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1. Update of Numerical Method

Since our last progress report (September 1993) we have modified our Navier-Stokes

solver to allow for unsteady boundary conditions to be imposed at the inflow boundary.

Because the streamwise derivatives are discretized with 3-point compact differences, there

is no need for special treatment of the points adjacent to the inflow boundary, provided

that all necessarv derivatives are properly specified at the boundary points. The unsteadv

boundary conditions can be obtained from a previous computation, from a solution of the

parabolized stability equations (PSE), or from an analytical exact or approximate solution

of the Navier-Stokes equations (e.g. an asymptotic expansion solution to model a sound

wave interacting with the boundary layer).

2. Numerical Simulation of the Northrop Suction Experiments

2.1 Overview

We have perfomed a more detailed analysis of our numerical simulations of the Northrop

suction experiments (Goldsmith, 1957). In these experiments Goldsmith studied the flow

inside the entrance region of a circular pipe. The experimental parameters were chosen such

that the flow was mostly irrotational, with a thin boundary layer developing along the wall.

Suction was applied through one row of holes along the circumference of the pipe (Fig.l).

Goldsmith found that the effects of the suction on the boundary layer inside the pipe could
be described by two nondimensional parameters, a nondimensional wall shear

T = "_v k, Oy ] ,,,_u

and a nondimensional suction flux

w here
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wall vorticity of the unperturbed basic flow (without suction)

dynamic viscosity

suction flow volume per unit length in azimuthal direction

hole spacing

d hole diameter

For a given geometry and base flow, T is constant and F varies linearly with increasing
suction strength.

For these two parameters he found a "critical suction curve". A part of this curve is shown

in Fig.2, with F on the abscissa and T on the ordinate axis. For values of the parameters



T, F to the left of the critical suction curve. Goldsmith found stable vortices emerging from

the holes and extending downstream in x-direction. For values T, F in between the two

branches of the curve, he found vortex shedding and transition to turbulence. For values

T. F to the right of the suction curve, he again found stable vortices, which, however, were
aligned in the azimuthal direction.

A major finding of the experiments was that the critical suction curve is independent of

the precise shape of the boundary layer profile, because only the wall vorticitv appears in
T. This allowed us to substitute a flat plate boundary layer in the numerical simulation for

a pipe entrance boundary layer in the experiment, quasi "unrolling" the pipe onto a plate.

To account for the finite circumference of the pipe, we imposed periodicity in the spanwise

direction z (corresponding to the azimuthal direction 0 in the experiments). In addition we

imposed symmetry of the/tow with respect to the z = 0 plane to reduce the memory and
CPU-time requirements of the simulation.

The computational box is shown in Fig.4. In streamwise direction x the integration

domain was 68 hole diameters long and was discretized with 961 gridpoints. In wall-normal

direction y it extended to two boundary layer thicknesses and was discretized with i00

gridpoints. In spanwise dircetion we used 11 Fourier modes and 17 collocation points.

In the simulation, for the viscosity v, freestream velocity Uoo, hole spacing s, hole diameter

d and suction flow Q we chose the same values as in the experiment. The wall vorticity

was matched by adjusting the distance between the suction holes and the leading edge.
The suction velocity v was imposed as a boundary condition over the hole diameter d:

v(r) = VoCos(Trr/d) as shown in Fig.3.

The parameters F,T of the three numerical calculations we performed are marked in

Fig.2. In all three calculations, the nondimensional wall shear was T = 404, this corresponds

to a Reynolds number based on displacement thickness of Res = 1224 at the holes.

The corresponding numerical parameters for the simulations were: Freestream velocity

U_ = 15 m/s, viscosity v = 15 × 10-6 m2/s, hole spacing s = 2.007362 mm, hole diameter

d = 1.0287 mm, distance from leading edge to hole centers xc = 0.50625 m. In the calculation

C1 (suberiticai case) the nondimensional suction flux was F = 35, corresponding to a point

;m the stable region to the left of the critical suction curve. In the calculation C2 (weakly

supercritical case) the nondimensional suction flux was F = 46. This point lies just inside the

unstable region of the parameter space. It should be noted that there is considerable scatter

of the original experimental data in this region. In the calculation C3 (strongly supercritical

case) the nondimensional suction flux was F = 58. which is well inside the unstable region.

2.2 Subcritical Case C1

For this simulation, trailing vortices emerged from the holes as expected and extended

downstream. Once the vortices had reached the outflow boundary, the flow field attained a
steady state.

A three-dimensional contour plot of the magnitude of the streamwise vorticity ]_'_1 is

shown in Fig.5, with all lengths given in ram. Within the limits of the 3-D perspective, the

region shown is drawn to scale in x, y, z. It extends from the centerplane of one suction hole

at z = 0 to the centerplane of the adjacent suction hole to the right at z = s. In streamwise

direction x, it extends approximately 1.5 hole diameters upstream of the hole centers and



approximately 6 hole diametersdownstream. In wall normal direction, the region extends
to approximately one half boundary layer thickness.

Betweenthe vortices is a small recirculation region (seeFig.6) which extendsabout three
holediametersdownstreamof the holes.

From Fig.5 one can observethat vortices from adjacent holesare closer to eachother
than vortices from the samehole, asshownschematicallyin Fig.7. Consequently,the main
interaction betweenthose vorticescausesa mutual uplifting, i.e. as the vorticesextend in
downstreamdirection they moveaway from the wall. Figs.9, 10, 11 show contours of the

streamwise vorticity in the plane z = s/3. These plots essentially represent a cut through

a vortex core. Superimposed on the vorticity contours are the velocity vectors (u, v) of the

undisturbed boundary layer flow. Near the hole, the vortices are still close to the wall, where

the slope of the (undisturbed) boundary layer is fairly constant. Thus as the vortices are

lifted up, they move into a fluid layer with increased mean streamwise velocity. This leads to

vortex stretching, which results in an increase of vorticity in downstream direction. Further

downstream, as the vortices approach the edge of the boundary layer, the mean streamwise

velocity no longer increases in vertical direction, and the growth of vorticity levels off.

In Fig.8, the streamwise vorticity w, at the vortex core is plotted versus the downstream

distance x. At the holes, the vorticity attains a maximum and then falls of rapidly over a

distance of three hole diameters. This distance is the same as the extent of the recirculation

region mentioned above. From there on, the vorticity increases again, and grows approxi-

mately (x x/_'. After 18 hole diameters, the vortex has risen to the edge of the boundary
layer, and the growth becomes weaker.

2.3 Weakly Supercritical Case C2

In this case the flow field near the holes is qualitatively not very different from the

previous case, as shown in Figs. 12 and 13. Two vortices emerge from each hole, and

initially they appear steady. However, after 20 hole diameters downstream one can observe

small fluctuations in the form of a periodic (both in space and time) thickening-thinning
of the vortices. This is shown in Figs. 14 and 15, and it is reminiscent of the sinuous

mode disturbances that are observed in vortex instabilities. Finally after 30 hole diameters

the vortices break up (see Figs. 16 and 17). A Fourier analysis of the fluctuations shows

a distinct peak at 1714 Hz. In the usual nondimensional unit for stability investigations

F=2ztfu/Uoo 2 × 104 , this corresponds to F=7.18. This is much higher than any frequency

in the amplified TS-band for the Blasius boundary layer.

For further analysis, the phase of the w, Fourier mode corresponding to 1714 Hz was

calculated near the y, z location of the vortex core. In Fig.18, this phase is plotted versus

downstream distance x - xc. The phase is fairly constant over the first 15 diameters down-

stream of the hole. From there on it exhibits the typical pattern of a traveling wave, with

the phase increasing by 2_" over every wavelength. From the slope of the phase curve one can

compute the phasespeed of the fluctuations, which is about 45 % of the freestream speed.

In Fig.19, the corresponding Fourier amplitude is plotted. After about 15 diameters

downstream of the hole the amplitude begins to grow; this correlates with the change of the
phase pattern in the previous figure.



2.4 Strongly Supercritical Case C3

In the third case C3, the flow is qualitatively very different from the first two cases.

The fluctuations are strong already at the suction holes, and it appears that there is vortex

shedding. This can be seen from the 3-D contour plots of the magnitude of the streamwise

vorticity (Fig.20) and of the magnitude of the total vorticity (Fig.20}.

Fig.22 shows timesignals of the spanwise vorticity at several downstream locations x, with

y, z = constant. Near the hole the periodicity of the vortex shedding is clearly discernible in

the curves. Further downstream the timesignal resembles more and more that of a turbulent
flOW.

Again we performed a Fourier analysis of the fluctuations. The frequency of the vortex

shedding is approximately 735 Hz, which is much lower than the peak frequency in case

C2. This correlates with Goldsmith's observation that the shedding frequency decreases

with increasing suction strength. In Fig.23, the phase of the wz component of the 735 Hz

fluctuation is plotted versus x. Contrary to the case C2, the phase exhibits a traveling wave

pattern starting right at the holes. The phase speed, inferred from the slope, is about 45 %
of the freestream speed.

2.5 Discussion

The computational results are in good qualitative (for lack of quantitative data) agree-

ment with the experimental results. Our calculations confirmed the location of the lower

branch of the critical suction curve, and its universal character (i.e. the curve is applicable

to both to pipe flow boundary layers and flat plate boundary layers.).

Of particular interest are the results of calculation C2, the weakly supercritical case.

From the experimental data it was not quite clear how the transition from the stable to the

unstable region in parameter space takes place. In principle, it could be either due to vortex

instability, or due to an instability of the recirculation region that forms between the vortices.

Goldsmith attributed the observed turbulence to vortex shedding from the hole, which sets

in once the suction strength is above the critical threshold. In contrast, our calculations

indicate that (at least in some region of the parameter space F, T) the transition is caused
by a vortex instability.

As the suction strength is further increased, we expect the onset of instability growth

in the vortices to move upstream and eventually to coalesce with the recirculation region,

leading to the vortex shedding observed in the experiments (and in calculation C3).

A major difference between the pipe-entrance boundary layer and the flat plate boundary

layer is that the former is much more stable (in fact a useful neutral stability curve has vet

to be established for this flow). Indeed, Goldsmith did not observe transition in the absence

of suction. In contrast, with the parameters used in the simulations the Blasius boundarv

layer is unstable to small disturbances. We would expect transition to turbulence to occur

sufficiently far downstream, even with the lowest suction strength (case C1). In view of this,

the critical suction curve assumes a different character for the flat plate boundary layer: It

separates regions where transition is guaranteed to occur due to suction effects alone (vz. in

between the two branches) from those where transition may be caused by other effects.



3. Effect of suction holes in Laminar Flow Control

The motivation for using suction holes in laminar flow control is to changethe stability
characteristic of the boundary layer through wall suction. Suction through holes, however.
can have undesiredside effects: The holes may enhancereceptivity to freestreamdistur-
bances,and they may generatecrossflowin the boundary layer which can actually enhance
transition, either directly through the suction or indirectly through the generationof stream-
wise vortices (seepreviousdiscussion).

In many LFC experiments, perforated panels are used to apply suction. _taypical hole

diameters are a fraction of a ToUmien-Schlichting wavelength d = 1/5... 1/20)_TS, and the

suction velocity are very small, on the order of 1% of U¢¢ (Harris et. al., 1992). However,

the hole spacing (both in streamwise and spanwise direction) can be on the order of a TS-
wavelength, and this may lead to resonance effects.

In our first numerical simulation of a suction-hole configuration that is relevant for LFC,

we investigated the effect of a single spanwise row of suction holes (d = 1/20_TS) on both

the steady boundary layer and on an oncoming TS-wave. However, to limit the CPU and

memory requirements, we chose a hole spacing s/d = 2, which is somewhat denser than in
practical applications.

The Reynoldsnumber at the x-location of the holes was R6 = 1200. The hole diameter

d was 4/5 of the local displacement thickness 6, and the suction velocity averaged over one

hole was 0.2 % of U_. Fig.24 shows a carpet plot of the mean 2-D streamwise velocity u that

is induced by the holes, i.e. the change from the undisturbed Blasius boundary layer profile.

The suction increases the u velocity near the wall by 0.08 cA of U¢¢, and there is a slight kink

in the velocity profile directly above the holes. The first spanwise Fourier mode is plotted

in Fig.25. Directly above the suction hole there is a peak of 0.37 % of U_, but downstream

of the hole the velocity falls off rapidly. All higher spanwise modes are much smaller and

also decay in x direction. Thus, the holes in this case are sufficiently small to avoid the

generation of growing streamwise vortices. We also introduced a 2-D disturbance wave of

nondimensional frequency F=I and amplitude 10 -6 at the inflow boundary. At the local

Reynolds number this disturbance is weakly amplified in a Blasius boundary layer. After

the flow had reached a periodic state, we performed a Fourier-analysis in time. Fig.26 shows

the amplitudes of the u-velocity component of the 2-D TS waves: They are almost identical

to those obtained for the case without suction, Close inspection reveals a small deviation

near the wall directly above the suction hole. The amplitudes of the higher harmonics of the

2-D TS-wave are negligibly small. The amplitudes of any 3-D fluctuations are also negligibly
small, and they decay away from the hole.

Next we calculated a case with a large hole diameter (4.8 local displacement thicknesses),

and with a larger hole spacing of s/d = 5. The average suction velocity was again 0.2 % of
U¢¢. Fig.27 shows a carpet plot of the change of the mean 2-D streamwise velocitv u that is

induced by the holes. The larger holes cause a stronger initial adjustment of the'boundary

layer. However, the velocity drops off downstream of the holes, and the long-range effects

of the larger holes on the mean 2-D flow are not much different from the small ones in the

previous case.

The picture is quite different for the first spanwise Fourier mode, plotted in Fig.28. While

the maximum of the u velocity above the holes is not much higher than in the previous case



Iapprox. 0.6 e_ of U_¢), at first it decays only very little downstream of the holes. Then, in

contrast to before, the velocity increases again further downstream of the holes. This is a

clear indication of the formation of streamwise vortices. Investigations of the effect of these

vortices on TS-waves are currently under way.

4. Future Work

Due to the complexity of the research project and the many issues involved, we plan to
proceed in three discrete steps in the next year.

1.

We will continue the investigation of the short scale effects of a single row of suction

holes on TS-waves. The important issues here are the scattering of TS-waves by the

holes and resonances of certain spanwise modes due to the hole spacing. We also

plan to examine the receptivity of the holes to freestream disturbances. There has

been previous research in this area by means of asymptotic theory (Choudhari and

Kerschen, 1990), albeit in a parameter range that is outside the scope of the present

investigations (The characteristic streamwise lengthscales in Triple-Deck theory are of

O(A_'s), whereas we consider holes which are very much smaller than )_TS.). These
results can provide a further reference for validation of our calculations.

.

Next we plan to extend our investigations to the generation of streamwise vortices by

the holes, and to their effects on transition. It is known that even vanishingly weak

streamwise vortices can have a strong effect on transition, but to date there are no
quantitative predictions.

° Finally, we will study the effects of an array of suction holes, consisting of several rows

of holes in spanwise direction, aligned and/or staggered in streamwise direction. Here

the questions are whether the downstream rows will increase or attenuate negative

effects of the rows upstream (vz. vortices), and whether the streamwise spacing of the
holes can cause resonances with disturbance waves.
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Figure 1: Schematic of Goldsmith's experiment: Flow in the entrance region of a pipe, with
boundary layer suction through a row of holes along the circumference.
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Figure 2: Critical Suction Curve. F is the nondimensional suction flux, T is the nondimen-

sional wall shear. C1.C2,C3 are numerical computations. Indicated are regions of stable

streamwise vortices, instability (vortex shedding), and stable spanwise vortices.
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Figure 3: Suction velocity over one hole.
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Figure 4: Schematic of integration domain.
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Figure 5: Case CI: Contourlines of Jw, I = 30, view from upstream.
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Figure 6: Case CI: Contourlines of u = 0, view from downstream.
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Figure 7: Schematic of holes with trailing vortices, view from top.
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Figure 9: $ideview of vortices. Contours are levels of streamwise vorticity w_, arrows are

velocity vectors of undisturbed boundary layer flow at left edge of plot. Drawn to scale in
x, y (in mm); x - xc is distance from center of holes.

3.750

0.000

7.500
11.250 15.000 18.750

Figure 10: contd.

3.750

0.000

18.750 22.500 26.250 30.000

Figure 11: contd.



O.ooo r_
_. 0o'7 .3"_

Figure 12: Case C2: Contours of [w::[ = 30, x - xc = -3.75... 7.5.
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Figure 13: Case C2: Contours of [w_[ = 60, x - ._:c = 7.5... 18.25.
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Figure 14: Case C2: Instantaneous contours of [w=[ = 90, x - xc = 18.25... 30.00.
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Figure 15: Case C2: Instantaneous contours of [w_[ = 90, x - x_ = 18.25... 30.00 at a later
time.
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Figure 16: Case C2: Instantaneous contours of Iw=l = 90, x - zc = 30.00... 41.25.
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Figure 17: Case C2: Instantaneous contours of [w_l = 90, x - xc = 30.00... 41.25 at a later
time.
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Figure 19: Case C2: Amplitude of _ Fourier component with frequency 1714 Hz, plotted
versus x at constant y = 1.5,, z = 0.753



Figure 20: Case C3: Instantaneous contours of Iw_l = 40, x - xc = -3.75... 7.5.
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Figure 21: Case C2: Instantaneous contours of [w[ = 90, x - xc = 7.5... 18.25.
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Figure 24: Carpet plot of mean 2-D streamwise velocity induced by small suction holes.

Figure 25: Carpet plot of first spanwise Fourier mode of streamwise velocity induced by
small suction holes.
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Figure 26: Carpet plot of u amplitude of 2-D TS-wave in boundary layer with small suction
holes
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Figure 27: Carpet plot of mean 2-D streamwise velocity induced by large suction holes.
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Figure 28: Carpet plot of first spanwise Fourier mode of streamwise velocity induced by

large suction holes.


