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Previous Work

Jet Transport Study

• Trajectory optimization on during encounters on final approach

• Track reference climb rate subject to a minimum airspeed
constraint

• Energy loss strongly affects nature of optimal flight path

• Results not immediately applicable to real-time feedback control

Real-Time Control Using Feedback Linearization

>_Controller simplified using Time-Scale Decomposition

_'_ Laboratory for Control and Automation J

This presentation describes the most recent results in an ongoing
research effort at Princeton in the area of flight dynamics in wind

shear. The first undertaking in this project was a trajectory

optimization study. The flight path of a medium-haul twin-jet
transport aircraft was optimized during microburst encounters on
final approach. The assumed goal was to track a reference climb rate

during an aborted landing, subject to a minimum airspeed constraint.

The results demonstrated that the energy loss through the microburst

significantly affected the qualitative nature of the optimal flight path.
In microbursts of light to moderate strength, the aircraft was able to

track the reference climb rate successfully. In severe microbursts, the

minimum airspeed constraint in the optimization forced the aircraft to

settle on a climb rate smaller than the target. A tradeoff was forced

between the objectives of flight path tracking and stall prevention.

Although the results provided a qualitative picture of the nature-

of an optimal control strategy in wind shear, they were not
immediately applicable to real-time control. Optimization is an

iterative process requiring global knowledge of the flow field.

Therefore, an initiative was undertaken to develop feedback control

methods that approximated the performance realized in the optimal

trajectories. The technique of nonlinear inverse dynamics or feedback
linearization was used to develop a control law for a nonlinear model

of the aircraft dynamics. The control design was simplified using

Time-Scale Decomposition, which permitted the partitioning of the
controller into a slow outer loop and a fast inner loop.

112 :_ _ _ : : .....



Princeton University

Dynamic Inversion or Feedback Linearization

Given a nonlinear system of the form

x = f(x)+G(x)u

Define an output vector:
y = H(x)

Differentiate the output y until a control effect can be identified on
each element of the output vector:

y(d) = f *(x) + G * (x)u = v

New control input v selected to place system poles

Inverse control law takes the form

u=[G*lx)]-'[v-f'lx)}
Evaluation of the functions f*(x) and G*(x) requires a full,
d -differentiable model of aircraft dynamics in control system

LaboratoryforControlandAutomation j

The control law designed for the aircraft model was based on the

technique of dynamic inversion or feedback linearization. Given a
nonlinear system of the form shown, it is possible to define an output

vector y which is a known function of the system state x. This output is
differentiated with respect to time until a control effect can be identified

on each element of the output vector. The d th derivative of the output

is then equated to a new control input v. This control input can be

selected to place the system poles in designer-specified locations,

subject to the controllability of the original system. Although the form
of the resultant nonlinear control law appears simple, the evaluation of

its components requires that a full, d-differentiable model of the plant

dynamics be included in the control system.
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Time-Scale Decomposition

• Partition complete system into fast and slow time-scales

• Design a pair of lower-order controllers for each subsystem

• Control inputs to slow'outer" system are desired outputs of fast
"inner • system

• Motivated by natural time-scale separation of phugoid and short-
period aircraft modes

• Simplifies controller and estimator design

Laboratory for Control and Automation J

The control law based on nonlinear inverse dynamics can be

simplified if it is possible to partition the original system into fast and

slow time scales. If this is feasible, it is possible to design a pair of

lower-order controllers for each subsystem. The control inputs to the

slow "outer"system are the desired outputs of the fast "inner"system.

For the aircraft problem, the time-scale decomposition is motivated by
the time-scale separation that exists between the phugoid and short-

period modes. The application of this technique simplifies both the
controller and estimator design. Two lower-order controllers can be

designed, and fewer system state derivatives must be estimated.
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Application to Longitudinal Aircraft Dynamics
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The structure of the nonlinear control law using time-scale

decomposition is illustrated here for our aircraft study. The slow outer

controller accepts flight path and speed commands. It generates a

throttle and pitch rate command. The throttle command is passed on to

the engine dynamics. The pitch rate command becomes the desired

response of the fast inner controller. This controller generates the
elevator deflection required to achieve the desired pitch rate. This

controller is designed to have a response time at least 3 to 5 times faster
than the outer controller. Thus from the perspective of the outer

controller, the necessary pitch rate is achieved almost instantaneously.
The elevator deflection calculated by the fast controller is fed into the

aircraft dynamics, as is the actual thrust level produced by the engine

dynamics. The output of the aircraft sensors is fed into an estimator,
which generates the aircraft state estimate needed to accomplish the
inversion. The design of this estimator and the performance of the

controller/estimator pair are the subject of the rest of this presentation.
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Aircraft Model

• Three degree-of-freedom model of a twin-jet transport

- Gross Weight: 85,000 Ib

-Max Takeoff Thrust: 24,000 Ib

• Powerplant dynamics modeled as first-order lag

• V_fnd shear effects included in equations of motion

• Oseguera-Bowtes analytical microburst model

Laboratory for Control and Automation J

A three degree-of-freedom model of a twin-jet transport aircraft

was used for this study. The aircraftTnas the given gross weight and

maximum takeoff thrust. The powerplant dynamics are modeled as a

first-order lag, and thrust lapse with mach number and altitude is also
modeled. Wind shear effects are incorporated into the equations of

motion, and the Oseguera-Bowies microburst model (developed at

NASA Langley Research Center) provides the wind inputs used in
simulated microburst encounters.
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Control Strategies in Microburst Wind Shear

Airspeed Control

• Undesirable thrust reduction in headwind region

° Maintains airspeed in tailwind

Groundspeed Control

• Maintains thrustin headwind region

• Airspeed loss in tailwind

Laboratory for Control and Automation J

The control law described earlier is designed to track reference

speed and flight path inputs. It is worthwhile to consider what types of

guidance strategies are suitable in a microburst environment. In a
classical microburst encounter, the aircraft first encounters an

increasing headwind. The airspeed increases, and the aircraft may
balloon above the nominal flight path. If the flight crew is not alert to

the fact that a microburst is present, they may take action to prevent the

plane from climbing by throttling back and/or lowering the aircraft's
nose. This headwind soon transitions to a downdraft, which may result

in an increased sink rate. The subsequent tailwind causes an airspeed

loss, and ground impact may result if the pilot does not apply an

effective recovery technique.

Regulating airspeed about a nominal value causes an
undesirable reduction in thrust in the headwind region of the shear to

prevent an unwanted airspeed increase. This may leave the aircraft in a

precarious state once it enters the performance-decreasing downdraft
and tailwind. However, airspeed is maintained in the tailwind region,

subject to the powerplant performance limits. Conversely, regulation

of groundspeed maintains thrust in the headwind region. A thrust
increase is typically required in the headwind region to maintain a

nominal groundspeed. In the tailwind region, however, groundspeed

regulation results in an airspeed loss and may lead to stall if the

airspeed becomes too low. Taken together, these observations suggest

that an effective strategy might be one that combines the desirable traits

of groundspeed and airspeed control.
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Groundspeed/Airspeed/Throttle Control Law

Approach Control Logic

• Regulate minimum of airspeed and groundspeed to same nominal
value - Psiaki

• Behaves like an airspeed controller in still air

• Throttle and pitch rate commands depend on relative magnitude
of the thrust commands

• Overcomes limitations of either controller alone

Recovery Maneuver Logic

• Apply full thrust and track reference climb rate

• Maintain climb rate tracking even in event of throttle saturation

Laboratory for Control and Automation J

The guidance strategy used with the nonlinear control law was

adapted from one developed by Mark Psiaki of Cornell University. The

approach control logic regulates the minimum of airspeed and
groundspeed to the same nominal value. This behaves like an airspeed

controller in still air. In the current implementatio n , the throttle and

pitch rate commands passed onto the aircraft dynamics depend on the

relative magnitudes of the thrust commands generated by an airspeed/

climb rate and a groundspeed/climb rate controller. This control logic
overcomes the limitations of either airspeed or groundspeed control

alone. During a recovery maneuver (where a decision is made to abort
an approach and execute an escape trajectory), full thrust is applied

directly together with a climb rate command.
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Optimal Nonlinear Estimation

• Controller performed well with perfect state and disturbance
feedback

• Complete aircraft state must be estimated from available aircraft
measurements

• Controller also requires estimates of wind-related quantities:

T
Xwmd=[wx Wh Wx Wh _x _h]

• Extended Kalman Filter (EKF) used to esUmate aircraft and wind
state

Laboratory for Control and Automation J

The control logic described earlier was found to perform well

with perfect aircraft and wind state feedback. The time-scale

separation assumption was demonstrated to be valid, and the controller

provided good recovery performance in a broad spectrum of
microbursts. In practice, however, the complete aircraft state must be
estimated from the available air-data and inertial measurements. The

controller also requires feedback of the two wind components

(horizontal and vertical) together with their first and second time-
derivatives. The Extended Kalman Filter (EKF) was postulated as a

candidate estimator structure for this problem.
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Continuous-Discrete Extended Kalman Filter

where

Given a system of the form

x(t) = f[x(t), u(t), t] + Lw(t)

E[w(t)]=o

E[w(t )w r ( "c)]= QcS(t- _')

Discrete Measurement Model:

Zk=h[X(tk)]+n k k =0,1,2 ....

E(n k ) = 0

Laboratory for Control and Automation J

This form of theEKF is based upon a continuous model of plant

dyna !c_s and a discrete measurement model. The disturbance w(t)

influencing the plant dynamics is assumed to be a zero-mean Gaussian

white noise process with a known spectral density matrix Q. The

measurements z k are made at discrete instances t_and are known

functions of the plant state. The measurement noise vector n k is

assumed to be a zero-mean Gaussian white noise process with known
covariance R.
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Aircraft State and Disturbance Estimation

• EKF minimizes variance in state estimation error

• Aircraft state estimate augmented with wind state:

xT:rcraff=[x_, h Vi _'i oq Va _a aa q T]

T
Xw_ d=[wx Wh Wx Wh _x _h]

L Xwind J

_'_ Laboratory for Control and Automation J

The form of the EKF for the aircraft problem is now described.

The nonlinear control law requires feedback of the wind state in

addition to that of the aircraft state. This is achieved by defining the

system state to consist of the aircraft and wind state. The wind state is
defined to be the horizontal and vertical wind components, together
with their first two time-derivatives.
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Complete System Equations

Wind dynamics:

[io1ooo--wxjoo,oo  oil
•, =_ooo1owx• oow,1
Wh 0 0 0 0 1 Wh 0 Lw2j

Wx 0 0 0 0 0 Wx 1

."_'h 0 0 0 0 0. I,_'h 0

Xwind = FwindXwind + LwindW

Aircraft Dynamics:
_(aircraft = f(Xaircraft, Xwind, u)

Complete System Equations:

_=FX_.irlra-ft-]=[f(Xaircraft'Xwind'U)]+[ O 1W
_ :wi_d J L FwindXwind J LLwindJ
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The wind dynamics are modeled as a linear system driven by an

external input w. The components of w are thus the third time-

derivatives of w x and w h. The complete system equations shown here

become the basis of the Kalman filter equations presented earlier.
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Simulation Examples

• Measurements:

zT=[h V; Va e q t; x

diag(5, 4, 4, 0. 0252, 0. 0252, 0. 0252, 2, 2, 2)Ro=

• Sensor noise statistics based on conservative estimates of

expected accuracy

Case Simulation Measurement and
Number Parameters Control Model

1 NID only u = g(x)

2 NID and EKF; u = g(9)
Perfect
measurements z = h(x) <=> R = 0

3 NID and EKF; u = g(£)

Noisy
measurements z = h(x) + n

" ___
Laboratory for Control and Automation

A set of nine measurements were postulated for the simulation

examples. The assumed sensors were altitude, groundspeed, airspeed,

angle of attack, pitch attitude and rate, climb rate, and horizontal and
vertical acceleration. The sensor noise statistics were based on

conservative estimates of the expected accuracy of those sensors. Three

simulations were conducted using the same initial conditions and

microburst wind profile. The simulations were structured in such a way

to illustrate the degradation in controller performance caused by

removing the assumption of perfect state feedback. In the first case, the
NID controller was driven by perfect state feedback. In the second and

third cases, the controller was driven by the output of an EKF that
utilized the measurement vector shown. The difference between Cases

2 and 3 was that in Case 2, there was no noise in the sensor

measurements. The performance realized here would thus be

indicative of the theoretical limit of the performance of the NID/EKF
combination. In Case 3, the measurements were noisy and had the

statistics indicated by the matrix R o.
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Simulation Conditions

Initial Aircraft Conditions

• Aircraft initialized on glide slope

Groundspeed: 220 f'dsec (130 kt)

Altitude: 540 ft

Inertial Flight Path Angle: - 3"

Range from microburst core: 7,500 ff

Microburst Parameters

Radius: 3,000 ft

Max. Outflow: 65 ffJsec

Altitude of Max. Outflow: 150 I_

• Aircraft tracks glide slope until F-Factor exceeds 0075

LaboratoryforControlandAutornation J

In all of the simulations conducted, the same initial conditions

and microburst parameters were used. The aircraft was placed in an
approach configuration a fixed distance away from the microburst core.

The aircraft tracked the glide slope until the F-Factor exceeded a preset

threshold, at which point a recovery was commanded using fu!!thrust=
and a nominal climb rate of 5 ft/sec. For Cases 2 and 3 Wl_6re the EKF

was in use, the recovery was triggered on the basis of an estimate of the
F-Factor:
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The altitude time-histories are shown here for the three

simulation examples. It is apparent that there is little to no controller

performance degradation between Cases 1 and 2. This suggests that in
the limit as aircraft sensors become more and more accurate, the

baseline performance realized using perfect state feedback can be

achieved. There is only a slight loss in performance in Case 3, where
the controller is driven by state estimates derived from noisy
measurements.
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Climb Rate vs. Time
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The climb rate histories for the 3 cases are shown in the top
figure. Those from Cases 1 and 2 are quite similar to one another. In

Case 3, there is more overshoot in the response of the aircraft. The
performance of the EKF is indicated in the bottom figure. The output of
the climb rate sensor is shown for Case 3, together with the resultant

estimation error in climb rate. The magnitude of the estimation error is

much smaller than the apparent level of noise in the sensor output.

This indicates that the EKF is effective in eliminating the effects of
measurement noise in the estimation of climb rate.
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Groundspeed and Airspeed vs. Time
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Groundspeed and airspeed climb rate histories are shown here
for all three cases. They are virtually identical to one another. In the

approach portion of the trajectory, the aircraft is able to track the
reference groundspeed extremely well even when driven by optimal
estimates derived from noisy measurements of groundspeed.
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Actual and Estimated F-Factor vs. Time
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The ability of the EKF to estimate the F-Factor hazard index is

illustrated here for Cases 2 and 3. In Case 2 where the EKF uses perfect

measurements, the F-Factor is estimated very accurately. When noisy
measurements are introduced in Case 3, some estimation lag becomes

noticeable in the EKF output. The F-Factor estimates seem to lag the

most when the sign of the F-Factor's time-derivative changes sign. The
peak F-Factor is actually overpredicted by the EKF.
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Controller/Filter Assessment

Min. Altitude (ft) 198.7 197.5
Min. Airspeed (ft/sec) 230.0 229.8
Max. Angle of Attack 2.3 2.3
(deg)

NID/EKF NID/EKF
NID with Perfect with Noisy

Only Measurements Measurements
187.3
228.3

2.5

Max. Percent
Overshoot in Climb

Rate Response

3.6 3.3 26.2

• Combination of NID and EKF works well

• Degradation in controller performance is not severe

• Magnitude of measurement noise is significant

Laboratory for Control and Automation j

A summary is provided here of some salient features of each of
the three cases. The difference in minimum altitude between Cases 1

and 3 is only 10.4 ft. The minimum airspeed is only 2 knots lower in

Case 3 as compared to Case 1. This would suggest that in terms of

maintaining safety margins, the EKF/NID combination is almost as
effective as the NID alone driven by perfect state feedback. There is

almost no difference in maximum angle of attack as well. The principal
difference between Cases 1 and 3 is in the climb rate response of the

aircraft. In Case 3, there is much more response overshoot than in Case

1. This is likely due to filter lags arising from uncertainty in the

accuracy of the measurement vector.
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Future Work

• Controller/Filter robustness issues:

-Aerodynamic model uncertainties

- Sensor loss

• Performance in turbulent wind field

Laboratory for Control and Automation J

There are a number of unresolved issues to be addressed in this

work. The robustness of the NID/EKF combination to aerodynamic
modelling errors will be studied. The system performance with a

reduced sensor suite will also be investigated. The ability of the

controller to track flight path command through a turbulent wind field

will be investigated. It may be necessary to tune the EKF parameters to

reduce unwanted control activity in wind fields C0ntaining high-
frequency components.
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