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1. INTRODUCTION

This report documents investigations carried out over the twelve month period-of-

performance on Contract NASW-4744 which commenced in November, 1992. Dr. Richard Link

served as PI until July at which time he joined Southwest Research Institute. In July,

Computational Physics, Inc. (CPI) requested that Dr. Tariq Majeed become PI and coordinate the

remaining work with Dr. Douglas Strickland. The requested change was subsequently approved

by NASA. The contract identifies the following three tasks:

1. Analysis of the OII 83.4 nm dayglow and comparison with incoherent scatter radar data

2. Analysis of the EUV spectrum of an electron aurora

3. Analysis of the EUV spectrum of a proton-hydrogen-electron aurora.

Dr. Link performed work on the fh'st task. The appendices contain preprints of two papers

written by Dr. Link under this first task.. Paper 1 examines the effect of new O(3p)

photoionization cross sections, N 2 photoabsorption cross sections, and O ÷ oscillator strengths and

transition probabilities on the OII 83.4 nm dayglow. Calculated 83.4 nm intensities using the new

parameters are in good agreement with rocket measurements and do not support a suggested

reduction in the N 2 photoabsorption cross section from an earlier analysis. Paper 2 addresses the

problem of remote sensing the dayside F2 region using limb OII 83.4 nm data. The conclusion

based on selected calculations of the limb 83.4 nm intensity is that estimates of NmF2 (electron

density at F2 peak) and hmF2 (height of the peak) can be in error by at least a factor of two and

50 km, respectively.

Drs. Majeed and Strickland worked on the auroral tasks which were directed toward an

analysis of data from the U.C. Berkeley experiment on-board satellite STP 78-1 (Bowyer et al.,

1981). The main body of this report documents the work of Majeed and Strickland.

We would like to acknowledge Dr. Robert McCoy of the Naval Research Laboratory for

providing us with STP 78-1 data. A request for data was In'st made to Dr. Supriya Chakrabarti

of Boston University. Dr. McCoy was contacted after it became apparent that data would not

arrive in time from Dr. Chakrabarti to perform an analysis before the end of this contract. Data

were provided by Dr. McCoy that span a two week period starting on 3/11/79. During this

period, an intense geomagnetic storm occurred on 3/22. Unfortunately, the files containing data

for this storm were not located until the end of this contract. Thus, the analysis to follow

addresses other data during the available period under less disturbed conditions.



An important observationwill bediscussedwhich limits the usefulnessof the Berkeley
data for auroral investigations. The observationrelates to the field-of-view (FOV) which

precessesaboutahorizontalaxisperpendicularto theplaneof theorbit. Thelook vector sweeps

out a cone whoseextremezenith angle is 150°. Analysispaperssuchas Chakrabarti(1985)
presentplots of nadir viewing auroral dataversusthe latitude of the satellite. Suchdata have

beensummedover severaldegreesof precessioncenteredabout 150". Typically, a secondsum
hasbeenperformedover several consecutive precessions of the individual summed nadir values.

Thus, an individual data point corresponds to emission from several degrees of latitude. For

summing +30* about 150 °, emission is recorded over approximately 10" of latitude.

The Berkeley instrument is a spectrometer which measures emission from 500 to 1400/k

at a resolution of 8 /k in its EUV/FUV mode. The data to be addressed in this report were

collected in this mode. It is necessary to sum spectra as described above since an individual

spectrum contains few counts at most of its wavelengths. Typically, a wide range of auroral

conditions exists over the latitudinal range covered by the summed data. Furthermore, there is

considerable overlap in the effective FOV of the summed data from data point to data point when

these points are separated by a few degrees of latitude or less (as is the case in papers that have

addressed the Berkeley data). The best that one can do in terms of quantitative analysis is to

produce a single summed spectrum across the auroral oval and compare it with similar spectra for

other oval crossings. There may be changes in spectral shape with changes in the mean energy of

the precipitating particles and in composition from one oval crossing to another. It is

questionable, however, whether meaningful interpretation can be given to spectral changes given

the extreme spatial averaging and the need to untangle composition from precipitation effects.

To our knowledge, no one has addressed the above issue in any paper or report discussing

the STP 78-1 Berkeley auroral data. Its relevance relates to the fact that analysts within the

auroral/aeronomy community continue to work with the data. This contract has given us the

opportunity to gain the insights discussed above. Although the insights have a negative impact on

the usability of the above data, they serve a useful purpose in alerting analysts who are unfamiliar

with the limitations imposed by the need to sum the data. In spite of these limitations, we will

present a brief description of the analysis conducted under this contract, with emphasis on

comparing average spectral behavior from one oval crossing to another. The findings are

uninteresting given the unavoidable limitation imposed upon us of working with only quiet time

auroral data for which the oval averaged spectral shape was similar among the available data sets.

One exception is the distinct difference in Nil 108.5 nm between a proton and an electron event

2



for approximatelythe sameenergyinputs. Thedifferenceis likely relatedto the high excitation

threshold(35 eV). We concludethat excitationby secondaryelectronsis unimportantfor the

protoneventandthat thecrosssectionsfor productionof 108.5nmbyproton andH atomimpact
havesignificantlysmallermaximathanthecorrespondingcrosssectionfor electronimpact.



2. ORIGINAL AND MODIFIED ANALYSIS PLANS

The following list identifies the steps that were to be taken in our original approach to

analysis of the STP 78-1 auroral data.

• develop software to conveniently display data versus time and wavelength

• conduct data survey

• select times at which spectral data had good counting statistics

• minimize summing of spectra in order to examine their evolution across the oval and from

one oval crossing to another

• review literature on electron impact cross sections associated with observed O, O ÷, N, and

N ÷ emissions

• run CPrs auroral electron transport model to obtain emission yield curves vs.

characteristic energy for precipitating electron spectra characterized by Gaussian and

Maxwellian distributions. Do this for one or more MSIS model atmospheres

• interpret changes in the shape of the spectral data in terms of changes in composition

changes (O/N2 and N/N2) and changes in the hardness of the precipitating electron

spectrum

We modified this approach after performing simple geometrical calculations to determine

the effective FOV of the Berkeley spectrometer while recording auroral emission below the

satellite. As noted in the introduction, this FOV for a single precession is on the order of 10 ° in

latitude due to the need to sum spectra. Without summing, the signal-to-noise is too small to

characterize the emission. Consequently, a display of the data versus the latitude of the satellite

does not show localized emission at a given latitude. Such a display gives a running average with

the averaging width on the order of the width of the auroral oval. This condition severely limits

the amount of quantitative information that can be obtained from the Berkeley auroral data due to

the aurora being highly structured along the satellite path. The following list identifies the steps

that were actually taken in our analysis.

• develop software to conveniently display data versus time and wavelength

• investigate viewing geometry

• conduct data survey

• produce single summed nadir spectrum over full width of oval

• compare selected oval averaged spectra.
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Sinceusefulinformationcannotbeobtainedfrom one point to anotherduring a crossingof the

auroraloval,wehaveproducedoval averagedspectraandthenmadecomparisonsamongthem.
It is pointlessto useyield curvesas identifiedabovefor determiningspectralpropertiesof the
precipitationsincethe effectiveFOV correspondsto a regionover which therewill be a wide

rangeof precipitationcharacteristics.Thus,the final step,asshownabove,is to simplycompare
ovalaveragedspectrawhichwill bediscussedin Section4.
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3. STP 78-1 DATA REDUCTION

The spectrometer recorded the raw data in counts every 0.2 second interval in its 128

wavelength channels (50-140 nm) from an altitude of 600 km. The satellite was placed in a

circular polar orbit lying in the noon-midnight meridian, precessing at about 1° per day to maintain

a sun-synchronous orbit. The satellites spun at a rate of one precession every four seconds with

its spin axis perpendicular to the orbital plane. The spectrometer's line-of-sight swept out a 60 °

cone about this spin axis. The motion thus placed the look vector within 30 ° of zenith (nadir) at

the top (bottom) of the cone. In the discussion to follow, we will reference the look vector by

zenith angle. The range of angles to be considered in this work is 120 ° to 150 °.

3.1 Request for STP 78-1 data

Dr. Supriya Chakrabarti of Boston University was first contacted to provide us with STP

78-1 emission data. We then contacted Dr. Robert McCoy of the Naval Research Laboratory

who possessed data for approximately two weeks of observations from March 11 to March 26,

1979 and agreed to make the data available to us. During this period, an intense geomagnetic

storm occurred on March 22, 1979 (39000 to 52000 s UT) (see, e.g., McPherron and Manka,

1985 for a discussion of this storm). The occurrence of this storm can be seen in Figure 1 where

the three hour geomagnetic index, ap exceeded 100. Unfortunately, the files containing auroral

data for this storm could not be located in time for analysis under this contract. Table 1 identifies

the time intervals for which data were reduced and displayed. These intervals can be seen in

Figure 1 as vertical broken lines. As will be shown shortly, aurora were observed on several

crossings of the northern and southern auroral oval, although much less intense than during the

storm (based on our opportunity to finally examine storm data at the end of the contract period).

Date

79079

79080

79081

79085

79086

Starting time

(trO
59690

7162

29607

78631

4000

Ending time

(trr)
71925

36500

38435

86300

7600

Polar

passes

1

4

1

1.5

1

Table 1. Dates and time intervals for which data have been reduced and analyzed in this work.
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Figure 1. Three hour geomagnetic index ap from 3/19/79 (day 78) through 3/29 (day 88). The

vertical broken lines denote times for which data have been analyzed in this work.

3.2 Transfer of STP 78-1 data to CPI's computer system

Emission data at NRL were stored in several Ides. Each data file was associated with an

aspect file which contained information on satellite attitude, time, latitude, longitude, and viewing

direction. Both data and aspect files were transferred from NRL to CPrs computer system by

using the File Transfer Protocol (FTP) facility provided by our UNIX and VMS systems.

3.3 Data Reduction

3.3.1 Time profiles of nadir data

Various routines in IDL were developed to handle the data. The routine

READSATDATA was used to extract and calibrate the raw data as a function of time for

designated emission features. Table 2 identifies the stronger features present in the observed

spectra along with their associated wavelength channels and channels used to determine
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backgroundcounts due to scattering off the grating. After subtraction of the background, the

data were calibrated in Rayleighs/bin and output to a file. Each data point referred to a single

measurement as the line-of-sight precessed within the above described 60 ° cone.

Emission Feature

 nm)
OII 83.4

OI 98.9

OI 102.7

NII 108.5

NI 113.4

NI 116.8

HI 121.6

OI 130.4

OI 135.6

Species

O+

0

0

N +

N

N

H

O

O

Transition

4P 6- 4S°

3p 6- 3DO

2p 4 6- 4S °

3p <___3DO

4S ° 6- 4P

2D° 6- 2p

2S 6- 2pO

WL channels

15- 17

42 - 44

49 - 51

61 - 63

69 - 71

76 - 78

85 - 87

102- 104

111 - 113

BG Channel

18

40

48

63

68

75

89

106

114

Table 2. Key emission features appearing within the observed spectral range. Species, transition,

wavelength channels, and nearby channel used for background subtracted are included
for each feature.

Averaging of the data over look angle was required due to poor counting statistics for a

single data point. Routine PRESSORT was written to perform the averaging. Figure 2 shows the

angular separation (degrees of latitude between adjacent look vectors at a pierce-point altitude of

130 km along the adjacent lines-of-sight) between data points for near-nadir viewing as the

satellite passed through the northern auroral oval on Pass 391 of Day 81. A given near-vertical

distribution of points (eight or nine) refers to individual measurements within a given precession

for all zenith viewing angles greater than 120 ° . An average over the points falling within the

interval from 120 ° to 150 ° (most nadir angle available) was performed by PRESSORT for the data

to follow. It is significant that an averaged value corresponds to about 10 ° of latitude. The

distribution of points in the figure shows that significant overlap in latitude occurs from one

averaged value to the next. The averaged data thus represent a running average with nearly the

same information in adjacent points and with an effective FOV comparable to the width of the

auroral oval. We regard Figure 2 as the most important figure in this report whose interpretation



8O

70

E
v

O
t,q

"6
60

"10

0
_.J

Oq

0
_.J

5O

40
9. Lot (de9) 50.0000

UT (sec) 32232.5

Day 81, 1979

+
+ +

+ + +-

+++++i+,!!
,++++ +,+++;+

+ +
+ +

+ +

, I , , , , I , , , j I , , , ,

55.0000 60.0000 65.0000 70.0000

32232.5 32232.5 32232.5 32501.0

Figure 2. Latitude of look vector at an altitude of 130 km versus time and latitude of satellite as

STP 78-1 crossed the northern auroral oval on Pass 391. A given point in the figure

refers to the measurement of a single spectrum. The points within each vertical

grouping (8 or 9) refer to a single precession of the look vector and correspond to

viewing angles from 120' to 150" (nadir is 180°; the most nadir angle achievable within

the viewing cone is 150o). Because of a low signal to noise ratio, the 8 or 9 spectra per

precession at viewing angles > 120 ° have been summed. In spite of the fact that a

single latitude can be effectively assigned to the location of the satellite during the

partial precession under discussion, -10, of latitude are seen by the spectrometer

during this time. Thus, the effective field-of-view is on the same scale as the width of

the auroral oval from its low latitude to its high latitude boundary.
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leads to the conclusion that STP 78-1 auroral data are of very limited use for quantitative analysis

due to the presence of significant spatial structure over the FOV associated with the averaging

process.

Due to poor counting statistics even after the above averaging process, further averaging

was done using routine BINSORT. This routine generated averages over 20 precessions which

will be presented in the next section in the form of OI 98.9 nm intensity versus time for several

crossings of the northern and southern auroral ovals.

3.3.2 Auroral Spectra

A routine named READSATSPEC was written to produce a radiance spectrum in

Rayleighs/bin for a single precession averaged over the eight or nine available spectra for zenith

angles greater than 120 °. The output of this routine is a set of such spectra for a selected interval

of time. The interval of interest here is 200 s which is the approximate time during which auroral

oval emission is seen in the precession averaged data. Fifty spectra are thus output from

READSATSPEC for those crossing of the auroral oval during which auroral emission is seen. As

discussed above, the effective FOV for precession averaged data is -10 ° in latitude which is on

the scale of the latitudinal extent of the auroral oval. Thus, a second average was performed over

the 50 spectra to produce a single spectrum for an entire oval crossing. This spectrum contains

almost as much information as the set of 50 spectra given the extensive overlap from one

spectrum to another within this set. Oval averaged spectra will be presented in the next section.

10



4. RESULTS

4.1 Averaged data versus time

Following the averaging of the data described in section 2.3.1, a data survey was

conducted by selecting an emission feature and plotting its averaged data versus time. OI 98.9 nm

was selected since it is one of the brightest features in terms of auroral emission within the

observed wavelength range. The purpose of the survey was to determine times during which data

were recorded for active aurora. Figures 3 through 7 show time plots of OI 98.9 nm which

include dayglow and aurora (nightside and dayside). Figures 3 - 7 do not cover all of the times

for which data were received from NRL. We include only times for which the auroral oval was

bright enough to be seen against the underlying background. The designators N and S identify the

auroral oval in the northern and southern hemispheres, respectively. SAA designates the location

of the south Atlantic anomaly which contaminates the data due to energetic particles entering the

instrument. The structure in Figure 3 labeled S,H ÷ is due to proton aurora based on an observed

enhancement in HI 121.6 nm above its geocoronal background. No other such enhancements

were observed for the times covered by Figures 3 - 7. The time scale in each figure covers a

period of 5000 s or 83 min which is -80% of an entire orbit. The numbers below the time scale

provide solar zenith angle at the satellite and satellite location in geographic and geomagnetic

coordinates. Thus, one can identify regions such as the polar cap, equator, etc. by examining this

information. It should be kept in mind, as previously discussed, that auroral structure like that in

the lower panel of Figure 4 starting at 20400 s does not provide emission localized to the latitude

scales given below the time scale.
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83.5643 33.,5258 -34.0327 -72.3088 - 19.6885

295.678 183.722 167.302 47.5607 352.175

Figure 3. Nadir OI 98.9 nm versus time on Day 79, 1979 showing dayglow and auroral

emission. Each data point was obtained by averaging 20 precession averaged spectra

(see Figure 2 for further information concerning precession averaging). OI 98.9 nm

was selected for this and the subsequent four figures because it is one of the brightest

features within the wavelength range of the instrument. The values below the UT scale

provide solar zenith angle at the satellite and satellite location in geographic and

geomagnetic coordinates. The designator N within the figure identifies the location of

the northern auroral oval on the dayside. The designators S identify the locations of the

southern auroral oval on the nightside for electron and proton aurora, respectively. The

proton aurora was identified from enhancements in HI 121.6 nm above the geocorona

background level. Similar enhancements were not seen in the other data being

addressed in this report.
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Figure 4. Similar to Figure 3 except for Day 80. The upper panel shows weak auroral emission

near 16800 s with structure near 16000 s which is contaminated signal due to energetic

particles entering the instrument as the satellite passed through the south Atlantic

Anomaly (SAA in figure). The lower panel begins where the upper panels stops and

identifies the southern auroral oval on the dayside and the northern auroral oval on the

day and nightsides.
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Figure 5. Similar to Figure 4 except later on Day 80.
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4.2 Selected oval averaged spectra

Figures 8 - 11 show oval averaged spectra from selected oval crossings seen in Figures 3 -

7. The spectra in Figure 8 correspond to the electron and proton auroras in the southern

hemisphere shown in Figure 3. Neither spectrum has been scaled which shows that the overall

energy deposition is similar for the two events. The difference between the spectra for NII 108.5

nm is noteworthy. Much less emission is seen for the proton event. The emission is expected to

be dominated by particle impact on N 2 (rather than N). In the case of proton aurora, excitation

arises from H, H ÷, and secondary electron impact. The spectrum of secondary electrons for

proton aurora is soft (see, e.g., Basu et al., 1993 and Strickland et al., 1993) and will produce

very little 108.5 nm due to the high excitation threshold (35 eV). While protons and H atoms

have sufficient energy to produce 108.5 nm, the lack of emission suggests that their spectral

fluxes are considerably less efficient at producing 108.5 nm than the corresponding spectral fluxes

in electron aurora. Said another way, the maxima of the proton and H atom cross sections for

producing 108.5 nm are smaller than that for electron impact.

Figure 9 compares the spectrum for the nightside oval crossing in the upper panel of

Figure 5 with that from the lower panel. There was no enhancement of HI 121.6 nm above its

background at these times which leads us to conclude that electron precipitation was responsible

for the emission seen in both spectra. The OI 98.9 nm emission seen in Figure 5 for these two

events is comparable. Thus, it is not surprising that the oval averaged spectra in Figure 9 are

similar in magnitude. They are also seen to be similar in spectral form which is not surprising

given that each is an average over the entire oval.

Figure 10 provides further comparisons among nightside oval averaged spectra. The

events can be seen in the two panels of Figure 6. The differences in magnitude among the spectra

are consistent with the differences in 98.9 nm seen in Figure 6. There are no pronounced

differences in shape among the three spectra which again, is not surprising, given that each

spectrum is an oval average.

Figure 11 compares spectra for the three dayside auroral events seen in Figure 6. The

98.9 nm feature is seen to be of about the same magnitude for the three events in both Figures 6

and 11. Differences are seen, however, in OI 102.7 nm, NII 108.5 nm, and OI 135.6 nm. There

are also differences elsewhere but are not singled out due to low emission. We do not understand

the cause of the differences, especially for the O emissions given that OI 98.9 nm is comparable

among the three events.
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5. DISCUSSION AND CONCLUSIONS

We have documented an analysis performed on auroral data obtained with the U. C.

Berkeley EUV/FUV instrument on-board STP 78-1. We have not performed the quantitative

analysis that was originally planned under this contract. In that analysis, yield curves of key

emission features versus characteristic energy of precipitating particles (electrons and protons)

and versus composition were to be generated using CPI's auroral particle transport model (see,

e.g., Strickland et al., 1983 and 1993). These curves were to be used to infer average spectral

characteristics of particle precipitation and differences in composition within the auroral oval

compared to models such as MSIS-86 (Hedin, 1987). It became apparent early in this

investigation that such an analysis could not be performed due to the need to average several

measurements from an experiment having a precessing line-of-sight. The averaging led to an

effective FOV of -10 ° in latitude for each data point. At auroral latitudes, extreme ranges in

auroral conditions can be expected on this scale. Our planned quantitative analysis was then

replaced by a simple examination of oval averaged spectra as discussed in section 4.2 above.

This investigation, while not producing any important insights into remote sensing of

auroral regions using EUV/FUV data, is significant in pointing out a severe limitation in the

Berkeley auroral data to potential users of these data. It is surprising that there has been no

discussion in papers containing Berkeley auroral data on the large effective FOV that arises from

the combination of a rapidly precessing look vector (4 s per precession) and low counting

statistics per individual measurement. While time plots such as those presented in Figures 3 - 7

give the impression that a given data point refers to emission at some specific latitude, in reality,

this is emission from a region on the width of the auroral oval from its equatorward to polarward

boundaries.
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Abstract

This study assesses the impact of new O(3P) photoionization and N2 photoabsorption

cross sections, and O + oscillator strengths and transition probabilities, on OI 834-A

airglow calculations. 834-_ intensities computed using the new emission parameters

are in good agreement with rocket measurements obtained in 1978 and 1980. The

present study does not support a suggested reduction in the N2 photoabsorption cross

section based on an earlier analysis of the rocket data.



Introduction

The O+(2s 2 2p3 4So +__ 2s 2p 4 4p) 834-A triplet is the most prominent emission below

900 _, in the terrestrial thermosphere [Meier, 1991]. 834-/_ emission in the airglow

is produced by three mechanisms, the dominant being inner shell photoionization

of ground-state neutral atomic oxygen to 0+(4/)). Of lesser importance is electron

impact ionization of atomic oxygen which, based on the most recent cross section

data, has been estimated to contribute about 5% to the peak emission intensity

[CTeary et al., 1989; Meier, 1991]. Finally, Feldman et al. [1981] and Meier [1990]

estimated that resonant scattering of solar 834-/_, emission provides an even smaller

contribution at the peak. The 834-/_ multiplet is an allowed transition, and undergoes

resonant scattering by ground-state O+(4S o) ions in the ionosphere, as well as pure

absorption, mainly by N2.

In an analysis of 1978 [Gentieu et al., 1979; Feldman et aL, 1981] and 1980 [Gentieu

et al., 1981, 1984] rocket observations of the 834-/_ dayglow, Cleary et aI. [1989]

concluded that the observed emission intensity below about 200 km could not be

explained without substantially reducing the N2 photoabsorption cross section from

the then-accepted values. Another possibility, that production of low-altitude 834-/_

emission due to soft X-rays was underestimated using the solar spectrum adopted



in the modelcalculations, wasconsideredunlikely due to the agreementobtained by

Link et al. [1988b] and Morrison and Meier [1988] in their analyses of photoelectron-

excited O and N2 FUV emissions measured on the same rockets.

Meier [1991] has recently reviewed the available theoretical, laboratory and aero-

nomic evidence concerning the production and loss of 834-/I, emission in the ther-

mosphere; the reader is referred to that work for a synopsis of the literature. The

present study assesses the impact of newer photoionization [Bell and Stafford, 1992]

and photoabsorption [Morgan et al., 1993] cross sections, and O + oscillator strengths

and transition coefficients (K. L. Bell, private communication, 1992) on calculated

834-/_ emission intensities.

Photoionization and Photoabsorption

Branching ratios for photoionization of O(2s 2 2p 3 3p) to the 2s 2p 4 states of O + cur-

rently used in aeronomy date back to Hartree-Fock calculations of the partial cross

sections for O + valence shell 2s 2 2p 3 (4S0 ' _D o, ._po) and inner shell 2s 2p 4 (4p, 2p)

ionization states by Dalgarno et al. [1964]. Using close-coupling wavefunctions, Henry

[1967] improved the valence shell results and, after correcting an error in the statis-

tical weights, used the inner shell O+(2s 2p4) cross sections of Dalgarno et al. [1964]



to estimate the total photoionization cross section of O(3P). Subsequently, in a

comprehensive compilation of cross sections for use in aeronomy, Kirby et al. [1979]

renormalized the partial cross sections of Henry [1967] to the R-matrix calculation of

the total photoionization cross section by Taylor and Burke [1976].

Link el al. [1988a] pointed out that measurements of the total O + photoioniza-

tion cross section by Samson and Pareek [1985] were significantly smaller than the

values tabulated by Kirby el al. [1979] below 300 A, and renormalized the tabulated

partial cross sections to the experimental data. A similar procedure was adopted in

an updated compilation by Conway [1988]. In more detailed measurements, Angel

and Samson [1988] extended the wavelength range of the measurements of Samson

and Pareek [1985], normalizing their new relative cross section to the latter measure-

ments at 584 /_. Partial cross sections renormalized to the Angel and Samson [1988]

measurements appear in a recent compilation by Fennelly and Tort [1992].

The essential point here is that the branching ratios for inner shell photoioniza-

tion to the 2s 2p 4 states of O + appearing in the compilations by Kirby et al. [1979],

Conway [1988], and Fennelly and Tort [1992] can be traced back to Dalgarno et al.

[1964]. Recently, Bell and Stafford [1992] have calculated new cross sections for pho-

toionization of atomic oxygen to the 0 + 2s 2 2p 3 (4S°, _D o, 2po) and 2_ 2p 4 (4p, 2p)

states using the R-matrix programs of Berringlon et al. [1987]. Their calculated to-

4



tal photoionization cross section is in good overall agreement with the experimental

data (Figure 1), although Bell et al. [1989] and Bell and Stafford [1992] note some

unresolved issues which do not affect the conclusions presented herein. Also shown

in Figure 1 is the Bell and Stafford [1992] partial cross section for photoionization

to the O+(4P) upper state of the 834-/_ transition, for which no measurements are

available.

Figure 2 shows the ratio of the new Bell and Stafford [1992] o+(4p) cross sec-

tion to the older results of Conway [1988] and Fennelly and Tort [1992]. The new

results are slightly smaller at wavelengths longwards of 300/_, where resonance struc-

ture in the theoretical calculations is evident. However, the Bell and Stafford [1992]

branching ratios for inner shell ionization to the 2s 2p 4 states increase with increas-

ing photon energy, whereas the older branching ratios are essentially constant below

300 /_. The partial cross section for photoionization to O+(4P) is significantly larger

at wavelengths below 250 /_ than has been assumed, the aeronomic consequences of

which are explored in this study.

The Conway [1988] and Fennelly and Tort [1992] 0 + partial cross sections are

virtually identical, since the same branching ratios were adopted, and since the ex-

perimental data used to normalize the latter [Angel and Samson, 1988] were in turn

normalized to those used in the former [Samson and Pareek, 1985]. The broad struc-



ture between120 - 200 /_ in Figure 2 results from scatter in the experimental data

used in the respective normalizations and also from slight systematic differences be-

tween the calculated and measured cross sections (Figure ,1). At wavelengths below

120 /_, the oscillations in the Fennelly and Tort [1992] results are a computational

artifact.

In addition to new calculations of the O(3p) photoionization cross sections, K. L.

Bell (private communication, 1992) has recently recalculated oscillator strengths and

transition probabilities (Table 1) for O + using the CIV3 configuration interaction

model [Hibbert, 1975}, updating the results presented by Bell et al. [1991] where

further details may be found. The newly calculated mean O+(4p) lifetime 1.25 × 10-gs

and total oscillator strength 0.275, with an expected accuracy of better than +10%

[Bell et al., 1991], compare very favorably with the values of (1.26 4- 0.10) × 10 -9 s

and 0.25 4-0.03 measured by Smith et al. [1971]. The values tabulated by Meier

[1991], attributed to Ho and Henry [1983], are actually based on the Smith et al.

[1971] experimental oscillator strength divided amongst the multiplet components

according to the statistical weights. Ho and Henry [1983] used CIV3 to calculate a

total oscillator strength of 0.233 using a smaller number of configuration interactions.

Morgan et al. [1993] have recently measured the photoabsorption cross section of
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N2near 834/_ at high (0.008-/_,)resolution. Shownin Figure 3 and listed in Table 1

are their measurementsusing an O+ emissionsource (triangles) at the positions of

the 04(4P) triplet lines. The measurementswererepeated overa broaderwavelength

range (solid lines) using a synchrotron source,in order to resolvethe N2 rotational

structure. As canbe seenfrom Figure 3, only the 4P3/2 834.47-/_ component under-

goes significant absorption by N2. While the new photoabsorption cross section for

this line (1/2 total weight) is in reasonable agreement with the low-resolution results

listed in the most recent tabulation by Fennelly and Tort [1992], the cross sections

for the 833.33 and 832.76-/1, components (Table 1) are smaller by one and two orders

of magnitude respectively.

To our knowledge, there are no recent high-resolution measurements of the pho-

toabsorption cross section of 02 near 834/_. The measurements of Hudson and Carter

reported by Hudson [1971] are shown in Figure 4. Also indicated in that figure are the

positions of the 834-_ triplet lines. Hudson [1971] cautions that use of the Matsunaga

and Watanabe [1967] 02 photoabsorption cross section (dashed line), recommended

by Fennelly and Tort [1992], will lead to a wrong attenuation profile for the 833.33-/_

component of the O+(4P) emission. However, as this line accounts for only 1/3 of

the total weight, the effect on the multiplet intensity is not large.



It is important to note here that for the 834.47-/_line, only absorption by N2 is

important, while for the 833.33 and 832.76-A components, only absorption by 02 is

significant' based on the present photoabsorption cross sections. A new measurement

of the 02 photoabsorption cross section at higher resolution is warranted. Also, it

should be noted that the laboratory measurements were performed at 300 K while in

the 100 - 200 km altitude region where absorption of 834-/_ emission is important,

the thermospheric temperature increases from 200 K to about 1000 K, depending

upon solar activity. Nevertheless, the measurements at 300 K provide reasonable fits

to the observations presented below, as most of the absorption occurs at the bottom

of this altitude region where the absorber densities are greatest and temperatures are

near 300 K.

Model Description

In the following sections, we assess the implications of the new atomic and molecular

parameters for the O + 834-/1, dayglow. Excitation rates computed using the old and

new photoionization cross sections are compared. Our model results then are com-

pared to rocket measurements of 834-A dayglow intensity profiles, and to a previous

analysis of the rocket data which inferred problems with the N2 photoabsorption cross
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section. The sensitivity of these results to the 0 + density profile is examined. We

then briefly discussimplications for extraction of O+ densitiesfrom satellite measure-

ments of the 834-/_ emission. Here, we summarize changesto our modelssincethe

analysisby Link et al. [1988b] of OI and N2 emissions measured on the same rocket

flights.

Photoionization and photoelectron production rates are computed [Link, 1992,

Appendix B] using the same solar EUV spectra adopted by Link et al. [1988b]. The

new calculations use the N2 and 02 photoabsorption and total photoionization cross

sections tabulated by Conway [1988]. These cross sections do not differ appreciably

from those of Fennelly and Tort [1992] except for N2 photoabsorption at wavelengths

longer than about 730/_, where the latter authors have performed a higher-resolution

discretization of the laboratory data. We have adopted the Fennelly and Tort [1992]

N2 values for wavelengths longer than the first ionization threshold (796/_). Partial

photoionization cross sections for N2 and O_ are taken from Conway [1988]. The cross

sections of Bell and Stafford [1992] have been adopted for atomic oxygen.

The present calculations of the 834-/_, intensity include the contribution from pho-

toelectron impact, which is calculated using the 2-stream Feautrier transport model

of Link [1992] for energies up to 355 eV. The Zip/et al. [1985] cross section for

electron impact ionization of O(ap) to O+(4p) is used here. The angle-averaged,
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non-isothermal,partial frequency redistribution radiative transfer model of Gladstone

[1988] described by Link et al. [1988a] is used to calculate resonance scattering and

pure absorption of 834-/_ photons originating from photoionization, photoelectron im-

pact, and scattering of solar 834-/_ radiation. The latter is calculated by apportioning

26% of the solar 834-/_ irradiance, a blend of OI and OII lines, to O + [Meier et al.,

1990]. Parameters appearing in the radiative transfer calculation are summarized in

Table 1. These are: the line center wavelength [Eviksson, 1987], cross sections for pho-

toabsorption by N2 [Morgan et al., 1993], 02 [Hudson, 1971] and O [Bell and Stafford,

1992], OI oscillator strengths and transition coefficients (K. L. Bell, private communi-

cation, 1992), scattering cross sections (calculated from the new oscillator strengths)

and Voigt parameters at a reference temperature of 1000 K, and the Rayleigh fraction

of the scattering phase function [Chandrasekhar, 1960, p. 52].

We have compared the results using our new models and cross sections to the

calculations published by Link et al. [1988b]. The only notable (but minor) difference

in computed OI and N2 intensities arises from our use of MSIS-86 [Hedin, 1987],

instead of MSIS-83 [Hedin, 1983], in specifying the thermospheric composition and

temperature. Photoelectron fluxes calculated using the old and new photoabsorption

and photoionization cross sections are experimentally indistinguishable. We have also

compared the isothermal, complete frequency redistribution approximation employed
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in previous analysesof the 834-/_ dayglow to the non-isothermal, partial frequency

redistribution results, both calculated using the model of Gladstone [1988]. Due to

the 10w number of scatterings (line-center triplet optical depths of the order of 5 - 10),

there is no significant difference in 834-/_ intensities between these approximations.

Comparison with the Rocket Data

In this section, we assess the impact of the new cross sections and oscillator strengths

on calculations of the 834-/_ dayglow emission. Model results are compared to 834-A

dayglow intensities measured by two rocket experiments in 1978 [Gentieu et al., 1979;

Feldman et al., 1981] and 1980 [Gentieu et al., 1981, 1984]. Launch conditions and

EUV spectrometer characteristics are given in Table 2, where errors in longitude

and in the F10.7 solar activity index appearing in some previous analyses of these

data are corrected. Comparisons are presented here with the rocket measurements

at 90 ° zenith viewing angle. Link et al. [1988b] previously reported an analysis of OI

and N_ EUV - FUV emissions measured on these flights, and further details of the

experiments and model computations may be found therein.

Shown in Figure 5a are production rates calculated for the conditions of the 1978

launch. The dotted curve shows the production of 834-/_, emission by photoionization,
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calculatedusing the O+('P) crosssectionof Link et al. [1988a] (see previous section)

which is essentially the same as that of Conway [1988] and Fennelly and Tort [1992].

The dashed curve shows the result using the new Bell and Stafford [1992] photoion-

ization cross section. As mentioned previously (see Figure 2), the new cross section

is slightly smaller at wavelengths longwards of 300/_, resulting in a slight decrease in

834-/_ production in the F region. However, solar soft X-rays become relatively more

important with the increase in the cross section at shorter wavelengths, resulting in a

substantial increase in the 834-/_ production rate at E-region altitudes. This increase

is compounded when the photoelectron contribution is added (solid line). Interest-

ingly, adding photoelectrons almost exactly compensates for the slight decrease in

the F region, yielding a total production rate above 175 km almost identical to that

obtained using the old photoionization cross section and neglecting photoelectrons

(dotted curve).

In Figure 5b, intensities calculated for 90 ° viewing angle using the old photoion-

ization cross section are compared to those computed using the new cross section

together with the additional photoelectron and solar resonance scattering sources.

As may be seen, the dramatic increase in the E-region 834-/_ production rate (Figure

5a) is mitigated by absorption by N2 and 02. Figure 5c shows the contributions of

photoionization, photoelectron impact, and resonance scattering of solar oiI 834-
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emission to the total multiplet intensity shown in Figure 5b (solid curve). As

can be seen, the photoelectron and solar line sources are not negligible above the

emission peak, contributing about 20 - 25% when viewing horizontally at altitudes

300 - 400 km.

Figure 6a shows a comparison of our model results to the 1978 rocket measure-

ments. Calculations were performed for two different model O + profiles (Figure fib)

obtained using the IRI-90 [Bilitza, 1990] and ICED [Tascione et al., 1988] empiri-

cal ionospheric models. These profiles were normalized to the peak electron density

(1.36 x 106 cm 3 at 281 km) measured by an ionosonde at White Sands at the time of

launch. We have assumed the 0 + and electron densities to be equal. Although this

assumption is not valid in the E and F_ regions, photoabsorption of 834-A photons by

N2 and 02 dominates resonance scattering by O + at these altitudes, as can be seen in

the similarity between the two computed intensity profiles. Given the uncertainty in

the topside plasma density, we consider the agreement with the rocket measurements

to be acceptable.

Figures 7a,b show corresponding results for the 1980 rocket. As no ionosonde

measurements are available for White Sands on that date, ICED and IRI-90 densities

were used. The O + density profile computed by Clea_ et al. [1989] in their analysis
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of thesesamedata yielded a peak density and altitude in good agreementwith the

IRI-90 result shown in Figure 7b. However,ionosondemeasurementsat Boulder gave

a peak electron density of 5.90x 105 cm 3 at 485 km, considerably different from the

computed profiles. Nevertheless, we obtain a reasonable fit to the 834-/_ measure-

ments (Figure 7a). The model results appear to be in slightly better agreement with

the downleg data than with the upleg above 200 km. We slightly overestimate the

observed intensity, as was the case for the photoelectron-excited OI 1356-A and N2

LBH emissions reported by Link et al. [1988b]. A small reduction in the model solar

EUV irradiance would ameliorate this simultaneous overestimate of the OI, OII, and

N2 intensities.

Comparison with Previous Calculations

The 1978 rocket measurements discussed in the preceding section were first analyzed

by Feldman et al. [1981]. The model calculations were later revised by Cleary et al.

[1989], who also examined the 1980 data. Normalizing their computed intensities

to match the rocket data above 200 km, C?eary et al. [1989] found that the shape of

their profiles did not agree with the observations, with the model underestimating the

observed intensities at lower altitudes. In order to remedy this situation, Cleary et al.
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[1989]postulated a decreaseby an order of magnitude in the photoabsorption cross

section of N2 reported by Hudson and Carter [1969]. Another possibility, an increase

in the solar EUV flux below 200/_, was discounted due to the agreement obtained by

Morrison and Meier [1988] and by Link el al. [1988b] with OI and N_ EUV - FUV

airglow measured on the same rockets. Here, we have obtained agreement with the

rocket 834-/_ measurements without requiring a reduction in the N2 photoabsorption

cross section.

We briefly discuss the differences between the present results and those of Cleary

et al. [1989]. For photoionization of atomic oxygen, Cleary el al. [1989] used the total

cross section of Samson and Pareek [1985] and the branching ratios of Henry [1967].

A total oscillator strength of 0.43 Wiese et al. [1966] was adopted. The difference

in the adopted oscillator strengths does not appreciably affect the intensities for the

rocket viewing geometry. The isothermal, complete frequency redistribution code

described by Strickland and Anderson [1983] and Anderson and Meier [1985] was

used to calculate multiple scattering of 834-/_ photons by Cleary et al. [1989].

We both used the Hinteregger et al. [1981] model to specify the solar EUV irradi-

ance although in the present case, we [Link et al., 1988b] supplanted the model values

with AE-E satellite measurements obtained from the SC#21OBS [Hinteregger el al.,

1981] daily summary of selected wavelength groups. Cleary el al. [1989] scaled the
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model solar irradiances by factors of 1.3 (1978) and 0.9 (1980), for consistencywith

Morrison and Meier [1988]. We have used MSIS-86 [Hedin, 1987] to specify thermo-

spheric composition, while Clear vet al. [1989] used MSIS-83 [Hedin, 1983] with the

model atomic oxygen abundance scaled by a factor of 0.7 in the 1980 case, again for

consistency with Morrison and Meier [1988]. Intensities computed by Cleary et al.

[1989] for the 1980 case were scaled upwards by a factor of 1.15 in order to match

the observations above 200 km. The normalization factor for the 1978 case was not

stated.

We do not fully understand the differences in the shape of the 834-/_ emission

intensity profiles determined by Clear vet al. [1989] and those presented here. Cleary

et al. [1989] underestimated the emission intensities below 200 km, which they sug-

gested may be due to problems with the N2 photoabsorption cross section. The recent

measurements of Morgan et al. [1993] show that this is not the case. As can be seen

from Figure 5b, using the new photoionization cross section [Bell and Stafford, 1992]

and including the photoelectron contribution does not resolve this problem, since

absorption masks the differences in the computed excitation rate profiles. Another

possibility is the following. An error has been found (R.. R. Meier, private commu-

nication, 1990) in the statistical weights of the 832 and 833-tk lines in the code (D.

J. Strickland, unpublished) used by C-'leary et al. [1989] to calculate the total triplet
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excitation rate such that theseare 1/2 of the correct weights. As thesecomponents

undergo relatively little absorption by N2 comparedto the 834-A line, the shape of

the loW-altitudeprofiles will be distorted, and the overall intensities will be underes-

timated.

In the 1978case,we fit the 834-/_.data (Figure 6a) using the Hinteregger et al.

[1981] solar flux. However, Link et al. [1988b] and Morrison and Meier [1988] required

increases by factors of 1.5 and 1.3 respectively in the photoelectron production rate

in order to fit the OI and N2 LBH intensities measured on the same rocket. The

reasons for this discrepancy between the 1978 834-/_ and the photoelectron-excited

OI and N2 emissions is not clear. No substantial adjustment to the solar EUV or

photoelectron production rate is required to fit the 1980 834-A or OI and N2 emissions.

Although the EUV 834-/_ and the FUV OI and N2 emissions were measured by

different spectrometers, we do not believe this to be a problem since within the region

of wavelength overlap, the observed HI Ly_ intensities agreed to within 40£ [Gentieu

et al., 1979]. The difference between the Link et al. [1988b] and the Morrison and

Meier [1988] solar EUV adjustment is due to differences in the adopted OI 1356-

/_ excitation cross sections, in the adopted solar EUV spectra, and in the adopted

atomic oxygen abundances. A detailed examination of the models and cross sections

used in these studies is now in progress, and the results will be reported in a future
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publication.

Conclusions

The 834-/_ dayglow now appears to be well-understood. The photoionization cross

sections of Bell and Stafford [1992], the N2 photoabsorption cross sections of Morgan

et al. [1992], and the O + oscillator strengths and transition probabilities of Bell (pr/-

vate communication, 1992) produce agreement with the 1978 and 1980 834-/_ rocket

airglow measurements. The revised photoionization and photoabsorption cross sec-

tions and neglect of photoelectrons have no significant impact on remote sensing

of ionospheric plasma densities by satellite. The lower oscillator strengths indicate

that the 834-A emission undergoes less scattering by ionospheric (or magnetospheric)

O+(4S °) ions than originally estimated.
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Table 2. Experiment Parameters

Launch Conditions

NASA Rocket 25.029 GA 25.046 CE

Launch Date January 9, 1978 June 27, 1980

Local Time 1300 MST 1300 MDT

Latitude 32.4 ° N

Longitude 106.3 ° W

F10.7 100.3 212.6

Flo.r (previous day) 106.3 226.3

Flo.7 115.9 201.4

Ap 23 3

Solar Zenith Angle 55.6 ° 9.3 °

Too (MSIS-86) 974.7 K 1385.8 K

EUV Spectrometer Characteristics

Wavelength Range

Resolution

Field of View

Calibration Uncertainty

530 - 1250/_.

8A 3.5A
10° x 10° 8° x 8°

4-20% 4-30%



List of Figures

Fig. 1 Cross section for photoionization of O(3p). The upper and lower curves are respec-

tively the total and 0+(45 '°) cross sections calculated by Bell and 5"tafford [1992]. The

symbols show measurements of the total cross section by Samson et al.

Fig. 2 Ratio of the Bell and Stafford [1992] 0+(45' °) cross section to values tabulated by

Conway [1988] and Fennelly and Tort [1992].

Fig. 3 The photoabsorption cross section of N2 near 834/_ [Morgan et aL, 1993]. Triangles

indicate the more accurate O + emission source measurements at the 834-/_ triplet compo-

nents; solid fines show synchrotron measurements of the N2 rotational structure. Estimated

error bars on the emission measurements are smaller than the triangles in panels (a) and

(b).

Fig. 4 The photoabsorption cross section of 02 near 834 _ measured by (solid line) Hudson

and Carter [Hudson, 1971] and by (dashed line) Matsunaga and Watanabe [1967]. Also

indicated are the positions of the OII 834-/_ triplet lines.



Fig. 5 (a) Calculated 834-/_ excitation rates: (dotted line) photoionization only, using

the HenrF [1967] branching ratios, (dashed line) photoionization only, using the Bell and

Stafford [1992] cross section, and (solid line) adding photoelectron impact excitation and

solar resonance scattering to the latter, mbox(b) Intensities computed from (a) for 90 °

zenith viewing angle. (c) Contributions to the total intensity.

Fig. 6 (a) Model ionosphere profiles used to calculate resonance scattering of 834-/t_ emis-

sion for the 1978 case. The profiles are scaled to the peak density measured by ionosonde.

(b) Intensities computed for 90 ° zenith viewing angle, using the profiles given in (a), com-

pared to the rocket measurements.

Fig. 7 (a) Model ionosphere profiles used to calculate resonance scattering of 834-_ emission

for the 1980 case. The model profiles are not scaled. (b) Intensities computed for 90° zenith

viewing angle, using the proftles given in (a), compared to the rocket measurements.
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Abstract. This study examines the problem of determining F-region electron den-

sities from satellite limb scans of the O + 834-A emission. It is shown that electron

density profiles inferred from limb scans are not necessarily unique; estimates of N,,,F2

and h,.,,F2 can vary by at least a factor of two and 50 km respectively.

Introduction

Link et al. [1993] examined the production of O+(282 2p 3 4S° ,... 282p4 4p) 834-A

triplet emission in the dayglow. Using new calculations of O + partial photoionization

cross sections [Bell and Stafford, 1992] and oscillator strengths (K. L. Bell, private

communication, 1992), and a new laboratory measurement [Morgan et al. 1993], of

the rotationally-resolved N2 photoabsorption cross section near 834 A, Link et al.

[1993] obtained agreement with rocket measurements of the 834-_ emission in" 1978

[Gentieu et al., 1979] and 1980 [Gentieu et al., 1984]. Using the ICED [Taseione et al.,

1988] and IRI-90 [Bilitza, 1990] empirical models to specify the ionospheric electron

density (scaled upwards to match ionosonde measurements), Link et al. [1993] noted

a lack of sensitivity to the adopted electron density profiles for the rockets viewing

horizontally below 250 km. In this note, we explore the sensitivity of the 834-_

emission to the electron density profile for satellite viewing geometries.

Kumar et al. [1983] and McCoy et al. [1985] examined the dependence of the 834-



/_, emission on the O + distribution, comparing their model results to 834-/_ intensities

measured by the STP78-1 satellite from 600 km altitude. Using analytic pararneteri-

zations of O + profiles, these studies investigated the sensitivity of the 834-]k emission

to N,,,F2 (peak plasma density), h,,,F2 (peak altitude), and Hp (plasma scale height).

Each parameter was varied individually, while the other two were kept fixed. McCoy

et al. [1985] also considered the case of a 300 km orbit. Meier [1991, Section 5.2]

updated the methodology using a newer photoionization cross section and a smaller

total oscillator strength. Results were presented for a satellite altitude 850 kin. These

studies concluded that it is possibleto infer the O + distribution from satellite zenith

angle scans of the 834-A intensity. We wish to point out that O + profiles determined

in this manner are not necessarily unique.

Results and Discussion

Calculations are presented below for the two electron density profiles shown in

Figure 1. We assume that the O + and electron densities are equal, a reasonable

assumption in the F-region. The ICED curve (dotted line) is the same as that of

Link et al. [1993] for the 1978 case, while the corresponding IRI-90 curve (solid line)

has been arbitrarily adjusted in magnitude here for the sake of argument. The ICED

and IRI-90 profiles peak at 300 and 250 km respectively, and differ in peak magnitude

2



by a factor of 2. The 834-/_excitation rates are thosecalculated by Link et al. [1993]

for the 1978 rocket conditions (Flo.z = 100.3). Production of 834-A emission by

photoionization and photoelectron impact on atomic oxygen, and resonance scattering

of solar 834-/_ emission, are included in our model.

In Figure 2, we show 834-/_ limb intensities calculated at four satellite altitudes

using the electron density profiles of Figure 1. The tangent altitude scale here was

selected to correspond to the zenith viewing angle range of 100 ° - 120 ° to be employed

on an upcoming mission with an 850 km orbit. For this orbit, the computed limb

intensity profiles are identical to within achievable calibration uncertainties, differing

by less than 3% below 650 km. However, N,_F_ and h,_F_ differ by a factor of 2

and 50 km respectively. Hp also differs. The 600 km (STP78-1) orbit of Figure 2

fares little better. The _<4% difference in the calculated limb profiles is weil within

the measurement uncertainty of the STP78-1 EUV spectrometer (see Figure 14 of

McCoy et al. [1985]). The actual scatter in the STP78-1 data indicates that the

uncertainties in derived electron densities will be worse than the factor of 2 found here

for ideal noise-free profiles. The 450 and 300 km profiles are qualitatively similar. The

maximum difference in limb profiles is about 5%. Note that the maximum tangent

altitudes in this figure extend up to the observation point.



The sameresults are shownin Figure 3 for a wider range of look angles. For the

850 km orbit, the limb profiles differ above 105" due to the difference in scale height of

the electron density profiles above 800 km. (The electron densities are extrapolated

to infinity in our model). For the 600 and 450 km orbits, the uplooking limb profiles

are very similar for ICED and IRI-90 cases. Most of the contribution to the 834-/_

intensity comes from near the observation point where the ICED and IRI-90 electron

densities are comparable. The 300 km orbit of Figure 3 shows perhaps the largest

difference in shape of the limb profiles, but this difference is still <10% over the range

of observing angles plotted. This large a difference is due to the fortuitous placement

of the orbit at the peak of one of the profiles (ICED) of Figure 1, emphasizing the

difference between the two. For the other altitudes, the location of the limb intensity

peak differs little in Figures 2 and 3 for the two electron density profiles, although

h,,,F2 differs by 50 km for these profiles.

The question arises of why the previous studies concluded that the 834-/_ emission

profile is a sensitive indicator of ionospheric electron densities. We believe that this

is due to the fact that in these parametric studies, each parameter (h,_F2, N_F2, lip)

was varied independently. In reality, these parameters are not independent. For

example, the ionospheric response to variations in neutral exospheric temperature is

changes in both peak altitude h,_F2 and in scale height Hp. As h,,,F2 increases, so



does Hp, in general. Figures 91 and 93 of Meier [1991] show that the effects of these

changes on 834-/_ limb profiles largely cancel each other for zenith viewing angles

greater than about 90 ° (downlooking). It is for this reason that the electron density

profiles of Figure 1 produce such similar 834-/_ limb profiles shown in Figure 2.

Finally, the previous studies cited above suggested that resonance scattering of

solar 834-/_ emission is a negligible source of airglow 834-/_ emission. Our results

(Figure 4) show that it may contribute up to about 27% of the uplooking 834-A

intensity for the 850 km orbit. Without simultaneous measurement of the O + solar

834-/_ irradiance, it may be difficult to derive accurate electron density profiles from

uplooking satellite 834-A airglow measurements. The solar emission near 834 _ is a

blend of O + and O ++ multiplet lines, presenting additional complications [Meier et

al., 1991] which have been taken into account in the calculations presented here [Link

et al. 1993].

Conclusions

The present results suggest that there may be difficulties in extracting a unique

combination of (NmF2, h,_F2, Hp) from 834-/_, limb scans. In a realistic situation,

experimenters must also contend with pointing errors, finite fields-of-view, calibration

uncertainties, and statistical noise, suggesting that the uncertainties in the derived

5



NmF2 may even be larger than the factor of 2 found here. Our results also suggest that

no matter how small the instrument field-of-view, even a 50 km difference in h,,,F2

cannot be resolved, at least for the two electron density profiles considered here.

Any uncertainties in the 834-/_ excitation source (the ionizing solar EUV irradiance,

atomic oxygen abundance, solar 0 + 834-/_. irradiance) or absorber densities (02, N2)

will exacerbate these problems. These potential sources of uncertainty have not been

addressed in the available literature. Unfortunately, as shown by Link et al. [1993],

rocket measurements will not provide a resolution to these problems.

The uncertainties in h,,F2 and N,_F2 may even be larger than estimated from the

two profiles examined here; we have not examined any other profiles. However, it is

clear from the results presented here that it may not be possible to obtain accurate

ionospheric parameters (h,_F2, N,_F2, Hp) from measurements of 834-A limb p_:ofiles.
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List of Figures

Fig. 1 Electron density profiles used in the present study, scaled from the ICED and

IRI-90 models (see text).

Fig. 2 Model 834-/_ limb intensities at four altitudes. Tangent altitudes extend up to the

observation point.

Fig. 3 Model 834-/_. limb intensities at four altitudes, for zenith viewing angles of 70 ° -

120 ° .

Fig. 4 Contributions to the 834-/_ limb intensity at an altitude of 850 km. Indicated

are the photoionization plus photoelectron source (dotted curve), the solar scattering

contribution (dashed curve), and total intensity (solid curve).
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