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Summary

An analytical and experimental study for assessing the potential of reliability-based

structural optimization is proposed and described. In the study, competing designs

obtained by deterministic and reliability-based optimization are compared. The

experimental portion of the study is practical because the structure selected is a modular,

actively and passively controlled truss that consists of many identical members, and

because the competing designs are compared in terms of their dynamic performance and

are not destroyed if failure occurs. The analytical portion of this study is illustrated on a

10-bar truss example. In the illustrative example, it is shown that reliability-based

optimization can yield a design that is superior to an alternative design obtained by

deterministic optimization. These analytical results provide motivation for the proposed

study, which is underway.

lntro0ueti0n

Over the last two decades significant advancements have taken place in both the theory of

and computational techniques used in structural reliability (Madsen et al. [86], Melchers

[87], and Cruse [92]). Studies have demonstrated analytically that reliability-based

optimization can be more effective than classical deterministic optimization for designing

aircraft structures (e.g., Yang, Nikolaidis, and Haftka [90]).

However, the superiority of probabilistic over classical deterministic methods has not

been proven in real life design or by experiment. This is one of the reasons that

reliability-based optimization has not been applied to aerospace structures. (In this

paper, the terms "reliability-based optimization" and "probabilistic optimization" are

used interchangeably to refer to optimization in which uncertainties and probability of

failure are taken into account.)

Three critical issues involving the accuracy of and basic assumptions behind the methods

for structural reliability assessment are:

In reliability-based design, it is difficult to quantify all important uncertainties. For

example, little is known of how to quantify uncertainties that are due to assumptions

and simplifications in analysis procedures (modeling uncertainties).

In many cases, there are significant errors in the assumed probability distributions of

some random variables, such as, for example, the loads. Usually, the probability

distribution of a load is estimated by analyzing sample values that are in the vicinity



of the mean value and not in the right tail of the probability distribution. However,

since most failure cases occur when a load is large, it is the right tail of the probability

distribution of a load that is important in reliability assessment. Similarly, it is

difficult to determine the shape of the left tail of the probability distribution of

material properties, which is also critical in reliability assessment. For some random

variables, including the load and material properties just cited, a small error in the

assumed distribution may cause a large error in the estimated probability of failure.

This problem, which is often referred to as the tail sensitivity problem, is a serious

consideration when assessing reliability (Melchers [87], Ben-Haim and Elishakoff

[90]).

As a result of the aforementioned problems, the probability of failure that is

calculated in reliability analysis, and used in reliability-based design, can be

significantly different from the actual failure probability. It is generally agreed that

this "nominal" failure probability should be interpreted as a subjective measure of

safety rather than as the actual failure probability. Consequently, it is important to

answer the following question. If this nominal failure probability is used as a

surrogate for the actual failure probability in reliability-based optimization, will the

resulting designs still be better than their deterministic counterparts?

If designers are to accept probabilistic methods as practical design tools, it is important to

demonstrate experimentally that probabilistic methods can yield better designs than

deterministic methods, despite the above difficulties. However, demonstrating the

advantages of reliability-based optimization is not a simple task. To do so, many pairs of

alternative structures obtained using reliability-based optimization and deterministic

optimization must be constructed, tested, and their performance compared based on

specified failure criteria. Depending upon the failure criteria selected, it might be

necessary to destroy a large number of sample structures to obtain a valid assessment.

Since destroying a large number of structures would be impractical for this study, the

structure and its failure modes were chosen in a way that failure would not imply its

destruction.

The objectives of this report are to:

Propose and describe an analytical-experimental study to assess the advantages of

reliability-based optimization. The study will establish a practical procedure to

compare reliability-based optimization with deterministic optimization.

Demonstrate with an analytical example that reliability-based optimization can lead to

a design that is superior to a design obtained by deterministic optimization. Use the

example to illustrate the analytical part of the proposed study.

The key feature of the study is to use an actively and passively controlled modular truss

structure and consider a large number of failure events which do not imply the destruction

of the structure or its members. Such a failure event occurs, for example, when !he

damping ratio of a vibration mode falls below a specified value and/or when the vibration

amplitude at some given location exceeds a maximum allowable value. During tests, the



truss can be disassembled and reassembled after rearranging its members randomly. Thus,

a large number of identical random samples of the same design can be tested at low cost.

The large number of random samples, together with the large number of failure events,

eliminates the factor of chance when comparing a probabilistic design with an alternative

deterministic design, and makes it possible to draw valid conclusions regarding the

effectiveness of reliability-based optimization.

In the proposed study, two trusses are designed - one using deterministic optimization

and the other using reliability-based optimization. In both cases the objective is to

maximize safety; however, because the definition of safety differs in the two cases, the

final designs are different. Then, a large number of both designs are constructed and

tested. The design that has the smaller number of failures is accepted as being better.

In this paper, the general procedure for comparing deterministic optimization with

reliability-based optimization is presented first. Then, the structure that is proposed for

the study is described. Finally, an analytical example involving a ten-bar truss is used to

provide motivation for the study and to illustrate some of its steps. When compared, the

probabilistic design that is obtained in the example is superior to the deterministic design.

The methodology for assessing the reliability is presented in an appendix.

Symbols

C

CO

P(F )

ns

total cost of damping control system

maximum allowable total cost of damping control system

failure mode associated with the ith vibratory mode

system failure

probability of system failure

system reliability, 1-P(Fs)

design variables. For the deterministic design, xi are the normalized gains

of active members 1 and 2 and the normalized damping factors of passive

members 3 and 4. For the probabilistic design, xi are the mean values of

the normalized gains of active members 1 and 2 and the mean values &the

normalized damping factors of passive members 3 and 4.

system reliability index (or, system safety index)

damping factor of the ith vibratory mode

lowest acceptable damping factor for the ith vibratory mode

probability distribution function of a standard Gaussian random variable



Description of Analytical-Experimental Study

The proposed study consists of an analytical part and an experimental part. In the

analytical part, two trusses are designed - one using reliability-based optimization and the

other using deterministic optimization. In each case, the objective is to maximize safety.

Safety is quantified by the margin of safety in deterministic optimization and by the

system reliability in reliability-based optimization. After the two trusses are designed,

their system reliabilities are evaluated and compared analytically.

In the experimental part, many samples of the probabilistic and deterministic designs are

tested to determine their dynamic performance. Then, the number of failure events for

the two types of designs are compared. Failure events are defined by unacceptable

dynamic behavior. Examples include cases where the damping ratio of any of the modes

is smaller than a prescribed minimum value, or the vibratory amplitude of any node is

larger than a prescribed maximum value. In the tests, if the percentage of failures for the

probabilistic designs is smaller than the percentage of failures for the deterministic

designs, it is concluded that the probabilistic designs are safer and that reliability-based

design is an effective approach for structural design.

Analytical Part of Study, Probabilistic and Deterministic Design

When a structure is designed probabilistically to maximize its safety, the objective is to

minimize the probability of system failure, P(Fs). This is done subject to the

requirement that the utilized resources (cost, weight, energy expended) do not exceed the

allocated resources. It is assumed that the system fails if its dynamic behavior is

unacceptable.

For example, failure of the system can be defined as the event in which the damping ratio

of any vibratory mode falls below a lowest acceptable value for that mode. Specifically,

the failure mode associated with the ith vibratory mode, Fi, is an event that occurs if the

damping factor of the ith vibratory mode, _'i, becomes less than the lowest acceptable

damping for that mode, (0,i I . That is,

Fi: J=l .....n (1)

When a structure is designed deterministically to maximize its safety, the objective is to

maximize the margin against failure. Using the above example and notation, the margin of

safety for failure mode i is defined to be _'i - _'0,i. Thus, the objective is

Maximize: rain (_i - _o,i ) i = 1..... n (2)

1 Because of this definition, there is a one-to-one correspondence between failure modes

and vibratory modes. Therefore, the same subscript is used to specify the failure mode

and vibratory mode number. In general, there is no one-to-one correspondence between

failure modes and vibratory modes.
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such that the utilized resources do not exceed the allocated resources. The same resources

are allocated in deterministic and probabilistic design.

After the two alternate trusses are designed, their probabilities of failure are evaluated

analytically and compared. If the probabilistic design has a significantly lower failure

probability than the deterministic design (for example if it is 50% of the failure

probability of the deterministic design), then it is likely that the probabilistic design will

perform better than the deterministic design in an experiment in which many samples of

the two designs are tested. The experimental part of the study is undertaken if, and only

if, the failure probability of the probabilistic design is significantly lower than that of the

deterministic design. Otherwise, the design requirements are redefined (by changing the

required damping factor, allowable vibration amplitude, etc.) to produce two new designs

that do have significantly different failure probabilities. These new designs can be used in

the experimental part of the study.

Experimental Part of Study

Testing involves a large number of pairs of structures, each pair consisting of a design

obtained by deterministic optimization and a design obtained by reliability-based

optimization. The number of structures of each type that fail is recorded. If the

mathematical models that describe the uncertainties and structural response are

sufficiently accurate, then it is likely that more deterministic than probabilistic designs

will fail. This will demonstrate that the probabilistic design is more reliable than its

deterministic counterpart because, while the same resources are used in designing both

structures, the probabilistic design is less likely to fail.

Description of Experimental Structure

A modular truss was selected for the study because, as explained in the introduction, it is

suitable for the experimental procedure. The truss consists of two sets of identical struts

bolted together using joints. Concentrated masses can be attached to the joints. The

dynamic behavior of the truss is controlled by using active struts and/or passive dampers.

A typical truss (without dampers) is shown in Figure 1.

Active struts consist of piezoelectric sensors and actuators with integral control. This

type of active member is described by Preumont et al. [91], and Ponslet et al. [91].

Passive dampers can be constructed by coating struts with viscoelastic material, which

allows the members to absorb energy. The behavior of the passive members is nonlinear

because both the damping factor and the stiffness depend on the displacement amplitude.

Moreover, the damping factor depends on the temperature and the frequency. Jones [80]

reviewed the characteristics of viscoelastic materials when used for damping applications.

Other passive damping concepts will also be explored.



There is uncertainty in the damping ratio and stiffness of both the passive and active

members, which is due to sample-to-sample variability and the dependence of these

quantities on both the deformation and temperature of these members. In addition, the
dimensions of the structural members, the material properties, and the weights of the

concentrated masses vary randomly due to manufacturing imperfections.

Figure 1.- Typical experimental truss, without dampers.

(From Ponslet et al. [93])

_I_ Active ---TI Passive _ Joints with
members members concentrated

masses

Figure 2.- Ten-bar truss example. Numbers indicate locations of the

corresponding design variables.



Examole: Ten-Bar Truss

The following analytical example illustrates the procedure described above and

demonstrates that reliability-based optimization can produce a superior design. In the

example, two ten-bar trusses are designed and compared. One truss is designed using

deterministic optimization and the other using reliability-based optimization. In both

cases the objective is to maximize safety. Topics presented include the optimization

procedures, the resulting two designs, and the performance of the two designs.

Each of the two alternative designs was assumed to fail when tile damping ratio of any of

the first four natural vibration modes fell below a specified value. Two active and two

passive members were used to control damping. The truss configuration and the locations

of active and passive members and concentrated masses are shown in Figure 2. Each

active member consisted of a piezoelectric stack to provide actuation and a force

transducer to provide sensing. An integral control law was used. The truss properties

that were used in the optimization are presented in Table 1.

Table 1. Properties ofTen-Bar Truss and Design Requirements

Cross-sectional area of elements 0.132x 10 -3 m 2

Lensth of short members 9. m

Young's modulus 70.x 109 N/m 2

Density 3.x103 k_/m 3

Concentrated masses 10. ks

Nominal gains of active members 0.5x 10 -4 m/Nsec

Nominal damping factors of passive 200. Nsec/m
members

2.5%Lowest acceptable dampin_ ratio
Maximum allowable cost

Cost of active members

Cost of passive members

$249.

$100./unit of normalized _ain

$20./unit of normalized dampin_ factor

Note: Values selected for the unit costs are arbitrary and are used for illustrative

purposes only.

Optimization Procedures and Results

In this section, the deterministic and probabilistic optimization procedures are

summarized and the final designs are presented. The two optimization procedures differ

only in the objective function. In the deterministic case, the objective is to maximize the

minimum margin of safety. In the probabilistic case, the objective is to minimize the

probability of system failure. In both cases, the algorithm that was used for the

optimization was an extended interior penalty function technique incorporated in the code

NEWSUMT-A (Grandhi et al. [85]).



Deterministic Optimization

The optimization procedure consisted of maximizing the lowest margin of safety. Failure

was defined as a damping ratio that was less than a specified allowable value for the first

four vibration modes. Because the allowable value was the same (2.5%) for each vibration

mode, the optimization procedure reduces to maximizing the lowest damping ratio.

During the optimization, the total cost associated with the active and passive members
was not allowed to exceed the maximum allowable cost. The optimization is defined

formally as

Maximize: m#l (_'1 ..... G)

Subject to: c = l O0( x I + x 2 ) + 20( x 3 + x 4 ) <_cO (3)

where _'i is the damping ratio in the ith mode, c is the total cost, and c o is the maximum

allowable cost. Design variables were the normalized gains, Xl and x2, of the active

members and the normalized damping factors, x3 and x4, of the passive dampers. The

subscript on x indicates the member number. Locations of the active and passive

members are shown in Figure 2.

Table 2 presents the values of the gains and the damping factors together with the costs

of each active and passive member for the deterministic optimum.

Table 2. Deterministic Optimum for Ten-Bar Truss Example

Member type /
Member number

Normalized gain or

dampin_ factor
1.848

Cost ($)

Active/1 184.8

Active/2 0.530 53.0

Passive/3 0.559 11.18

Passive/4 0.0 0.0

Reliability-Based Optimization

Reliability-based optimization accounts for uncertainties. There are many types of

uncertainties, but, for this example, only the uncertainties associated with the active and

passive members were considered; it was assumed that they were the most important.
These uncertainties can be classified into two categories: modeling and random. Modeling

uncertainties are due to simplifications in modeling and analyzing the structure. Random

uncertainties are due to:

• variability between samples,

variability in the conditions under which the members operate (temperature,

amplitude of vibration) during the same experiment or from one experiment to
another.
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Only random uncertainties in the gains and the damping factors were considered. The

gains and the damping factors were assumed to be independent, Gaussian random

variables with coefficients of variation equal to 10%.

After the uncertainties were defined, the truss was optimized by minimizing the

probability of system failure, P(Fs). As in the deterministic design, the total cost

associated with the active and passive members was not allowed to exceed the maximum

allowable cost. Formally, the following optimization problem was solved :

Minimize:

Subject to:

P(F )
c = lO0(x I + x 2) + 20(xs + x4) _-co (4)

Calculating P(Fs) can be a formidable task. Fortunately, there are approximate

procedures for making that calculation that are, in most cases, reasonably accurate.

Examples include the first- and second-order Ditlevsen bounds (Madsen et al. [86],

Meichers [87]). In the present study, the second-order, upper Ditlevsen bound was used

to estimate the system failure probability. A brief explanation of the method is presented

in the appendix.

The maximum allowable cost, c o , was the same as that used in the deterministic

optimization. Design variables were the mean values of the normalized gains, Xl and x2,

of the active members (members 1 and 2) and the mean value of the normalized damping

factor, x3, of one of the passive dampers (member 3). The damping factor, x4, of the

other passive damper (member 4) was assumed to be zero for the following two reasons.

First, in the deterministic design x4 was found to be zero. Second, as is shown in the

following section, the system reliability index for the deterministic design was found to be

insensitive to x4.

Table 3 presents the mean values of the gains and the damping factors together with the

costs of each active and passive member for the reliability-based optimum.

Table 3. Reliability-Based Optimum for Ten-bar Truss Example

Member type/
Member number

Mean values of

normalized gain or

dampin_ factor
1.941

Cost ($)

Active/l 194.1

Active/2 0.413 41.3

Passive/3 0.675 13.5

Passive/4 0.0 0.0



Description and Comparison of Deterministic and Probabilistic Designs

Deterministic Design

The design space for the deterministic optimum is shown in Figure 3. Recall that the
objective was to maximize the minimum (,i subject to cost < $249, and that the problem

was solved using mathematical programming techniques. Cost and damping ratios
increase toward the upper right. The optimum design is bounded from above by the line

defined by cost=$249. A move to the left along that line causes 54 to be reduced; a
move to the fight causes _'1 and _'2 to be reduced. At the optimum, the damping ratio

of the third vibration mode is 3.1%, for the first, second, and fourth modes, the damping

ratios are all 3.0%. Note that, according to the deterministic analysis, mode 3 is less

important than the other modes because its damping ratio is highest.

2,2 m

2.0 m

Normalized

gain,
Xl

1.8--

1.(

0.4

Increasing cost
Increasing damplng

_ _i : 3%

- - cost = $249

-Optimum

_1, _2

I I I I
0.5 0.6 0.7 0.8

Normalized damping factor, X3

Figure 3.- Design space for deterministic optimum. Each curve,

except cost, defines a 3% damping ratio for the corresponding

vibration mode. x2 = 0.530, x4 = 0.0.

The probability of system failure for the deterministic optimum was estimated using the

procedure described in the appendix. For each mode, failure was defined to occur when

the damping ratio of that mode was less than 2.5%. System failure was defined to occur

when glX of the damping ratios of the first four vibration modes fell below 2.5%.

Table 4 presents the results of a reliability analysis of the deterministic design. Mode 2 is
the most critical mode, and mode 3 is the second most important mode. The probability

of failure of mode 4 is small compared to those of the other modes. The safety of the

design is indicated by the system failure probability, P(Fs) = 4.81%. Another measure

10



of the safety of the design - the system reliability index - is also given in Table 4. The

system reliability index, denoted fls, is defined by

Rs= a,(#,) (5)

in which q_(.) is the probability distribution function of a standard Gaussian random

variable, and R s is the system reliability.

Table 4. Probabilities of Failure of Modes, System Probability of Failure, and System

Failure

probability
of mode 1

(%)
1.06

Reliability Index of
Failure Failure

probability probability
of mode 2 of mode 3

(%) (°/o)
4.65 2.28

Deterministic Design
Failure

probability
of mode 4

(%)
0.23

System
failure

probability

(%)
4.81

System

reliability
index

1.664

The system failure probability was also estimated using Monte-Carlo simulation with

10,000 samples. This probability was found to be 5.23%, which is approximately 9%

larger than the probability estimated using the combination of second-moment methods

and the second-order, upper Ditlevsen bound.

Regarding the relative importance of the modes to system safety, deterministic analysis

and probabilistic analysis reach different conclusions. Specifically, deterministic analysis

indicates that mode 3 is the least important of the four modes (Figure 3). However, a

probabilistic analysis of this deterministic design indicates that mode 3 is the second most

important mode. Indeed, according to Table 4, the probability that the damping ratio is

less than 2.5% (the value that corresponds to failure) is more than twice as great in the
third vibration mode as it is in the first vibration mode. Calculations show that the

standard deviation of the limit state function of mode 3 is larger than that of mode 1. As a

result, the mean value of the damping ratio is 2.3 standard deviations away from 2.5% for

mode 1, and 2.0 standard deviations for mode 3, which means that mode 3 is more

important than mode 1.

The logarithmic sensitivity derivatives 2 of the reliability indices for the 4 failure modes

with respect to the standard deviations of the gains and damping factors are presented in
Table 5. It is observed that:

• The reliability index for failure mode 1 is only sensitive to the uncertainties in the

gains of the active members (members 1 and 2).

2 As used herein, the logarithmic sensitivity derivative of fix) w.r.t, x is given by

f"x (lOgef) which is x/.. This derivative gives the relative change in f caused by a unit
J

relative change in x, or it can be interpreted as the percent change in f caused by a one
percent change in x. If f is the reliability index and xi are the standard deviations of the
random variables, then the sum of the logarithmic derivatives is unity, as shown in Table 5.
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• The reliability indexes of failure modes 2 and 3 are only sensitive to the gain of

member 1.

Both active members and the passive damper (member 3) provide damping to

vibration mode 4. However, the reliability index for failure in this mode is more

sensitive to the uncertainties in the gain of the second active member and the passive

damper than to the uncertainty in the gain of the first member.

• The second passive damper (member 4) is unimportant - none of the failure modes is

sensitive to the damping factor of this member.

The effect of the normalized gain of active member 1 on the damping ratios of the four

vibration modes is depicted in Figure 4. Modes 2 and 3 are the most sensitive while mode

4 is the least sensitive. The optimum design is at the crossing of the lines representing

modes 1, 2, and 4.

Table 5. Deterministic Design: Logarithmic Sensitivity Derivatives of Reliability Indices

for Failure Modes with Respect to Standard Deviations of Gains and Dampers
Active members Passive members

Mode \ Member number

Failure Mode 1

Failure Mode 2

Failure Mode 3

Failure Mode 4

1

0.89

2

0.11

1.0 0 0

1.0 0 0

0.18 0.44 0.37

4

0

0

0

0

Damping ratio, 41,
percent

Mode

1
2 9_ ...... _-Optimum

::;F , , ,
1.75 1.80 1.85 1.90

Normalized gain, xI

Figure 4.- Deterministic optimum. Effect of normalized

gain x1 on damping ratios of first four vibration modes.
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Probabilistic Design

Table 6 presents the probabilities of failure of the four modes and the system failure

probability of the probabilistic design. The system reliability index of the probabilistic

design was calculated to be 1.921, which corresponds to a probability of failure of about

2.7%. The failure probability was also found to be about 2.7% using Monte Carlo

simulation. By comparing Table 6 with Table 4, it can be seen that the ranking of tne

failure modes is different. For example, the probabilistic design is more likely to fail

under mode 1, while the deterministic design is more likely to fail under mode 2. It is

also observed that the probabilities of failure of the modes of the deterministic design

differ more than those of the probabilistic design.

Table 6. Probabilities of Failure of Modes, System Probability of Failure, and System

Reliability Index of Reliability-Based Design

Failure

probability
of mode 1

(%)
2.2

Failure

probability
of mode 2

(%)
2.0

Failure

probability
of mode 3

1.0

Failure

probability
of mode 4

(%)
0.23

System
failure

probability

(%)
2.739

System

reliability
index

1.921

Figure 5 shows how the probability of system failure and the cost vary with the mean

values of both the gain, Xl, of active member 1 and the damping factor, x3, of passive

member 3. In this figure, the mean value of the gain, x2, of active member 2 is equal to

0.413, which is the value that x2 takes at the optimum. The solid curves correspond to

constant values of the probability of system failure, P(Fs). The dashed lines correspond

to constant values of total cost, c. The reliability-based optimum is indicated by the

triangular symbol.

_Fs), %

Constant failure probability
- - Constant cost

Optimum for cost = $249

2.05

2.00

Mean value of
normalized gain, 1.95

Xl

1.90

1.85
0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Mean value of normalized damping factor, x3

Figure 5.- Design space for reliability-based optimum. Curves define
constant values of system failure probability and total cost. x2 = 0.413,

x4 = 0.0.
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At the optimum, the line that corresponds to a cost of $249 is tangent to the curve that

corresponds to a probability of failure of about 2.7%. Starting at the optimum, a move to

the left or right along that $249 line causes the probability of system failure to increase.

This confirms the fact that, out of all the designs that cost $249, the probabilistic

optimum (triangular symbol) has the smallest probability of system failure.

Figure 6 shows how the safety of optimum probabilistic designs varies with the maximum

allowable cost. The vertical scale at the left is the system reliability index. The vertical

scale at the right is the probability of system failure. The horizontal scale is the maximum

allowable cost. Over the range of costs shown, the safety of the system increases as the

allowable cost increases. The triangular symbol indicates the failure probability (rather

than the reliability index) of the deterministic optimum.

Reliability index
Failure probability

-_- Deterministic opbmum

3.0 _ -- 12

% m

%

_ _ m 2

J I I''-- o
240 250 260 270

Cost, $

2.5

2.0

Reliability index 1.5

1.0 m

0.5-

0
230

10

8

6 Failure probability,
percent

4

Figure 6.- System reliability index, 13s, and system probability of failure, P(Fs),
versus total cost for optimum probabilistic designs. Triangular symbol

indicates failure probability of deterministic optimum.

Comparison

In the reliability-based optimization procedure used herein, the probability of system

failure is minimized subject to the requirement that the cost is less than an upper limit.

The cost is the sum of the costs of the active members and the passive dampers.

Therefore, the optimality criterion for the probabilistic optimum is:

dP( Fs ) - constant for i= l .... 3 (6)
dci

where c i is the cost of the ith member. According to this criterion, at the optimum, the

three sensitivity derivatives in equation (6) are all equal. The three sensitivity derivatives

for the deterministic and probabilistic optima are presented in Figure 7.

14



For the deterministic optimum, the sensitivity derivatives are not equal; therefore, the

deterministic optimum violates the optimality criterion. The sensitivity derivative with

respect to the cost of member 1 (the first active member) is largest, and the sensitivity

derivative with respect to the cost of member 2 is the smallest. Therefore, by increasing

the gain of member 1 and reducing the gain of the other active member and/or the damping

of the passive member, the safety of the system can be improved without exceeding the

budget.

In contrast, for the reliability-based optimum, the sensitivity derivatives are almost

identical. This means that, as long as the total cost is fixed, the safety cannot be increased

by changing the gains and the damping factor.

-.006 --

-.004 --

-.002

iiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiii
.::::::::::.::.:.

Yf:': f f:Yf:Y:': :Tf:
"ZY$$$$$ZY$$:.Y,

iii!i!i!i!i!ili!i!i!ii!iiii!!ii!i 
. ...........................
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Figure 7.- Derivatives of system failure probability with respect to

member cost for probabilistic and deterministic optima.

Table 7 presents the probabilistic optimum and compares it with the deterministic

optimum. It is observed that, although the two optima cost the same, the probabilistic

optimum is considerably safer than the deterministic optimum. Specifically, the

probability of failure of the probabilistic optimum is about 56% of that of the

deterministic optimum. Therefore, in an experiment, it is likely that the probabilistic

design would perform better than the deterministic design.

Reliability-based optimization yielded a better design than deterministic optimization

because it had the following advantages compared with deterministic optimization:

• It accounted for some of the uncertainties in a rational way.

• It accounted for the sensitivity of the cost and performance of the system with respect

to these uncertainties.
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The reliability indices of the two optima were also evaluated using Monte-Carlo

simulation. The results, which are also presented in Table 7, agree with those obtained

using the combination of second-moment methods and the second-order, upper Ditlevsen

bound.

Table 7. Comparison of the Deterministic and Probabilistic Optima

Xl

x2

x3

Cost ($)

P(Fs) 1 (/_s) 1

Deterministic optimum
1.8483

0.53

0.56

249.0

Probabilistic optimum
1.941

0.413

0.675

249.0

0.048 (1.664) 0.027 (1.921)

P(Fs)2 (/_s)2 0.052 (1.628) 0.027 (1.927)

1 estimated using the second-order, upper Ditlevsen bound.

2 estimated using Monte-Carlo simulation with 10,000 replications.

£9_afll!.s.L0.m

This report has proposed and described an analytical and experimental study for

comparing reliability-based optimization with deterministic optimization. The study

involves designing, testing, and comparing alternative structural designs obtained by

probabilistic and deterministic methods. The experimental portion of the study is

practical because of the following two important features:

The study uses a modular truss that consists of many identical members. After

the truss is tested, it can be disassembled and its members rearranged. Then it can

be reassembled and retested.

The designs are compared by testing their dynamic performance. Failure is

defined to occur if the dynamic performance is unacceptable. Thus, failure does

not imply destruction of the structure.

These two features allow many random samples of the same structure to be constructed

and tested using a small number of members.

The following are the conclusions from an analytical example presented herein:

In the example, reliability-based optimization produced a design that was more

reliable than, and cost the same as, the corresponding deterministic optimum.

Since reliability-based optimization accounts for more information than

deterministic optimization, it can lead to a better design.
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• Deterministic analysis incorrectly ranked the failure modes in terms of their

importance to system reliability.
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Annendix: Reliability Assessment Methodology

The procedure for reliability assessment of a system consists of two steps: element

reliability analysis and system reliability analysis. In element reliability analysis, the

analyst calculates the probability that each of the failure modes of the elements of a

system may occur. In system reliability analysis, the analyst calculates the probability

that the system may fail due to the failure of its modes.

In the example considered, there were four failure modes - one for each of the first four

vibration modes. Each failure mode occurs if the damping ratio of the corresponding

vibration mode becomes less than a specified minimum acceptable value. System failure

occurs if ng.q.V,of the four damping ratios is less than the minimum acceptable value for that

vibration mode. In general, the minimum acceptable value can depend upon the vibration

mode. However, for the example considered, it was the same for each vibration mode,

namely, 2.5%.

Element Reliability Analysis

The failure probabilities of the four failure modes were estimated using a second-moment

algorithm (Madsen et al. [86]). The following is a brief description of that algorithm.

Let the performance function gi
defined as

for the ith failure mode of a general structural system be

gi(X) = Ri(X) - Li(X) (7)

where X is the vector of random variables, L_(X) is the load effect (e.g., stress), and Ri(X)

is the resistance of the structure (e.g., allowable stress). Failure occurs when the load

effect exceeds the resistance. The failure probability of the ith failure mode is the

probability that the performance function corresponding to that mode becomes negative:

P(Fi) = P(gi(X) < O) (8)

If the random variables are Gaussian and the performance function is a linear function of

the random variables, then there is an analytical, closed-form solution for the failure

probability (Madsen et al. [86]). However, in our problem, the performance function is a

nonlinear function of the random variables because the damping of a mode is a nonlinear

function of both the gains of the active members and the damping factors of the passive
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members. For that reason, an approximate method, denoted the second-moment

algorithm, is used to calculate P(Fi).

The key idea of the second-moment algorithm is to linearize the performance function in
terms of the values of the random variables using a Taylor series expansion. The

linearization point is that combination of values of random variables that has the highest

probability to occur and makes the performance function zero. This point is called the

most probable failure point or the design point. Once the performance function is

linearized, it is straightforward to evaluate the failure probability.

To find the most probable failure point, the random variables X are first transformed into

Gaussian, independent random variables, which have zero mean and unit standard

deviation. These variables are called reduced random variables (denoted Z), and the space

defined by these variables is called reduced space. In reduced space, the most probable

failure point lies on the surface gi(Z)= 0 and is closest to the origin. Optimization

techniques are used to determine the most probable failure point, Z*, (Madsen et al. [86],

Liu and Der Kiureghian [86]). The distance from the origin to the most probable failure

point is called the reliability index. It is related to the reliability and probability of failure

by

Ri = 1-P(Fi) = _(,8i) (9)

where fli is the reliability index for the ith failure mode, @(.) is the cumulative probability

distribution function of a standard Gaussian random variable, Ri is the reliability

associated with the ith mode, and P(Fi) is the probability of failure of the ith mode.

The optimization problem to be solved is defined by

Find Zto:

Minimize: IZl

Subject to: gi(Z) = 0 (10)

where Z is the vector of m random variables, Zl,..., zm, in the reduced space. The

solution to this optimization problem is the most probable failure point, Z*. The values

of the reduced random variables at the most probable failure point are Zl*,..., Zm*. The

most probable failure point in the space of the original random variables is X*. The

corresponding values of the original random vanables are xl ,..., Xm .

In the ease of the ten-bar truss, there were three random variables: the gains of the two

active members, xi and x 2, and the damping factor of the passive member x3. There were

four failure modes corresponding to the vibratory modes of the truss. The performance

function of the ith failure mode was

g (x) = -ffo, i=L..,4 (ll)
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Because the random variables were Gaussian and independent, the reduced random

variables were obtained from the original random variables using the following

transformation:

xj -_x/
zj = (12)

O'xj

where xj is thejth random variable, and pxjand tra).are its mean and standard deviation,

respectively.

Tables 8 and 9 present the most probable failure points of the deterministic and

probabilistic designs, respectively, for each failure mode.

Table 8. Deterministic optimum Most probable failure points corresponding to the tbur

failure modes.

VariablekMode 1 2 3 4

* 1.447 1.538 1.479 1.623
x I

* 0.488 0.529 0.526 0.430
x 2

* 0.558 0.559 0.558 0.462
x 3

* -2.171 -1.680 -1.997 -1.218
z !

* -0.775 -0.024 -0.081 -1.888
z 2

* -0.025 -0.004 -0.027 -1.732
z3

Table 9. Probabilistic optimum: Most probable failure points corresponding to the four

failure modes.

VariableWlode

x I

x 3

1.564

0.392

2

1.543

0.4123

0.6746

1.490

0.410

0.673

4

1.695

0.353

0.5350.673

* -1.947 -2.054 -2.325 -1.269
z I

* -0.515 -0.022 -0.070 -1.455
z 2

* -0.025 -0.005 -0.037 -2.068
z 3
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System Reliability Analysis

In system reliability analysis, the failure probabilities of the individual modes (obtained

from element reliability analysis) are combined to evaluate the failure probability of the

system. Systems that fail if niLn.y,of the individual failure modes occurs are called series

systems. In this study, it is assumed that the truss fails if any of the damping ratios of
the first four modes is less than a minimum acceptable value. Therefore, the truss is a

series system.

The probability of system failure is
n

P( Fs ) = P(LJ Fi )
1

where

(13)

Fs is the event of failure of the system,

Fi is the ith failure event (failure mode),

n

UI: i is the union of the failure modes,
1

P(Fs) is the probability of failure of the system, and

n is the number of failure modes, which, in this example, is equal to the number of

vibratory modes, which is 4.

The equation for the system failure probability involves the joint probabilities of

occurrence of all combinations of failure modes and is given by

4 3 4 2 3 4

P(Fs)= XP(Fi)-X XP(FibJ )+ X X XP(FiFj F),')-P(FIF2F3F4)

i=l i=lj=2 i=lj=2k=3
i<j i<j<k

(14)

where, for example, P(F.rFj) is the joint probability of occurrence of modes i andj. It is

difficult to calculate the joint probabilities of the modes because the boundaries of the

failure regions are not known explicitly and because the calculation requires multiple

nested integrations.

The second-order, upper Ditlevsen bound approximates the system failure probability

using only the probabilities of the individual modes and the joint probability of
occurrence of the combinations of modes taken two at a time (Ditlevsen [79]). The bound

is given by

n /'1

P( Fs ) -_ X P( Fi ) - _-_ maxP( FjF_ )

i=! i=2 j < i

(15)
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wheren is the number of modes, which, in this study, is 4. In the second term on the

right in equation (15), a maximum value of P(FjFi) is selected for each value of i; the

subscript j ranges from 1 to i-1. The joint probabilities in equation (15) were evaluated

by using the linearized performance functions determined in element reliability analysis.

That linearization provided explicit expressions for the failure boundaries. The

approximation given by equation (15) was used herein and provided estimates of the

system failure probability given in Table 7.
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