ITIlS rIng

(meters) (meters)

0.4757 0.0802

0.4624 0.0456

0.4289 0.0397

0.4557 0.0552

0.3329 0.9232

0.3408 0.3504

0.2550 0.4438

0.3096 0.5725
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Recommendations:

1.) Use a site out in the field for mimmum

multipath. A major draw back to this
recommendation is that snow can cover the

antenna and the area around the antenna when

placed on the ground. This will seriously

affect the performance of the antenna.

2.) The next best siting that was considered was
the helix antenna placed at a location that

provided visibility down to 5 ° (hangar roof).
The same effect can be achieved by placing

any antenna on a large ground plane.

For all siting options considered, the use of narrow
correlator C/A-code or P-code significantly reduces

the multipath error.

CONCLUSIONS

Multipath is the dominate error source for DGPS. A
number of extreme siting scenarios were investigated

with respect to multipath performance. It was found

that a significant level of multipath enters the antenna

pattern from below the horizon. Therefore it is
recommended to either have a large ground plane or

reduce the antenna pattern below the horizon.
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SUMMARY OF RESEARCH

The Air Transportation Research Program at Princeton University pro-
ceeded along five avenues during the past year:

• Flight Control System Robustness
• Microburst Hazards to Aircraft
• Wind Rotor Hazards to Aircraft

• Intelligent Aircraft/Airspace Systems
• Aerospace Optical Communications

This research has resulted in a number of publications, including theses,
archival papers, and conference papers. An annotated bibliography of publi-
cations that appeared between June 1992 and June 1993 appears at the end
of this report. The research that these papers describe was supported in
whole or in part by the Joint University Program, including work that was
completed prior to the reporting period.

Control system robustness is defined as the ability to maintain satis-
factory stability or performance characteristics in the presence of all con-

ceivable system parameter variations. While assured robustness may be
viewed as an alternative to gain adaptation or scheduling to accommodate
known parameter variations, more often it is seen as protection against
uncertainties in plant specification. Consequently, a statistical description
of control system robustness is consistent with what may be known about the
structure and parameters of the plant's dynamic model. Rarely will there be
a single "most robust" controller, as design tradeoffs must inevitably be con-
sidered. For example, stability, settling time, and control usage all may be
of concern; controllers that favor one criterion over the other two have dra-
matically different characteristics.
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Our initial research focused on probabilistic analysis of the stability

and performance robustness of given controllers, while more recent research
has shifted to designing robust controllers [1-6]. We have demonstrated that
classical stability (i.e., gain and phase) margins are not good indicators of
robustness, particularly when comparing compensators with different struc-
tures. Numerical search is shown to produce robust controllers based on

proportional-filter linear-quadratic regulators with implicit model-following.

Severe downdrafts and resulting high velocity outflows caused by

microbursts present a significant hazard to aircraft on takeoff and final
approach. Microbursts, which are often associated with thunderstorm activ-
ity, also can occur in the vicinity of dissipating convective clouds that pro-
duce no rainfall at ground level. Microburst encounter is a rare but ex-
tremely dangerous phenomenon that accounts for one or two air carrier
accidents and numerous general aviation accidents each year (on average).
Conditions are such that an aircraft's performance envelope may be inade-

quate for safe penetration unless optimal control strategies are applied.

An expert system for wind shear avoidance that extends the FAA
Microburst Windshear Guidelines can account for temporal and spatial varia-
tions in the evidence that wind shear is present [7, 8]. A Bayesian Belief
Network relates information gathered from many sources to determine the

probability of encountering a microburst on the intended flight path. Mea-
surements made by a look-ahead sensor (e.g., Doppler radar or lidar) are
processed by extended Kalman filters to develop a head-tailwind profile.

Real-time guidance for the case in which wind shear has
been encountered is being investigated. Our emphasis has shifted from

optimal strategies for abort and recovery [9] to strategies based on nonlinear-
inverse-dynamic controllers [i0]. The former approach seeks to minimize a
path-following cost function that implicitly maximizes the minimum altitude
during an aborted approach to landing. The latter approach prescribes a
desired rate of climb once an abort has been declared, then generates the

necessary control cotnmands by inverting the aircraft's dynamic model.

The dynamics of a twin-jet transport encountering an intense wind
"rotor" have been studied [11 ]. It was found that a physically realizable
rotor could roll the aircraft to inverted attitude if left unopposed by lateral

control. Similarly, unopposed full rudder deflection could invert the aircraft
in its landing configuration. Conventional linear-quadratic flight control
laws can maintain the wing' s level through such encounters.



Advanced concepts for air traffic management are being developed by
modeling aircraft and air traffic centers as intelligent agents that engage in
principled negotiation [12]. Each agent is characterized as a dynamic system
that carries out decla?ative, procedural, and reflexive functions [13]. Princi-
pled negotiation entails the proposal of altemative flight plans, evaluation of
costs and constraints according to separate and shared interests, and conflict
resolution. We are setting the groundwork for an Intelligent Aircraft�Air-

space System (IAAS). The goal is to identify means by which ground-based
and airbome flight management systems can cooperate to produce a net gain

in the efficiency and robustness of air transportation.

With growing demands on the radio spectrum, it is likely that cur-
rently unused alternatives could play important roles in the IAAS. Optical
sensing and communication could shoulder a significant percentage of the
overall load. Of course, there are weather and line-of-sight limitations on

optical devices, so they may never be considered the sole means of provid-
ing services. From a global or national perspective, however, optical devices
may prove useful in off-loading radio frequencies on a regional and/or alti-
tude-dependent basis. The national airspace is rarely (if ever) "socked in"
coast-to-coast, and even in areas of cloud cover, there are altitude strata

(especially at cruising heights) within which visual line-of-sight is retained
over long distances. By definition, vei3,-low-altitude line-of-sight exists in
the terminal area for Category I IFR conditforis or better. Consequently,
there are numerous situations in which precisio_easurements and high-
bandwidth communication could be furnished by _pti¢al systems, including

transmissions through communications satellites. (Optical systems can be

substantially more precise and allow much higher data rates than radio
transmissions.) The IAAS would adapt to changing weather and traffic
conditions, always maximizing allowable flight operations subject to practi-
cal constraints; consequently, on average, airspace capacity could be greatly
increased. An annotated bibliography is contained in [14].

In addition to the research noted above, twopubiications relaie_to_e

Joint University Program appeared during the reporting period_ A book

chapter describing an architecture for intelligent flight control was published
[15]. Notes and homework assignments for an undergraduate course on
aerospace guidance and control were included in a book describing educa-
tional applications of the MATLAB programming language [16].
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ANNOTATED BIBLIOGRAPHY OF 1992-1993 PUBLICATIONS

. R. F. Stengel and C. I. Marrison, "Robustness of Solutions to a
Benchmark Control Problem," J. Guidance, Control, and Dynamics,
Vol. 15, No. 5, Sept.'Oct. i992, pp. 1060-1067.

The robustness of ten solutions to a benchmark control design prob-
lem presented at the 1990 American Control Conference has been evaluated.
The ten controllers have second' to eighth-0rder transfer functions and have

been designed using several different methods, including H,,o opt_ization,

loop transfer recovery, imaginary-axis shifting, constrained optimization,
structuredcovariance, game the0_,_d Me internal model principle. Sto-
chastic Robustness Analysis quantifies the controllers' stability and perfor-
mance robustness with structured uncertainties in up to six system param-
eters. The analysis provides insights about system response that are not

readily derived from'other robustness criteria, and it provides a co_on
ground for judging controllers produced by aitemat|ve methods. One:_pOr-
tant conclusion is that gain and phase margins are not reliable indicators of

the probability of instability. Furthermore, parameter variations actually
may improve the likelihood of achieving selected performance metrics, as
demonstrated by results for the probability of settling-time exceedance.

2. L.R. Ray and R. F. Stengel, "Stochastic Measures of Performance
Robustness in Aircraft Control Systems," J. Guidance, Control, and

Dynamics, Vol. 15, No. 6, Nov.-Dec. 1992, pp. 1381-1387.

Stochastic robustness, a simple technique used to estimate the robust-
ness of linear, time-invariant systems, is applied to a twin-jet transport air-
craft control system. Concepts behind stochastic stability robustness: are
extended to stochastic performance robustness. Stochastic perfo_ance
robustness measures based on classical design specifications and measures
specific to aircraft handling qualities are introduced. Confidence intervals

for comparing two control system designs are presented. Stochastic perfor-
mance robustness, the use of confidence intervals, and tradeoffs between

performance objectives are applied to a twin-jet aircraft example.

1 L. R. Ray and R. F. Stengel, "A Monte Carlo Approach to the
AnalysisofCrntr01 System Robustness," Automatica, Vol. 29, No. 1,
Jan. 1993, pp. 229-236.

Stochastic robustness, a simple technique used to estimate the stability
and performance robustness of linear, time-invariant systems, is described.
The scalar probability of instability is introduced as a measure of stability
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robustness. Examples are given of stochastic performance robustness mea-
sures based on classical time-domain specifications. The relationship
between stochastic robustness measures and control system design parame-
ters is discussed. Th_ technique is demonstrated by analyzing an LQG/LTR
system designed for a flexible robot arm. It is concluded that the analysis of
stochastic robustness offers a good alternative to existing robustness metrics.
It has direct bearing on engineering objectives, and it is appropriate for eval-
uating robust control system synthesis methods currently practiced.

. L. R. Ray and R. F. Stengel, "Computer-Aided Analysis of Linear
Control System Robustness," Mechatronics, Vol. 3., No. 1, Jan. 1993,
pp. 119-124.

Stochastic robustness is a simple technique used to estimate the sta-

bility and performance robustness of linear, time-invariant systems. The use
of high-speed graphics workstations and control system design software in
stochastic robustness analysis is discussed and demonstrated.

1 C. I. Marrison and R. F. Stengel, "Gain and Phase Margins as
Indicators of Robustness," Proceedings of the 1992 IEEE Regional

Control Conference, New York, July 1992, pp. 5-8.

A Monte Carlo analysis of scalar compensators designed for a bench-

mark problem shows that there is very little correlation between classical
stability margins and the likelihood that plant parameter variations will lead
to instability. The principal reason is that parameter variations change the

of the Nyquist plot as well as the gain and phase margins; hence, the
branch of the nominal Nyquist plot or critical frequency that determines

stability margins may not be the one that produces instability as parameters
vary. This result also calls into question the use of singular values as mea-
sures of stability robustness, because transfer-function amplitude ratio is

equivalent to the singular value in the scalar case.

. R. F. Stengel, L. R. Ray, and C. I. Marrison, "Probabilistic Evaluation
of Control System Robustness," presented at the IMA Workshop on
Control Theory and Its Applications, Minneapolis, Oct 1992.

Practical contr.ol systems must operate satisfactorily with uncertain
variations in plant parameters (i.e., control systems must be robust), but
there are limits to the degree of robustness that may be considered desirable.

Tolerance to parameter variations that never occur is not useful, and it could
lead to closed-loop systems whose normal performance has been compro-
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mised unnecessarily. A probabilistic definition of robustness based on
expected parameter variations is consistent with accepted design principles,
and it is readily evaluated by simulation. Stochastic Robustness Analysis
predicts the effects of likely parameter variations on closed-loop stability
and performance through evaluation of commonly accepted criteria. Com-
peting control designs are judged by the likelihood that system response and
design metrics will fall within desired bounds. Together with numerical

search, probabilistic evaluation is a powerful approach not only for compar-
ing alternative contro.llers but for designing control systems that satisfy
robustness and performance requirements.

7. D.A. Stratton and R. F. Stengel, "Stochastic Prediction Techniques
for Wind Shear Hazard Assessment," J. Guidance, Control, and
Dynamics, Vol. 15, No. 5, Sept.-Oct 1992, pp. 1224-1229.

The threat of low-altitude wind shear has prompted development of
aircraft-based sensors that measure winds directly on the aircraft's intended
flight path. Measurements from these devices are subject to turbulence
inputs and measurement error, as well as to the underlying wind profile. In
this paper, stochastic estimators are developed to process on-board doppler
sensor measurements, producing optimal estimates of the winds along the
path. A stochastic prediction technique is described to predict the hazard to
the aircraft from the estimates as well as the level of uncertainty of the haz-
ard prediction. The stochastic prediction technique is demonstrated in a
simulated microburst wind shear environment. Use of the techniquein a
decision-making process is discussed.

. D. A. Stratton, "Aircraft Guidance for Wind Shear Avoidance:
Decision Making Under Uncertainty," Ph. D. Thesis, Princeton

University, Department of Mechanical and Aerospace Engineering,
Oct. 1992.

Severe low-altitude wind shear poses a significant threat to air trans-
portation safety. Concepts for assisting critical decision making under
uncertainty are advanced to promote the avoidance of hazardous weather,
particularly microburst wind shear. Computational strategies founded on

probability and optimal estimation theories enable flight deck integration of
diverse forecasting and detection systems, from airport weather information
services to airborne forward-looking wind sensors.

A decision-making policy for wind shear is developed from a com-
prehensive investigation of microburst phenomenology, its observed charac-
teristics, and its effects on aircraft flight. Existing avoidance guidelines for

92



wind shear are extended to exploit the latest available technology, such as
Doppler weather radar and lidar. Theories for probability-based decision
making facilitate real-time computer reasoning with dynamic, conflicting
data from a wide array of sources. Bayesian neural networks fused with
multivariable estimators account for the limited precision, reliability, and
timeliness of correlated sensor measurements. Monte Carlo analyses are
conducted to refine Kalman filters for forward-looking sensors, with
statistical results completing their incorporation into Bayesian reasoning.

Symbolic and numerical processes for a Wind Shear Safety Advisor
are implemented and evaluated. A risk assessment model based on empiri-
cal and analytical results is used to compare the relevance of available wind
shear information sources. Simulations of the risk-assessment model show
its insensitivity to parameter variations. Validations of overall Wind Shear
Safety Advisor logic-illustrate how it conveys beneficial advance warnings
in rapidly developing microburst-encounter situations. These results prove
that intelligently-integrated detections systems can warn pilots of threatening
wind shear sooner, more frequently, and more effectively than isolated sys-
tems can.

. S. S. Mulgund and R. F. Stengel," Optimal Recovery from Microburst
Wind Shear," Proceedings of the AIAA Atmospheric Flight Mechanics

Conference, Hilton Head, Aug. 1992.

The flight path of a twin-jet transport aircraft is optimized in a micro-
burst encounter during approach to landing. The objective is to execute an

escape maneuver that maintains safe ground clearance and an adequate stall
margin during the climb-out portion of the trajectory. A cost function penal-
izing rate of climb deviations from a nominal value and the rate of elevator
deflection produces qualitatively good results in a variety of microburst
encounters. The optimal maneuver is a gradual pitch-up that ceases near the
core of the microburst, followed by a slight reduction in pitch attitude in the
tailwind area of the microburst. A minimum airspeed constraint in the opti-

mization prevents excessive airspeed loss in very severe microbursts. The
aircraft equations of motion include short-period dynamics, so that the opti-
mization solves directly for the control surface deflections required to

achieve the optimal flight paths.
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10. S. S. Mulgund and R. F. Stengel, "Aircraft Flight Control in Wind
Shear Using Partial Dynamic Inversion," Proceedings of the 1993
American Corttrol Conference, San Francisco, June 1993, pp. 400-
404.

A flight control law based on partial inversion of the longitudinal
dynamics of a twin-jet transport aircraft is presented. The controller is par-
titioned into a slow-time-scale and a fast-time scale to simplify its design.
Three types of controllers are developed: airspeed/climb rate, ground-
speed/climb rate, and throttle/climb rate. For microburst encounters during
approach to landing, it is found that a combination of airspeed and ground-
speed regulation is quite effective for controlling the flight path to touch-
down. Regulation of groundspeed to a nominal-Value in the performance-
increasing region of the microburst prevents an inadvertent reduction in

thrust, while regulation of airspeed to a nominal Value in the performance-
decreasing area of the microburst prevents excessive airspeed loss. The
throttle/climb rate controller is used for aborted-landing encounters. The
combination of groundspeed and airspeed control is used until the decision is

made to abort the landing, at which point maximum throttle and a specified
positive climb rate are commanded.

11. D.R. Spilman, "Dynamic Response and Control of a Jet Transport to
a Single-Axis Wind Vortex," M. S. E. Thesis, Princeton University,
Department of Mechanical and Aerospace Engineering, Jan. 1993.

The dynamic response and control of a twin-jet transport aircraft
encountering a single-axis wind vortex on final approach to landing is inves-
tigated. A horizontal wind vortex, or wind rotor, is formed by strong winds
that flow over a mountain range and roll up on the leeward side of the moun-
tain, forming a rotating airmass. If proper control action is not taken imme-

diately after encountering a rotor, then severe performance degradation and
possible ground impact may result.

A complete six-degree of freedom jet transport aircraft model that
includes nonlinear aerodynamic data, unsteady aerodynamic effects, and
wind-gradient effects over the aerodynamic surfaces is used to simulate an
aircraft-vortex encounter. Dynamic simulations are used to determine the

effects of vortex strength, vortex length, lateral entry position, vertical entry
position, and encounter incidence angle on the aircraft response parameters.
Roll angle and sideslip angle are primary response parameters because they
may introduce performance degradation and control hazards. A large
induced roll angle results from a co-axial encounter in which the vortex axis

is aligned with the flight path and the wind-shear gradient is directly incident
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over the aircraft wing. An encounter with a rotor oriented at a 60 ° angle to

the flight path produces a severe sideslip angle response which in turn causes
a large roll-angle response. In this case the response is highly dependent on

the precise initial conditions of the encounter.

Both rudder and aileron controls are useful in alleviating vortex-
induced roll; however, rudder control may excite lightly damped Dutch-roll

dynamics. A simple lateral-directional linear-quadratic controller that uses
rudder to control sideslip and aileron to control roll successfully controls the
simulated aircraft through strong wind vortices without exciting unwanted

dynamics. In addition to demonstrating the value of using automatic control
to reduce the wind vortex hazard, such a control system has benefits beyond

its immediate design goals. Because of the similarities between wake vortex
flows and mountain-wave vortex flows, the controller may be used to reduce

required separation distances at airports. It also may prove superior to a
human pilot in preventing catastrophic low-altitude control system failures.

12. R. F. Stengel and J. P. Wangermann, "Air Traffic Management as
Principled Negotiation Between Intelligent Agents," presented at the
AGARD Guidance and Control Symposium, Machine Intelligence in

Air Traffic Management, Berlin, May 1993.

Air transportation provides the backbone for passenger transport over
moderate to long distances in the U.S. and much of the world, and it is
becoming an increasingly important mode for short-range travel and cargo
transport as well. There is a growing demand for use of available airspace
and a heightened coricern for on-time performance. Demand frequently
exceeds available capacity of the airspace system, causing flight delays,

negative economic impact, and passenger inconvenience [1, 2]. New tech-
nologies are emerging that will make flight operations both simpler and
more complex. On the one hand, advances hold promise for increasing the
productivity, reliability, and safety of the air transportation system. On the
other, advances in technology introduce uncertainty, increase human work-
load (if not properly implemented), increase the potential for dispute, and

present new challenges for both certification and day-to-day operations.
This paper presents a concept for an Intelligent Aircraft�Airspace System
(IAAS) that could be a focal point for developing air traffic management in
the coming decades. The IAAS would integrate the capabilities of all

ground-based and airborne components of the system (identified as Intelli-
gent Agents) in order to provide increased capacity and maintained or
improved safety. Principled Negotiation is proposed as a framework for
interactions between intelligent agents.
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13. R. F. Stengel, "Intelligent Flight Control Systems," presented at the
IMA/RAS Conference on Aerospace Vehicie Dynamics and Control,
Cranfield, UK, Sept. 1992.

The capabilities of flight control systems can be enhanced by design-
ing them to emulate functions of natural intelligence. Intelligent control
functions fall in three categories. Declarative actions involve decision-mak-

ing, providing models for system monitoring, goal planning, and system/
scenario identification. Procedural actions concem skilled behavior and

have parallels in guidance, navigation, and adaptation. Reflexive actions are
spontaneous, inner-loop responses for control and estimation. Intelligent
flight control systems learn knowledge of the aircraft and its mission and
adapt to changes in the flight environment. Cognitive models form an effi-
cient basis for inte ratin "outer loo inner loo "• g . g - p/ - p control functions and for
developing robust parallel-processing algorithms.

14. R.F. Stengel, "Aerospace Optical Communications Abstracts,"

Princeton University, Department of Mechanical and Aerospace
Engineering, Princeton, NJ, May 26, 1993.

Over 100 abstracts related to the possible application of optical com-
munication to aircraft were drawn from the AIAA Aerospace Abstracts. The
abstracts describe papers published between 1989 and 1983. Although the
papers focus primarily on space applications, several address aircraft-to-air-
craft and aircraft-to-satellite communications.

15. B.L. Belkin and R. F. Stengel, "AUTOCREW: A Paradigm for
Intelligent Flight Control," An Introduction to Intelligent and
Autonomous Control, P. Antsaklis and K. Passino, ed., Kluwer

Academic Publishers, Norwell, MA, 1993, pp. 371-400.

An expert system Pilot-Aid is envisioned to automate many functional
and low-level decision-making tasks in future high performance and jet
transport aircraft to help alleviate pilot workload. Nine modular rule-based

systems, collectively called AUTOCREW, were designed to automate func-
tions and decisions associated with a combat aircraft's subsystems. The
knowledge bases were designed individually; areas of cooperation between

the knowledge bases were identified, and common information was desig-
nated as "shared" information. An interactive graphical simulation testbed

was developed to demonstrate and test the cooperating AUTOCREW
ensemble's performance. Workload metrics were formulated to quantify

AUTOCREW's performance in terms of the ensemble's efforts in assisting
the Pilot. The workload metrics give reasonable results for the comparison
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of workloads among AUTOCREW's experts, aswell as comparative results
among task groups within a single knowledge base. The applicability of the
methods utilized to design AUTOCREW for other applications is also dis-
cussed.

16. R. F. Stengel, "Aerospace Guidance and Control," Using MATLAB in
the Classroom, Prentice Hall, Englewood Cliffs, 1993, pp. 3-26.

This book chapter presents notes and computer-based assignments for

an undergraduate course on aerospace guidance and control. One third of
the course is devoted to flight mechanics, another third addresses guidance

and control of the flight path, and the remaining third deals with instrumen-
tation for measuring position and motion. The course assignments include

computational flight tests with a six-degree-of-freedom simulation of a light
aircraft; calculations of stability- and control-derivative matrices, eigenval-

ues, transfer functions; root locus and Bode plots; and design of flight con-
trol systems using classical and linear-quadratic methods.
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f Laboratory for Control and Automation

Joint University Program

Designing Robust Control Laws
Using Genetic Algorithms

Chris Marrison

Princeton University J

The purpose of this research is to create a method of finding practical, robust control laws.
The robustness of a controller is judged by Stochastic Robustness metrics and the level of

robustness is optimized by searching for design parameters that minimize a robustness
cost function.
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f Laboratory for Control and Automation

Review of the Stochastic Robustness Metric

P(C) = _H(C,v) pr(v) dv

v

J(C) = fn(P1(C),P2(C),... )

Given C = C(d) Fred d*:

J(C(d*)) = min(J(C(d)))
deD

Estimate by Monte Carlo Analysis

P(C)= ly.Hi(C, vi) v i from pr(v)
iN i

](C)= fn(Pl(C),P2(C),...)

of, j =_

Oj from Bootstrap

Princeton University J

Given the expected variation of theSpian(parameters, a Stochastic Robustness metric

characterizes a compensator by giving the probability that the compensator will fail
to perform acceptably: The definition of what is unacceptable isleft to the designer but

will normally include such features as instability and slow response time. To calculate the

probability of unacceptability, P, the indicating function, H(C,v) must be integrated over the

space of expected parameter variations. H is a function of both the compensator, C and

the plant parameter values, v. H equals one when the metric is violated and zero otherwise.

Normally, more than one metric will be of importance in a given application. In such a case
it may be necessary to make a trade-off between the metrics. The trade-off can be formalized

by combining the probabilities into a scalar cost function, J. Weights within the cost function

can then be used to reflect the importance to the designer of each metric.

Once J is defined, the task is to find the set of plant design parameters, d, to minimize J.

This task is hindered by the fact that it is normally impossible to evaluate the probabilities

analytically. An alternative evaluation method is to use Monte Carlo Analysis; this has the

disadvantage that errors can be expected in theestimate Of P. The expected error reduces
as the inverse of the square root of the number of evaluations. There is therefore a trade-off

between the accuracy and of the evaluations and the computation time.
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Approach

%

1) Statistics

Minimize Variance

• Stratify Sample Space
• Constant sample points for comparisons

Make Statistically Significant Decisions

Kolmogorov Smirnov Test for useful Parameters
Confidence Intervals to define N
Confidence Intervals to decide if sufficiently accurate

Princeton University J

The approach to finding a stochastic global optimization method has two main thrusts. The
first is to understand the statistical effects of the Monte Carlo Analysis and exploit them to

reduce the number of evaluations necessary. The second approach is to identify suitable

search algorithms.

The variability in the estimates of P has been reduced significantly by stratifying the sample space

and by using the same sample points when comparing two compensators. An understanding of these
statistical mechanisms has allowed a significant reduction in the number of evaluations which must

be carried out to compare two compensators.

By using the Kolmogorov-Smirnov test it is possible to identify parameters that have a significant
effect on J, allowing the search to concentrate on these parameters. The establishment of
confidence intervals on the estimates of P provide a basis for making statistically significant

search decisions and also to fix the number of further evaluations that must be required if the

results are not yet statistically significant.
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Approach

%
2) Search Methods

Take Many Points.
Select the best group.

Random Search / Calculate N and use KS Test.

I _ Select on basis of J.Genetic Algorithm -- -- Crossover, Mutate, Evaluate.

Calculate N.

Clustering Algorithm _ Start from Jmin, cluster into
1 a significant group.

i _ Repeat for next best J.Local Pattern Search_

_ Select base and test point.Evaluate until separate or tight.

Move test point or both points.

Analysis Repeat until minimum or out of range. 1

J

_'- Princeton University J

lib

= ,_ wilde range of modem search methods were Screened for their possible use in searching

stochastic space. The most efficient method combines the best qualities of several
different methods.

The proposed search method begins by taking a broad, completely random, search across

the design space. A few evaluations are made at each point and the best points are
then presented as the starting population for a genetic algorithm. The genetic algorithm
carries out the bulk of the search and later will be described in detail,

The result of the genetic a|gorithm is a set0f candida!e solutions, most of whilch should

be close to the global minimum. A clustering algorithm is then used to identify groups

of good solutions and a local line search is carried out from the centroid of each cluster.

m

m

m

z
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Stochastic Line Search

Select base point and test point

,1
Carry out evaluations for plant parameter points 4---.--

Directly compare probability estimates

Use bootstrapping to calculate confidence intervals for DJ

Do J1 and J2 seperate?
No

Yes

Princeton University j

The line search is based on a pattem search with additional logic to deal with the uncertainties

introduced by the Monte Carlo Evaluation.

The search moves along the line, comparing two points at a time. A set amount of Monte Carlo
Evaluations are carried out and then a decision is made as to where along the line the next

evaluations should be made. The decision is based on an estimate of the likely error in J. If

the errors are relatively small then we can be confident that there is a true difference between

the compensators and a new search point can be chosen. If the error is relatively large, more
evaluations need to be carded out.

This search method has been implemented, and is effective in finding the minimum along a line in

design parameter space.
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Global Optimization by Genetic Algorithms

• GAs are Partially Randomized, therefore suitable for SRA.

• Efficient: Exponential Replication of Good Parameter Values.

Little Previous work with noisy functions.

No work with Monte Carlo Optimization. af, j =

Princeton University J

Genet{c Algorithms (GAs) were Chosen as the main global optimization method.

These algorithms have several attributes that make them well suited to searching

a stochastic space. They rely on a partially randomized comparison of many points

and are therefore insensitive to errors due to Monte Carlo Evaluation and they

process information efficien_I_,iqC{6w_,-er, little previdu's Wigrk has been :done =

in using GAS [6 optimize noisy functions. This Work must be carried out before using
GAs for the synthesis of robust control ;

!

F
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Flow of Stochastic Genetic Algorithm

Create a large Random Population

1
Evaluate with few MCEs, take only the best members

_ Select 2 Members _'_

H _Randemly Crossover Tails

Odesixr-d'=Ax 011npopul'ttion
2

N _,ima'=(_,i_red/'_z_) N _t,.,_

1
Evaluate the New Population

Princeton University J

The Stochastic Genetic Algorithm (SGA) is currently being researched. The basic structure
of the SGA is shown above. The SGA is similar to normal GAs except for 3 points:

1) The search begins with a random search, using a few Monte Carlo Evaluations at each point,

and using a small proportion of the random points as the initial population to 'kick-start'
the SGA.

2) The Kolmogorov-Smirnov test is used to determine which design parameters are most

important in affecting J. These parameters are used to cluster the best members of the

population to form one averaged member. This is passed as an elite member into the next

generation.

3) The number of evaluations per point, N, is fixed before each set of Monte Carlo Evaluations.

This is done by comparing the expected error in the estimated cost of the best member of the

population with the mean difference between the costs of the rest of the population. The ratio
of the error allowed in the estimate to the difference in the cost of the population can be varied

to improve the performance of the search. Here, this parameter is referred to as "A".

The next graphs show the results of a typical run of the SGA. The first graph shows the values
of J for the best member in the population of each generation as the population evolves to a

low value of J. The second graph shows the mean value for J for each generation.
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Parameters to be Tuned

Number of members in random population

Number of initial evaluations

Number of members in genetic population

Number of elite members passed down

Value of A to fix level expected error

Number of crossover points

Probability of crossover
Number of mutations

Probability of mutation

Degree of mutation

Princeton University J

Within the SGA there are several parameters that must be carefully chosen to ensure that

the search is efficient. These parameters are being tuned by running the SGA repeatedly

on a test function, adjusting the parameter, and running the SGA again.

The next graph shows the effect of changing the value of A. Here the SGA was run 150 times
for each of 12 different values of A. At low values of A, few evaluations are carried out per

point and the SGA does not have information of sufficient quality to converge well; with

high values of A the information is of higher quality than needed and the computational effort

would be better spent searching more points. The optimum value is between
2 and 3. With A = 3 the performance is occasionally very good but on average the result is

mediocre. With A = 2.5 the performance will on average be the best but there is a relatively

wide variability. With A = 2 the average performance is not quite so good but the search is

more robust; the variability is less and the search is less likely to result in a poor outcome.
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Future Work

%

Complete the tuning of the Genetic Algorithm.

Combine the Genetic Algorithm with the Line Search.

Test the method on a real-world control problem.

Princeton University j

lip

Future work will complete the tuning of the SGA and combine it with the line search.

The overall algorithm will then be tested against real world control synthesis problems.
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Previous Work

Jet Transport Study

• Trajectory optimization on during encounters on final approach

• Track reference climb rate subject to a minimum airspeed
constraint

• Energy loss strongly affects nature of optimal flight path

• Results not immediately applicable to real-time feedback control

>_Real-Time Control Using Feedback Linearization

)> Controller simplified using Time-Scale Decomposition

Laboratory for Control and Automation J

This presentation describes the most recent results in an ongoing
research effort at Princeton in the area of flight dynamics in wind

shear. The first undertaking in this project was a trajectory

optimization study. The flight path of a medium-haul twin-jet
transport aircraft was optimized during microburst encounters on
final approach. The assumed goal was to track a reference climb rate

during an aborted landing, subject to a minimum airspeed constraint.

The results demonstrated that the energy loss through the microburst

significantly affected the qualitative nature of the optimal flight path.
In microbursts of light to moderate strength, the aircraft was able to

track the reference climb rate successfully. In severe microbursts, the
minimum airspeed constraint in the optimization forced the aircraft to

settle on a climb rate smaller than the target. A tradeoff was forced

between the objectives of flight path tracking and stall prevention.

Although the results provided a qualitative picture of the nature

of an optimal control strategy in wind shear, they were not
immediately applicable to real-time control. Optimization is an

iterative process requiring global knowledge of the flow field.

Therefore, an initiative was undertaken to develop feedback control

methods that approximated the performance realized in the optimal
trajectories. The technique of nonlinear inverse dynamics or feedback
linearization was used to develop a control law for a nonlinear model

of the aircraft dynamics. The control design was simplified using

Time-Scale Decomposition, which permitted the partitioning of the
controller into a slow outer loop and a fast inner loop.
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Dynamic Inversion or Feedback Linearization

• Given a nonlinear system of the form

x = f(x)+G(x)u

• Define an output vector:
y =H(x)

• Differentiate the output y until a control effect can be identified on
each element of the output vector:

y(d) = f *(X) + G *(X)U = V

• New control input v selected to place system poles

• Inverse control law takes the form

LI = [G* (x)]-l[v - f *(x)]

• Evaluation of the functions f*(x) and G*(x) requires a full,
d-differentiable model of aircraft dynamics in control system

Laboratory for Control and Automation J

The control law designed for the aircraft model was based on the

technique of dynamic inversion or feedback linearization. Given a

nonlinear system of the form shown, it is possible to define an output

vector y which is a known function of the system state x. This output is
differentiated with respect to time until a control effect can be identified

on each element of the output vector. The d th derivative of the output

is then equated to a new control input v. This control input can be

selected to place the system poles in designer-specified locations,

subject to the controllability of the original system. Although the form
of the resultant nonlinear control law appears simple, the evaluation of

its components requires that a full, d-differentiable model of the plant

dynamics be included in the control system.
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Time-Scale Decomposition

• Partition complete system into fast and slow time-scales

• Design a pair of lower-order controllers for each subsystem

• Control inputs to slow •outer" system are desired outputs of fast
•inner • system

• Motivated by natural time-scale separation of phugoid and short-
period aircraft modes

• Simplifies controller and estimator design

Laboratory for Control and Automation J

7 ........

The control law based on nonlinear inverse dynamics can be

simplified if it is possible to partition the original system into fast and

slow time scales. If this is feasible, it is possible to design a pair of
lower-order controllers for each subsystem. The control inputs to the

slow "outer"system are the desired outputs of the fast "inner"system.

For the aircraft problem, the time-scale decomposition is motivated by
the time-scale separation that exists between the phugoid and short-

period modes. The application of this technique simplifies both the
controller and estimator design. Two lower-order controllers can be

designed, and fewer system state derivatives must be estimated.
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Application to Longitudinal Aircraft Dynamics

Laboratory for Control and Automation J

The structure of the nonlinear control law using time-scale

decomposition is illustrated here for our aircraft study. The slow outer

controller accepts flight path and speed commands. It generates a
throttle and pitch rate command. The throttle command is passed on to

the engine dynamics. The pitch rate command becomes the desired

response of the fast inner controller. This controller generates the

elevator deflection required to achieve the desired pitch rate. This

controller is designed to have a response time at least 3 to 5 times faster

than the outer controller. Thus from the perspective of the outer

controller, the necessary pitch rate is achieved almost instantaneously.

The elevator deflection calculated by the fast controller is fed into the

aircraft dynamics, as is the actual thrust level produced by the engine

dynamics. The output of the aircraft sensors is fed into an estimator,

which generates the aircraft state estimate needed to accomplish the
inversion. The design of this estimator and the performance of the

controller/estimator pair are the subject of the rest of this presentation.
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Aircraft Model

• Three degree-of-freedom model of a twin-jettransport

- Gross Weight: 85,000 Ib

- Max Takeoff Thrust: 24,000 Ib

• Powerplant dynamics modeled as first-order lag

• Wind shear effects included in equations of motion

• Oseguera-Bowles analytical microburst model

Laboratory for Control and Automation J

A three degree-of-freed0m model of a twin-jet transport aircraft

was used for this study. The aircraft has the given gross weight and

maximum takeoff thrust. The powerplant dynamics are modeled as a

first-order lag, and thrust lapse with mach number and altitude is also
modeled. Wind shear effects are incorporated into the equations of

motion, and the Oseguera-Bowles microburst model (developed at

NASA Langley Research Center) provides the wind inputs used in
simulated microburst encounters.
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Control Strategies in Microburst Wind Shear

Airspeed Control

• Undesirable thrust reduction in headwind region

• Maintains airspeed in tailwind

Groundspeed Contro/

• Maintains thrust in headwind region

• Airspeed loss in tailwind

Laboratory for Control and Automation J

The control law described earlier is designed to track reference
speed and flight path inputs. It is worthwhile to consider what types of

guidance strategies are suitable in a microburst environment. In a
classical microburst encounter, the aircraft first encounters an

increasing headwind. The airspeed increases, and the aircraft may

balloon above the nominal flight path. If the flight crew is not alert to

the fact that a microburst is present, they may take action to prevent the

plane from climbing by throttling back and/or lowering the aircraft's

nose. This headwind soon transitions to a downdraft, which may result

in an increased sink rate. The subsequent tailwind causes an airspeed

loss, and ground impact may result if the pilot does not apply an

effective recovery technique.

Regulating airspeed about a nominal value causes an

undesirable reduction in thrust in the headwind region of the shear to

prevent an unwanted airspeed increase. This may leave the aircraft in a

precarious state once it enters the performance-decreasing downdraft

and tailwind. However, airspeed is maintained in the tailwind region,

subject to the powerplant performance limits. Conversely, regulation

of groundspeed maintains thrust in the headwind region. A thrust

increase is typically required in the headwind region to maintain a

nominal groundspeed. In the tailwind region, however, groundspeed
regulation results in an airspeed loss and may lead to stall if the

airspeed becomes too low. Taken together, these observations suggest
that an effective strategy might be one that combines the desirable traits

of groundspeed and airspeed control.
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Groundspeed/Airspeed/Throttle Control Law

Approach Control Logic

• Regulate minimum of airspeed and groundspeed to same nominal
value - Psiaki

• Behaves like an airspeed controller in still air

• Throttle and pitch rate commands depend on relative magnitude
of the thrust commands

• Overcomes limitations of either controller alone

Recovery Maneuver Logic

• Apply full thrust and track reference climb rate

• Maintain climb rate tracking even in event of throttle saturation

Laboratory for Control and Automation J

The guidance strategy used with the nonlinear control law was

adapted from one developed by Mark Psiaki of Cornell University. The

approach control logic regulates the minimum of airspeed and
groundspeed to the same nominal value. This behaves like an airspeed
controller in still air. In the current implementation, the throttle and

pitch rate commands passed onto the aircraft dynamics depend on the
relative magnitudes of the thrust commands generated by an airspeed/

climb rate and a groundspeed/climb rate controller. This control logic
overcomes the limitations of either airspeed or groundspeed control

alone. During a recovery maneuver (where a decision is made to abort

an approach and execute an escape trajectory), full thrust is applied

directly together with a climb rate command.
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Optimal Nonlinear Estimation

• Controller performed well with perfect state and disturbance
feedback

• Complete aircraft state must be estimated from available aircraft
measurements

• Controller also requires estimates of wind-related quantities:

T
Xwind=[wx Wh Wx Wh _x _/h]

Extended Kalman Filter (EKF) used to estimate aircraft and wind
state

Laboratory for Control and Automation J

The control logic described earlier was found to perform well

with perfect aircraft and wind state feedback. The time-scale

separation assumption was demonstrated to be valid, and the controller

provided good recovery performance in a broad spectrum of

microbursts. In practice, however, the complete aircraft state must be
estimated from the available air-data and inertial measurements. The

controller also requires feedback of the two wind components
(horizontal and vertical) together with their first and second time-
derivatives. The Extended Kalman Filter (EKF) was postulated as a

candidate estimator structure for this problem.
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Continuous-Discrete Extended Kalman Filter

• Given a system of the form

X(t) = f[x(t), u(t), t] + Lw(t)
where

E[wct/]=0

&l,,w,l,,?=Oc,I,-,,
Discrete Measurement Model:

Zk=h[X(tk)]+n k k =0,1,2 ....

E(n k ) = 0

E(nknT)=Rk

Laboratory for Control and Automation

This form of the EKF is based upon a continuous model of plant

dyna_!_s an_ a discrete measurement mode L Th e disturbance w(t)

influencing the plant dynamics is_assumed to be a zero-mean Gaussian

white noise process with a known spectral denslty_matr!x_.Q_ o _e

measurements z k are made-at discrete instances _tk, and. are kn0_n

functions of the piant_State. The meas_ement noise Vector n k is

assumed to be a zero-mean Gaussian white noise process with known
covariance R.
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Aircraft State and Disturbance Estimation

• EKF minimizes variance in state estimation error

• Aircraft state estimate augmented with wind state:

XT =[x h Vi Ti ai Va 7a aaaircraft
q T]

T
Xwm d=[wx Wh _x Wh _x _h]

Laboratory for Control and Automation J

The form of the EKF for the aircraft problem is now described.

The nonlinear control law requires feedback of the wind state in

addition to that of the aircraft state. This is achieved by defining the

system state to consist of the aircraft and wind state. The wind state is
defined to be the horizontal and vertical wind components, together
with their first two time-derivatives.
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Complete System Equations

• Wind dynamics:
g

Wx

Wh

Wx
=

Wh
.°

Wx
.,

.Wh _

001000-Wx

O00100Whl

O00010Wx
+

O00001w h

O00000_x

O00000. Wh

-00]

00I

o o Lw2J
10I

0 !_

Xwind = FwindXwind + Lwind TM

• Aircraft Dynamics:
}(aircraft= f( Xaircraft ,Xwind,U)

• Complete System Equations:

° ]w
_ :wnd J L FwindXwind I LLwindl

"x
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The wind dynamics are modeled as a linear system driven by an

external input w. The components of w are thus the third time-

derivatives of w x and w h. The complete system equations shown here

become the basis of the Kalman filter equations presented earlier.

=

=
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Simulation Examples

Measurements:

zT=[ vi Va o q

diagI5, 4, 4, 0. 0252, 0. 0252, 0. 0252, 2, 2, 21Ro=

Sensor noise statistics based on conservative estimates of

expected accuracy

Case Simulation Measurement and
Number Parameters Control Model

1 NID only u = g(x)

2 NID and EKF; u = g(9)
Perfect
measurements z = h(x) _=_ R = 0

3 NID and EKF; u = g(_)

Noisy

_, measurements z = h(x)+ n j

Laboratory for Control and Automation

A set of nine measurements were postulated for the simulation

examples. The assumed sensors were altitude, groundspeed, airspeed,

angle of attack, pitch attitude and rate, climb rate, and horizontal and
vertical acceleration. The sensor noise statistics were based on

conservative estimates of the expected accuracy of those sensors. Three

simulations were conducted using the same initial conditions and

microburst wind profile. The simulations were structured in such a way
to illustrate the degradation in controller performance caused by

removing the assumption of perfect state feedback. In the first case, the
NID controller was driven by perfect state feedback. In the second and
third cases, the controller was driven by the output of an EKF that
utilized the measurement vector shown. The difference between Cases

2 and 3 was that in Case 2, there was no noise in the sensor

measurements. The performance realized here would thus be
indicative of the theoretical limit of the performance of the NID/EKF

combination. In Case 3, the measurements were noisy and had the

statistics indicated by the matrix R o.
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Simulation Conditions

Initial Aircraft Conditions

• Aircraft initialized on glide slope

Groundspeed: 220 I'dsec (130 kt)
Altitude: 540111

Inertial Flight Path Angle: - 3"

Range from microburst core: 7,500 fl

Microburst Parameters

Radius: 3,000 ft
Max, Outflow: 65 ftJsec

Altitude of Max. Outflow: 150 ft

• Aircraft tracks glide slope until F-Factor exceeds Q075

Laboratory for Control and Automation

In all of the simulations conducted, the same initial conditions

and microburst parameters were used. The aircraft was placed in an
approach configuration a fixed distance away from th6 miCr0bur_t core.

The aircraft tracked the glide slope until the F-Factor exceeded a preset

threshold, at which point a recovery was commanded using full thrust
and a nominal climb rate of 5 ft/sec. For Cases 2 and 3 where the EKF

was in usG the recover}, was triggered on the basis of an estimate of the
F-Factor.

=
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Altitude vs. Time
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The altitude time-histories are shown here for the three

simulation examples. It is apparent that there is littie to no controller

performance degradation between Cases 1 and 2. This suggests that in
the limit as aircraft sensors become more and more accurate, the

baseline performance realized using perfect state feedback can be
achieved. There is only a slight loss in performance in Case 3, where

the controller is driven by state estimates derived from noisy

measurements.
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Climb Rate vs. Time
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The climb rate histories for the 3 cases are shown in the top
figure. Those from Cases 1 and 2 are quite similar to one another. In

Case 3, there is more overshoot in the respOnSe 'of t_e airci;a-ft:i The

performance of the EKF is indicated in the bottom figure. The output of
the climb rate sensor is shown for Case 3, together with the resuitant

estimation error in climb rate_ The magnitude of the estimation error is

much smaller than the apparent level of noise in the sensor output.

This indicates that the EKF is effective in eliminating the effects of
measurement noise in the estimation of climb rate.

m
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Groundspeed and Airspeed vs. Time
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Groundspeed and airspeed climb rate histories are shown here
for all three cases. They are virtually identical to one another. In the

approach portion of the trajectory, the aircraft is able to track the
reference groundspeed extremely well even when driven by optimal
estimates derived from noisy measurements of groundspeed.
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Actual and Estimated F-Factor vs. Time
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The ability of the EKF to estimate the F-Factor hazard index is
illustrated here for Cases 2 and 3. In Case 2 where the EKF uses perfect

measurements, the F-Factor is estimated very accurately. When noisy
measurements are introduced in Case 3, some estimation lag becomes
noticeable in the EKF output. The F-Factor estimates seem to lag the
most when the sign of the F-Factor's time-derivative changes sign. The
peak F-Factor is actually overpredicted by the EKF.

:=
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Controller/Filter Assessment

NID/EKF NID/EKF
NID with Perfect with Noisy
Only Measurements Measurements

Min. Altitude (ft) 198.7 197.5 187.3
Min. Airspeed (ft/sec) 230.0 229.8 228.3
Max. Angle of Attack 2.3 2.3 2.5
(deg)
Max. Percent
Overshoot in Climb

Rate Response

3.6 3.3 26.2

• Combination of NID and EKF works well

• Degradation in controller performance is not severe

• Magnitude of measurement noise is significant

LaboratoryforControlandAutomationJ

A summary is provided here of some salient features of each of
the three cases. The difference in minimum altitude between Cases 1

and 3 is only 10.4 ft. The minimum airspeed is only 2 knots lower in

Case 3 as compared to Case 1. This would suggest that in terms of

maintaining safety margins, the EKF/NID combination is almost as

effective as the NID alone driven by perfect state feedback. There is

almost no difference in maximum angle of attack as well. The principal

difference between Cases 1 and 3 is in the climb rate response of the

aircraft. In Case 3, there is much more response overshoot than in Case

1. This is likely due to filter lags arising from uncertainty in the

accuracy of the measurement vector.
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f Princeton University

Future Work

• Controller/Filter robustness issues:

-Aerodynamic model uncertainties

- Sensor loss

• Performance in turbulent wind field

_--- Laboratory for Control and Automation J

There are a number of unresolved issues to be addressed in this

work. The robustness of the NID/EKF combination to aerodynamic

modelling errors will be studied. The system performance with a
reduced sensor suite will also be investigated. The ability of the

controller to track flight path command through a turbulent wind field

will be investigated. It may be necessary to tune the EKF parameters to

reduce unwanted control activity in wind fields containing high-

frequency components: _ '
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AIR TRAFFIC MANAGEMENT AS
PRINCIPLED NEGOTIATION BETWEEN

INTELLIGENT AGENTS 5; 3-o

_7 _o
J P Wangermann

Department of Mechanical and Aerospace Engineering

Princeton University

The major challenge facing the world's aircraft/airspace system

(AAS) today is the need to provide increased capacity, whilst reducing

delays, increasing the efficiency of flight operations, and improving

safety. Technologies are emerging that should improve the

performance of the system, but which could also introduce uncertainty,
disputes, and inefficiency if not properly implemented.

The aim of our research is to apply techniques from intelligent

control theory and decision-making theory to define an Intelligent

Aircraft/Airspace System (IAAS) for the year 2025. The IAAS would

make effective use of the technical capabilities of all parts of the system

to meet the demand for increased capacity with improved performance.
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An Intelligent Aircraft Airspace System (IAAS) would allow each of

these agents to interact in a way that:

- makes full use of the differing capabilities of all the agents

- allows each agent to obtain data residing in other parts of the system

- imposes as few restrictions as possible on aircraft operations in order

to meet system performance requirements

- provides system robustness through dissimilar redundancy

- allows graceful degradation of system performance if any part
should fail.

The Aircraft Airspace System consists of a variety of agents, operating

in a broadly hierarchical structure. At the lowest level are the individual

aircraft, from general aviation to commercial traffic; at the highest level are

global organizations such as ICAO. At intermediate levels not only are there
the various parts of today's air traffic management system, such as sector air

traffic management (ARTCCs in the US), but also the airlines who already

cooperate with flow control, and provide an increasingly important role in

supporting aircraft in flight.

I NTELLIGENT AIRCRAFT/A IRSPACE

SYSTEMS
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Each agent in the system is itself intelligent; it does more than

execute instructions generated by the superior agent in the hierarchy.

An Intelligent Agent performs a hierarchy of functions, bounded on

one end by declarative functions, which typically involve decision-

making, and on the other by reflexive functions, which are more-or-less

spontaneous reactions to external or internal stimuli. An intermediate

level, procedural functions, may also be defined. Like reflexive
functions, these have a well-defined input-output characteristic, but

have a more complicated structure.

DECLARATIVE ) PROCEDURAL) AND
REFLEXIVE FUNCTIONS

In_nxt tevet Ing

lng

/----x,
Outputs Measu rerocnls

to System of the System

Declarative Functions

Procedural Functions

Reflexive Functions
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This model of an intelligent agent can be used to describe any of

the agents within the IAAS. Intelligent agent descriptions of a traffic

control agent and a pilot/aircraft agent are given for illustration. The
effect of emerging technologies will be to enhance the capabilities of the

agents in all these functions. This will increase the overlap in

capabilities of the agents.

As an example, collision avoidancesystems (CAS) provide the

pilot/aircraft agent with traffic situation data, previously only available
to traffic control agents. These systems should provide increased

safety, but have also on occasions caused conflict, when the CAS has

issued instructions that conflicted with what the traffic control agent

had planned.

The IAAS must be able to overcome these types of potential

problems, while exploiting the possibilities provided by the enhanced

and overlapping capabilities of the agents.

FUNCTIONS OF I NTELLIGENT AGENTS IN

IAAS

TRAFFIC CONTROL AGENT PILOT/AIRCRAFT AGENT

Declazative Functions
Sector allocation

Traffic monitoring

Conflict detection/prediction

Constraint monitoring
Hazard detection

Route assignment

£1:_c._lazlLEm_im_--
Conflict resolution

Right path adaptation

Networking

Assessment or pilot requests

How control

Reflexive Functions

Display update
Communications

State vector processing

Aircraft handover

Declarative Functions

System monitoring

Goal planning
System/scenario identification

Choice of operating mode

Procedural Functions

Adaptation
Guidance

Navigation
Crew coordination

Networking

Reflexive Functions

Measurement

State Estimation

Control

Communication
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Each agent, either through its own sensors or through
communications, will have the data and the computational ability to

carry out strategic functions such as flight path modification, taking
into account the interests of other agents as well as its own. By

Inventing Options for Mutual Gain, and Assessing Options using

Objective Criteria, agreements should be reached that benefit both

parties. If more of the agents' interests are satisfied, the system is

performing better.

Principled Negotiation is proposed as the structure for

interaction of agents in the IAAS. Air traffic management can be

viewed as a negotiation process; as the agents interact each is trying to

best satisfy their own interests. Principled Negotiation exploits the fact

that two parties in negotiation will have common interests on which an

agreement that benefits both parties can be reached. Each agent in the
IAAS has a different set of interests, but many interests are held in

common.

PRINCIPLED NEGOTIATION

. Identify Common and Separate Interests ]

• Invent Options for Mutual Gain

• Assess Options using Objective Criteria

Fisher, R., Ury, W., Getting to Yesj Penguin Books, New

Yo_k, 198t

Aim:

Use Principled Negotiation to allow agunr_ in the IAAS to effectively

interact, and so improve system performance

Why:
• Pmliferatien of sources and quantity of data available to each agent

• Principled Negotiation allows each agent to cOntribute according to

its capabilities
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Negotiation is a viable model for cooperative decision-making in
the IAAS, because of the large areas of common interest between the

agents. Given a set of alternative decisions, two agents may often

regard different decisions as optimal, because each agent will weight
each factor differently. However it should be possible for the two

agents to identify a single decision that, though not ideal for both

agents, does better meet the interests of both agents than the status quo.

Principled Negotiation provides a method by which this beneficial

agreement can be achieved effectively.

EXAMPLES OF COMMON AND SEPARATE INTERESTS

Pilot/ En-route Airline Airport

Aircraft Controller Operator

S.fe_, ¢' ¢' ¢' ¢'

V.elCo,is ¢' _ (_')

Profit (_) _

Throughput _ (_) _'

Scheduling ]'- "
Freedom
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Each agent regularly searches for Options for Mutual Gain. It
should consider the interests of the other agents in the system, not just

its own. If a pilot/aircraft agent is searching for possible improvements

to its flight path, it will be able to draw on data that describes the local
traffic and weather situation, and may well have access to data on

sectors further into the flight path, as well as the predicted situation at

the destination airport at its planned arrival time. In assessing various

options it should consider not only its own interests (fuel usage, time of
arrival etc.), but also the interests of other agents. Does the option

reduce traffic in an overloaded sector? Would arrival at the airport at a

different time reduce a predicted peak in runway demand?

Once an agent has generated an option that provided mutual

benefit, it would propose the option to the superior agent in the

hierarchy. In the case of a proposed change in the flight path this
would be the traffic control agent. The superior agent should assess

any proposal using objective criteria. In the IAAS, objective assessment

of a proposed flight path change would involve not only local analysis,

but assessment of the impact of the change over as long a time scale

and as wide a geographical area as possible.

INVENT OPTIONS FOR

MUTUAL GAIN

Each agent regularly searches foe options
of benefit to ilself and other agents

Example"

• Aircraft obtains traffic, weather, destination

aixport
data from

- ground control
- aixcraftsensors
- ccenmunicafions with other aircraft

• Aircraftuses data to search for changes to

flightpath
that will:

- save fuel

- minimize delay
- improve traffic situation for ATC

- improve traffic flow at destination

• Aircraft assesses options, and enters
nego6ation with ATC

ASSESS OPTIONS USING

OBJECTIVE CRITERIA

Options assessed by each agent on the
basis of objective crileria

Examples of objective criteria:

• Effect on safety

- probability of conflict
- mean separation, rain. separation

- weather hazard avoidance

• Effect on system performance
- average flight delay
- sector throughput

- airpo_ throughput
. minimized flight time

• Effe.o. on direct and in4irect costs

Each agent assesses options using

criteria that reflect its own and other
ageats ' interests
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The assessmentof flight path changes is just one example of the
many tasks that are undertaken in the IAAS. Most of these tasks

involve the interaction of two or more agents, and Principled

Negotiation should be applicable in all cases. These could be tasks

occurring over time scales 6fin0nths or_;6firs (such as airport slot

allocation, or flight scheduling) or over Short time scales (such as

scheduling inbound streams of traffic in a terminal area).

This slide shows an algorithm that could be applied in any of

these cases. Agent 1 would regularly conduct a search for options that

provided mutual benefit. That benefit would probably be on the basis

of a cost function that reflected the interests of itself and other agents.

The best option would then be proposed t6-figent 2 (the superior agent).

Agent 2 would make its own evaluation of the cost of the option, Using

its own data and possibly a different cost function. Different criteria

could be used for accepting a proposal; ohe: might be to accept a

proposal if its cost was below a certain threshold. If the option was

unacceptable, agent 2 might propose a modification to agent 1, or agent
1 might suggest an alternative.

INTERACTION BY PRINCIPLED NEGOTIATION

INVENT

OPTIONS
FOR

MUTUAL
GAIN

ASSESSMENT

AGAINST
OBJECTIVE
CRITERIA

Search for feasible options ]

Assess options (evaluate cost)
on basis of 1=__

• own Interests Remove
• other agent's interests

rejection

[ from list of
i options

Propose best option (least cost)

ACCEPT ] [ _P:c:'tTon [
Implement { I

Opt on
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Current research is focussed on applying these ideas to a test

scenario, and evaluating the concept. The initial test scenario is a 2D

high level (FL290 - 370) sector. Although superficially a simple scenario,

it provides a rich set of variables which can be analyzed. Some

examples of effects which can be studied are:

- effect of different agent cost functions

- effect of conflicting aircraft data

- effect of wind distributions and other weather phenomena

- effect of different negotiation algorithms.

The decision-making system can be tested on various traffic
distributions, and the effectiveness of the system analyzed in terms of:

- safety

- efficiency of operations

- capacity of the system

- punctuality (accuracy of aircraft at 4D waypoints)

This scenario mainly deals with pilot/aircraft - traffic control

agent interactions. The scenario can easily be made more complex, and

eventually it is hoped to examine the possibilities of such a system in

terminal airspace.

EXAMPLE TEST SCENARIO

i ..................

I
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•_sso_..__ ................
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I
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i
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F
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Profile
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In summary, the capabilities of the agents in a future AAS will

overlap to a much greater degree than at present. As each agent

becomes increasingly intelligent, the declarative functions of the agents
will have increasing commonality. The key to improved performance

of a future AAS will be the effective use of these overlapping
capabilities.

Overlapping capabilities can provide increased redundancy and
flexibility for AAS operations, and effective combination of these

overlapping yet distinct capabilities should give an IAAS improved
performance compared to today's system. Principled Negotiation is

proposed as a form of agent interaction that allows each agent to use its

capabilities to ensure that decisions taken better meet each agents
interests, and so improve system performance.

Work validating the concept in a 2-D en-route traffic scenario is
progressing.

CONCLUSIONS

• An IAAS consists of a hierarchy of Intelligent Agents

• Each agent described by reflexive, procedural, declarative
f',.trlctio IL$

• Increasing overlap in agent capabilities

• Need for a system that makes effectave use of overlapping

capabilities for good system performance

• Principled Negotiation proposed as the basis for cooperative

decision-making in the IAAS
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OPTICAL COMMUNICATIONS FOR

TRANSPORT AIRCRAFT

ROBERT STENGEL

Department of Mechanical and Aerospace Engineering
Princeton University

THE PROBLEM

Increasing demand for radio-frequency bands from an enlarging pool
of users (aircraft, ground and sea vehicles, fleet operators, traffic
control centers, commercial radio and television)

Desirability of providing high-bandwidth, dedicated communications
to and from every aircraft in the National Airspace System

Need to support communications, navigation, and surveillance for a

growing number of aircraft

Improved meteorological observations by use of probe aircraft

THE SOLUTION

Optical signal transmission support very high data rates

Optical transmission of signals between aircraft, orbiting satellites,
and ground stations, where unobstructed line-of-sight is available

Conventional radio transmission of signals between aircraft and

ground stations, where optical line-of-sight is unavailable

Radio priority given to aircraft in weather
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AEROSPACE OPTICAL COMMUNICATION

Data communications between aircraft and ground stations could be

supported with direct and relayed signals. Aircraft at altitude typically
would have unobstructed line of sight to an overhead spacecraft and fre-
quently could communicate with other aircraft at similar altitude. Fiber-
optic links on the ground complete the data path for air-ground links
obscured by clouds through unobscured air-satellite-ground links.

=

,,_ v"- n _,

_ _ _ _,

,_wv,,w Free-space Optical _,_, :
va,'r_- _" Link cv_.

::.i._:_::.:,:4 '_:::'::':" _ :i:'... .v_,

__ ^v ........ .','.:

_:-:-7-. " ":':'-" " "^ ............ ""'^:+:-" "
Fiber-optic Link

Opportunistic Optical Transmission
Distributed Network containing Free-Space and Fiber-
Optic Links =_ _ ==
Radio-Transmission where Optical Link is
Unavailable

[
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TYPICAL CLouD COVER PATTERNS =

ACROSS THE UNITED STATES

TUday's Smshkm and Clouds

m uof_Y i_.lxJ_, TM

Today's Sunshine and Clouds

• _o_o_

Today's Sunshine and Clouds 1
Today's Sunshine and Clouds

Today's Sunshine and Clouds

[] MOSTLYCLOUDY_

Today's Sunshine and Clouds

• _-_c_o_

Today's Sunshine and Clouds

m MOSTLY CLOUDY _'_
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EVERY AIRCRAFT A WEATHER PROBE AND

AIRBORNE SURVEILLANCE SYSTEM

Increased data bandwidth allows greatly expanded transfer of
information about weather conditions and individual aircraft. Observational
data from aircraft is integrated into a real-time four-dimensional weather
map in ground-based computers. This information, in turn, becomes
available to all aircraft in the system.

DOWNLINK _:_

OWfiposition and velocity vectors
Own air temperature, pressure, and humidity
Own wind velocity vector
Own light intensity _-
Own turbulence intensity
Signal strengths from electrical activity and beacofis

Airborne hazard status monitoring and alerts
Desired alternate flight plans

UPLINK

Air temperature, pressure, and humidity fields
Wind and turbulence fields
Cloud cover
Traffic alerts

Ground/satellite-based hazard status monitoring and
alerts

Arbitrated alternate flight plans

_._--

=

g

E
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RESEARCH ISSUES

Numerous technical, operational, and institutional issues must be

resolved before the suitability of optical communications for aircraft can be

fully assessed. Many of these are topics for basic and applied research.

Optical signal generation, transmission, and detection

Coherence, filtering, power, multiplexing, and coding

Coupling between optics and electronics

Communication coverage modeling

Telescope field of view, pointing, acquisition, and

tracking

Free-space/fiber-optic networking and data-relay

protocols
Architectures for CNS and ATM

Interfaces with related systems

Integration within an Intelligent Aircraft/Airspace

System
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Robustness of Solutions to a Benchmark Control Problem

Robert F. Stengel" and Christopher I. Marrisont

Princeton University, Princeton, New Jersey 08544

The robustness of l0 solutions to i benchmark control design problem presented at the 1990 American Control

Conference has been evaluated. The 10 controllers have second- to eighth-order transfer functions and ht',e been

designed using several di[feren! methods, Including It, opllmlzatlon, loop-transfer recover],, ImGwglna_'-axls

shifting, constrained optlmlratlon, structured ¢ovarlance, game theory, and the Internal model principle.
Stochastic robustness anal)sis quantifies the controllers' stability and performance robustness v, lth structured

uncertainties in up to six s}slem paramelers. The analysis provides Insights Into s_'stem response thai are not

readily derived from other robustness cr|ler|a ,,nd provides a common ground lot Judging controllers produced

by alternative methods. One Important conclusion Is that gain and phase margins are not reliable Indicators of

the probability of Instability. Furthermore, parameter variations actually may Improve the likelihood of achiev-

ing selected performance metrics, as demonstrated by results for the probabillt)' of settling-lime excetdmnce,

Introduction

ONTROL systems should be designed to maintain salts-factory stabilily and performance characteristics trot only

at nominal operating points but over a range of parameters

that encompasses system uncertainly. These systems should be

robust, but there is a limit. Unbounded robustness is no more

allractive than inadequate robustness, because nominal per-
formance and insensitivity to parameter variations lend to

produce conflicting design requirements. Ilence, the degree of
robustness that must be furnished for satisfactory operation is

related to the system variations thai are most likely to occur.
Measures of robustness should be easily understood and

should be directly connecled to control design objectives. They
should be consistent wilh what is known about the structure

and parameters of the plant's dynamic model. These goals are
best served when robustness is expressed in terms of the like-

lihood that cornmonly accepted properties fall within accept-
able bounds and when parameter variations are expressed in

terms of readily measured system specifications. A method of

satisfying these evaluation crileria is presented here.

This paper demonstrates the applicalion of stochaslic ro-

bustness analysis (i.e., determining the probability of unsat-

isfactory stability or performance resulting From expected

parameter uncertainly) to solutions of the 1990 American
Control Conference Benchmark Control Problem.I Stochaslic

robustness is seen to provide a useful, unifying analytical
framework that is intuitive and has a direct, physical meaning.

Description of the Problem

The benchmark plant is a dual-mass/single-spring system
v,ith noncollocated sensor and actuator *; its state-space model

is

._._ =

A-,

0 0 I

0 0 0

-k/ml klm_ 0

k/m2 -k/m2 0

y = x: + v (2)

z = x2 O)

where xt and x2 are the positions of the masses, xj and x4 are

their velocities, and u is a control force on mr. The plant is

disturbed by w on m2. and the measurement of x2 is corrupted

by noise v in y. The corresponding actuator and disturbance

input/oulput transfer functions are

(k/ml m2)

3Ci,,. = S2Is z + k (,hi + m 2)/,,1. m 2] (4)

(I/m2)($ 2+ k/ml)

ac,. = s,[s' +k (,,,, + ,,,_)/,,,, ,,,_] (s)

The plant has eigenvalues at (,jx/k(rnl ÷ ma)/m_m:, 0,0)

and is undamped. A single.input/single-output (SISO) con-
troller must close its loop around 3C,:, which has a pole-zero

surplus of 4. The high-gain asymptote of at least one root
lies in the right half plane for any SISO feedback compensator
Ihat has fewer than two surplus zeros. Because the open-loop

roots are on the imaginary axis, the magnitudes of root depar-

ture angles must exceed 90 dug if marginal instability is to be

avoidedat low loop gain.
Three design problems are posed in Ref. I. Benchmark

problem I (BP-I) requires I) a 15-s settling time for unit distur-
bance impulse and nominal mass-spring values (ml = m2 = k

= I) and 2) closed-loop stability for fixed values of mass and
0.5<k <2. The second problem, BP-2, replaces the unit-

impulse disturbance by a sinusoidal disturbance with 0.5-rad/s

frequency but unknown amplitude and phase. Asymptolic re-

illxtx+ I/ Ft u + w

_r I/m2

(i)

Recei,.ed May 14, 1991; revision recei',cd Oct. 4. 1991: accepled for

publicalion Oct. II. 1991. Copyright © 1992 by II_e American lnstb

tote of Aeronautics and AslronauliCS, Inc. All rights resolved,

"Professor. Department of Mechanical and Aerospace Engineering.

Associale Fello_ AIAA.

1Graduate Student, Department of Mechanical and Aerospace En-

gineering.

JOURNAL OF GUIDANCE. CoNrrot, AnD DYNAMICS

Vol. 15, No. 5, September-October 1992

jeclion or the signal should be achieved with a 20-s settling
time for nonrinal masses and 0.5 <k < 2. The third problem,

lIP-3, is like BP-I, except thai m_, rrt_, and k are uncertain

_silh mean values of I and unspecified bounds. A number of

additional problem specifications are left In the discrelion of

the designer. For example, it is presumed that a noise model

Research supported by government grant.
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v(t) would be considered, but details of the model are open.

Subjective goals include achieving reasonable performance/
stability robustness, minimizing controller effort, and mini-

mizing controller complexity.

Design Solutions and Nominal Performance

Five papers containing design solutions appear in the Amer-

ican Control Conference Proceedings, 2"6 one paper became

available after the conference, 7 and additional designs were
obtained from the authors. The transfer functions for these

controllers are presented in the Appendix. Fixed-order com-

pensators achieving approximate loop-transfer recovery are

motivated in Re(. 2, leading to designs A-C. An H, plus

jw-axis shifting approach is taken in Re(. 3, producing design
D. Reference 4 uses nonlinear constrained optimization to
produce design E. Structured covariance terms are added to

strictly proper (the number of zeros equals the number of
poles). Hence, designs A, B, and F-J can be classified as

low-pass filters, whereas designs C-E do not roll off at high
frequencies.

Ts" portrays the settling time as the time for which x2 is

captured within a 0.l-unit envelope about its zero steady-state
value, given an initial unit w disturbance impulse. T_TM is based

on the damping ratio and natural frequency of the dominant

mode and is calculated as 4/_'w,,. Neither of these definitions

adheres to the conventional definition, but each has its merits.

Ts* is consistent with the BP-I problem specification, in that it

reflects a response to a unit w disturbance; however, it is

amplitude dependent. T_* is independent of amplitude, but it

is unrelated to the disturbance input and is not an accurate

portraya_of_e_'fflI system_ssettling timeinresponse to a unit

step input. Table I indicates that only three of the compensa-

the linear quadratic Gaussian (LQG) algebraic Riccaii equa' t6r_ _tisfy a iS:s e/ite/|on by the firsi cle_;tion, whereas six

tions to generate design F in Ref. 5. Design G is a game-theo-
retic controller based on linear exponential Gaussian and H=

concepts and is discussed in Re(. 6. H® controllers using the

internal model principle are presented in Ref. 7 (designs H-J).

G and J are designed to reject the sinusoidal disturbance

(BP-2) rather than the unit impulse disturbance (BP- 1). All but

two of these designs CA and D) contain non-minimum-phase

zeros. The benchmark criteria do not address command-input

responses; hence, the initially reversed time response of sys-
tems with an odd number of non-minimum-phase zeros is not

penalized. Design G has an even number of right-half-plane
zeros, which v,ould not produce reversed response.

The problem statement contains an ambiguity that could

have affected the designers' interpretations of satisfactory re-
sponse. Settling time is normally defined as an attribute of

unit-step-function response. For example, Ogata s states that
"The settling time is the time required for the response curve

to reach and stay within a range about the final value of size
specified by absolute percentage of the final value (usually

2% or 5%)." For a second-order system the 2% settling time

can be precisely calculated as 4/_'w,,, where s" is the damping
ratio and ,.o, is the natural frequency of the oscillatory mode.

However, Takahashi et alfl found that "Exact analytical ex-

pressions for ... settling time become _rohibitively compli-
cated for systems of order higher than two." The benchmark

ambiguity is thai ihe final value of a strictly stable impulse

response (BP-I) is zero; hence, there is no steady-state value on

which to base percentage response.
Nominal performance characteristics of the controllers are

summarized in Table 1, which presents compensator numera-

tor and denominator order (Num Ord and Den Ord), two
definitions of settling time (T( and T[°), maximum control

usage (ureas) resulting from a unit w disturbance, gain margin
(GM), phase margin (PM), output response to 0.5/rad/s sinu-

soidal disturbance (SR), and covariance of control response

(U¢o_) to measurement noise (v) with unit standard deviation.

All compensators are proper (the number of zeros does not

exceed the number of poles), but three (C, D, and E) are not

compensators have settling times of <: 1.5.2 s by the second
definition.

Four Compensators use measurably more control than the

others in responding to the disturbance. Increasing gain mar-

gin generally is accompanied by increasing phase margin for

these 10 designs (Fig. I), ahhough the re|affonship is not

monotonic. Whh ihe exception bf:des]gn D_ stab]i_ty:marg]ns

are less than the 8-dB/30-deg rules of thumb (e.g., Re(. 10)

often suggested as design goals for SISO systems. Sinusoidal

disturbance rejection of most controllers is similar, although

design D+s response is an order of magnhude sma_ Dei[gfiS- :

G and J, specifically intended to reject a 0.5-rad/s sinuso_d,
eliminate the disturbance completely in the steady state. (The

settling time in achieving this response was not evaluated.) The

noise-response covariance of the control is generally _crpor=

tional to its peak disturbance-impulse-response forsirlctly
proper compensators. The three non-strictly proper cbmpensa-

tors have infinite control covariance in response to continuous

white measurement noise v (with infinite bandw]dih).

Stochastic Robustness Analysis

Stochastic robustness analysis (SRA) is based on a statistical

portrayal of parameter variations and their effects. If parame-
ters take a finite number of discrete values, each with known

Fig. I
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Nominal gain and phase relationships of the tO controllers.

Table I Nominal characterisllCs of l0 controllers

Num Den umax GM, PM, SR. U¢o_,
Design Ord Ord Ts. s°= T+, s °*b -- db deg db --

A 2 3 21.0 14.8 0.514 2.56 26.7 10.1 6.30
B 2 3 19.5 15.2 0.469 3.27 26.8 13.2 13.02
C 2 2 19.7 15.2 0.468 3.27 26.5 13.3 oe
D 4 4 9.9 8.8 297.8 15.10 58.7 1.47
E 2 2 18.2 8.01 0.884 2.39 22.0 17.1 oe
F 3 4 13.7 22.0 2.397 5.15 23.8 13.4 6 xlO +
G 5 8 3t.3 35.7 1.458 3.61 25.4 -ae 173.5
H 3 4 14.9 11.9 0.574 3.28 24.5 14.9 2.48
I 3 4 17.8 17.2 0,416 4.56 27.5 13.3 0.95
J 5 6 43.2 23.8 1,047 2.14 17.5 - ae 77.42

• "Defined for 0 I-unil _.''sponse envelope for unil-imputse w.

h'Defined by 4/[',z. (pro_,dcd by B. Wie).
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or estimated probability, the analysis can be based on a finite

number of function evaluations, attd the probabilistic result is

exact (within the accuracy and precision of problem model-

ing). tf the parameters are continuous or the number of finite

combinations is too large for practical computation, Monte
Carlo evaluation can be used to estimate probabilities within

arbitrarily small confidence intervals. If a binary judgment can
be made or function values (e.g., satisfactory/unsatisfactory

or stable/unstable), then the corresponding probability distri-

bution is binomial, and confidence intervals are readily esti-
mated from the number of function evaluations (e.g.,

Ref. 11). Further details of SRA can be found in Refs. 12-17.

Test Cises for the Benchmark Problem

Uncertain parameters are assumed to have continuous,

bounded, uniform, and uncorrelated probability distributions

for this analysis. (The original problem identifies uncertain

parameters and their bounds, making no statement about dis-

tributions)) Three increasingly demanding sets of parameter
uncertainties are used to test the controllers. The first two are

specified in Ref. 1, and the third is new.
Problem E-I: 0.5<k<2, allother parameters take nomi-

nal values, as in BP-I and BP-2.
Problem E-2: 0.5<k<2, 0.5<m_<1.5, and 0.5<m2

< 1.5, as in BP-3. Reference I does not specify limits on m_

and m2; values of -,,-50_0 are adopted here.
ProblemE-3: Same as E-2; in addition, 0<c<0.1,0.9<f

< I.I, and 0.00l <r<0.4 s, where c represents internal damp-

ing between the masses; f is loop-gain uncertainty due to

multiplicative variation in observation, control gain, or actua-
tor effectiveness; and r is the time constant for a first-order

lag between controller command and actuator response. Un-
certainty in the damping ratio c increases open-loop damp-

ing, and the time lag is always greater than the nominal value
of zero.

With all six parameters, the state-space model for E-3

becomes

x" = F'x" + G'u, + L'w

v,.herex' is defined as [.v_ x., x_ x, u] r. and

F" =

(6)

0 0 1 0 [0 0 0 I 00

q

-k/mt k/ml -C/ml c/m_ f/_ntl (7)klm,. -k/m, elm, -c/m,.

0 0 0 0 - I/rJ

G'=[0 0 0 0 I/rl r (8)

L'=[0 0 0 I/m2 0l r (9)

The compensators are modeled by

_r_ = Ax, + By (10)

u, = Cx, + Dy (11)

where x, is the compensator state', u, is the actuator command;

A, B, C, and D are the compensator matrices; and y is x2.

Performance Metrics for the Benchmark Problem

Robustness is best characterized by problem-dependent met-

tics that have a direct bearing on the measurable stability and

performance of the system. Here, they portray the likelihood
that classical stability bbunds will be exceeded, that settling

time will not be achieved, and that control usage will exceed

acceptable values. For demonstration of SRA, parameter un-
certainties are represented by uniform distributions within ar-

bitrary (but reasonable) bounds. In practical application, the

control-system designer would have similar, problem-speciflc

specifications to meet.
Each of the following probabilistic performance metrics

has a binomial distribution and is estimated using Monte Carlo

evaluation. Uniform, bounded parameters are calculated by

random-number generators according to the specifications of

the previous section. The associated binomial confidence level

depends on the number of evaluations and the value of the

probability estimate, t_ Each estimate is the result of 20,000
evaluations; for a probability estimate of 0. I, the 95% confi-

dence interval would be _0.004. The performance metrics are:

I) Pt: Probability of instability. This probability portrays
the likelihood that parameter variations force at least one

closed-loop root into the right half plane.

2) Pr,: Probability of settling-time exceedance. TMs

probability is derived from a time-history calculation with a
unit-lmpulse w input (i.e., based on T_) and estimates the

likelihood that the actual response of z will fall outside a

±0.l-unit envelope after 15 s.

3) P,: Probability of control limit exceedance. This prob-
ability corresponds to the reqt, irement in Ref. I to minimize

controller erforl, h is the probability that peak actuator dis-

placernent ,,,,.ill exceed a saturation limit in response to a unit
dislulbance (w) impulse. The saturation limit was chosen to be

one unit for this analysis.

4) P,: Probability of unsatisfactory sinusoidal distur-
bance rejection. This probability involves the likelihood that

the amplitude of steady-state z response exceeds one unit with
a unit sinusoidal disturbance at 0.5 rad/s.

Computation times indicate that current workstations are

fast enough to execute practical SRA, and massively parallel
computers could provide interactive turnaround. For the

typicpl closed-loop system considered here, roughly 900 sets

of eigenvalues were generated per minute per million float-

ing-point operations per sec (MFLOP). This is drawn from

compiled Pascal code executed on a 0.9-MFLOP Silicon

Grapltics 40/20 Workstation. The complete evaluation was

computed at a rate of 30 sets/miu/MFLOP using MATLAB
on a Macintosh llx computer. At these rates, a 5000-MFLOP

parallel computer (e.g., 64K CM-2 Connection Machine)
would evaluate 20,000 sets of eigenvalues in 0.25 s, and the full

evaluation _sould lake about three times longer.

Results of the Anal)sis

The results of the SRA indicate a wide range of characteris-

tics in the 10 controllers. "[his reflects varying emphasis in

satisfying the problem specifications, as well as significant

differences in compensator order and design philosophy. It

should be emphasized that none of the controllers was de-

signed for the express purpose of satisfying SRA criteria, and
it is likely that each design approach could be fine-tuned to

produce better results titan those shown here. Using criteria
that have high engineering significance, SRA provides a "level

playing field" on ,,vhich to judge the robustness of controllers
that were designed by alternative methods. Tables 2-4 present

results, with maximum probabilities for each evaluation prob-
lem indicated by bold letters and minimum values underliued.

Probability of Instability

For the least uncertain case (E-I), over half of the con-

trollers are estimated to have zero probability of instability,

whereas design A has a 16_0 likelihood of instability (Table 2).

With increasing parameter uncertainty (E-2 and E-3), all con-

trollers have nonzero Pt. The probability of design A is essen-

tialiy unchan_,:ed,-and design J becomes the controller most

likely to be unstable.
It is interesting to compare the probabilities of instability on

the bases of gain and phase margins, quantities often assumed
to indicate the robustness of SISO systems. Figures 2 and 3

demonstrate that nominal values of GM and PM are not good

predictors of Pt. INure that these bar charts present results for
the 10 compensators; hence, GM and PM are not e,,enly dis-
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Table 2 Probabilil.,. of inslabilit.'_

Design E-I E-2 E-3

A 0.160 0.159 0,165

B 0.023 0+042 0.039

c 0.021 0.040 o.041
D 0.000 0.00.._4 0.059
E 0.000 0.097 0.125

F 0.000 0, l I 9 0.224
O 0.000 0.203 0,232

H 0._ 0.046 0.099
I 0.000 0,013 0.029

J 0,039 0.237 0.245

Table 3 Probability of
settling-time violation

Design E-I E-2 E-3

A 0.971 0.962 0.?93
B 1.000 0.969 0.963
C 1.000 0.968 0.8?4

D 0.0(X) 0.004 0.072
E l,O00 1,000 0.999

F 0.633 0.8.59 0.967
G 1.000 0.999 1,000

H 0.742 0.909 0.986
I 0.756 0.918 0.986
J 1.000 1.000 0.968

Table 4 Probability of
eonlrol-Ilmil exceedane¢

Design E- I E-2 E- 3

"A 0.I60 0.159 0.i65

B 0.023 0.043 0,047

C 0.021 0.041 0,041
D 1.000 1.000 1.000

E o.ooo 0.391 0409
F 1.000 1.000 1.000
G 1.000 0.886 0.889

H 0.000 0.133 0,162
I 0,000 0.023 0.0,______30
J 0.857 0.542 0.527

tribuled.) In most cases, increasing parameter uncertainty in-
creases P/. but there are no consistent trends with GM and

PM. Parameter variations have complex effects on the shape

of each controller's Nyquist plot, and these effects cannot be

portrayed simply by changing loop gain or phase angle.

This result brings into question the utility of transfer-func-

tion/return-difference-matrix singular values as measures of
Fig. 2

the stability robustness of multi-input/multi-output (MIMO) problems.
systems. MIMO singular-value analysis is loosely equivalent to

SlSO gaih--marginanaiysis (e.g., Re(. 18). Arbitrary, real pa-
rameter variations have complicated effects on the frequency

distributions of MIMO singular values, changing their shapes 0.2s
as well as their magnitudes. Unless the frequency distributions

of nominal MIMO norms retain their shapes under parameter 0.:
variation (or follow some predictable pattern), the relation- _"

ships of nominal maximum or minimum values to allowable

bounds tells little about stability robustness. Norm bounds can _. o.ws

be reliably evaluated only by considering the norms of per. _ o l

rurbed systems. ._
A higher compensation order does not necessarily improve

robustness (Tables I and 2). The compensators with the most ,u._

stability robustness are fourth order, and the next most robust
controllers are second and third order. Increased nominal o

control usage, either as a consequence of a disturbance impulse

or measurement noise, generally corresponds to decreased
stability robustness, although design D provides a significant
exception.
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Probobilio' of SetHing- Time Viola/ion

All but three of the controllers (D, F, and H) exceed the 15-s

settling-time objective (defined by Ts') in the nominal case
(Table I); hence, it is not surprising that the probability of

settling-time violation v..ith parameter uncertainty is high as
b-ell (Table 3). Design D provides a notable exception: Its

nominal Ts* is 9.9 s, and Pr, is Small for all three evaluation
cases. For problem E-I, half of the controllers violate the goal

all the time, but two of the controlleis withnom|nai Ts* above

15 s (H and I) have a considerable likelihood (25Wo) of satis-

fying the objective when the Spiing:c0nsiant uncertainty is
considered. Further uncertainty (problems E-2 and E-3) re-

duces the probability of settling.time violation for more con-

trollers, illustrating the counterintuitive result that the effect/,

of uncertainty are not always unfavorable.

Probability of Control Limit Exceedance

The probability of excessive control response to disturbance
impulse P,, is shown in Table 4. Over half of the nominal

responsesare within the Uma, criterion chosen for this analysis
(Table I). Furthermore, there is an identifiable trend in the

relationship between Um,, and P,, ff"ig_ 4)_ Several controllers

(E, H, and I) have zero probability of violating this criterion

for problem E-I, and designs B_ C, _i_/fYr_lain low values of

P,, for all three problems. Designs D and F have 100% P,, in all

three cases, which is traceable to very high nominal control

usage. Once again, nominally marginal cases (G and J, the two
controllers designed for rejection of the sinusoid) exhibit re-

duced probability of exceedance for problems E-2 and E-3.
From Eq. (I)_ increa_e_ m, and m2 decrease the effects of u

and w, and added damping (c) and first-order lag ('r) reduce

control peaks in some cases, reducing the probability of high
control levels.
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Sinusoidal Response Charocterisri('s

When 0 dB is chosen as an upper response limit, the two

controllers designed to reject the sinusoid I,G and J) do so

perfectly (P! = 0), whereas all the others exceed the Ihnit all the

time. The transfer ['unctions (Appendix) show that designs (3

and J effectively "notch" the O.S-rad/s disturbance-input fre-

quency to produce these result,;. Without notch filters the re-

maining controllers cannot give special attention to discrete-

frequency inputs, and their frequency response of -0,5 rad/s

always exceeds 0 dB. If the frequency or the sinusoidal dis-
lurbance were uncertain, tire notch filters could be less erfec-

tlve, but there would be little change in the response of the
other controllers.

Stochastic Root Loci and Par=metric IIIsloRr=ms

Graphical results give insight into the nature and causes of

possible instability. The stochastic root locus is an s.plan¢ plot
of the eigenvahnes that result from each Monte Carlo evalua-

lion, expressed either as a two-dimensional scatter plot of

closed-loop roots or an oblique three-dimensional view or the

density of roots within subspaces or the s plane. H The former

plot is easily generated from the calculations, and the latter has
the advantage of showing the distribution along the real axis. n_

In addition, histograms of the parameters associated with in-

stability can be related to origins of the problem.

Scatter plots for design H show the progression of eigen-
value uncertainty from problem E-I to E-3 (Fig. 5). For prob-

i)
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b)

tL
-t •

- l .[1
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/'-_2,0 -I .O
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.._ _t 0 •
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t.0
I.O "0

"3.0

"_o °
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=O.O
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fig. 6 5to',:hSlSIi'c root locus of design II tthree-dimeosionil view):

i) problem E-I', bl problem E-Z: c) problem E-3.
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lem E-I only a single parameter varies (the spring constant k).
The distribution follows the conventionM root locus (with

nominal closed-loop locations indicated by × ), although the

density of roots varies along the curves. The pairs of roots near

the origin are most closely associated with the plant, whereas

the higher-frequency roots are compensator modes. None of

the root loci extend into the right half plane, and P_ is zero

(Table 2). Three parameters vary in problem E-2, and the
stochastic toot locus becomes an areal distribution of roots,

some of which extend into the right half plane (Fig. 5b).

Because the parameter variations are bounded, there are crisp

edges to the distributions. The unstable cusps at 0.6 and 2.6
rad/s can be associated with plant and controller modes. Fur-

ther parametric uncertainty (problem E-3) broadens the distri-

butions and increases the probability of instability.

The same information is presented in unsmoothed three-

dimensional form in Fig. 6 (upper half plane only), which
shows the distribution of real roots as well. The three-dimen-

sional fepresenifiti0n is especially effective when displayed on

a graphics workstation that allows the viewpoint to "fly
around" the distribution.

To see which parameter values are associated with instabil-

ity, the values are recorded whenever the system is found to be

unstable. These values are collected in intervals, the number of
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values in each interval is counted, a,d the resulting histogram

provides an estimate of the conditional probability density

function for each parameter. If a parameter has little effect on
stability, then the histogram should show the same distribution

as produced by the random number generator--in this case, a

uniform distribution. If particular values of the parameter

increase the probability of instability, the histogram has higher
values in that region.

For design H and problem E-2, instability often occurs when

the masses have low values but never occurs with high values

(Fig. 7a). Low mass values increased the probability of insta-

bility for all the designs. Extreme values of the spring constant

also are associated with instability, low values having the edge
in this example.

For problem E-3 (Fig. 7b), the distributions become less

crisp, as otherwise unstable values of mass can be stabilized by
damping and otherwise stable values of mass can be desta-

bilized by increased loop gain or first-order lag. The spring
constant shows a slight bimodal distribution due to the two

modes of instability with roots of approximately 0.6 or 2.6

rad/s. This can be seen by recording the parameter values only
when the system is found to be unstable and the unstable roots

have a high frequency. The resulting histograms (Fig. 8) show

that there are unstable high-frequency roots only if the spring
constant is high and the damping is low. With increased damp-

ing, there is no high-frequency instability.

These results can be used in three ways. The probability of

instability could be reduced if it were possible to ensure that
the plant parameters did not move into the areas that are

found to cause problems. This might be the result of improved

quality assurance on the important parameters or by shifting

the mean of the parameter variation. If it is not possible to

affect the actual parameter variations, then the control system

could be redesigned using the problematic values of parame-

ters as nominal values. For example, the control system could
be redesigned using nominal values of 0.7 for the masses.

A third use of the distributions can occur if one of the

varying parameters represents a control design parameter. For

instance, if the loop gain f were treated as a design vari-
able, then it is clear that attenuating the gain would reducethe

probability of instability. This alternative is demonstrated

using design D. It has been seen that design D had generally
good robustness but very high actuator use. Peak actuator

usage can be reduced by reducing the loop gain, and the effect

of gain attenuation on robustness subject to problem E-2 is

shown in Fig. 9. For this analysis, only 100 Monte Carlo
evaluations were carried out per design point, but the results

show clear trends. As the gain is reduced, the probability of
control saturation is reduced without significant increase in

P_ or Pr, until the attenuation reaches 0.6, when Pr, begins
to increase. Reducing the gain further produces a clear trade-

E
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off between the probabilities of control saturation and set-

tling-time violation. References 19 and 20 present similar
methods of control system design based on search and stalisti-
cal evaluation.

Conclusions

Stochastic robustness analysis of I0 controllers designed for

the ACC Benchmark Control Problem provides useful quan-

tification of stability and performance sensitivities to parame-
ter variations. The SRA method is flexible and can be tailored

to the design requirements and system specifications of partic-
ular control problems. Qualitative selection of the best con-

troller depends on the relative importance of several metrics,

which are readily described in a probabilistic framework.

Several conclusions can be drawn from this analysis. The

analysis shows that gain and phase margins are not good pre-
dictors of the relative stability robustness of different SISO

controllers, because robustness is tied closely to the actual

plant uncertainties and their effects on (implied) Nyquist con-

tours. This result implies that robustness analyses based on
singular-value analysis of MIMO systems may have similar

limitations. Nominal settling time did not give a good indica-

tion of the likelihood of exceeding settling-tlme limit, princi-
pally because most nominal values already exceeded the limit.

Ahhough this result may be an artifact of the settling-tlme
definition (T_), it reveals the counterintuitive result that

uncertainty may improve the probability of remaining within

a predefined limit. The relationship between maximum control

response to a disturbance impulse and the probability of ex-
ceeding a control limit is more direct, as most nominal values

were about half the limit value. Stochastic root loci and pa-
rameter histograms provide insight about the likely posilions

of the closed-loop roots and the parameter variations that lead

to instability, and they suggest ways of improving plant and
controller design.

Design A:

Design B:

Design C:

Design D:

Design E:

Design F

Design G:

Design H:

Design I:

Design J:

Appendix: Transfer Functions of the Ten Compensators

40.42(s + 2.388)(s + 0.350)

(s + 163.77)[s l + 2(0.501)(0.924)s + (0.924)1]

42.78(s - 1.306)(s+ O. 1988)

(s + 73.073)Is' + 2(0.502)(I. 182)s + (I. 182)q

0.5991s - 1.253)(s + 0.1988)

ls l + 2(0.502)(I.182)s + 11.182):]

19881(s + IO0)(s + 0.212)[s" + 2(0.173)(0.7331s 4 (0.733)I]

Is' + 2(0.997){5 I. 16)s + (51.16) l ] Is' + 2(0.838)( 16.44)s + (16.44):]

5.3691s - 0.348)(s + 0.0929)

Is: + 2(0.832)(2.21)s + 12.21)lj

2246.31s + 0.237)[s1 - 2(0.32)(I.064)s+ (I.064)I]

(s + 33.19)(s + II .79)[s' + 2(0.9_)12.75)s + (2.75)']

4430(s + O.O8)(s - 0.44)(s - 2.83)[s2- 2(0.I02)(0.49)s+ (0.49)I]

[Is / + 2(0.70)(11.17)s + (I I: 17); ] Is' + 2(0.89)(3.67)s + (3.67) l] Is' + 2(0.29)(3. II )s + (3. II )21 [s_ + C0.5)']]

2.131s + 0.145)(s - 0.98)(s + 3.43)

Is_ + 210.82)11.591s+ (I.59)'][s2 + 2(0.46)(2.24)s+ 12.241_]

16.1(s + 0.134)(s - 1.174)(s + 1.46)

Is1 + 2(0.82)0.05)s + (! .05)1J [s' + 2(0.5)(2.18)s + (2.18) !]

51.47(s + O,06)(s - 0.21 )(s + 5.41 )Is z _ 2(0.07)(0.51 )s + (0.51 )'1

Is1 + 2(0.72)(2.05)s + (2.05)'] [s 2 + 2(0.68)(5.21)s + (5.21)-'J Is "_+ (0.5) 21

153





Stochastic Prediction Techniques for
Wind Shear Hazard Assessment

D. Alexander Stratton" and Robert F. Stengelt

Princeton University, Princeton, New Jersey 08540

The threat of Iow-allilude wind shear has prompted development of aircraft-based sensors thai measure winds
directly on an aircraft's intended flight path. Measurements from these devices are subject to turbulence inputs

and measurement error, as well as to the underl)ing wind profile. In this paper stochastic eslimilo[$ art'
developed to process onboard Doppler sensor measurements, producing optimal estimates of the winds. A

stochastic prediction technique determines the level of aircraft energ.,, performance from the wind estimates.

Aircraft performance degradation algorithms presented are based on optimal estimation techniques. The predic-

lion algorithm must balance wind shear detection performance and lurbulence rejection capability, as illustrated
in simulations of microbursl wind shear and severe turbulence environments.

Introduction

TRONG variable winds in the airport vicinity can causeunacceptable deviation of aircraft from their intended

flight path. Known as low-altitude wind shear, this threat has

caused at least 24 aviation accidents in the last 25 years, t

Efforts to promote the avoidance of severe wind shear have
focused on improving flight crew training programs, 2 under-

standing the meteorology of wind shear, _-5 and developing

technology to detect wind shear in the terminal area. Ground-

based sensor Syslems to measure airport-vicinity winds are

being developed and installed at major airports, 6.7 along with

techniques to automatically identify a wind shear and predict

its formation, jt° Sensors to detect wind-shear-induced flight-
path deviations are being installed on aircraft, n.t2 and for-

ward-looking sensors to detect wind shear in front of the air-

craft also are under development, t3-t5 Interpretation of this

information in the cockpit is a topic of current research.

As the amount of available information grows, accurate

interpretation of the information by flight crews becomes
more challenging, particularly during periods of high work-

load. Artificial intelligence technology provides a basis for a

cockpit aid to assist flight crews in avoiding low-altitude wind
shear. An expert system, the Wind Shear Safety Advisor, t6

depicted schematically in Fig. I, will operate in real time,

accepting evidence from onboard and ground-based sources,
perhaps facilitated by a direct data link (represented by a dot-

ted line in Fig. I). The goal of this system is to increase flight

crew situation awareness and decision reliability by summariz-

ing information from a variety of information sources.
In the absence of direct measurements of the winds, a deci-

sion to avoid wind shear must be based on discrete alerts from

wind shear detection systems and meteorological evidence.
Various levels of reliability associated with this indirect evi-

dence complicate the risk assessment process. A probabilistic

model of this process has been developed that incorporates

statistics from meteorological studies and reliability statistics

for wind-shear-alerting systems. _7 The model can manage the

uncertainty associated with indirect evidence, providing mean-
ingful estimates of risk.
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If onboard measurements of the winds were available, a
hazardous level of wind shear could be identified by deter-

mining whether the level or some hazard metric, based on the
wind measurements, exceeds a threshold. Hazard metrics

considered previously include maximum horizontal winds _

and F-factor, _ which relates wind shear to aircraft perfor-

mance. Computation of the hazard level is complicated by

uncertainty surrounding the wind measurements, including
turbulence and measurement errors. In this paper Kalman fil-

ters are_ developed to produce optimal wind estimates from
onboard wind sensors, based on a stochastic wind model.

These algorithms are demonstrated in a simulated microburst
wind shear environment.

From the wind estimates, predictior_ of the aircraft's per-
formance degradation can be made using stochastic predic-

tion techniques, tsJ_ In addition to the predictions themselves,

these techniques produce measures of the possible error in the

predictions due to turbulence and limitations of the measure-

ment de, ices. in this paper a Kalman-filter-based prediction

technique to predict F-factor and aircraft performance degra-
dation is demonstrated in simulated microburst wind shear

encounter. The response characteristics of the prediction tech-

nique must provide significant response to severe wind shear

and limited response to turbulence. In this paper stochastic

prediction techniques with different design parameters are
demonstrated in a simulated microburst wind shear and severe

turbulence environments.

Probabilislic Reasoning in Artificial Intelligence

The power of an intelligent system rests in its ability to

produce meaningful conclusions by reasoning, i.e., by apply-

ing knowledge stored in the system to available evidence. In

probabilistic models of reasoning, knowledge is stored in the

form of probabilities, and Bayes's rule 2° and the axioms of

probability -'_ are used to condition these probabilities on evi-

dence. When several pieces of evidence are supplied, the appli-

cation of Bayes's rule is complicated by dependencies between

pieces of evidence. A structure to these dependencies must be
provided for efficient reasoning. In Bayesian network repre-

sentation-': a graphical representation provides this structure,

such as the one for _,'ind shear avoidance graphed in Fig. 2.

Nodes in the diagram represent discrete random variables, and
the links between them represent sets of conditional probabil-

ities used during reasoning, The net,xork representation ena-
bles efficient probabilistic reasoning because all of the depen-

dencies bets_een variables are specified by the links.

The network of Fig. 2 was developed using guidelines for

_sind shear avoidance presented in the FAA's Windshear

Training Aid document,-" which was written by a team from

Research supported by government grant.
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Fig. 2 Graphical represenlalion of a Ba)es|mn _lwork for wind
shear avoidance.

the airframe industry with the support of airlines, the govern-

ment, and academia. The network model incorporates statisti-
cal results from the NIMROD) JAWS, 3.+ and FLOWS _ stud-

ies and for the enhanced Low-Level Windshear Alert System
(LLWAS) evaluationfl Demonstrations of the network _7 show

that it can approximate the subjective judgments required to
establish the possible presence of wind shear.

A probabilistic model establishes a scientific basis for

the Windshear Training Aid avoidance guidelines. Since the

completion of the Windshear Training Aid, a variety of new

ground-based and airborne wind shear detection systems are
being devleoped, such as the Terminal Doppler Weather Radar

(TDWR) system. The probabilistic model can be expanded to
include statistics from new detection systems established dur-

ing their evaluation. New knowledge gained from meteorolog-

ical studie.,., such as geographical variation of wind shear fre-
quency, can also be included.

Kalman Filler Development

for Doppler Wind Measurements

Airborne sensor technology with the capability to detect

wind shear in front of the aircraft is currently under devel-

opment, including Doppler radar, 13 Doppler lidar) 4 and in-
frared _s technology. Doppler devices measure a shift in fre-

quency of radar or light waves emitted along a radial line,
measuring the component of wind velocity parallel to that line.

Operational devices could provide measurements of head

winds or tail winds at a series of locations along the aircraft's

intended approach or takeoff path. For example, airborne
Doppler radars could provide measurements spaced at - 500-

ft intervals over a range of 3-5 miles, spanning 50-100 s of

flight at approach speedY _ This sequence of measurements

contains the effect of turbulence and is corrupted by measure-

ment noise as well. A bank of Kalman filters can improve the

accuracy of hazard estimatesbased on successive measurement
sequences, mnmmlzmg measurement noise and accounting for
correlation in the wind field using a stoch:,qic model.

As the aircraft travels down the ['light pat _ measurements in

successive sequences are offset by a distance d (Fig. 3), which

is assumed to be small relative to the distance between adjacent

range gates L. At a given time, a sequence of measurements is

obtained. Each member of this sequence represents the aver-
age value of the radial wind component in an interval of length
L at that time.

A first-order Markov model for the turbulent winds can be

based on the Dryden power spectrum for horizontal turbu-

lence, given by Ref. 23 as

¢'(_) = [l + (t._)_] O)

Parameters of this model include the turbulence scale length L,,
and the root-mean-square turbulence amplitude o,. The corre-

sponding discrete Markov sequence is

wl, = exp(- d,)wt+._ + _l - exp(- 2d_)_k_] (2)

where d,_ is the ratio of d to L,,. The y is a normally-distributed

white noise sequence with mean and variance:

E [_ l = 0 (3)

EI,7_, I = a,2/x (4)

This model uses the discrete white noise sequence _ to approx-

imate the integrated effect of continuous white noise. Figure 4

presents the autocovariance function associated with Eq. (1),

along with the autocovariance function of the sequence of
Eq. (2), indicating the agreement of the turbulence models.

With the assumption that measurement noise is super-

imposed on the radial wind components, the measurement at

range gateJduring measurement sequence k, zjk can be related

Wd/... It---- mm |,=_ "_ I

// __

X ............... -..+ ....,.._

_ RadiaJ Wtr,,d Z.

Cc_oponenls jlt

Fig. 3 Forwlrd-look _nsor measurement process.
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tothecorresponding scalar radial wind component by tile
relationship

Zj_ = I,*'_:,, + njk + VIi

This can be rewritten as

(5)

zTj_ = w,,, + r_j_ (6)

where Vt is the aircrafl's_ineLd_a[ speed at the time of measure-

ment sequence k, and zTj, has this bias subtracted out. Error in

the inertial speed estimate, nl,, which is made from onboard

measurements, is added 1o nj, to produce r_j_ :

'fijl = njk + nv, (7)

The measurement error t_ is assumed to be a zero-mean, nor-

mally distributed white noise sequence, with a known constant

standard deviation o,.

With the aforementioned assumptions, an estimator dedi-

cated to each range gate can be constructed in the form of a

Kalman filter. From the measurement ij,, each Kalman filter

constructs an estimate Cv . ( + ) and a variance pj_ ( + ) which
ts a measure of the uncertainty m w . ( + ) m three steps. First

the state estimate and variance form the previous measure-

ment sequence, ev,j, __( + ) and pj, _ t( + ). are extrapolated ac-
cording to

%,(-) = exp(-d.)Cv,,, ,(+) (8)

p,,(-) = exp(-2d,,)pj,_,(+) + [I -exp(-2d,,)]o_/Tr (9)

Equation (8) is obtained by taking the expected value of Eq.

(2). Note that Eq. (9) is an approximation to the integrated

effects of continuous white noise. Next, the extrapolated vari-

ance pj, (-) is used to compute a gain Kj,:

Kj, = ,.P_(- )
PJ*( _ ) + o"2 (10)

Finally, the post-update wind estimate and variance are com-

puted:

C%,(+)=C%,(-)+Kj,[i.j_-C%,(-)] (ll)

p,,(+)=[p,,(-)+ (12)

The Kalman filters compute a weighted average of the wind

measurements obtained at each range gate. compensating for

the movement of the sensor platform by making an assump-
tion of frozen Dryden turbulence in the interval between the

measurements. Wind shear estimates are updated at each mea-

surement step. compensating for turbulence and weighing cur-

rent and prior information according to its relative uncer-

tainty. Because each range gate's state estimator is decoupled

from the others, the computation could be performed on a set

of identical processors running in parallel. This decoupling is

achieved as a consequence of the Markov property of the wind

model: the probability distribution at a given wind state w,_,
is conditionally independent of w , given the closer state

• , ¢p , ,

w,,, i" Thts assumptmn could be relaxed, couphng adjacent
states or larger groups of states together with a corresponding

increase in computational complexity•

Prior state estimates and variances are required to initialize

each filter. This may be accomplished by applying a separate
initialization Kalman filter to the first sequence of wind

measurements• This filter is initialized with an onboard wind

estimate and variance at the aircraft's location, perhaps from

a Kalman filter processing onboard sensor measurements.
An initial sequence of" wind measurements from the forward-

looking sensors is then processed to initialize the state and
variance of each Kalman filter. The initialization Kalman filter

takes thesame Form as Eqs. (8-12). except that the distance
between range gates L is used as the distance between measure-
ments d.

Hazard Meli'ics and Stochastic Prediction

The detection of the presence of a wind shear can be based

on the output of the stochastic estimators. A reasonable ap-

proach to detecting wind shear is to predict whether the level
of some hazard melric based on the wind estimates will exceed

a threshold. The F-factor hazard metric relates wind shear to

aircraft air-referenced specific energy rate, which is defined by

dE_ (t) = -- + -- (13)
dt dt dt

where V,, is the airspeed, h is aircraft altitude, and g is the

gravitational constant. Using longitudinal aircraft equations

of motion and assuming small flight-path angles, it can be
shown _ that

dE, (T- D)V, if(,)V, (14)
d--7(t) w

where Tis thrust, D is drag, and ft.'is aircraft weight. 5:(1) is
the F-factor, defined as

where w,(t) is the wind component in the inertial horizontal

direction, and wj,(t) is the vertical v, ind component. For small

flight-path angles, the radial wind components are approx-

imately the same as the longitudinal horizontal wind compo-
nents. Wind shear effects enter Eq. (14) in three ways: I) by

changing the airspeed, 2) by altering the drag, and 3) directly

through if(t). For conditions typical of jet transport flight

through severe wind shear, only the direct impact of if(t) is

significant. Prediction of aircraft specific energy along the
intended trajectory appears to involve the prediction of air-

speed, but using a constant nominal value of airspeed in Eq.

(15) introduces a small, conservative error.

The first component of ff in Eq. (15) is proportional to the

rate of change of the horizontal wind component, if the wind

field is assumed stationary, prediction of ff along the intended

trajectory could be made by differencing adjacent wind esti-
mates:

_, = l/Z (%, - Cv,,_,,) 06)

This would amplify high-frequency noise, resulting in exces-

sive prediction error. Alternatively, predicted energy deviation

and ff can be computed by a Kalman filter algorithm using the

wind estimates as inputs, ff is obtained through a weighted sum

of the radial wind estimates, with the weights selected by defi-
nition and minimization of a suitable cost function.

An important limitation of Doppler wind measurement de-

vices is their inability to measure winds perpendicular to the
direction of the Doppler pulse. As a consequence, the second

component of ff in Eq. (15), due to vertical winds, is not

measured by the device. In downburst wind shears, head-tail

wind shear is produced by vertically descending winds that

flow outward as the)' near the ground. These downdraft winds

pose a hazard to the aircraft that the Doppler sensors cannot
directly measure. Current research is attempting to model the
vertical wind as a function of the horizontal _ind for hazard

estimation. -'_ In the simple dov.nburst model of Ref. 23, the

correlation bet_een horizontal and vertical winds depends on

the size of the downdraft, the altitude, and the distance from
the downburst core. In a well-measured and v, ell-studied mi-

croburst, four major do_ndraft regions were found. :_ As the

relationship bets_een horizontal and _ertical winds remains to
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be established, the present study is based on radial wind alone.
If a consistent correlation between vertical wind and radial-

_,ind measurement is found, vertical svind could be added to

the stochastic model.

To predict the wind-shear-induced energy deviation Ej.,

Eq. (14) can be integrated across a typical range gate j, result-

ing in the recursive form

E,., = E,.,., - \T/ '-'" (17)

where V, is average inertial speed of the aircrart, if,, is modeled
as a stationary process driven by a discrete random sequence:

ffs.. = 9:s- _., + %- ' (18)

where _ is a normally distributed white noise sequence with

zero mean and standard deviation e_. This standard deviation

is a design parameter that alters the response characteristics of

the prediction filter, as demonstrated by simulation. Equa-
tions (17) and (18) may be written in vector-matrix form:

where

x, = [E,., _,,,]' (20)

The relationship between prediction and estimation is obtained

by substitution of Eq. (15) into Eq. (14) and integration from
the aircraft (denoted with subscript 0) to a typical range gate

j. This results in the equation

(0v,'_, - w.,,: - (E,%-E,,0) + w%, (21)

If the prediction is initialized with the condition

E,,.. o = - ( V,,/g ) w, ,, (22)

then Eq. (21) may be rewritten as

In this paper vertical wind is modeled as a normally dis-

tributed white random sequence, uncorrelaied with the radial

winds, with mean and variance

E[.,,,] = 0 (24)

Table 1 Simulation parameters

Aircraft initial conditions
Airspeed, I/o 160 Kt
Altitude, h 2000 ft
Inertial flight-path angle. % - 3 dog
Distance to microburst core 20,100 ft

Doppler sensor
Range gate separation, L 500 ft
Distance betv, een sequences, d 27 ft
Noise standard de,.iation, o. I ft/s
Distance to aircraft 20,000 ft

Turbulence

rms turbulence intensity, o,, 2.7 ft/s
Turbulence scale length, L, 1000 ft

Microburst
Downdraft ra=liu_ _.2070ft
Maximum horizontal v,inds -"g.4 ft/s
Height of boundar_ la_er t31 It

and

E I.'_',l = ,,,.. (25)

With the previously given model, prediction of the hazard

level can be made from the output of the estimation Kalman

filters after each measurement sequence. The wind estimates

are processed using a recursive procedure based on the Kalman

filter, tm_9 The prediction is initialized with onboard estimates

of w,o and '3:0. Predictions of E_, and _:,,, denoted _,, and _:,
are made for each range gate using the recursive equations

V, "' [""'- _ gLL.,=£,._ ,-_,_,+KE, -,,,- --- ,
(26)

[ _,,,, - g--¥V',z_ ,] (27)_z = "%-, + k':_, - _, --¢,._

These equations involve two gains, Kt, and K_,, that are com-
puted at each step based on the covartance propagation and

filter gain computations of the Kalman filter. 11.19The design

parameter o_ influences the size of these gains, influencing the

response characteristics of the prediction filters.

Simulation of Stochastic Prediction Techniques

The stochastic estimation and prediction algorithms are

demonstrated using a batch simulation of aircraft encounters
with downburst wind shear and with severe turbulence. For

each simulation, two different predictions are made, based on

different choices of the design parameter %. The wind shear is

modeled by the Oseguera-Bowles stagnation-point-flow down-
burst model, 2_ and severe turbulence is modeled using the Dry-

den spectrum as presented in Ref. 26. A twin-jet transport
aircraft is represented by a point-mass longitudinal model? ?

trimmed along an approach path at a constant airspeed of 160

Kts. Normally distributed white noise is superimposed on mea-
surements to simulate Doppler sensor error. Table I lists the

parameters of the simulation.
The wind shear simulation is initiated with the microburst

just out of the sensor's detection range. Figure 5 depicts the

Hazard Metric _r

oO.°o '!i
°o_ ,__

Distance. [Ftt

, l t

Fig. 5 Comparison of microburst model head,_lnd-tailwlnd compo-
nent of F-factor with predicted [-factor.

._,pecin¢ l_ncr_'y ne_lation .... _ ......

knot_l [_ :
Go

Di_t:mce, I Ft|

Fig. 6 Comparison of aircraf energ._ deviation due to headwind-tail-
wind shear and prod cted energ._ de,,iatlon.

i
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Fig. 7 Comparisonof F-factor predictionsin severeDryden turbu-
lence.

situation I0 s later, comparing the predicted hazard metric _,,
along the flight path with the model's if,, component due to
the headwind/tailwind shear alone. The predictions agree well
with the model's head/tail wind component or __,, but the
peak magnitude of the prediction is attenuated due to the finite
bandwidth of the prediction algorithm. In addition, the dis-
lance between the aircraft and the wind shear is overpredicted
due to phase shifting. With a lower value of o_, the estimators
have lower gains, and these effects are more pronounced. If
a wind shear warning were issued each time a critical value of
_,, was exceeded, the algorithm with higher o_ would have a
greater chance of positively identifying severe wind shear.

For the same simulation, Fig. 6 compares the predicted en-
ergy deviation, normalized as an airspeed deviation, and the
energy deviation due to the component of the wind shear.
Although the error in prediction of distance to the microburst
is greater for the lower value of o_, both predictions perform
favorably in predicting peak energy loss. However, the total
energy loss to the aircraft is greater than either prediction, due
to the effect of the unobserved downdraft winds.

Figure 7 compares the predicted hazard metric _Y,, for each
of the prediction designs in severe Dryden turbulence. The
higher choice of o, results in greater response to turbulence.
If wind shear warnings were issued each time a critical value

of _,_ was predicted, the algorithm with higher o_ would issue
more frequent false alarms. The optimization of a prediction
algorithm must lake into account both detection performance
and false alarm prevention. Wavelengths corresponding to
severe wind shear should be passed, but short wavelength
disturbances that do not affect the flight path should be
eliminated.

Conclusions

Doppler wind sensors can provide advance warning of a
wind shear threat, but wind measurements are influenced by
turbulence and measurement error. Optimal estimation pro-
vides a framework for minimizing the error of wind estimates

given a hypothesis of the wind field structure. The estimation
procedures presented here assume a structure to the local wind
field at each range gate of the Doppler sensor, resulting in a
bank of parallel Kalman filters. A, first-order Markov turbu-
lence model accounts for spatial correlation in the wind field
due to turbulence. Measures of` uncertainty are produced dur-
ing the optimal estimation process. Stochastic prediction tech-
niques are used to predict the impact of estimated winds on the
energy performance of the aircraft. These techniques extend
naturally to multiple Doppler sensors and could be expanded
to predict other quantities such as altitude deviation error and
touchdown dispersion error, given a nominal model of pilot
compensation.

If wind shear warning is based on a crilical threshold _alue
of a hazard prediction, the detection reliability depends on
the design of the prediction algorithm. Kalman-filter-based
designs may be band limited, identifying areas with a sus-
tained level of substantial wind shear. To further refine the

algorithm, a ,,reparative analysis of prediction algorithm de-
signs can be _.onducted, using an ensemble of representative
severe wind shear models. The potential for false warning in
severe turbulence also can be compared. Both threshold and
design bandwidth may be chosen to further optimize detection
reliability.

Hazard prediction from Doppler sensors can provide the
sole basis for a wind shear alert, but the lack of vertical wind
estimates limits the alert's reliability. Other sources of infor-
mation could improve the reliability of Doppler-based stochas-
tic predictions through adaptive prediction techniques. More-
over, threshold exceedance of a hazard prediction could be
viewed as uncertain evidence supporting a hypothesis of severe
wind shear in the Bayesian network. With the reliability of
threshold exceedance as evidence established through statisti-
cal analysis, hazard prediction can be incorporated into a
probability-based expert system for wind shear avoidance.
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=

Stochastic robustness, n simple technique used to estimate the robustness of linear, tlme-lnvnrianl syslems, Is

applied In s twin-Jet tr=nsporl idrcraft control syslem. Concepts behind stochastic stability roboslness ire

extended Io stochastic performance robustness. $1ochsstl¢ performance robustness measures bss_l on classical

design specllicattons and mexsures specific In aircraft hxodling qualities are Introduced. Confidence intervsds for

comparing two control system designs ere presented. The application of slocbutlc performance robustness, the
use of confidence intervals, nod tradeoffs between performance objectives are demonstrated by means of tbe

twin-Jet sircraft exxmple.

Introduction

TANDARD linear control system design techniques rely
on accurate models of the system to be controlled. Be-

cause models are never perfect, robustness analysis is neces-

sary to determine the possibility of instability or inadequate

performance in the face of uncertainty. Robustness to these
uncertainties, parametric or unstructured, is normally treated

deterministically and often without regard for possible physi-
cal variations in the system. Consequently, overconservative

control system designs or designs that are insufficiently robust
in the face of real-world uncertainties are a danger.

Stochastic robustness analysis (SRA), a simple technique to

determine the robustness of linear, time-invariant systems by

Monte Carlo methods, was introduced in Ref. I and presented

in detail in Refs. 2 and 3. These references described stochastic

stability robustness analysis and introduced the probability of

instability as a scalar measure of stability robustness. Confi-
dence intervals for the scalar probability of instability were

presented, and the stochastic root locus, or probability density
of the closed-loop eigenvalues, graphically portrayed robust-

ness properties. Because it uses knowledge of the statistics of

parameter variations directly, SRA provides an inherently pre-

cise yet simple characterization of robustness. The physical

meaning behind the probability of instability is apparent, and
overconservative or insufficiently robust designs can be avoided.

Applications of SRA to full-state feedback aircraft control

systems were described in Ref. 4. The results presented there
illustrated the use of stochastic stability robustness techniques

in comparing control system designs and in including finite-di-
mensional uncertain dynamics.

Concepts behind stochastic stability robustness can be ex-
tended to provide insight about control system design for

performance. Design specifications such as rise time, over-
shoot, settling time, dead time, and steady-state error nor-

mall,,' are used as indicators of adequate performance and lend
themselves to the same kind of analysis as already described.
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Concepts of stochastic stability robustness analysis can be

applied to ihese criteria giving probabilistic bounds on scalar

performance criteria. Metrics resulting from SRA can be re-
lated to controller design parameters, thus providing a foun-

dation for design tradeoffs and optimization. Extensions and
uses of stochastic performance robustness in aircraft control

system design and analysis are described in the following, and

they are illustrated by means of an example.

Stochastic Performance Robustness

Stochastic stability robustness analysis is based on Monte

Carlo analysis of the probability of instability P, and associ-
ated confidence intervals, given a statistical description of pa-

rameter uncertainty. 2-' Because the stability test is binomial

(i.e., the outcome of each Monte Carlo evaluation takes one
of two values: stable or unstable), lower L and upper U

confidence bounds are calculated using the binomial test. s

While stability is an important element of robustness, perfor-

mance robustness analysis is vital to determining whether im-

portant design specifications are met. Adequate performance,
such as initial condition response, command response, control

authority,, and rejection of disturbances, is difficult to de-

scribe by a single scalar metric. Nevertheless, elements of

stochastic stability robustness analysis apply for binomial per-

formance metrics.

Numerous criteria stemming from classical control concepts
exist as me,_sures of adequate performance. Appealing to

these, one can begin a smooth transition from stability robust-

ness analysis to performance robustness analysis simply by

analyzing the degree of stability or instability rather than strict
stability. As described in Ref. 2, one method of doing this is to

shift the vertical discriminant line from zero to I; < (or >)O.

Histograms and cumulative distributions for varying degrees
of stability are readily given by the Monte Carlo estimate of

the probability of any eigenvalue real-part exceeding IL Bino-
mial confidence intervals are applicable to each point of the
cumulative distribution as there are just two values of interest,

e.g., satisfactory or unsatisfactory. P is a special case where
]2 = 0. The robustness metric resulting from the cumulative

probpbility distribution is directly related to classical concepts
of rates of decay (growth) of first- and second-order closed-

loop responses, time-to-half, and time-to-double. Taking de-

gree-of.stability analysis further, rather than a vertical dis-
criminant line, one can confine the closed-loop roots to sectors

in the complex plane bounded by lines of constant damping
and arcs of constant natural frequency. 6 Systems with roots

Research supported by government grant.
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confined to these regions would be expected to display a cer-

tain transient response speed. Again, the probability of roots

lying within a sector follows a binomial distribution, and

binomial confidence intervals apply.

Performance specifications for aircraft flying qualities are
detailed in Ref. 7 in terms of longitudinal and lateral-direc-

tional criteria at three levels of performance for each flight

phase. Many flying-qualities criteria require little computation

above and beyond eigenvalue computation, making perfor-

mance robustness as easy to characterize as stability robust-

ness. For example, the short-period response can be character-
ized by its damping ratio and natural frequency vs normal

acceleration sensitivity to angle-of-attack n_,. The latter is

illustrated in Ref. 7 by plotting the short-period undamped

natural frequency vs no, as shown in Fig. 1. no is simply a

function of the dynamic pressure _' and vehicle parameters

no = ltS,.r CL. (I)
mg

CL, is the lift-curve slope, S,, the wing reference area, m the
mass, and g the gravitational constant. Short-period-mode

requirement levels for each flight phase are characterized by

calculating the closed-loop eigenvalues and evaluating Eq. 1.

Repeated evaluations using Monte Carlo analysis give a distri-

bution that can be shown pictorially on Fig. I; the resulting

measure of performance robustness is the probability of re-

1On

. : ":"r. : : :;;...

..... [ [_i, Level 2
Level [

I I0 I00

n o

Fig. 1 Sborl-prriod response as characterized by n= vs wa_, for cite-
gor7 B flight phase (climb, cruise, descent) and all aircraft classes,t

m ca ml_ _ o.¢nho01 me.l

_PI. m: me _n_ _me_a$ _¢aJy lal_ eew_

lime _¢by

RI. 2 Example of step response bounds formed by scalar I_rfor-
mauce cha_cteristics.

JI "
Nu..nb_, or evilultionl

Fig. 3 Confidence Interval calculation on the difference AP between
lwo probabilities Pt and ,°2.

Table I Longitudinal parameters or the twin-,let aircraft

Uniform

variation, Description

Mass, slugs
Moment of inertia about the y axis, slug-ft 2
Wing reference area, ft
Aerodynamic chord, rt

Wing span, rl
Center-of-gravity location as a percent of mean aerody-
namic chord

Lift-curve slope
Lift-curve intercept
Deviation of the basic lift coefficient due to Math effects

on lift-curve intercept
Deviation of the basic lift coefficient due to Mach effects

on lift-curve slope
Variation in lift coefficient with rate of change of nondi-
mensional ct

Variation in lift coefficient with rate of change of nondi-
mensional q
Variation in lift coefficient with change in elevator angle
Basic low-speed drag coefficient
Moment-curve slope
Moment-curve intercept
Deviation of the_as_6moment coefficient due to Math

effects on moment-curve intercept
Deviation in the basic moment coefficient due to Mach
effects on moment-curve slope

Variation in moment coefficient with rate of change of
nondimensional a

Variation in lift coefficient with rate of change of nondi.
mensional q
Variation m moment coefficient with change in elevator
angle

15
15
2
2
2

30

25
25
4O

4O

7.5

I0
50
25
25
25

10

IO

10

10 Center-of-gravity variation factor

1_ pcreem of nominal parameter value
L_I l
Levels _ .....
l.n<i 3

maining within level I, 2, or 3 criteria, _ Binomial confidence

interval computattons can be applied to the scalar probability
estimate. ' ........

Time responses provide the most clear-cut means of evaluat-

ing performance. Stochastic performance robustness can be
portrayed as a distribution of possible trajectories around a

nominal or desired trajectory. After defining "envelopes"

around the nominal trajectory (Fig. 2), the probability of

violating the envelopes can be computed using Monte Carlo

evaluation. The envelope chosen around the nominal trajec-
tory encompasses scalar performance measures; the trajecto-

ties in Fig. 2 are examples of bounds defined by minimum

and/or maximum allowable dead time, delay time, rise time,

time-to-peak overshoot, peak overshoot, settling time, and
steady.state error, s Although it is simple to conclude that a

response violates an envelope, individual responses within the
envelope may not be acceptable. In such cases, the derivative

of a response and envelopes around the derivative also can be

used as performance criteria. 3 - , -

The criteria defining envelopes that bound an acceptable

time response are not unique; the segmented envelopes in Fig.
2 can be smoothed, or other scalars can be used to define

points on the envelope. However, oncean envelope Ts defined,

time response distributions due to a command input, distur-
bance, initial condition, or some combination can be com-

puted by Monte Carlo methods. For each evaluation, the tra-

jectory is a binomial variable; it either stays within the envel-

ope or violates the envelope, and binomial confidence inter-

vals apply. Although individual time responses require more

computation time than do individual sets of eigenvalues, such
analysis is well within the capability of existing workstations.

Confidence intervals for the difference between two proba-

bilities are useful when comparing two control system designs.
A statistic on the difference decides whether one controller is

more robust than another, either as part of an iterative design

process or as imbedded in an optimization technique. The
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Table 2 Scalar performance crheda defining
command response envelope

Scalar metric Value

Maximum dead time
Maximum nonminimum.

phaseresponse
Minimum and maximum

delay time
Minimum and maximum

rise time
Minimum and maximum

peak time
Maximum peak overshoot
Maximum settling time
Minimum and ma.ximum

steady-state error

2.5 s

- 0.1 of desired steady-state value

1.0 s and 7.5 s

2.0 s and 15.0 s

3.0 s and 18.0 s
1.25 of desired steady-state value
22.0s

0.025of desiredsteady-slatevalue

Table 3 Setpoint for individual velocity
lind flight-path-angle commands

Command _T, % dE, dog V, fps 3., dog q, rad/s a, dog

V = 15 fps I.I 15.3 15 0 0 -0.25
3'= 4dog 24.1 0.6 0 4 0 -O.Ol

statistics literature gives several methods of computing the
confidence interval for the difference between two binomial

variables. Reference 8 presents a method based solely on indi-

vidual confidence :.ntervals. Given individual intervals based

on independent Monte Carlo trials,

Pr(Li -< P, -< Ui) = 1 - ec_ (2)

Pr(L: _<P_ _.<U2) = 1 - a: (3)

the confidence interval around Ap =_p_ _ P2 is given by s

Pr[(LI - U2) -< Ap _ (U,-L:)]

> 1 - ¢_1 - ¢_: + aj_: (4)

When identical parameter sets are used to generate individual

intervals, the right-hand side of Eq. (4) is 1 - aj - _2. Since

(L, U0 and (L2, U2) are computed using the binomial test and

represent exact intervals for the individual estimates, Eq. (4) is

not an apptoximalion. Confidence inlerval comparisons are

illustrated schematically in Fig. 3. The interpretation of the

confidence interval for the difference is straightforward; the

probability that the true difference lies within [(L_ - U:), (U_

- La)] is at least I-c_-_.,+c_tc_:. If the interval on AP
contains zero (i.e., if the individual intervals overlap as they

do initially in Fig. 3), then the difference in robustness be-

tween the two systems is not proven significant at thai number

of evaluations. If the true difference AP is small, a larger
number of evaluations may resuh in an interval that does not

contain zero, as in Fig. 3.

A given Ap can result from man'," combinations of individ-

ual probability estimates, and it is difficult to generalize the
number of evaluations necessary to detect a difference of a

certain magnitude. Nevertheless, the number of evaluations

required for an individual confidence interval can be used to
foretell the number of evaluations necessary to detect a differ-

ence between two estimates. Figure 4 gives the required num-
ber of evaluations J for each individual confidence interval,

for the special case, a_--_2 = 0.05. Using the difference

P2 - Pt as the ordinate and P_ as the abscissa, the curves show
the minimum number of evaluations required to establish a

significant difference. For example, if the probability esti-

mates (denoted fl) are P2 = 0.45 and P, = 0.4, Fig. 4 shows

that a statistically significant difference (i.e., nonoverlapping

confidence intervals) can be determined using approximately

1500 Monte Carlo evaluations. Individual estimates of/52 =

0.15 and P, = 0.1 result in the same difference, but fewer than

750 evaluations are required to detect the difference. Figure 4
is based on individual confidence interval calculations,

presented in Ref. 3.

Performance Robustness of Longitudinal Controllers
For a Jet Transporl

SRA is applied to a twin-jet transport aircraft, with the goal

of characterizing the performance robustness of longitudinal

0.|

.: | /

" I /// ,.,,o_

0.02

o_ ; :Z , , s. 5oooo
0 0 I 0 _ 0.3 0.4 0.5

P[

Fig. 4 Number of evaluations establishing iiIgnlficsnt differences be-
Iween two probabilities for 95% confidence intervals and equal num-
bers of evaluations for Individual probabilities.

prO,)

Sector bound

SJcl_Ix_d

a) Stochastic root locus with sector bounds defined by minimum

level I short-period damping for cruise flight

_Jn //#
/

, ,./f

. t.z.v¢l I

,, /" / t.,.,e 2

b) Short-period frequenc.v vs acceleration sensitivity dlstrlbuUon

Fig. 5 Stochastic robustness evaluation of the open-loop sborl-pe-
Hod d)nnmics of the twin-jet alrc_ft, basted on 10,004) Monte Carlo
evaluations.
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command responses. The rigid-body nonlinear longitudinal

equations are

- D + T cos(a)

L + T cos(a)
:m

mV

M

Ivy

q - :r

g sin(?)

g cos(-r)
(5)

where [V, -y, q, a] represent velocity, flight-path-angle, pitch
rate, and angle-of-attack, [L, D, M) are aerodynamic lift,
drag, and pitching moment, T is the thrust, and g is the grav-
itational constant. Equation (5) depends on a number of pa-
rameters given in Table i. Mean parameter values of the
stability derivatives in Table I are functions of Mach number
and altitude; they are interpolated from aerodynamic data
curves for the aircraft at a given trim condition. 9 The aerody-
namic model used to compute L, D. and M is a simplified
version of that given in Ref. 9, modified to use only two lon-
gitudinal controls (thrust and elevator). In this example, each
Monte Carlo evaluation begins with the nonlinear equations
of motion and associated parameters. The nonlinear equations
are evaluated using appropriately distributed random parame-
ters and are then linearized around the nominal trim condi-

tion. The closed-loop eigenvalues and performance metrics are
evaluated from the linearized system.

The parameters are assumed to have uniform variations of
the magnitudes given in Table 1. For the wing parameters (S,f,
chord, span), these variations are representative of loose man-
ufacturing tolerances. The mass and moment-of-inertia varia-
tions are based on the maximum and minimum possible values
of these parameters given in Ref. 9. The remaining parameter-
variation estimates are based on interpolation accuracy and
possible flight condition variations around the nominal value.

25.0

IS.O

5.0

Timeresponseenvelope

tO.O 20.0 30.0

time (sec)
IS los velocitycommand:velocity response

I I

40.0 St

Trim conditions for a flight condition of V = 425 fps (130
m/s) at an altitude of 5000 ft (1524 m) are as follows: thrust
= 27.3%, elevator = -0.65 dog, and angle-of-attack = 2.15

def. The open-loop eigenvalues for the state matrix resulting
from tinearizin8 Eq. (5) around trim are X = - !.32 * 2.44j,
-0.0053 ± 0.0962j. Stochastic robustness evaluation using

the short-period Mil-spec requirements + shows an acceptable
open-loop short-period mode for the uniform parameter vari-
ations given in Table I. Figure 5a shows the stochastic root
locus with sectors defined by minimum level I short-period
damping ratio for cruise or climb (category B flight phase); for
10,000 evaluations, the short-period eigenvalues never violate
the level I damping restriction. Figure 5b characterizes the
short-period frequency vs acceleration sensitivity, which also
remains within level I constraints for 10,000 evaluations. The
probability estimate of violating level 1 short-period specifica-
tions is 0, with 95°7o confidence intervals of (0, 3.69E - 4).

Designor LongitudinalControllers
A command response that stays within the envelope de-

scribed by scalar criteria in Table 2 servesas the performance
requirement for designing linear regulators for velocity and
flight-path-angle commands. In addition, elevator deflections
are limited to , 30 dog, and thrust commands must remain
between 0 and 100%. The desired commands y*= V* or
y* = _." and corresponding setpoints x* = [V_. q al r, u* =
[6T 3El are given in Table 3. The open-loop responses to in-
dividual velocity and flight.path-angle commands are inade-
quate because of the slow, lightly damped phuBotd mode.
Numerical values of the results that follow depend heavily on
the performance criteria chosen. The envelopes defined in
Table 2 reflect tolerable variations around an acceptable nom-
inal response. The control limits are typical of those for a jet
transport. Changing the time response envelopes or control
authority limits would give different numerical results. The
emphasis in this example is not on the specific criteria chosen,
but on how SRA characterizes performance given a control
system design and performance specifications.

0.$

_a o.o

idllpn!--lllfliwn_,__,:.Ml?i___
diimlmiui

,O tO.O 20,0 30.0 40.0 !

-O.S

ElevatOr salurauon limit

time (sec)

15 fps velocitycommand: elevatorresponse

o.s Thrust saturadon limit

cb

0.4

111111[ !o.o --" -- 7- ........... 7.....
.0 I0.0 2g.0 30.0 40,0 S,

time (see)

b) 12 fps velocity command: thrust response

Timerexpon_envelope
0,1

d)

Fig.6 Closed-loop commandresponsesusingIMF controller,500 Monte Carlo evalualiom. Nominal responseI, Indicatedby the solidline.
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Structured linear-quadratic regulators _° offer a simple means

of designing a linear control system with desirable perfor-
mance and robustness characteristics. Specifications of the lin-

ear-quadratic performance index and subsequent control gains

using implicit-model-following (1MF) minimizes the dynamic

response error between the closed-loop system and an ideal

M) are based on a quadratic cost function that weights the

difference between the actual state rate (*) and that of an ideal

model tiM), where

*M = FMXM (6)

IMF offersa straightforward way of designing controllersthat

approximate desired dynamic characteristics.For thisexam-

ple, the ideal model was chosen to increase the natural fre-
quency and damping of the phugoid mode, while maintaining

acceptable short period response:

-0.3 -32.17 -0.0104 - 23.341

0.00381 - 0. I949 0.0006 1.356/
0.0 -0.0 -1.273 5'gall _7)

-0.0038 0.1949 0.999 1.356]

-l.35 • _.39j_M = 0.213 ± 0.314j (8)

F M

is.fl

$.g

.0 10.0 20.0 30,0

time (sec)

a) t5 lps velocity command: velocity response

40.0 S(

Stochastic performance robustness analysis is based on the

probability of violating the desired time response envelopes

(/sv and/s,) and the probability of control saturation (flar and
P,E)-

The IMF controller gives a nominal closed-loop command
response to separate velocity (Figs. 6a-c) and flight-path-angle

(Fig_ 6d)com//lands ihat is within the acceptabie time-re-

sponse enveiope.*Figufe 6 also shows 500 Monte Carlo evalua-

tions of the careened response; the nominal steady-state con-

trol inputs and state are given in Table 3, and the nominal

response in Fig. 6 is indicated by a solid line. The response and

associated envelopes in Fig. 6 are shown for the commanded

variable only; the remaining state elements do not require
performance constraints in this example. Thrust and elevator

time histories are shown for the velocity command response

only. Parameter uncertainty effects appear as variations

around the nominal response, indicated by the dark distribu-

tion and associated outliers. Parameter uncertainty results in a

distribution of transient responses that stays within the envel-

ope, and nonzero steady-state errors that violate the envelope

for both velocity (Fig. 6a) and flight-path-angle (Fig. 6d)
commands. Based on 500 Monte Carlo time response evalua-

tions, the estimate/s, is 0.002 with 95% confidence intervals

(5.1E - 5, 0.011 l) and the estimate P, is 0.368 (0.326, 0.412).

The nominal elevator response violates control limits for both

command responses, and in each case, the probability of
elevator saturation is/ssE = 1.0. Note that the control satura-

tion limits in Figs. 6b-c are adjusted to reflect the remaining
control authority after considering trim requirements.

0.1

0.0

.0 tO.O In,o 'vt,O 40.0 111

time (see)

d) 4-deg flight-path-angle command: flight-path-angle response

0.0

0.0

0.4

0.2

0.0

,0 10.0 20.0 30,0

time (see)

15 fps vcloclt3 command: thrust responseb)

40. a Sl

0.0

0.4

0.2

0.0 --_ , , ,

.o IO,O 1'o.o 30.0 40.0

time (,_:)

4-deg flight-path-angle command: thrust response

E

hlJ
_o

0,$

a.o

1.0

-0.$

I

=

lO.O 7o.0 "m.O 40.0

O.s

-0.$

'in,O 4D.O i

time (sec) time (see)

c) !$ fps velocity command: elevator response f) 4..degflight-path-angle command: elevator respon_

Fig. 7 Closed-loop command response using PFIMF controller, with filter control weighting Rr = dlag(10, 50), _ Monte Carlo evaluations.

Nominal response is indicated by the solid line.
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Fig, 8 Stochastic performance robustness evaluation with PFIMF:
ProbabililT of violating flight-path-angle command response _ and

probability of violating elevator saturation limits Ib_ vs filter weight

R_. Solid lines give probability estimates, dashed lines give confi-
dence Intervals.

Is.o

;S.@

S.O

40 O SL

dra¢ (sec)

Fig. 9 Closed-loop command responseusing PFIMF controller,
with filtercontrol weightingR_r= dtag(10,50), 500 Monte Carlo eval-
uations: 15 fps velocity commandsubject to constant disturbance
wv ,. 40 fps. Nominal responseis indicatedby tbe solidline.

command improves, although the variation in the T transient
response is much greater than that of the IMF regulator alone,
as seen by comparing Figs. 6<1 and 7d. Pv and/s estimates
corresponding lo Fig. 7 are 0.0 (0.0, 0.0074) and 0.034 (0.0199,
0.0539), respectively. For 500 evaluations, the PFIMF flight-
path-angle command response improvement over the IMF
case alone proves significant by application of confidence in-
tervals on the difference (P'r_._F -- PTP_Mv). Applying Eq. 4,

Pr [0.2721 < (P'r.ar - P')'PFtMF)_ 0.3921] > 0.9025 (1 I)

Equation 11 states that with PF augmentation between 27 and
39%, more of the flight.path-angle responses lie within lhe
envelope, with a confidence coefficient of at least 0.9025. The
mean elevator response for the flight-path-angle command
dips just to saturation limits, and the probability of elevator

saturation is P6E,,_r = 0.502 (0.457, 0.547).
Stochastic robustness analysis shows that PF augmentation

improves performance objectives by reducing control rates
and steady-slate error due to uncertainty. The state and con-
trol response to the velocity command prove acceptable Obv,
P_E, and _b,r all equal 0), and the improved responses to flight-
path-angle command are statistically significant. For the
flight-path-angle command, SRA demonstrates the tradeoff
between the two performance objectives; increasing the (2, 2)
element (Rag) of RF will further reduce elevator command
authority at the expense of the "r time response. Figure 8
illustrates this tradcoff by showing _b, ]_=E, and their confi-

Implicit model following modified by stateaugmenlation _°
can help meet control authority constraints. Proportional-fil-
ter (PF) compensation adds integrators to restrict the control
rates, thus preventing instantaneous control changes and re-
ducing the maximum control effort. The control vector is
appended to the state vector

(9)[:][: +[:],,,
where F and G are the nominal dynamic and control effect
matrices, E=x(t)-a*, 6=u(t)-u*, and v(t) is a com-
manded control rate. The PFIMF state weighting matrix is

2S.0

t5.O

v
>

S.O

a)

where Q, R, M are the original (IMF) weighting matrices. A
weighting matrix, RF, constrains the control rates. Elements
of RF affect the bandwidth of'each control; the larger the

weight, the more the control rate is restricted.
The IMF regulator is augmented to include low-pass filter-

ing of the control command, with a diagonal control-rate
weighting matrix RF =dlas[10,30]. Figure 7 shows 500
stochastic state and control h]storles to individual velocity and

flight-path-angle commands using the PFIMF controller and a
stream of random numbers independent from the IMF case.
The (1, I) element of R_ (Rar) determines the amount of
filtering on thrust rate, and the (2, 2) element (R_) controls
elevator rate. With filter elements, the control rates are no
longer unlimited, and the mean control responses remain un-
saturated. Steady-state error due to parameter uncertainty
remains within the desired state history envelope for the veloc-
ity command response (Fig. 7a). Steady-slate error for the 3'

.o to.o 20.o _o.o

dmc (scc)
40.0 5¢,

0.1

_ O.lt

b) o.o

dine (see)

U.]

time (set)

Fill. 10 Closed-loop command response using PIFIMF controller,
with filter control weighting R_-: dial(200, 50), and lutellrul stale
weightingQI = dial(0.1. 100), 500 Monte Coda evaluations:15 fpg
velocity commandsubjectto constantdisturbancew, - 40 fps. Nomi-
nal responseis indicatedby tbe solidline.
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Ftl. ll Stoch_Uc performance robustnt_s evaluation with PIFIMF:

Probability of violating velocity command response envelope Pv and
probability of violating thrust _turatlon limits Par vs filler weight
R_T. Solid lines give probability estimates, dashed lines give coati-
dence intervals.

dance intervals as functions of the design parameter R_E. A

plot like Fig. 8 can be used to choose the filter weight that

gives the smallest probabilities of envelope violation while
adhering as well as possible to the control authority restric-

tions. In this case, it is not possible to simultaneously reduce

P, and PiE tO zero by varying RtE. Nevertheless, stochastic

robustness analysis offers a simple, understandable means of

relating design parameters to performance objectives and of

choosing the best control gains to meet those objectives.

Design of a Longitudinal Controller

for Disturbance Rejection

As a final exan,ple, the preceding analysis is extended to

encompass a performance constraint on disturbance rejection.
The equations of motion are modified to include a vertical
wind disturbance w,.

I--D sin(o, - _°) + T cos(a - _o) _ 8 sin(7) 1

[i'1[-_ = .......Lsin(_ ---aT
/ (I2)

-a,) + cos(o_- no) &co_s(-_)J
L "_ V "

where

V sin(7) + w,
oz. = c_ + "r - tan -I (13)

V cos(-/)

With the disturbance present, the state components represent

inertial velocity,flight-path-angle,pitch,and angle-of-attack,

and the disturbance enters through the expression for air-rela-

tiveangle-of-attackao. A disturbance input matrix isdefined

for robustness analysis by numerical linearization of the non-

linear equations with respect to w_, around the nominal condi-

tion w_ = O. Velocity command response subject to a constant
40-fps vertical velocity disturbance using the PFIMF controller

is shown in Fig. 9. The mean response shows a nonzero steady-

state error that violates the command response envelope, and

uncertainty causes a larger spread around the nominal re-

sponse than that of the system without the disturbance (Fig. 7).

Also, the steady-state flight-path-angle (not shown) is less than
zero due to the disturbance.

Proportional-imegral (PI) compensation introduces a com-
mand-error integral for each commanded state element, zero-

ing steady-state error and improving disturbance rejection

characteristics. The perturbation equations for the nominal

system are

F G .+[o7:<,.,<,,,>

,=[:oo,o:} (15)

where

_(t) = _(0) + Ii_(_) dT (16)

and y(t)= y(t)- y*. Here, y* = [V 7]r,and a (2 x 2) weighting

matrix Qr is appended to the original state weighting matrix.
Diagonal elements of Qt affect the rate at which the command

error integrals approach zero. The diagonal components are

chosen to keep the velocity command within the desired envel-

ope and to zero the flight-path-angle response. Command er-

ror integrals are added to the existing PFIMF controller, and

for the resulting PIFIMF system with Qt = diag[0.01,100] and

Rr =diag[200, 50], Fig. 10 shows an improved velocity com-

mand response y*=lV* 0] r. The 500-evaluation probability

estimates and 95% confidence intervals are Pv =0 (0.0, 7.4E-

3) and P+T = 0.002 (5. IE-5, 0.011 I). The (I, I) component of
Rr is increased to restrain thrust as the command error inte-

grals are introduced. Figure I I shows analysis of the tradeoff
between Pv and P+r as a function of design parameter RIT

comparable to that presented for the flight-path-angle re-
sponse inFig. 8.Again, Fig. II can be used to choose control

system design parameters that best meet performance objec-
tives.

Conclusion

Stochastic robustness analysis offers a rigorous yet straight-

forward alternative to other robustness metrics that is simple
to compute and is unfettered by normally difficult problem

statements, such as non-Gaussian statistics, products of pa-

rameter variations, and structured uncertainty. The analysis

embraces both stability and performance metrics, handling
qualities requirements, and more general responses. Binomial

confidence intervals provide statistical bounds on the proba-

bility of instability and on performance metrics. Statistical

comparisons of control system robustness also are rendered

through confidence intervals. Both stability and performance

metrics resulting from stochastic robustness analysis provide

details relating system specifications intrinsic to a given appli-
cation and control system design parameters. Stochastic ro-

bustness analysis has a significant role to play in computer-

aided control system design.
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