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Summary

Lifetimes of low-altitude lunar orbits are studied

in this report to identify feasible parking orbits for
fllture lunar missions. The hmar missions currently

under stud,,', unlike tile Apollo missions, involve long

stay times. To determine orbital lifetimes of hmar

parking orbits, a model to describe the nonspherical
mass distribution of tile Moon must be adopted. A

short discussion of previous attempts to describe the

Moon's gravitational field is included, and emphasis

is placed on spherical harmonic-gravity models. A
subset of the fifth-order and fifth-degree hmar gravity

model was adopted in this investigation to generate
orbital li%time predictions. This simplified inodel

consists of the five gravitational coefficients J2, J3,

,15, C22, and Cal.

The primary perturlmtion on a low-altitude

(100 km or 300 kin) hmar parking orbit is tile Moon's
nonspherical gravity field. In this analysis, all other

tlerturl)ations (third body perturtmtions, solar radi-

ation pressure, etc.) are neglected. Although per-
turbations due to the Earth and tile Sun are not

negligible for hmar orbits, these effects are small com-

pared with the Moon's nonspherical potential for all
tile orbits considered in this analysis. By investi-

gating the effects that initial conditions have on the

subsequent lifetime of an orbit, a technique is intro-
duced t.o aid mission planners in the selection of hmar

parking orbits. In this investigation, tile lifetimes of

near-circular parking orbits, with various initial or-
bital elemenls and either lO0-km or 300-kin perihme

altitude, are analyzed for mission phmning purposes.

Orbital lifetilnes are heavily dependent on the
initial conditions of the orbit, particularly tile ini-

tial inclination and argument of l)erilune. The lu-

nar gravity model ulilized in this analysis for the
100-kin initial perihme altitude case yields lifetime

predictions of less than 40 days for some orbits, and

more than a year for others. Five distinct bands of
short-lifetime orbits appear a.s a function of the ini-
tial inclination: these bands are separated by bands

of long-lifetime orbits. Of particular interest is a set
of orbits with an inclination of approximately 70°;

this set of orbits yields hmg lifetimes and provides

the high latitude coverage that is desirable for vari-
ous nfissions. Thv .15 coefficient contributes the dom-

inant efl'eet ill perilune altitude decay and, therefore,
orbital lifetimes.

The methods presentetl in this report are suit-

able for incorporating the Moon's nonspherical grav-

itational effects into the preliminary design level for

fllture hmar mission planning. However, inconsisten-
cies and limitations, caused primarily by a lack of

satellite tracking data from the far side of the Moon,

arc inherent in all existing hmar gravity models. The

uncertainty in orbital lifetime predictions due t.o er-

rors it( the hmar gravity model is addressed through

tile use of sensitivity eoefficients. The uncertainty ill

the rate of perihlne altitude deeay that corresponds
to the uncertainty in the values of the coefficients

for the gravity model adopted in this analysis is pre-
sented. Also, plots of the values of the sensitivity

coefficients, which can be used to evaluate the uncer-

tainty ill perihme-altitude decay rates of each grav-
itational coefficient for any hmar gravity model, are

presented.

Introduction

President Bush's proposal of a Space Exploration

Initiative ill 1989 sparked a renewed interest in hmar

mission planning. The objectives outlined in this ini-
tiative include the establishnlent of a permanent hl-

nar outpost. (See refs. 1 and 2.) Lunar stay times on
the order of 30 to 180 days will be required for initial

det)loynlent and ongoing support of tile outpost. In

some analyses, preliminary nfissions will involve the
insertion of a satellite into a low-altitude hmar orbit

to inap the Moon's surface. Also in these analyses,
initial manned lnissions will require tim l)lacement

of a hmar transfer vehicle in a low-altitude parking

orbit. Ongoing support of an outpost nlight include

tile t)lacement of a st)ace station in low lunar ort)it.

Any of these nfissions will require spacecraft, to be in
lunar parking orbits for long periods of time. Pre-
vious orbital determination studies for hmar satel-
lites have indicated that the Moon's nonspherical

gravity field will have a great effect on the sul)-
sequent lifetime of the ort)it. (See refs. 3 to 5.) In
fact, a hmar-orbit space stati(m Ilropose(t by NASA

to be in a 60-n.mi. (111 kin) circular polar orbit
al)out tile Moon wa_s foun(t to impact the hmar sin'-

face in 140 days if no station-keeping altitude boost

maneuvers were performed. (See ref. 6.)

An important element involved ill establishing a
base on the Moon is the initial manned mission t.o
the hmar surface. As with the Apollo missions, the

hmar transfer vehicle (LTV) will be inserted into a

parking orbit about the Moon at arrival. Apollo mis-
sions restricted these parking orbits to circular, near-

equatorial orbits. However, the utilization of park-

ing orbits at all inclinations must be addressed to
a(:commodate tile vast array of hmar missions cur-

rently being proposed. Tile LTV will remain in this

parking orbit until a departure burn for return to
Earth is initiated. The transfer of cargo and person-

nel to tile hmar surface is accomplished by the de-

scent of a lunar lander from the parking orbit. Ascent
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Figure1.Earth-hnmrmissionsequence.(Fromref.1.)

and rendezvousof the landerwith tile LTV in the
parkingorbit initiatestheEarth-returnsequenceof
the mission.(Seefig. 1.) Therefore,longstaytimes
onthehnmrsurfacewill requirethat theLTV remain
in a parkingorbit for a longperiod. Tile mission
designermustaddressthevariationsill theorienta-
tionof theparkingorbit for thedurationof themis-
sionto establishthenecessaryAV requirelnents for

performing the rendezvous and trans-Earth injection
nmneuvers.

Since the Apollo nfissions involved only short stay

times at the Moon (on tile order of 1 to 3 clays), little

work was performed on predicting long term changes
ill the parking orbits of hmar modules. However, for

longer stay times (30 to 180 days), an accurate model

of the Moon's gravity field is required for preliminary

mission planning, especially with low-altitude park-

ing orbits. The need for long orbital lifetimes is a key

criterion in the process of selecting tk'asible parking
orbits. By investigating the effects that initial con-
ditions have on the subsequent lifetinte of an orbit, a

technique is introduced that will aid mission planners

ill the selection of humr parking orbits.

Because of the Moon's irregular internal structure
and surface shape, the lifetime of a hmar satellite or-

bit is constrained by the nonspherical nature of tile

Moon's gravity field. Ill tile present analysis, a sim-
plified gravitational model of tile Moon is introduced

that will enable mission planners to easily predict

long-term changes in lunar parking orbits at the pre-

liminary design lewq. The development of a simpli-
fied gravitational model with sufficient accuracy is

necessary to investigate orbital lifetimes for the large

number of initial orbital parameters possible. Uti-

lization of a simplified model will significantly reduce
the required comtmtational time needed to perform

this analysis. The effect of individual terms in grav-

ity models on orbital lifetimes is also addressed. By

investigating the effects of the lunar gravity nlodel on
the various parking orbits, tile parameters that are

Inost important in determining lifetime predictions
are identified.
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Nomenclature

Fourier coefficients

senfimajor axis, km

gravitational coefficients

infinitesinml nlass ckunent, kg

eccentricity

eccentricity averaged over period of

third body about central body

new vahle of eccentricity (after
integration)

Cold old vahle of eccentricity (before

integration)

G gravitational constant,

6.67 x 10 11 ma_kg l_s-2

h altitude, km

i inclination, deg

7 inclination averaged over period of

third body about central body, (leg

zonal gravitational coefficient, -C,,0

lunar transfer vehicle

inean anomaly, (leg

mass of Moon, 7.35 x 1022 kg

mean angular motion, tad/day

mean angular motion averaged over
period of third body about central

body, rad/day

n3 mean angular inotion of third body

about, central body, rad/day

associated Legendre polynonfial

position vector

radius of Moon, 1739 km

distance betwecn mass element and

exterior point, kin

r radius, km

rate of altitude decay, kin/day

t tirnc, days

At integration time step, 1 day

U gravitational potential

V'U gradient of gravitational potential



_y

AV

V

J', y, Z

A

/]

P

disturbing flmction (nonspherical

gravitational potential)

velocity increment, m/see

volume, km 3

rotation rate of Moon, 13-18°/day

position in Cartesian coordinates, km

velocity in Cartesian coordinates,

km/sec

longitude, deg

true anomaly, (leg

density, g/cm :_

standar(t deviation of gravitational
coefficient

Arbitrary z

mass dm = p d q/'
dist

p(r, _, )_)

O'i.p

0

d_ ) 31

cd

Subscripts:

7l

P

variance in perihme altitude decay

rate, kin/day

latitude, (leg

h)ngitude of ascending node, deg

inertial node longitude, deg

selenographic node hmgitude, (leg

d_ contribution for C31 term(tt

argument of perihme, deg

argunmnt of perilune averaged over

period of third body at)out central

body, deg

order of gravitational coefficient

degree of gravitational coefficient

perihme

Background

Gravitational Potential Theory and

Resulting Perturbations

To determine the orbital lifetime of a satellite, the

gravitational field of the attracting body must first

be described. Since gravity is a conservative force,

the gravitational field of a body can be represented

by a potential function. A solution for the form of
the potential of a body can be obtained in terms of

a mass integral definition or by finding a solution

to Laplace's equation. In tile first approach (refs. 7

and 8), infinitesimal mass elements are integrated
over tile entire body to describe the potential at

Figure 2. Solution for potential of a body using a ma_ss

integral definition.

an exterior t)oint, p(r, 0, A), where r is tile radial

distance t)etween the point and tile origin, and 0
and A are the latitude and longitu(te of the l)oint

(fig. 2) as follows:

B fB dmu(r, o, ;_) = dU = C
ody • ody 7_

= G; P(r'O'A) dVI,,),b, 7-_ ( 1 )

where 7_ is the distance t)etween the mass element

and the exterior point p, p is the density function

of the t)ody, and V is tile volume of tile body. Tile

2 term is expanded in a Legendre polynomial series.
and the addition theorem for Legendre associated

polynomials is used to write the potential in the form

U = _ \_] Pm,_(sinO)
r_=0 m (1

x [A,,,,, cos (mA) + Bin,, sin (,,,A)] (2)

This spherical harmonic expansion of the potential
flmction can also be obtained by using a separation-

of-variables nlethod to solve Laplace's equation. This

approach is outlined in reference 9.

The A00 term represents tile uniform spherical po-

tential contribution _. Assuming that the origin of

3



thecoordinatesystemisat thecenterof massof the
body,thenA10 = All = Bll = 0. By also introduc-

the variables C,,, = _ and &,,,, = _. theing

potential can be written in tile traditional form as
fi)lk)ws:

U G.M 1 + E P,,,,(sin cO)
F

1_=2 m =0

× [C,,,,, cos (mA) + S,,,t sin (mAll }
(3)

If the density function of tile body is known, the wdue
of the coefficients Cm_ and Hnm can be determin(:d

by integration of the appropriate mass integrals over

the vohnne of tile bo(ly. In practice, since the

density flmetion is not known, the values of the C,m

and b)tm coefficients are determined empirically by
tracking satellites orbiting the body. Using statistical

methods, the I)est set of C,_m an(l S_m coefficients

that descril)e the orbit are deternlined. (See section
"Lunar Gravity Models.")

'I'll(' disturbing function V, defined as V-

U (;v/ contains th(' nonspheri('al gravitatiolml

contritmtion t() t|w potential. This nonst)herical
gravitational contribution arises from the non-

spherical mass or density distribution of the t)ody.
The net effect of this nonuniformity is tile creation

of a small disturbance force oil an ort)iting body;

this disturbanee causes a change in tile orbital ele-

lneIlts over time. Th(, Ira grange planetary equations

(ref. 10) d('s('ribe the eff(wts of the disturbing func-

tion on an orl)iting bo(ty as follows (the tt term in

eq. (.lf) is a result ()f the (;_ term):

,t,, ,2dt - ml \i)M (4a)

dc 1 - ,,20V (1 - _2) 1/20V
dt

(tt

di

dt

n.2¢ ' i)M ') 0_'

(I #2) 1/'2 (i)V)m12c \ 0c

c,,s 
.,,2(1 +2)I/2sini k. Oi ,,I

(o,:)
no 2(1-('2)-l/2sin/

_ : :ov 
N.(/2 (1 -- r 2) 1/2 sill i \ _-]

(4b)

(4c)

(4d)

d_7 = ha2(1 _ e2)l/2sin/ Oi/ (4e)

dt - n -- - -- (4f)

These equations are tile result of a direct coordi-

nate transformation of tile equations of motion from

Cartesian coordinates (x, y, z, _, .0, +.) to the six clas-

sical orbital elements (a, el, i, _L c_,, M). Once tile
mmst)herical gravitational contribution of the l)oten-

tial V is defined, the partial derivatives required for

the solution of the Lagrange planetary equations can
be evaluated; this evahmtion (mables the orbit of the

spacecraft to be determin(:d. The r(:sulting equations

for several of tile nonspherieal potential terms are

contained in at)pendix A. These first-order analyti-

cal equations arc derived with an averaging technique
that involves integration of the short-p(_riod effects in

the disturbing function. (See refs. 3 and 11.)

Mass Concentrations--An Alternative

Approach

The spherical harmonic expression for the t)otcn-

tial (eq. (3)) is very useflll for descrit)ing gravitational

fields that vary only slightly from a st)herical field in
a smooth manner, such as for the Earth. A (h'tailed

description of the EartlFs potential is obtained with

only a few harmonic terms. The Moon is smaller and

less massive than the Earth; tlwr(_fore, it ('an supp()rt

more stress per unit mass and has the capabili(y to
possess greater gravitational anomalies than does the

Earth. Because of its irregular internal structure and

surface shape, the Moon has a very comI)li('ate(l grav-

itational field. As a result of these prot)erties, the
Moon's gravitational field cannot be deserit)ed with

only a few terms.

Several problems are encountered when a spheri-

cal harmonic expansion of tile potential is used. ()tic

problem is the slow convergence of the expansion for
R is slightly lesspoints near the ]mmr surface, where 7

than one. F_)r (.his reason, lllally gravitational co-

etih:ients are required to d(:scribe th(, orbit of a low-

altitude satellite. Also, spherical harmonic expan-

sions are unable to (lescribe localized gravitational
anomalies unless a large nmnb(:r of coefficients are

introduc.ed; they arc more appropriate for (lescril)ing
an average gravitational field. For examt)le, all ex-

pansion on the order of 180 (m = 180, see eq. (3)) is

necessary to describe a local anomaly that subtends
an angle of 1°. (See ref. 12.) Difficulties in obtain-

ing values of Cm, and S,,, for the Moon have also



beenencounteredfor reasonsthat arediscussedin
tile section"LunarGravityModels."

Tileexistenceofhmarmassconcentrations(mas-
cons)waspostulatedin referencela. Theseare lo-
calizedregionsof higherthanaveragedensitythat
producemeasurablegravityanomalies.A gravity
anomalyis definedmstile residualgravityeffectafter
tile attractionof a referencet)ody(suchasa homo-
geneousspheroid,rotationalellipsoid,triaxialellip-
soid,etc.) is subtractedfromtile measuredgravity
data (ref. 14). This gravityanomalyis a resultof
tile mascon'shigherdensity(masconshavea den-
sity'of approximately3.3g/cma, whereassurround-
ingrockshaveanaveragedensityofonly3.0g/cm:_).
Masconsconstitutebetween0.01and0.03percent
of theMoon'smass,andtheir locationiseoincident
with thelocationof lunarseas(inaria). (Seeref. 12.)
Thesegravitationalallomaliesare flmnd primarily
alongtheequatoroil thenearsideof theMoon.

Attemptshavebeenmadet.ouseinasconmod-
elsto describethe featuresof orbital trackingdata.
Modelsthat distrit)utemasconst)elowthehmarsur-
faceratherthanon the surface(ref. 15)andmod-
elsthat treat masconsascirculardisksratherthan
pointmasses(ref. 16)havehadinuehmoresuccess.
A modelwasalsodevelopedthat treatedthemascon
asa thirdbodyto investigatetheshort-period,long-
period,and seculareffectsof masconsoil the orbit.
of a spacecraft.(Seeref. 17.) Tile Inainrestriction
of this latter approachis that it is notappliealfleto
low-altitudesatellites.

Oneadvantageof a sphericalharmonicmodelfor
lifetimestudiesis that it canbeusedto providea
relativelysimpleanalyticalapproach.Sinceaspher-
icaltlarmonicdescriptionallowsoneto averageshort-
periodeffects(perturbationsthat result from the
variationofthemeananomalyM around the orbit),

these averaging effects can be accounted for over the

period of a few orbits. Averaging effects for mascon

nlodels (:all be developed by mapping the nlascons

to a set of spherical harnlonic coefficients. However,
this process effectively eliminates the advantage of

tile mascon approach, because a large number of co-

efficients are needed to accurately model the effects
of nlascons.

An alternative nlethod was developed by Ananda

to construct a disturbing potential in terms of var-
ious parameters of tile mascons and the orbital el-

ements. (See ref. 18.) This potential is averaged

over an orbit to elinfinate the short-period terms.

Much of this integration cannot be performed analyt-

ically. Tile averaged potential is determined by nu-

merically evaluating these expressions with Gaussian

quadrature formulas that require considerable con>

puter time. Once the potential is defined, tile average
rates of the mean orbital elements can be determined

by evahmting tile derivatives in the Lagrange plane-
tary equations (eqs. (4)). Work is being conducted

to develop a method that allows for the application
of mascon models without the sacrifice of computer

time. (See ref. 19.)

Hybrid models, with both spherical harmonics
and mascons, have also been proposed (refs. 16

and 20). Purely inascon nlodels, with a large number

of mascons (oil the order of 100), require significant
computational time. Using a few low-degree spher-
ical harmonic terms to describe global nonspherical
contributions decreases the number of mascons re-

quired to give a complete description of the hmar

gravity fieht. The function of the mascons in a hy-
brid model is only to describe localized gravitational

effects. This inay be the most reasonable gravita-
tional model to use, because it combines the benefits

of spherical harmonic models and the mascon ap-

proach. However, the application of a hybrid model
on the preliminary mission design level may prow' to

be infeasible because of the excessive computer time

demanded by the additional complexity associated
with the nmscons.

A spherical harmonic model was adopted for the

study of orbital lifetimes ill this investigation because
of the availability of these models. Few mascon mod-

els are available, and methods for including tile ef-

fects of these anomalies in long-term orbital predic-
tions have not been widely developed. Also, sinee

lifetime studies involve averaging effects of the en-

tire gravitational field of tile Moon, a spherical har-

monic model seems to be more approt)riate for this

application. Mascon models are more appropriate
for situations in which inforInation about localized

fiehts is desired. Some applications might include

performing a maneuver with a low-altitude satellite

above a gravitational anomaly, or calculation of de-
scent and a_scent trajectories to and from a landing

site near a mascon. If localized gravitational effects

are found that cause significant changes in tile or-

bital elements (either as single events or integrated

over time), spherical harlnonic representations of the

hmar gravity fieM will need to be abandoned in favor
of mascon models.

Lunar Gravity Models

Derivation of models. Spherical harmonic lu-

nar gravity models contain values of the gravita-
tional coefficients Cnm and Sr, m that define tile non-

spherical contributions to the potential field. (See

5
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e( t. (3).) There are three types of harmonic co-

efficients; these types are defined by the vahms of

the subscripts n and m. For zonal harmonic co-

efficients, m = 0 (Cn0, often denoted by -JT_)- These
coefficients describe an axially symmetric potential

(in this case, tim spin axis of the Moon) indepen-

dent of Ill(, hmgitude at which tile potential is mea-
sure(t. Cravity models for the Earth consisting solely

of zonal harmonics yield good approximations to the

actual field. However, a longitu(te dependence in the
Moon's gravity field motivates the nee(t to include

other tyt)es of coefficients in hlnar models. This de-

pen(tence is introduced by the presence of sectorial
and tesseral harmoific coefficients. Sectorial harmon-

ics (where n = m ¢ 0) give rise to zero values of the

t)otential (inly along meridians of longitude, wheretrs
tesseral harmonics (where n ¢ m, and m and n are

nonzero) also give rise to zero values along parallels

of latitude. (See fig. 3, from ref. 21.) Once the C,m
and S_m_ coefficients are specified, the potential is

COml)let('ly determined as a sut)erposition of the
individual harmonic terms.

Further insight into the physical significance of

the in(tividual gravitational-coefficient values can be

ot)tained by interpreting the coefficients as surface

deviations from a homogeneous sphere. The .12 gravi_
tati(mal coefficient analytically represents the oblate-

ness of a body (this equatorial "bulge," coinmon

to all rotating bodies, arises fl'om the "centrifugal

force" pro(luted 1)y the body's rotation about its
axis). The C22 term describes the ellipsoidal nature

(the equatorial ellipticity) of a body, and the Ja co-

efficient models the nonspherical mass distribution

between the northern and southern hemispheres (the
body's "pear-like" shape). Higher degree gravita-
tional terms describe more localized distributions of

mass. Figure 4 (from ref. 22) illustrates the equi-

potential surfaces for the low-degree zonal harmon-

Figure 4. Geometrical shape of Legendre polynoinials cor-
responding to equit)otential surfaces for zonal harmon-

ics. The surfaces shown here are for positive wdues of

.l coetlieients. (From ref. 22.)

ics. The degree of the term determines the number of

lobes of its equipotential surface. As previously' men-

tioned, the zonal equipotential surfaces are indepen-

dent of longitude and model axially symmetric po-
tentials. The equipotential surfaces associated with

the sectorial and tcsseral harmonics (figs. 5 an(1 6)

are functions of both latitude and longitude (the

z-axis shown in the figures corresponds to the spin
axis of the Moon, and the t)ositive :r-axis is aligned

with the Moon-Earth direction). For sectorial and

tesseral harmonics, the order of the term rel)resents
the nmnber of lobes of a horizontal cross section

of its equipotential surface (corresl)on(ting to cos mA

and sin mA).

Vahms of the gravitational coefficients arc deter-

mined from radar tracking data of hmar satellites

and laser-ranging data measurements. (See ref. 2::I.)

With the Doppler nmtho(t, the radial velocity of the
satellite (the velocity component along the line of

sight from the tracking antenna to the spacecraft) is

determined from the difference in frequency between

the signal emitted by the satellite and the signal re-
ceived by Earth tracking stations. From these ve-

locity measurements, the radial acceleration can be

(tetermined. By attributing this acceleration of the

satellite to the gravitational field of the Moon, the

potential field (and therefore the value of the har-
monic coefficients) can be derived. These coefficients

are independent of the orbit of the spacecraft be-

ing tracked, because they describe tize fluctuations

in the gravitational field. However, in practice, the
estimated coefficients are (tependent on the altitudes

6
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and inclinations of the satellite data used to derive

the model. This dependence is a result of the limited

geographic distribution of the measurement set used

to compute the coefficients. All effects of the lunar

gravity field have not been included in a coefficient

model; a set of satellite data covering all regions of
the Moon is as yet unavailable. Also, the number

of terms included in tile gravitational model (the
maximum value of the index n) also influences the
estimated values of the coefficients.

Lunar laser-ranging data are obtained by mea-
suring the round-trip time of a laser pulse between

an Earth observatory and a retroreflector array on
the surface of the Moon. These measurements allow
the Earth-Moon distance to be determined within

fractions of a meter, precise enough to monitor the

physical librations of the Moon. By observing varia-

tions in the lunar rotation, values for the low-degree

harmonics (:an be determined. (See ref. 24.)

Limitations of existing models. There are

three major obstacles to nmking an accurate de-

termination of the Moon's gravitational field. (See
ref. 25.) First, as previously mentioned, the various

surtace and interior features make the Moon a very

complicated gravitational object, and therefore diffi-

cult to model with a simple mathematical represen-

tation. Further, gravitational models of high order
and degree may not be appropriate for orbital life-

time predictions at the present time, because there
is still uncertainty in the values of even some of the

lower coefficients, such aN J3. These uncertainties

may overshadow any attempt to adequately model

localized variations in the Moon's gravitational field

with higher coefficient gravity models.

Second, the range of inclinations and other orbital

parameters for which tracking data exist is quite lim-

ited. Ample tracking data exist for near-equatorial

orbits, ttowever, h)r midlatitude and near-polar in-
clinations, little tracking data are available. Since

efforts have been made to include only orbital data

with trajectories free of propulsive maneuvers (influ-

enced only by the force of gravity), the amount of

tracking data available is fllrther limited (ref. 26).
High-altitude orbits are ideal for determination of

the low-degree harmonic coefficients, because these

orbits are not sensitive to the effects of high-degree
harmonics. (See ref. 27.) However, most of the hmar

satellite tracking data available are for low-altitude
orbits. The last. U.S. satellites to orbit the Moon

were the Explorer probes in the mid-1970's. Little

new information about the Moon's gravitational field
has t)een ot)tained since then.

The inability of Earth-based stations to obtain

satellite tracking data as the spacecraft passes be-

hind the Moon is the third obstacle to developing
an accurate hmar gravitational model. Because of

libration of the Moon's orbit, 41 percent of the hmar

surface is never visible from the Earth (ref. 28). As

a result of this limitation in tracking data, gravita-
tional effects on the far side of the Moon cannot be

practically determined. The absence of a description
of the gravitational field on the far side of the Moon

remains as the greatest limitation to making accurate
predictions of orbital lib.'times for lunar satellites.

Current models available. Several lunar grav-

ity models have been constructed, based priniar-
ily on satellite tracking data, with the additional

use of lunar laser-ranging observations and ma_ss-
concentration models. Differences in the values of

the gravitational coefficients of these models occur
because of the selection of different satellite track-

ing data and the different methods used to process

these data. (See tables 1 and 2.) Coverage from

the Apollo satellites is limited to about 20 percent
of the hmar surface. (See ref. 29.) Tracking data

from Lunar Orbiter 4 and 5 are commonly used to

provide high-inclination information, while Apollo 15

and 16 subsatellite tracking data are used to provide
low-inclination intbrnmtion.

Six gravitational models were recently c()mt)ared
tg the Jet Propulsion Lal)oratory for the Lunar Ob-

server mission study. (So(.' ref. 30.) The Liu-Laing
model (ref. 31), constructed primarily from Dopt)ler
data of the five Lunar Ort)iter satellites, is an 8 x 8

(n x m denotes nth degree, ruth order, see eq. (3))
model with additional zonal harmonics up to de-
gree 15. This model differs froin other models in

that the values of the high-degree zonal harmonics

are larger than the value of the low-(tegree zonal

harmonics. The Ferrari 5 x 5 model (ref. 23), (h>
veloped from 9 days of Lunar Orbiter 4 data and

approximately 2200 lunar laser-ranging ol)servalions,

is an attemt)t to accurately determine the values
of the low-degree coefficients. A Ferrari 16 x 16

model (ref. 26) was also developed with Doppler

measurements from Lunar Orbiter 5 and Apollo 15
and 16 subsatellites. The Bills-Ferrari 16 x 16 model

(ref. 32) used the data sets of the Ferrari 5 × 5

and 16 x 16 models along with a model of approx-
imately 600 mascons. Akim (ref. 33) developed a

4 x 4 model with zonal coefficients ,Ls, .]fi, and .]7,

based on the Soviet Luna spacecraft. A Sagitov
16 x 16 model (ref. 34) also exists, based on data
used for the Ferrari 5 x 5 model, the Bills-Ferrari

model, and the Akim model, with additional (tata

from Apollo and a mascon model. As nmntioned
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previously, all six of these models are limited hy a

lack of tracking data for spacecraft on the far side of

the Moon and by a scarcity of low-altitude, high-
inclination data. Although these models generate

similar results for equatorial orbits, the results pre-

dicted by these models vary significantly for an ini-
tial 100-kin-altitude circular polar ori}it. (See fig. 7,

taken from ref. 35.)

Much debate currently remains as t.o which gra.v-

itational model provides the best predictions of or-
bital lifetimes for hmar satellites. In the present

analysis, the consequences of choosing a particular

gravitational model are not emphasized; the focus is
centered on the selection of the initial orbital param-

eters. The Ferrari 5 x 5 model (ref. 23) was chosen

for this study for several reasons. First, the computer

program used in this analysis (appendix B) is limited

to gravity mo{teIs of degree and order no larger than

eight. Second, this model provided a "worst case"
scenario for polar orbits, because this gravitational

model generated the shortest orl)itat lifetime predic-
tions in the JPL study. Therefore, this model may

overestimate the rate of decay in perihme altitude.

However, for mission design purposes, overestimation
of the effects due to the Moon's gravitational field is

more desirable than underestimation. A low-degree

model was also desired to avoid addressing the errors

and effects of the higher degree harmonics. Although

the low-degree model is incapable of xnodeling local-

ized gravitational anomalies, it provides a global de-
scription of the hmar gravity field that is adequate

for performing lifetime studies.

Analysis

The goal in this analysis is to illustrate the im-

pact. of the _.{oon's gravitational perturbations on
the lifetimes of low-altitude, near-circular parking or-

hits, and to identify orbits favorable for hmar out-

post. missions (orbits that have the longest orbital

lifetimes). A method is provided for mission plan-
ners to incort}orate nonspherical gravitational effects

in preliminary lunar analysis studies.

Effects of External Forces

The Lagrange t)lanetary equations presented in

equations (4a) to (4f) describe the changes in a satel-
lite orbit, due to forces that may be expressed in terms

of a potential. The equations in appendix A have

assumed a potential solely as a result of the hmar

gravitational field. To give a complete description
of the satellite inotion, all forces acting on the satel-
lit(.' nmst he taken into account. The absence of a

significant atmosI)here on the Moon eliminates any
need to consider drag effects. Forces that could affect

the satellite motion include solar radiation pressure

and perturl)ations from other bodies, particularly the
Earth an{t the Sun.

The influence of solar radiation pressure on a low-
altitude hmar satellite is examined in this report.

(See appendix B.) The resulting acceleration of a
satellite is a function of its mass. cross-sectional area,

and reflectivity coefficient. A mass of ].0.2 metric
tons and a cross-sectional area of 75 m 2 were chosen

as values for a hmar excursion vehicle; also, the

vehicle was assumed to be a t)erfect reflector. Solar

radiation pressure has the greatest effect on low-

inclination orbits, although these effects were small.
For a near-circular orbit with an initial altitude

of 300 kin, solar radiation caused a change in the

perihme altitu{le of less than 1 km over a period
of 180 clays. Unless a satellite has a large cross-
sectional area and small mass, solar radiation effects

are negligit)le.

Although t}oth the Earth and the Sun contribute

perturbation effects, the e.ffects due to the Earth arc
about 170 tiines larger than the effects due to the

Sun. (See ref. 36.) The average effects of a third body

9



on the eccentricity(the main parameterin orbital
lifetinmstudies)canbeexpressedas

dt S\ /

where tile bars denote variables that have been aver-

aged over the period of tim third body about the

central body and over the period of the satellite.

(See ref. 37.) The variable na represents the mean

angular motion of the third body about the central

body. From equation (5), it is apparent that third-
body tmrturbations have the greatest effect on eccen-

tricity for mid-eccentrMty (maximized for _ = 0.707)

and high-inclination satellite orbits. The average
value of w also strongly influences the effeels of the

third-body perturbations.

Using the program LUNLIFE with the Ferrari

5 x 5 gravity model, a near-circular, initial 300-km,

perihme-altitude polar orbit had a 20-kin-higher per-

ilune altitude after 180 clays when third-body per-
turbation effects were included. (See fig. 8.) For

an initial 100-kin perihme-altitude polar orbit, the

orbital lifi'time was 157 clays when third-body ef-

t'cots were included; the lifetime was only 144 dws
when Earth-Sun perturbation effects were neglected

(fig. 9). Although the effects of third-l)ody 1)ertur -

bations on orbital li%times may not be negligible for
all orbits, these effects are small for inost of the or-

|)its addressed in this investigation (because of the re-

striction of near-circular parking orbits). Therefore,
third-body pertm'lmtion effects were not included in

lhis analysis.
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Use of Orbital Elements for Lifetime
Studies

The Lagrangc planetary equations of motion

(eqs. (4a) to (4f)) are used for orbital lifetime stud-

ies, because they enable integration of tim classical

orbital elements (a, e, i, _, w, and M, see figs. 10
and 11). The mean anomaly :1i, defined as the mean

angular motion multiplied t)y the tim(, since peri-

center passage, is related to the true anomaly u. The

advantage of utilizing orbital elements as ot)t)osed to
Cartesian ('oordinates (defining the radius and ve-

locity vectors ()f the satellite as functions of x, y,

and z) is that very large integration time stei)s can

t)e used, because the orbital elements (excel)t for M)

change very little {)vet" eonse(:utive orbits conlpared
with a Cartesian description. Inlegration over large

time steps requires that the short-period effects be

average(t for lhe disturbing function in the Lagrange

equations. Time steps of 1 clay' were used to generate
the results in this analysis. To verify that 1-day time

steps were not too large to give inaccurate results,

test eases were run with the program LUNLIFE with

10-se(' time steps. The results generated by these
two different step sizes were nearly identical, within
0.01 percent.

Tile disadvantage of using a classical ort)ital-

eleinent description of the equations of motion in-

volves tim inal)ility to direetly a(tdress certain types

of orbits (e.g., circular, equatorial), because sonic
of the elements may not be defined. The classi-

cal orbital-element description does nol pose a sig-
nificant restriction in this study, as near-circular

(e = 0.05) and near-equatorial (i = 1°, and 179 ° )
orbits were addressed. (There is a set of orbital

10
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elements, referred to as equinoctial elements, that

can address circular and equatorial orbits. (See

refs. 30 and 38.) However, equinoctial elelnents are

utilized much less frequently than classical orbital

elements.)

Only three of the six orbital elements were moni-

tored in this analysis. Since the mean anomaly M is

used to describe tim position of the satellite within

the orbit, and not the shape or position of the orbit

itself, it need not be considered in determining orbital

lifetimes. The scmimajor axis experiences only short-

period variations, st) as it is integrated over the mean

anomaly for one period, its average rate of change is

zero. Short-period effects in the orbital elements are

observed with the program ASAP (Artificial Satellite

Analysis Program, ref. 39). The amplitude of short-

term variations is small (on the order of 1 km (figs. 12

anti 13) and has little effect on orbital lifetime pre-

dictions. Hence, the semimajor axis is treated as
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Figure 12. Sholt-l)eriod effects in s('mimajor axis. (Initial

conditions: i !)():_ _ __ ()c,. _ = 0 a, lit, _()0 kill: gr',tvity

model: 8 x 8 lrlulcatioll ()f Bills-Ferrari model.)
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Figure 13. Short-l)eriod effects in perihnle allitude. (Initial

conditions: i = 90 °, _ = 0 °, oa = 0 °, hi, = 30(I kin; gravity

model: 8 x 8 truncation of Bilts-Irerrari model.)

a constant in this analysis. Inclination is cyclical

and has variations typically on the or(ter of 1° ow_r

a 18(l-day t)eriod. (See fig. 14.) As with the scini-

major axis. the inclination can be treated as a con-

stant with little loss of accuracy (although changes

in incliImtion were inehlded in this analysis). The

remaining orbital elements that change significantly

over the time periods studied in this analysis (other

than the mean anomaly) are eccentricity, longitude

of ascending node, and argument of perihme.

11
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Tile key' parameter in orbital lifetime studies is

the perihme altitude (or equivalently, the eccentric-

iCy, since the perihme altitude is a flmction of the

eccentricity). The lid of the satellite orbit is termi-

nated when the magnitude of the perilune radius of
the satellite falls t)elow the value of the average radius

of tile Moon; ttle satellite then impacts the surface.

The perihme radius is given as:

,-_,= _(1 - _,) ((5)

Simt)le differentiation, assunfing the semimajor axis a
relnains constant, yMds

Ar v = -_, Ac (7)

The rate of change in 1)erilune altitude is directly

proportional to tilt' rate of change in eccentricity.

Near-zero or negative rates of change (orbit becomes
more circular) in eccentricity emd)le orbital lifetimes

to be maximized. Since the rate of change in ec-

centricity is a fimction of initial inclination, longi-

tude of ascending node, and argmnent of perilune

(eqs. (A2b), (A3b), and (A5b)), these initial orbital
parameters directly affect the orbital lih_titnc. Per-

ihme altitude is also indirectly affected by the rates of

change in longitude of ascending node and argument

of perihme.

The initial orbital parameters were chosen to in-

chute many types of' parking orbits that would be

of interest to mission planners. The initial eccen-

tricity was fixed at 0.05, small enough for the orbit

to be considered nearly circular, yet large enough to

avoid any singularities in the computer program asso-
ciated with circular (zero-eccentricity) orbits. Circu-

lar parking orbits are attractive to nfission planners,

12

because they simplify phasing requirements for de-

scent to and ascent, from the hmar surface, and sim-

plify pha_sing requirements for an Earth-return burn

(although higher AV values are required to achi(.we

circular parking orbits). Circular parking orbits are
also generally preferred for mapping missions of the

Moon's surface. For this study, initial perilune alti-
tudes of 100 km and 300 kin, referenced to the mean

value of the radius of the Moon, were selected. Tile

specific inclination value of a parking orbit selected

for a particular mission will be heavily influenced by

the desired mission objectives and the location of lu-

nar landing sites. In this analysis, both direct and

retrograde orbits are addressed. Lifetime results were
first generated by varying initial values of longitude

of ascending node and argument of perilune over 360 °

for a specific initial value of inclination. Since orbital

lifetimes were weakly influenced by initial values of

longitude of ascending node (small effect of the sec-

torial and tesseral harmonics on lifetimes), lifetime
results were generated by varying initial values of in-

clination and argument of perihme fl)rfixed values of

initial longitude of ascending node.

Results and Discussion

Development of a Simplified Gravitational
Model

The need to analyze orbital lifetimes for a large

mmfl)er of initial orbital parameters motivated the
formulation of a simplified gravitational field inodel.

Although the program LUNLIFE was capabk' of gen-

erating the lifetime of a given orbit relatively quickly

with the Ferrari 5 x 5 gravita, tional inodel, excessive

eontputcr time (on the order of 100 hours) woul(1
have been required to generate the large nmnber of

results (lesired in this analysis. For example, t.o gen-

('.rate contour t)lots of lit>times versus initial argu-
ment of perihme and initial longitude of ascending

no(h' to a resolution of a 5 ° by 5 ° grid, the eval-

uation of at)proximately 5000 orbital lifetimes was

necessary. By neglecting many of the coefficients in

the Ferrari 5 x 5 model and using a simt)litied in-
tegration technique (a single-step integration of the

first-order equations of the orbital rates instead of a

multiple-step numerical integration of the complete

equations as given in ref. 40), a more ('tficient nmth()(t
was devised to predict orbital lifetimes. This metho(t

reduced tile required computation time by approxi-

mately two orders of magnitude without apprecia-

bly sacrificing accuracy (less than 5 t)ercent) in the
t)rediction of orbital lifetirnes.

Previous studies have attempted to apl)roximate
the Moon's gravitational field by using only a few



harmoniccoefficients.A four-coefficienthmargrav-
ity nlodelwasdevelopedin the 1960's(basedonLu-
narOrbitertrackingdata)forApollomissioncontrol.
(Seeref.3.) Thefornmlationof thissimplifiedmodel
wasnecessitatedbytherestrictionsof onboardcom-
putingcapabilitiesat.that time. Tile coefficients./2,
d3, C22, and C3l were selected for this model because

it was determined that they had the greatest effect
on the orbital elements. The model was lindted in its

design to acconunodate only initial orbital elements
similar to the Lunar Orbiter missions. A similar sin>

plified inodel that was developed for this analysis has

been validated for the entire range of values of initial

inclination, argument of perihme, and longitude of

ascending node.

A reduction in the number of conlputations also

allowed for the possibility of implenmnting optimiza-
tion routines to maximize orbital lifetimes. An

attempt was initially nlade to utilize optimization

methods for selecting tile initial orbital elements that

yielded maxinmm lifetimes. However, this at)proach
was deenled infeasible because of the highly non-

linear nature of tile problem. Tile optimization re-

sults were also (tependent on the ilfitial guess, be-

cause the orbital lifetimes objective flmction was

characterized by ninny h)cal Inttxinlllnl and nlininmm
vahles.

Several issues were taken into account when se-

lecting tile coefficients for the simplified hmar gravi-

tational model. First, an effort was made to retain all

the terms used in the Apollo mission control model.
Second, the numerical values of the coefficients were
exanfined to decide which ones could be eliminated.

(See table 1.) An attelnpt was inade to keep as many

zonal terms as possible, because they are responsi-
ble for secular effects and are therefore significant

in orbital lifetime studies (tile ,LI term w_us eventu-

ally discarded because of its small magnitude). Fi-

nally, the lower order coefficients were assumed (and

later verified) t.o have a greater effect, on the variation
in the orbital ele,nents than the higher order terms.

A sample case was selected and analyzed with the
fllll Ferrari 5 x 5 model. Individual coefficients were

discarded, and the smnple case was evahmted and

compared with tile full nlodel after each term was
elinlinated. All the S,.,_ terms were quickly elinli-

nated because of their small value. The higher order
C7,, terms were eliminated for the saine reason. The

final coefficients selected for the simplified model con-

sisted of the same terms as the Apollo mission control

model (,]'2, ,13, C22, and C31), with the addition of

the d,5 term. The values of these eoeffMents were

adopted directly from the Ferrari 5 x 5 model. An

attenlpt to eliminate the d5 term drastically changed

the lifetime results. This change indicated the need

to include tile ,J5 term when performing orbital life-

time predictions for long hmar stay times with the
Ferrari 5 x 5 model.

The orbital lifetime results generated with the

simplified five-coefficient model corresponded closely

to tile results generated with the Ferrari 5 x 5 model

(appendix C). Comparisons of the plots of the or-
bital elements versus tinle for the two models illus-

trate the higher resolution prediction capability of

Ferrari's model. (See fgs. 15 an(t 16.) Tile simpli-
fied model contains fewer coefficients to contribute

periodic effects and thus sinlplifies the shapes of the

graphs.
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Tile simplified five-coefficient gravity model was
an important tool for generating results quickly and

for simplifying tile interpretation of the final results.
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Sincefirst-orderanalyticalequationsfor theorbital
ratesarereadilyavailablein tile literature(eqs.(A1)
to (A5)),asimplesingle-stepintegrationschemecan
be use(twith theseequations. For example,the
integrationof eccentricityisp('rfl)rmt_dt)yusingthe
equation

(<)
,",,,,,,._ c,,i,t + \ dt/At (8)

where At represents the finRe-int.egration time step
dc

and _ represents the superposition of the eccentric-
ity rates of change contributed by each gravitational

coefficient (assumed to be constant over tim tiine

step At). Generating the major effects of the Ferrari

5 x 5 model with only a few coefficients also aided

in the interpretation of the results. Since first-order
equations existed for each coetficient in the simpli-

tied model, analytical methods could b(, apt)lied to

('xplain the effects of individual coefficients and the

sut)crpositio n ()If those effects.

Effects of Individual Gravitational
Coefficients

The gravitational coetficients ill the simplified

gravitational model give rise to both srcular and pe-
riodic effects. To first-order amdysis, secular effects

are produced only by the zonal harmonic tel'IllS. Both

the zonal (,12..]3, and ,]5) and lhe oil'-diagonal tcrnls
(()2, ('31) in this model are responsible for pt,rio(lic

effects. Coefficients in the hmar gravitalional model

give rise to short-period, medium-period, and long-

period variations. The short-period cit'ecls (on the
order of the satellite's orbital period) were not mod-

eled in this analysis. These ('fleets can be neglected

to lit'st approximation, because the rates of change
of these efli_cts often average to zero, as is the case

for the semimajor axis. The medium-period terms,

commonly referred to as the hmar m-daily terms,

arc on the order of a hmar day, or 27.3 Earth days.

The iilthtence of this period can be easily seen in

the plots of the orbital elements versus time (figs. 17
and 18). A sectorial or tesseral harmonic term of

order m produces medium-period effects with a pe-

riod of about 27.3/m days (the exact period varies
slightly as a result of precession of the longitude of

ascending node), ttigher order harmonic ((wins have

h,ss influence on long-term orbital lifetilne studies,

because short-period effects are inh,grated out IIiOr("
quickly than long-period effects. Long-period effects,

on the order of a year, can also be observed in the
variations of some of the orbital elements. These ef-

ti'cts, contributed by the zonal harm(talcs, arise fl'om

the see(liar w, riation of co. The long-period effects
are iinportant for lifetime studies, beeallse they pro-

duce the largest contribution il, p(wihmt'-altitude de-
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cay rates over long periods of time and behave as
secular effects for orbits with lifetimes of less than a

3,ear.

The rates ()f change in c. IL and ,_, are (tire(:tly
proportional to the values of the gravitational co-

efficients, alth(mgh not every coel[ieient causes a

change in every orbital element. (See t.at)le 3.)

Tit(' ']2 term is the (tominanl term for (tet(!rmining
the rate of change of longitude of _scending node.

This term and the Cal term also influen(:e tlm rate

of change in argument of perihme. The .]a, .15,

and _1 terms directly affe(:t the rate of change in
eccentricity and, therefore, perihme, altilude. The

final term in the simplified model, ("22, primarily
influences the orbital inclilmtion.



Orbital Lifetime Study
A single-step(Euler)integrationtechniquewas

usedwith thesimplifiedfive-coefficientgravitymodel
to generateall resultsin this analysis.Onceinitial
orbitalelementswerespecified,aparticularorbitwas
analyzedfor at)eriodof365days,unlesstile lifetime
of the orbit expiredin lessthan a year (in whieh
casethe analysiswashalted immediately).If the
lifetimewaslessthan 365days,theactualvahleof
the lifetime is presented.If the lifetimeexceeded
365days,the minimumt)erihmealtitude attained
duringthea65-dayperiodisi)resented.Theprogram
LUNLIFE, which uses the conlplete Ferrari 5 × 5

gravity model, was t)eriodiea]ly employed to provide

validation for lifetime predictions of individua.1 orbits.

The terms ,]3, .]5, anti C:/l were the only co-
etficients eonsidered that directly aft'cot rates of ec-

centricity and, therefore, orl)ita.1 lifetimes. Unlike

the zonal harmonic coefficients, the eccentricity rate

for _ll is a function of initial longitude of ascend-

ing node and introduces medium-period effects with

a period of about 27.3 days. This term has a (lra-
matic effect on rates of eccentricity (lint these are

only localized effects), and gives rise to step-function

behavior in plots of lifetime (fig. 19). This figure di-

rectly ilhtstrates the effect that Cal has on orbital
lifetimes.
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Figure 19. St('p-fimcliotl h(,havior in lif(qimes pr()fih' due t(_

CT:_t term (i 55°).

The stet)-ftmetion shal)<' ()f the lift,time I)h)t is

a r('sult of the supert)osition in ece(>ntri(:ity rates

between (_"31 alld the zonal coefticicnts. The C31 ternt

contributes large tnedium-t)(wi()d effects, l)ut the .]a

and ,]5 terms contril)ute long-period effects. \Vhen

the Cat decay rate is of the same sign as the zonal
decay rate. the result is a sharp drot) or rise in orbital

'c 240 C 8()..._

t s0
E

6(

60

(I 60 120 180 240 300 360

Initial longitude of ascending node. _, deg

(l)) Threc-dim('nsional ph,t.

Figur(+ 20. Milfimtm_ I)('rihm( ' ah it ud(' del)ml(hm('(' (m init ial _

+m<t _.' for h>w inclinations (i 3++). 100-kin initial p_'rihHle

altitude over a 3tiS-day l)(wi()(l+

lifetimes. \Vhen the C:+I decay rate is of the Ot)l)osit.e

sign of the zonal (ieeay rate, the total (tecay rat(' is

nearly zero: this l()w rate results in plat('aus in the

plot of orbital lifetimes.

The effect of initial h)ngitude of ase<,n(ting node

on ()rt)ital decay rates was significant. Although
orbital lifetime results at)I)ear to be det)('ndent on

the initial longitu<|(_ of ascending no(h_ for near-

equa.torial or|)its (less than 10° inelina.tion), they

are aetua.lly (tependent on the stun of longitude of

ascending node and argmnent of perihm(_. Figm'e 20
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showsthe variationin mininnunperilunealtitude
as a functionof initial argumentof periluneand
longitudeof ascendingnodefor a 100-kininitial
perilune-altitudeorbit with a 3° inclination. As
shownill thisfigure,variousinitial orbitalconditions
arenotdescribedby independentvaluesof _ andaJ,
but rather by valuesof f_+w. For this reason,
orbitallifetimesarenearlythesamefor orbitsalong
linesof constantf_+ c0. (Seefig. 20(a).) Lifetime
resultsweresubsequentlygeneratedby varyingtile
initial argumentof perihmeandinclinationoverthe
entirerangeof possiblevalues. Theseresultsare
independentof tile initial longitudeof ascending
node,althoughslightdifferencesin the resultswill
arise,dependingon thevahleof t_.

Figures21(a) to 21(c) showthe instantaneous
perihmcaltitudedecayratesfort_= 0°, 45°, and90°.
Althoughtheseplotsexhibitdifferentcharacteristics
for differentvaluesof tl, similarorbital lifetimere-
sult.swill occurregardlessof tile valueof tL because
the effectsdue t.of_ will averageout to zeroafter
a periodof 27.3dws. Tile plotsonly illustratethe
instantaneousdecayrates.To generatevalidorbital
lifetimepredictions,thesedecayratesnnlst be in-
tegratedovertime. Althoughthe inclinationvaries
little, thevalueof argumentof perihmemaychange
greatly. An orbit with a givensetof initial condi-
tionssuchthat thealtitudedecayrate is largenmy
evolveovertimeto asetof conditionsfor whichthe
decayrate is extremelysmall(priinarilycausedby
a variationin argumentof perilune);therefore,inte-
gratedlifetimeshmger than those inferred from the

figures may be exhibited. New;rthcless, the figures of

perilune altitude decay rates are useful ill illustrat-
ing the magnitude of decay that a hmm satellite can

experience ill a day.

An integration of the orbital element rates for or-

bits of various initial conditions was utilized to pro-

duee figure 22. The large white regions occur where
the initial orbital parameters had a lifetinm ill excess

of 3(i5 days. The results display a symmetry about

i = 90 °, which is violated slightly by the presence of
a cosine i term in some of tile orbital element rate

equations. The closely spaced contour lines in the

figure are the result of localized effects due to the

Cal coe_cient.

Fiw' bands of short-lifetime orbits occur for spe-

cific values of inclination. The at)pearance of these

bands can be explained by exmnining the perilune al-

titude decay rates (directly proportional to the nega-
tive of the eccentricity rates, see eq. (7)) for ,Ja and ,]5

as a flmction of inclination. (See fig. 23.) Figure 23
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was generated by nmltiplying equations (A3b)

and (A2b) by -a and plotting theIn, with the initial
orbital conditions and cv = 0. (All terms proportional

to e 2 in the _dc equation for ,]5 were neglected, be-
cause their contribution is slnall for near-circular or-

bit, s.) The diffexence in the amplitudes of the wave-
forms ilhlstrates that contributions to the decay rate

are much larger for J,5 than for ,]:l in the Ferrari

model. The bands of short-lifetime plots roughly

correspond to the minimum and maximum peaks
of the J5 eccentricity rate (i = 19.42 °, 56.14 °, 90 °,

123.86 °, and 160.58 °) and are slightly offset as a re-

sult of contributions from the ,/3 terin. Also, bands

of long-lifetime orbits correspond to zero values of

the eccentricity rates for the J5 coefficient (i = 0°,
4(l.09 °, 73.43 °, 106.57 °, 139.91 °, and 180°).

The ds coefficient is the main driver in the

Ferrari model for predicting lifetime effects. Further

evidence of the ds-term dominance is shown in fig-
ure 24. This plot of orbital lifetimes as a flmction

of initial argument of perihme and initial inclination

was generated with the J3 and C31 coefficients set

equal to zero. This figure is similar to figure 22, which

included effects from ,/3 and C31, and shows that the

,1,5 term contributes the dominant effect to perihme
altitude decay, although the effects from ,13 and C31

are certainly not negligible. (See figs. 19 amt 23.)
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Figure 2,1. Contour plot of lifetimes in clays for initial lon-

gitude of ascending node of (P. tOO-kin initial perihme
altitude; effects of ,/,,_and C31 arc neglected.

Results were also generated for initial perihme

altitudes of 300 kin. Figure 25 is a [>lot of miIfiinuin

perihme altitude as a function of initial argument of

perihme and inclination. The regions at inclination
values of approximately 55 ° , 90 ° , and 125 ° represent

areas where the orbit crashes in less than a year.

Although the orbital decay for the higher altitude
orbit is less than for the 100-kin case, the pattern

for the 300-kin case is very similar. This analysis

focuses primarily on the 100-kin initial altitude ease,

with the assumption that results for this case can be
correlated with the 300-km initial altitude case.

Sensitivity Studies--An Assessment of

Uncertainty in Gravitational Field

As previously mentioned, many problems have

been encountered in developing an accurate descrip-

tion of the Moon's gravitational fieht. Figure 7 illus-
trates the discrepancies among the current available
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models. Two questions naturally arise: How accu-

rately are the coefficients in the Ferrari 5 x 5 model

known (how much error is associated with each co-

efficient?) and is the Ferrari model (or any other

model) an accurate description of the actual hmar

gravitatiomd field? The second question is beyond

the scope of this investigation, but t Iw first question

can ])O addressed by examining the standard devi-

ations in the values of the gravitational coetficients

stated fl)r the l%rrari 5 × 5 model. More importantly,

the possible error in orbital lifetime predictions _us

a rCsllll of the uncertainty in the gravitational eo-

etticients can be addressed with the use of sensitivity

coeftieienI s.

The tbrnmlalion of the simpliticd gravitational

model illustrated that five coefficients were adequate

to explain the effects due to the Ferrari model on

an orbiting hmar ,,satellite. Itenee, a good estimate

of the errors associated with the uncertainty in the

value of the coefficients for the Ferrari model can

be obtained by etmsidering only the uncertainties of

the five coeflieienis included in the simplified model;

these five coefficients have the greatest influence on

the orbital element rates. Furthermore, since only

three of these coefficients (.13, .1,,, and C:ll) directly

affect the eccentricity rates (the .]2 and ("22 terms

indireclly affect ltw eccentricity rates ttv causing

changes ill the other orlfital elements), the error

in orbital lili_time t)redictions associated with the

mleerlainty of the eoetticients in the Ferrari model

can be al)proxinmted by addressing the uncertainty

solely in these three harmonic terms.

The sensitivity coefficients for each gravity co-

efficient are shown in figures 26 to 28. The sensitivity
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coefficients were ot)tained by (tiflbrentiating the rate

of change ill perilune altitu(le (the first-order ana-

lytical equation associated wit]] each coelfieie_nt, see

eqs. (7), (A2b), (Aab), and (A5b)) with resl)eet to

the given gravitational coefficient. Since the rates

of change ill perihum altitude vary linem'ly witii the

gravitational coefficients, the sensit.ivity coefficients

are independent of the values of the coefficients in

a gravitational model. As a result, tigures 26 to 28

can t)e interpreted in two ways: These figures repre-

sent a "normalized" rate of change in perihme alti-

tude, independent of the value of the gravitational co-

efficients, or they serve as a mea, ns of illustrating the

sensitivity of the perilune altitude decay rate with

respect to the re]certainty in the value of the partic-

ular coefficient. The contours of these figures are in
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units of km/(lay × 101. Plot, s of the sensitivity ('o-

etiicient, s for a 300-kin initial perihmt, allitu(h' oft)it

exhibited the same pattern as for the 100-kin case,

although the values of t.he sensit.ivit.y ('oeflqci(mts were

roughly only half as large.

To evaluate the error in orbital lifetime t)redic-
tions associated with the Ferrari moth,l, the variance

in the t)erihme decay rate was calculat('d with Lh('

following formula:

6)'i,p

fo,,,.,., (o,.,,,.

\l[i)i'p(,0(73.' 31 (.).,1 ) :21 1/2

where i'p is fhe t)crihme all.itu(t(' rate of c}mng(, flw
the corresponding coeflicicnl (the gravit,ationa] co-

eliicient,s in the mmx(,rator of equation (9) apt)('ar as

sul)scril)lS of i'l,, IIOt as Va]lws of the co('ffi('iel]t,,_ 1 helll-

selves) and cr is lhe corresponding standard (teviat ion
()f each gravitationa.l cx)eflicient value. In using lifts

formula, no correlation in the uncert aimies ()f lh(' val-

ues of the gravitational coefficients is assmne(t. ]h)w-

ever, the ,]3 and J5 (:oeffici('nts are highly c()rr('lat ('(l.
Since these coefficients Mfect, tile ()r})il a} (qt'in('nl s ill ;!

similar mamier (table 3), set)a.rating the ('ff('cls that

are inttividually contributed t)y these ('o(,tti('icnl.s is

difficult. By not. ac(:ouming for c()rrelation eff('(qs,

('qua.tion (9) overestimates t.he errors asst)cial(,d wit h
the uncertaint, ies in the vahms of .13, ,15, and (_:_I (if

the .13 a,nd ,/5 terms are domhmnt,, the errors may be

significantly overestimated).

For the Ferrari model (ref. 23). crl:_ - 1._ × l I) ti

orit. -- 2.0 x l0 5 cr(,u _ 1.9 x 10 6 F'igures 2!) a)
to 29(c) show the variance in t)erilune (tecay rate in

units of kin/day for _ = 0°. 45 ° , and 90 _. The simi-
larity in these plots in(licates that the un(:ert, ainly in

the wdue of the C31 coefficient contributes lit, lh' it)
the ()verall error in orbkal lifetime I)redicti()ns. The

similarity 1)etween the variance plots and the s(msi-

t.ivity coefficient, t)lot for ,]5 (fig. 27) indicalt's lhat

the error in ort)ital decay rates for the F(,rrm'i m()(l(,1

is due almost, entirely to the uncertainty in the value
of the J-, coefficient. In facl, th(' standard (h,viatitm

associat.ed with J5 is an order of magnitude larger

than th(' stan(lar(1 deviations for .]3 and (_31.

As with the figures of the perihme alt.itude decay

rates (fig. 21), the variance plots convey only instan-
lane(ms information. To assess the uncertainty in

the [)erihme altitude at the end of an orbil's lifethne,
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the variance must t)e integrated over time. The com-

puter program was modified to integrate the variance

in a manner sinfilar to the integration of the orbital

elements (eq. (8)); this integration resulted in fig-
m'e 30(a). To interpret the figure, one must also reflw

to the plot of orbital lifetimes (fig. 30(t))). For ex-
ample, a parking orbit with i = 40 ° and w = 120 °

has a lifetime of more than 360 days (fig. 30(b)).

However. this orbit has an uncertainty of approxi-
ntately ±40 km in t.lw final perilune altitude as a re-

sult of the inaccuracy in the gravitational coefficients
(fig. 30(a)).

The uncertainty in perihme altitude is less fi)r

orbits with short lifetimes, because the errors in
the decay rates have less time to accumulate. The

largest uncertainties in perihme altitude occur for



orbitswith lifetimeslongerthan a year. The un-
certaintiesin the final valuesof perilunealtitude
rangefrom20kmto 300kin; thisrangedemonstrates
tim inadequacyof currentmodelsfor makinglong-
termpredictionsof theorbitalelements.A decrease
in the uncertaintyin perihmealtitudevaluesI)yan
orderof magnitude(whichcanonly t)eacllievedby
decreasingtheuncertaintyin thevaluesof thegrav-
itationalcoefficientsthemselves)is requiredto pro-
videmissionplannerswithacceptableorbitallifetime
predictionsoverthe time periodsaddressedin this
analysis.

Applications of Analysis

Althoughtheuncertaintyofthecoefficientsin the
Ferrarimodelcreatesdifficulty in generatinglong-
term orbital predictions,this analysisillustratesa
techniqueto addresseffectsof thenonst)hericalmass
distritmtionof the Moon on a low-altitudenear-
circularorbit. Theusefulnessof introducinga sim-
plifiedgravitationalmodelwhenperformingorbital
lifetimestudiesat the prelinfinarymissiondesign
levelhasalsobeendemonstrated.TheFerrarigrav-
itationalnlodelwasspecificallychosenfor the pur-
poseof illustrating techniquesfor determiningor-
bital lifetimesto enablequantitativeresultsto be
generated.However,severalcriteria,canbeapplie(t
fromthisanalysisto assessthequalitativeeffectsof
othermodelsonorbital lifetimes.Thesecriteriain-
dicatetimimportantparametersinvolvedin lifetime
predictions.

Investigationof the C31 graaqtational coefficient

ilhtstrates that off-diagonal terms may have a signif-

icant effect on perihme altitude decay rat.es. How-
ever, these effects are t)eriodic, with a 27.3-day cy-

cle, and have lit.tle influence on long-term lifetime

predictions. Therefore, the consequences of hmar

gravity fields on long-term ort)ital pre(lictions are
(tepen(tent mainly on the odd zonal harmonics, be-

cause they have the greatest effect on the eccentricity
rates. The odd zonal coefficients model the geomel-

rical asymmetry between the northern an(t southern
hemispheres. Although both hemispheres (:(retain the
same amount of mass, the distribution of the nlass

within the two henfispheres is not the same. (See

ref. 22.) This mass distribution results in a long-
period variation in the eccentricity. These variations

are proportional to (H/a)', where _ is the degree

of the zonal term. (See ref. 4.) For high-altitude

orbits, the effects due to higher order terms are at-
tenuated, ttowever, for low-altitude orl)its (such as

the ones considered in this analysis), l?/a converges

slowly and enables higher order terms t,o COlltrit)ute

significantly. The figures of the sensitivity coefficients

(figs. 26 to 28) can be used to calculate tile rate of (te-
cay of perilune altitude for any specified value of the

gravitational coefficients. Although the rates must be

integrated to determine orbital lifetimes, a comt)ar-
ison of the rates indicates which terms in the grav-

itational model provide significant contrit)utions to
altitude decay and shows the effect, of decay rates as
a flmction of inclination.

For the Ferrari model, the ,15 coefficient con-

tributed the primary influence in orbital lifetimes

(and the primary source of error); this influence

indicates that long lifetimes exist near inclinations

of 40.09 ° and 73.43 ° , where the eccentricity rates

for £5 are zero for near-circular orbits (eq. (A3b)).
For other gravitational models, more than one gra.vi-

rational coefficient may strongly influence orbital life-

times. The eccentricity rate for .13 is zero for an
inclination of 63.43 ° . These results indicate that

if J3 and .15 are the dominant odd zonal terms of

the gravitational field and are of the same sign, long-
lifetime orbits will exist somewhere within a 10° in-

clination band (between 63.43 ° and 73.43 ° , figs. 22

and 23). However, if the sign of J5 is negative (the
actual sign of ,1:_ is still unknown), a long-lifetime
band of orbits will exist somewhere between incli-

nation values of 40.09 ° and 63.43 °. These types of
low-altitude, near-circular orbits are ideal for mission

plammrs that want low rates of decay in perihme al-

titude (corresponding to a low AI/ budget for alti-
tude boost maneuvers) and high inclination. (High

inclination orbits are ideal for obtaining maxinmnl

coverage for a mapping nfission or for l)roviding ren-
dezvous capability over a large range of landing-site

latitudes for a manned inission.)

A general observation can also be made about the

lifetimes of t)olar orbits that are predicted t)y various

spherical harmonic models. As a flmction of incli-
nation, the d,_ value that corresponds to each odd
zonal harmonic will have a local milfimmn or max-

imum (dependent on the sign of the coefficient) at

i = 90 ° (fig. 23). Furthermore, since tile odd zonal

harmonics soMy (to a first-order approximation) (te-
termine the long-period rate of change of the per-

ihme altitude, selection of polar parking ort)its may

result in large AV station-keeping requirements, de-

pendent on the signs of the coefficients. If the signs
of individual coefficients in the model are such lhat

the _ rates reinforce each other, the AV penalties
nfight be substantial. Conversely, if the signs of the
coefficients are such that the individual contril)utions

interferc destructively, polar orbits may exist that

have long lifetimes. This observation explains the

discrepancy in the results shown in figure 7. For ex-

ample, the signs of Ja and J5 for the Ferrari 5 x 5
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]nod(,] are ._tt¢.h thai their eccentricity rates construc-

tively int.cr[cr(" and yield short polar orbit lifetime

pr('dicti()ns. Conversely, th(' sign and magnitude of

th(, odd z(mals for the Bills-Ferrari 16 × 16 model al-

h)w th(, .17 term's large coiltribution to tilt, eccen-

tricity rat(' to (,fief'lively ('aneel out the cont.ribu-

titres of tilt! other terms. This sup(Wl)osition yields

long-life,tim(, pre(|ictions for t)olar orbits.

Concluding Remarks

Anticit)ation of fllture missions involving the

l>la('(q,wnt of st)aee('rafl in circular low-altitude park-

ing orbiLs about the Moon for long periods of time

motivat('d an investigation of tilt' effects o[' the lu-

nar gravitational [icht on an orbiting satellite. The

fi)rmulati¢m of a simplified five-ctlt_ffieient hmar grav-

itali¢mal motlcl was derived froin Ferrari's 5 x 5

gray|tall(real model for the tmrposc of aiding mis-

si,>n t)lammrs in implementing nonspherical gravita-

t i_)na[ (qtk't'ts of the Moon in preliminary lunar mis-

s|oil studies. Tim prol)osed simplified gravitational

moth'|, ('¢)nsisling of tile coefficients ,]2, J3, ,]5, (722,

anti (':_1, was adequate in predicting orbital li%timcs

t)f lunar sat('llites: the results generated from its

us,, ('losely ('()rresl)onded to t]l()se gellerated })y the

lS'rrmi m()(lel. Furthcrmore, the simplified n]odel

t'('_lll('('d |he tllll{}lZIlt of ('Olllt)llter time required for

lifl'tiul(' t)r('(li('/i(ms by approximately two orders of

magnilu(h': this reduction greatly (mhanee(1 t.he ea-

t);d)ilit.v lo investigate the orbital lifetim('s of hmar

sat(,llit(,s as a fim('tion /)f the Val'iOllS initial orbital

[)ilrllltl(,[ el's.

]h,sults g(m¢'ratt'(l with the I:_,rrari simplified five-

('_)ctIi('i(,n! gravitational lno([cl |IMitated tile exis-

tence (If s('v('ral inclinatitm bands (>f short-ti%time

an(l l(mg-lif(,tim(, orbits. These t)ands reflect the b('-

havi<>r (ff th(' per|hint, allit u(h, decay rate tl]a_ is asso-

('iat('(i with tilt' ,15 ('ocfIit'ient, tlw dominant term in

lh(' [:t'rrari m<)<h'l, as a flmt'tion of inclination. Long

,)rifital lil','lim,'s wer¢" possil>le for low. mitllatitude.

and }figh-incli/mt i()n orbits, although polar orbits had

rclat iv('lv Mlort lifetimes (h,ss than 180 days) aceor(l-

ing to this mothq. Of particular interest is tim pre-

cti('li_>n ()f a n',_rrow band of orbits with inclinations

between apprt)ximately 60 ° and 75 _' that yield high

lifetimes while providi,,g high-inclination oft)its that

are desirable for various missions. The lifetim(_s also

({epend on the initial value of argument of perihme,

especially at low inclinations.

The C31 gravitational term generated (h'amatic

localized effects in tile behavior of orbital lifetimes,

but did not contribute any secular effects to long-

term predictions of lifetimes. The purely l<)ealize¢t

effet:ts due to off-diagonal gravitational coefficients

suggest that accurate long-term orbital t)re(tieti()ns

can be performe(1 by eonsidcrati(m ()f only the zonal

tmrmonics. St)celtic:ally. eonsi¢leration of the odd

zoi]al terms may be suffiei(mt, as they have the

primary influence on orbital-altitu(h_ secular decay

ratc.s. This technique provides a simple method

to generate orbital lifetime predictions with other

models.

Finally, the large uimertainty in tile _-alues of the

coefficients for the Ferrari model (or any other hmar

gravity model) indicates that little confidenc(, Call be

placed in the results that are generated. In partic-

ular, the mleertainty in the valu(_ and even the sign

of the ,]5 coefHcient (a result (:,f correlation between

t.hc ,]3 aim the ,Is term) (:ontril>utes the d()minant

error associated with 1.h(_ Ferrari model. Current

capabilities for long-term pr¢_diethms of orbital life-

times for hmar satellit.es leave much I(7 be (h_sir('(l.

However, the m(,tll(><ls t)resenl(,(t it| this analysis are

benetieial for incorporating the Moon's n(mst>heri(:al

gravitatiomd etfe(:ts on th(_ prelinliImry d('sign level

for futm'e hmar mission plamfing with litth' addi-

tional comtmtational time r(,quir(,d, l'hu'ther work

needs to be i)erformed in the deterlnination o[" an ac-

curate hmar gravity model, as era'rent models either

give inconsistent pre(tietions (Jr I)r('(ti('ti()ns with such

large mlcertaimy values that, useful or m('aningful

im(wpretation of tilt' results is (tifIi('ult.

NASA l,angh,y lh_s('arch (i'('lltt'l"

Itampton, VA 23681-{)(}01
Nov_mlmr 15. 1!193
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Table 1. Numerical Values (Unnormalized) of Coeflicienls in Ferrari Model

[Boldface mnnbers denote values used in simplified mod_'l I

I)egree Order

0

1

2

('Tr_m × 1() I

-2.0215

-0.00101,1
0.22304

--0.12126
0.3071

0.0488S4

0.0143(i

0.0015

--0.0718

-0.01440
0.00085

- 0. (}01549

0.446
-0.0326

0.01556

--0.00148
0.000598

0.000122

_S'r_mX 10 l

0

0.000173

0.056107

0.01 (i87

0.00:{3433

0.0295
0.02884

0.00789

0.000564

0.()(i73

0.00522

0.00127

0.000456

0.000137
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Table2. NumericalValues(Umlormalized)of Coefficientsin Bills-FcrrariModel

[Fromref.32]

I)cgree Order Cmn Smrz

2 0 -2.024 × 10 -4

2 1 -0.0904 × 10 -6 0

2 2 0.2226 × 10 -4 0.1936 x 10 7

5

5

5

5

5

5

0

1

2

3

0

1

2

3
4

0

i

2

3

,I

5

-0.889 × I0 5

0.2372 × I0 i

0.0483 × 10 4

0.2212 × i0 5

0.1173 × 10-:i

0.4573 × 10 -5

-0.1818 × 10 -5

0.2868 × 10 -7

-0.7396 × 10 -7

-0.2388 × 10 -5

-0.8272 x 10 -5

0.6003 × 10 -6

0.1287 × 10 -7

0.4360 × 10 -s
-0.1647 × 10 7

0.1774 × 10 4

0.9127 × 10 -6

-0.5735 × 10 -6

-0.4830 × 10 -7

0.7759 × 10 -s

0.2663 × 10 -8

0.1824 × 10 -8

0.2227 × 10 1

0.1742 × 10 -5

-0.1753 x 10 -6

-0.8736 × 10 s

0.1890 × 10 s

0.7750 × 10 -9

--0.1374 × 10 9

-0.2059 x 10 9

0.7160 x 10 -5

0.1626 × 10 -5

-0.3415 x 10 ,1

0.1812 × 10 -5

-0.1512 × 10 5

-0.8623 × 10 6

-0.1162 × 10 7

-0.1310 × 10 7,

-0.3802 × 10 -6

0.1622 x 10 6

-0.5123 × 10 7

0.2856 × 10 -7

-0.5508 × 10 7

-0.4491 × 10 (i

0.8541 × 10 -7

-0.2914 × 10 -s

-0.6699 × 10 -s

-0.2227 × 10 s

0.1632 × 10 5

-0.4582 × 10 7

0.1,179 × 10 7

0.7858 × 10 !)

0.3291 × 10 9

0.4588 × 10 !_

0.1702 × 10 !_

0.1493 × 10 l

-0.7009 × 10 -(;

0.1840 × 10 6

-0.7987 x 10 8

0.588 × 10 -s

-0.600 × 10 9

-0.111 × 10 !)

-0.153 × 10 lo

0.23 × 1()-_l

0.1752 × 10 -_'

-0.4353 × 10 7

0.1688 × 10 7

-0.1436 × 10 -s

0.78 × 10 9

- 0.104 × 10 !)

-0.15 × 10 11

-0.97 × 10 -12
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Table3. DominantEffects of Coefficients on Orbital Elements

[From rc'f. 3]

Principal orbital elements affected

Node Argument

Coefficient E(:centricity hmgitude of perihme Inclination

']2 • •

,_ •

,15 *

C22 *

C31 • •
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Appendix A

First-Order Equations for Rates of Change of Orbital Elements

First-or(h,r equations for rates of change of tile orbital elements due to ,12, ,/a, ,15, (-!22, and C31 t(?l'lllS are

as follows:

F(w J2,

d(l

dt = 0 (Ala)

dc

d_ = 0 (Alb)

di
0 (Ale)

dt

d_.2 3_ R 2

dl - '2 a2(l _ c2) 2 ,]2 cost
(Ald)

dw

dt
3u R 2 (4 5
4 a2(l _ c2) 2'12 -- sin 2i)

(Ale)

[:or ,]3,

da
- 0 (A2a)

dt

dc3n /73 (5 )- ,]a sin i sin 2 i - 1 cos
dt 2 a3(1 _ ¢,2) 2 4

w (A2b)

di 3,, R a, (}..,)dt - 2 ¢13(1 t!2) 3 23 COS i Silt" i 1 COS_'
(A2c)

-dt - 2 aa(177,2) :_dacoti , sin2i- 1 sinw
(A2d)

dt 2 aa(l _ c2) :_'/a --1+: c:2) (_sin 2 / )]sill i i -- 1 -- e-- sin 2 i 1 sin w (A2(')
sin i '

For ,15,

tla

dt = 0 (A3a)

dc

dt 151_ /?5 [_8 .5(1--c2) 'l J5 e2sin3 1 - 9 sin2 i) cos8
3_,

---7 sin2 i-F 1) cos_] (A3b)+ 2(1 + _c2) sini(2---_ sin4i 2
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di

dt

d_
-- z

dt

dw

dt

15n Rse [_' ( 92- )
8 u5( ' _1-c 2)° ]5 , c 2sin 2icosi _sin i 1 cos3_'

- 2(1+_(2) cosi(21 sinli 7sin2i+l) cosc_]2

8 a5(--- -'1 - e2) '' _c sin i cos i _- sin 2 i 1 sin 3_'

_2(l+_e2) coti(_siffli 21 , w]sin 2 i + 1) sin

15n RSc {_ [(3: _)- _. 935 15 (2sin/ (!2 + sin I i
8 a"e_l - c-) _'

/' 39 2_ 1) sin 2i+ t\_ s_(: + (_2]

-}- __ __ __

sm _ \ :}2 " 1281e2_ 21)sin6 i32 (1071e4 119 2 _)+ \ 32 +2-_ + sin 'li

8 4

sin 3w

(A3c)

(A3d)

(A3c)

For ("22,

da
= 0

dt

d(,

-- = 0
tit

d i

dl

3n l_J2
C22 sin i sin 2tL

._(1 - (_)2

d_

dt

3nR 2

a2 ( 1 -- e2) 2 (722 cos i cos 2Q.,

d_

dt

3_ R 2

2 .2(1 - (,2)_C')_ (Ssin_ - 2) cos 2Q._

(A4a)

(A4b)

(A,4c)

(A4d)

(,4.4o)

For C 31 ,

dr1

tit

dc

dt

di

dt

- (}

3n R a

8 ({t(1 c2) 2 C:'_I [(5 sin2 -4) si,,_,cos _,._ + (15si,,2 icos i- ,cosi)cos_,sin_L]

(ASa)

(A5b)

(ASc)
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rll_ 3n Rac [-20cos i
,H 16 ,,:_(17-,2) :)<"

,:,(,+4,,2)
dw 3n C:_1[(12 + 20cos 2i)coswcosQs
d-/ -- 04 ,,ac( 1 - _

cos i
- (2cosi + 30eos3i)sinwsin_-_,] - _ 31

(A5e)

where _(d_),/t31 tel,resents the 7g't_contribution for tile C31 term (eq. (ASd)). The d_ term represents the rate

of change in the inertial node longitude of the orbit Q referenced to the prime meridian at epoch (the prime

meridian is detincd by the Moon-Earth direction at some specified time). The selenographic node longitude of

the orbil _ is related to the inertia] node longitude by the expression _}s = _i - wt. (See fig. A1.)

These equalions (rots. 3 and 11) were in the computer program that was used to generate the plots for the

three-dimensional and contour plots. They were also used in the sensitivity studies.

Polar view

"'__ _ "_ /-- Intersection of

9--- / / orbital plane and

N,_ __'_ equatorial plane

Prime meridian_ _ \ _.
at epoch _ x_ _i = _2s

(a) t I).

K2s = K2i - wt

(t_) t ¢ O.

Figure A1. Differentiation between _'_iand _._.
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Appendix B

Verification of Data Generated by
Program LUNLIFE

ThelunarlifetimeprogramLUNLIFE1wasorigi-
nallyintendedto betheprimarycomputationaltool
usedin the presentanalysis.Forthis reason,much
effortwasinvestedin theverificationofthedatagen-
eratedby this program.Althoughtile (tcvelopmcnt
of thesimplifiedgravitationalmodeloutlinedin ap-
pendixClessenedtheneedfortheuseoftile t)rogram
LUNLIFEin this analysis,this programwasessen-
tial for the formulationandverificationof the sim-
plifiedmodel. LUNLIFEwasalsousedt.oquantify
theeffectsdueto solarradiationpressure(inclu(ting
shadowingeffects)andEarth-Sungravitypcrturba,
tions(utilizing an analyticalephemerisalgorithm).
A directdescendantof softwareusedill Vikingntis-
sion studies,LUNLIFE numericallyintegratesthe
Lagrangeplanetaryequationsof motion (eqs.(4))
with afixed-intervalfourth-orderpredictor-correcter
algorithm,andaddressesperturbationsthroughthe
useof disturbingflmctionsdevelopedbyKaula.(See
refs.40a.nd41.)

LUNLIFEwasinitially testedbycomparingit to
resultscontainedin aBoeingreportonahmarme(tel
for Apollo. (Seeref. 3.) The nlodelin the Boeing
reportwasidealfor conlparisonsinceit consistedof
only four gravitationalcoefficients.A list of first-
orderanalyticalequationsin the appendixof the
Boeingreport alsoallowedfor testingof theeffects
of individualgravitationalcoefficientsoneachof the
orbitalelenlcnts.ResultsgeneratedbytheGoddar(t
SpaceFlightCenterin the1970'sfora hmarlifetime
study(ref.4) werealsoduplicatedwith LUNLIFE.

In this study,three3 x 3 hmargravitymodelswere
usedto specificallyaddresssatellitelifetimcsin near
polarorbits.

Additionally,LUNLIFE wascomparedin fig-
ureB1with thecomputerprogramsASAP(ref.39)
andLUNNODE1. Thesetwoprogramsdiffer from
LUNLIFE in that they integratethe equationsof
motionin Cartesiancoordinates.As a result,much
smallertime stepsareused,and tim programsin-
chideshort-periodeffectsratherthanaveragingthem
out. The comt)arisonsweremadewith an 8 × 8
truncatedversionof tile Bills-Ferrari16× 16grav-
itationalmodel.(Seeref. 32.) The threeprograms
generatednear-identicaldataofpcrihmcaltitudever-
sustime. The varioussour(:eshavevali(tate(tthe
datathat wasgeneratedby LUNLIFEandhavever-
ifiedtheresultsthat weregeneratedby themethod
introducedin appendixC.

33O

32O
E
J 310

._ 30o

290
I.

280

270 L J
0 150 200

I LUNNODE

ASAP

LUNLIFE

50 1O0

Time, days

Figmc Ill. Vcriticalion of rcsulls generated t)y program
IATNI_IFF.

I Developed by Flight Mechanics & Control under NASA
contract NAS1-182(i7 in February 1989.
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Appendix C

Comparison of Simplified Gravity Model
W'ith Ferrari 5 × 5 Model

Thefornullationofasimplifiedfive-coefl:ieientlu-
nargravitationalmodelwasderivedfi'()mFerrari's
5× 5 gravitationalmodelfor the purt)oseof aiding
lnissionplannersin implementingnonsphericalgrav-
itationaleffe('lsof theMooninpreliminaryhmarmis-
sionstudies.The proposedsimplifiedgravitational
mo,hqeonsist.cdof theeo(,flicionts,12,Ja, Js, ('722,

and (':_1. Several cases were analyzed with warious
initial orbital parameters to examine the changes in

tn'rihme altitude, longitude ,)f ascending node, and

argument of perihme between the Ferrari 5 × 5 inodel

and the simplified fve-coe[[ieient gravity model.

A wide range of ('ases were analyzed by varying
tlw initial inclination, longitude of ascending node,

aim argmnettt of perilune. The initial mean anom-

aly was set to zero, the initial eccentricity w_ks fixed
at 0.05 (for consideration of near-circular orbits), and

the sere|major axis value of t935.79 km was selected

to yieM an initial per|hint altitude of 100 kin. Ini-
tial inclination values of 1°. 45 °, 90 °, 120 °, 150 °,

and 179 ° were selected to sinmlate both posigrade

alld lclrt)gradc Ol'})its. 111 all cttbrt to (:over difl>rent

(|lladrallts, since cos _z alI(t sin _' appear in the ana-

lytical expr(,ssions derived from th(' Lagrange plane-
tary e(luatiotts, initial wdues of arguInellt of perihme
s(qceted wcrv 1)°, 1350, alld 225 °. Initial values of

longitude of ast'ending node of 0°, 135 °, and 225 °

wcrc ehost'n for t.lw same reasons. The t)rcsence of
sct'torial and tesseral harmonic eoetficients in the lu-

nar mod,'ls introduces a longitudinal dependence in

l[w gravitatiolml t)otcntial. This dvpendenee makes
it lwct,ssarv to ulilizc several different initial vahws

ft,r hmgitudc of ascending tlodc. If only zonal bar
menlo coetfieients were includ('d in the models, re-

suits would be independent of initial values of longi-
tude of asccnding node. Exhausting all comlfinatitms
_)t the vahu's. 5-1 different |nit ial conditions were a,>

alyzed. Each (:aNt was (,valuated for both the I%rrari

5 × 5 model and (,he simplifcd five-coefficient hmar

_ravily model.

A single simpliti('d gravilational mod(q was pre-
mmwd to be insufficient fl)r aeeurale orbilal predic-

lions over all inelillatiolls, tlccallse l-lie magnitude of

lhc cttects contrilmted by each individual gravila-
t iona] coetticienl is a function of inclination. How-

ever. the simple model did make accurate predie-
l i(ms over all latitudes that were tested. The results

()t" lhc t:errari 5 × 5 model and the simplified hie(tel

wvr(, analyz(,d by eOml)aring llwir ori)ita] liD(lines

3O

if they were less than 180 days. If the lifetinleS ex-

eec(ted 180 days (ealeulalioIlS were tcrmimtte(1 after

180 days), the two models were armlvz('d by c()m-

1)aring their minimmn l)erihme-attitude vahws dur-

ing this time period. Lifetimes were the shortest tbr
inclinations of 90 ° and 120 °, as ea('h trial that was

examined resulted in impact with the hmar surfite(' in

less than 180 days. N(_ar-e(lualorial oft)its (1 °, 179 °)
had the smallest decrease in perihm(, altitude: each

case examined had lifetimesin ('xe('ssof 180 days.

Th('se results are listed in tat)h, CI.

The data generated with tim simplified five-

coefficient model matched very closely the data gen-
erated with the Ferrari 5 × 5 model. For eases with

lifetimes of less than 180 days, the siml)lified model

usually predicted the lifetimes within 4 days of the
Ferrari lnodel. For eases with litbtimes longer than

180 clays, the simplif(,d model usually predieted

th(, minimum perihm(- altitude within l0 km of the
Ferrari model. Therv is no partieular ineliuation

rang(' where the two gravitational models seem to be

in l)etter agreement. Also, the simplified model does

not consistently overestimate or mMercslimal.c the

orbital lifetimes cOral)areal with tilt' tq'rrari model.

There were two eases tor which the differcne(' in

pre(tietiolls of tile orbital lifetimes was significant. In
the first ease (i - 45 °, t_ - 135 °, .., - 135°), the sim-

t)lifi('(t model underestimated the lifetime by 16 (lays.

(See fig. C1 (a).) The simt)lificd mo(l(_l slightly raM(w-

predicted the rat(, of decay of the t)crihm(' altilude
through 74 days. This undert)rediction allowed the

satellite to temporarily avoid a collision and, with

the assistance of the medium-t)(wiod effects, enabh,d
the orbit to survive for an additional 16 days. In the

seeon(t ease (i ,15 °, t_ = 0 °, ,z - 225°), the Fcrrari

model l)redi(:ted an orbital lifetime ()I' 12!) (lays: the

simt)lified ,no(hq t)r(_di(:t('(l a lif('limc in ex('(_ss of

180 (lays, with a minimum I)(!I'ilum' altilu(h' ,)f 5 km
for the frst 180 (lays. (See tig. CI(1)).) Th(' oxt)lana-

tion for this diserepan(:y is that the siml)lifed mo(t(q

again underi)redieted the rate of perihme (te(:ay, al-

lowing the orbit t.o exist l)ast 129 (lays, an(l, with lh('
assistance of the long-period efl'eets, (maNed the l)('r-

ihme altitude to actually increase. Th(,s(, two eases

do not hinder the uscfuhwss ()f th(, siml)liti('d mo(hq,

as both of the diser('t)an(qes can I)c climinal(,d I)y
assigning a small margin ()f error (around 5 kin) I()

the value of tilt* t)erihme allitu(l(' t)r('(tieted 1)y l.h(,

simt)lilied model.

Also, the longitude of ascending m)dc and ar-

gmnent of perihme were monit()r,'(t in this analy-

sis. These ortlital element vahms (c()ml)ulc(t with t.h(?

simplified and Ferrari models) also comt)ar(',t well.
although not quite as welt as the p('rilmw-altitu(h,
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E IO0
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j_ Ferrari 5 x 5 model
Simplified model

I I I _,r7 _, I
20 40 60 80 1O0

Time, days

(a) Initial conditions: i = 45 ° , [_ .- 135 _, _ = 135 °.
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_- 25 -- /._,
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-- Ferrari 5 x 5 model
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Time, days

200

(b) Initial conditions: i .... 15°, _ (F, _' 2'25:'.

Figure C1. ComI)arison of perilune altilude for simplitied and

Ferrari models.

predictions. The longitude of ascending node preces-

sion was consistent between the two models, since the

,12 term, which is the dominant term for (tetermining

nodal precession, is included in both too(Ms. Agree-

nmld. of the argument of perihme was not always as

promising, since near-circular orbits are addressed

in this analysis. For near-circular orbits (where a

unique _0 is not defined), large changes in the argu-

ment of perihmc oflen take t)lace, these changes tend

to amt)lify any ditt'(wenccs between the two models.

In the present analysis, the simplified gravita-

tional model generated results similar to those ()f the

Ferrari model for initial altitudes of 100 kin. k:cri-

fication of accuracy fl)r other initial altitudes would

incrca.sc the apt)licabilily of this model. The simpli-

fied model prot)osed in this analysis might t)e fin'-

ther improvc(t by directly mapt)ing the ()bs(,rvational

data to the five coefticients, as opposed to the present

method (a truncated version of the Ferrari model) of

adopting the vahms of the coetticients directly froin

the Fcrrari model.

This analysis suggests that other simt)lifie(l grav-

itat, ional models could be proposed to simulate ('ven

higher ord('r models for the Imrpose of generating

orbital lifetime predictions without sacrificing accu-

rate results. Howeww, the catml)ility of tit(' l)ro-

t)osed model to dut)licate results similar to the Fcrrari

model has not yt?l t)(_(_i1 verific(] for other initial per-

ihmc altitudes, and the I)roI)os('d m()del is llol, ('x-

petted to generate results similar to lhose t)r(,(li('le(t

})y other gravitational models. Since other models

differ in the magnit:u(]c (and t)(wha.l)S even sign) of

their coefficients, a selection of (:oeHicients other than

the ones stated in lhe propose(t simt)tificd mo(hq t)rc-

sented herein may l)e mor(_ appropriate fbr simulat-

ing the results of that particuhu model. Also, mod-

els with it larger mmfl)cr of gravitational terms may

be more <tit_icult to simulate with a simplified model

beta.use ()f the magnitude of the contrilmlion of the

higher order terms.
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Table C1. Conlparison of Orbital Lifetimes

(a) i= 1°,45 ° , and 90 °

Initial orbital

;leg

1

1
1

,15

45
-15

,15

45

45

,15

45
45

91)
9O

90

90

9O

90

90

90
9O

tL

dog

135
135

135

225

225

225

135
135

135

225

225

225

135
135

L35

225

225

225

elenlents

(leg

0

135

225

0
135

225

0

135

225

0

135

225

0

135
225

0

135

225

0

135

225

0
135

225

0

135

225

Ferrari 5 x 5 nlodd

Orbital

lifetime,"

(lays

62

129

74

78

47

102

144

45

97
139

Minimunl

altitude,
klIl

42

95

78

89

60
39

84

45

73

22

16

10

13

18

Simplified nlodel

Orbital

lifet, ilne, '_

days

65

90

76

47
99

145

48

97

141

52
105

147

48

101

143

Mininlmn

altitude,
kill

54
92

87

88

78

54

88

56
72

25

13

16

3

10

"Orbital lifetime if < 180 days.
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TableC1. Concluded

(b) i = 120 °, 150 °, and 179 °

Initial orbital elcnlcnts Ferrari 5 × 5 model Simplified mo(t(_l

Orbital Minimmn Orbital Minimum

i, it, _, lif('timc," altitude, lifetimcy altitude,

(leg (leg (leg (lays km days km

120 0 0 167 167
120 0 135 77 77

120 0 225 77 78

120 135 0 149 (b)
120 135 135 59 59

120 135 225 60 59

120 225 0 154 148

120 225 135 44 44

120 225 225 44 46

150 0 0 5 10

150 0 135 77 75

150 0 225 136 1;13

150 135 0 11 4

150 135 135 46 61
150 135 225 114 114

150 225 0 19 15

150 225 135 80 75
150 225 225 127 126

179 0 0 95 96

179 0 135 66 59

179 0 225 51 63

179 135 0 53

179 135 135 !)9

179 135 225 74

179
179

179

225 0
225 135

225 j 225

61

71
95

6,1

99

74

65

79
94

"Orbital lif('timc if < 180 days.

t'Sing, ularity in mo(t(q ('au,',('(t ('rron('ous pr('diction.
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