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Abstract

A number of quality measures are evaluated for gray scale image compression. They are all
bivariate, exploiting the differences between corresponding pixels in the original and degraded
images. It is shown that although some numerical measures correlate well with the observers'
response for a given compression technique, they are not reliable for an evaluation across different
techniques. The two graphical measures (histograms and Hosaka plots), however, can be used to

appropriately specify not only the amount, but also the type of degradation in reconstructed
_mages.

1. Introduction

The need for storing and transmitting huge volumes of data in today's computer and
communications systems necessitates data compression in many fields ranging from medicine to
aerospace. Data compression is an encoding process to reduce the storage and transmission
requirements in applications. Many efficient techniques with considerably different features have
recently been developed for both lossless and lossy compression. The evaluation of lossless
techniques is normally a simple and straightforward task, where a number of standard criteria

(compression ratio, execution time, etc.) are employed. A major problem in evaluating lossy
techniques is the extreme difficulty in describing the type and amount of degradation in
reconstructed images. Because of the inherent drawbacks associated with the subjective measures
of image quality, there has been a great deal of interest in developing a quantitative measure, either
in numerical or graphical form, that can consistently be used as a substitute. We would like to

have such a measure not only to judge the quality of images obtained by a particular algorithm, but
also for quality judgment across various algorithms. The latter task is definitely more challenging
since a wide range of image impairments is involved. An extensive survey and a classification of
the quality measures that appeared in the relevant literature are given in [1].

It is known that the mean square error (MSE), the most common objective criterion, or its variants
do not correlate well with subjective quality measures. A major emphasis in recent research has
therefore been given to a deeper analysis of the human visual system (HVS). The HVS is too

complex to fully understand with present psychophysical means, but the incorporation of even a
simplified model into objective measures reportedly leads to a better correlation with the response
of the human observers.

We attempt to evaluate the usefulness of some of the objective quality measures listed in [1]
through a set of experiments.

2. Image Quality Measures, Compression Techniques, and Test Images

The quality measures included in our evaluation are listed in Table 1. They are all discrete and
bivariate, i.e., they provide some measure of closeness between two digital images by exploiting
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thedifferencesin thestatisticaldistributionsof pixel values. F(j, k) and F (j, k) denote the samples

of original and degraded image fields.

Table 1. Imal_eQuali _ Measures

Average Difference

Structural Content

N. Cross-Correlation

CorrelationQuality

Maximum Difference

Image Fidelity

Weighted Distance

Laplacian Mean Square Error

Peak Mean Square Error

N. Absolute Error

N. Mean Square Error

Lp-norm

Hosaka plot

Histogram

M N

AD=_z__, _ [F(j,k)-F(j,k)]/MN

_=1 k=l
M N M N

AC = E E [F(j'k)]2 / E E [F(j'k)]2

)-1 k=l _=1 k=l
M N M N

NK = _ _, F(j,k)f_(j,k) / '_ _'_ [F(j,k)]2

j=lk=1 j=lk=1
M N M N

CQ = _ _L. F(j,k)F(j,k)/'_ _'_ F(j,k)

)=1 k=l )=1 k=l

MD = Max(IF(j, k) - F(j,k)l}
M N M N

IF=I-( E E [F(j'k)-F(j'k)]2/E E [F(j,k)]2)

j=l k=l j=l k=l
WD: Every element of the difference matrix is normalized in

some way and Ll-norm is applied [1].
M-I N-1 M-1 N-1

LMSE= _ _ [O{F(j,k)}-O{F(j,k)}]2/ _ _ [O{F(j,k)}] 2

j=l k=2 j=l k=2

r'MSE=&X
M N

[F(j,k)} - f:(j,k)] 2 / [Max(F(j,k)}] 2

j=l k=l

M N M N

NAE= _ _ IO{F(j,k)}-O{F(j,k)}I/_ _ IO{F(j,k)}l

j=l k=1 j=l k=l
M N M N

NMSE = ___ __. [O{F(j,k)}-O{F(j,k)}] 2/'_ '_ [O{F(j,k)}] 2

, j=l k=l ...... =j=I k=l
M N

LD= E
j=l k=l

IF(j,k) - F:(j, k)l p }l/p, p = 1, 2,3

A graphical quality measure. The area and shape of the plot gives

information about the _ and amount of de_adation [ 1,61.
Another graphical quality measure. Gives the probability distribution

of the pixel values in the difference imal_e.

Note: For LMSE, O{F(j,k)}=F(j+l,k)+F(j-l,k)+F(j,k+l)+F(j,k-1)-4F(j,k). For NAE, NMSE,

and L2-norm, O{F(j,k)} is def'med in three ways: (1) O{F(j,k)}=F(j,k), (2) O{F(j,k)}=F(j,k) 1/3,

(3) O{F(u,v) }=H{(u2+v2)lr2}F(u,v) (in cosine transform domain).
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Among the few models of the HVS that have been developed, we chose the one proposed by Nill
for dealing with cosine transforms. The function for the model is defined as [2]

I 0.05r "554, forr<7
H(r) =

e 9[ll°g10 r-l°gl0 9112"3, for r>7,

where r=-(u2+v2) lf2, and u, v are the coordinates in the transform domain. The subimage structure
weighting factor Wi in the original model was not used in our computations because we wanted to
investigate the effect of H(r) alone. Since Wi is proportional to the intensity level variance of
subimage i, a separate analysis is needed to determine a suitable proportionality constant.

Table 2 Ima[[e Compression Techniques

JPEG

EPIC

RLPQ

SLPQ

Fourth public release of the Independent JPEG Group's IPEG software

Vision Science Group, The Media Laboratory, MIT

Department of Computer Sciences, University of North Texas

Department of Computer Sciences, University of North Texas

The implementations of the image compression techniques are given in Table 2. Both JPEG and
EPIC belong to the class of transform coding techniques. The former performs the discrete cosine
transform and the latter a wavelet transform. RLPQ and SLPQ contain several modifications to the

Laplacian pyramidal decomposition and use a loose wavelet basis. After quantization, they employ
arithmetic coding with a specifically tuned adaptive predictive model to compress the pyramid.

It should be noted that the choice of the compression techniques for an investigation of the

performance of quality measures (especially those that axe graphical) is important since it is
desirable to include techniques which produce different types of impairments in the reconstructed
images. Our purpose is to see how well the measures are able to describe image distortions of
unsimilar nature. As we shall discuss later, the four codes in Table 2 serve this purpose.

The information about the three test images that we used can be seen in Table 3. Lenna and

Fingerprint are in the set of the National Imagery Format Test Images. The third image, hurricane
Gilbert, was obtained from the U.S. Navy.

Table 3 Test Imal[es

Image Source Size(bytesxbytes) Pixel Lensth(bits) Spatial Frequency

Lenna NrrF 512x512 8 14.07

Gilbert US Navy 512x512 8 31.25

Fingerprint NITF 512x512 8 59.37
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The spatial frequency for a given image is defmed as follows [3]:

Consider an MxN image, where M = number of rows and N = number of columns.The row and
column frequencies are given by

V
Row_Freq /., [F(j,k)- F(j,k - 1)] 2

j=o k=l
and

t N-1 M-I
Column_Freq= g_ _ [F(j,k)-F(j-l,k)] 2

k=0 j=1

The total frequency is then

Spatial frequency = 4(Row_Freq) 2 + (Column_ Freq) 2 .

This definition of frequency in the spatial domain indicates the overall activity level in an image.

3. Performance Of Quality Measures

The gray scale image data set was obtained by coding and decoding the three test images with the
compression codes listed in Table 2. For each test image, seven different compression ratios were
selected for degradation. They range from 10:I to 70:1 with an increment of about 10. (Our
original intention was to use the ratios 10:I, 20:1, 30:1, 40:1, 50:1, 60:1, and 70:1, but because of
the inflexibility in using the JPEG parameter, we ended up with some different ratios.)

The photographic samples of the degraded images were first subjectively evaluated in an office
environment by ten observers who were chosen from the graduate students and faculty having
some background in image compression. They were asked to rank the images in two ways:
Within each technique and between the four techniques for a fixed compression ratio. The mean

rating of the group for an evaluation was computed by

10 lO

R=(__, sxnk)/(,___ , nk),
k=l k=l

where Sk = the score corresponding to the kth rating, nk = the number of observers with this
rating, and 10 = the number of grades in the scale. No limits were imposed on viewing time or
distance for the observers.

Table 4 shows the correlation between the numerical objective quality measures and the subjective
evaluation. As a measure of the extent of the linear relationship, the Pearson"product-moment
correlation coefficient (r) was used. The possible values ofr are between -1 and +1; the closer r is
to -1 or +1, the better the correlation is.

The coefficient values in Part (a) of Table 4 indicate that the quality measures can be put into three

groups according to their performance:
Group I: AD, SC
Group 1I: NK, CQ, LMSE, MD
Group IIl: WD, PMSE, IF, NAE, NMSE, Lp.
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Table 4. (a) Correlation coefficients for each technique

(1) Lerma
Measure/Code
AD

SC
'NK

IcQ
LMSE

MD

WD

PMSE

IF

NAE

NAE0/3 )

I NMSE(1/3)
LNMSE(HVS)
L2

L2(1/3)

L2(HVS)
L3

JPEG
0.528

0.561

0.479

0.480
:0.980

-0.964

-0.995

-0.999

0.999
-0.997

-0.996

-0.972

-0.999
-0.999

-1.000

-0.997
-0.994

-0.995

-0.988

-0.991

EPIC

'-0.154

-0.117

0.865

0.865

-0.794

-0.984

-0.993

-0.996

0.996

-0.996

-0.996

-0.977

-0.996

-0.997

-0.998

-0.996

-0.993

-0.993

-0.990

-0.991

Measure/Code
AD

SC

NK

CQ
LMSE

MD

WD

PMSE

IF

NAE

NAE(1/3)

NAE(HVS)
NMSE
NMSE(I/3)
NMSE(HVS)
L1
L2

L2(1/3)

L2{HVS)
L3

JPEG
0.747

-0.243

0.768

0.768

-0.869

-0.828

-0.960

-0.979

0.979

-0.967

-0.842

-0.941

-0.979

-0.717

-0.988

-0.967
-0.961

-0.754

-0.964

-0.948
=|

EPIC

-0.527
-0.936

0.981

0.981

-0.800

-0.929

-0.960

-0.986

0.986
-0.975

-0.987

-0.941

-0.986

-0.992

-0.989

-0.975

-0.965

-0.985

-0.968
-0.960

RLPq
0.864

-0.988

0.996

0.996

-0.752

-0.883

-0.954

-0.991

0.991

-0.970

-0.969

-0.925

"-'01991

-0.989

-0.995

-0.970

-0.966

-0.965

-0.969

-0.961

SLPQ
0.984

-0.971

0.979

0.979

-0.803

-0.941

-0,97_

-0.990

0.990

-0.973

-0.972

-0.940

-0.990
:0.989

-0.996

-0.973

-0.969

-0.968

-0.975

-0.964

LRLPQ
0.820

-0.987

0.984

0.984

-0.809

-0.853

-0.958

-0.981

0.981

-0.975

-0.974

-0.961

-0.981

-0.978

-0.998

-0.975

-0.962
-0.959

-0.985

-0.946

SLPq
0.969

-0.930
0.936

0.936

-0.727

-0.687

-0.923

-0.943

0.943
-0.939

-0.945

-0.914

-0.943

-0.958
-0.967

-0.939

-0.917

-0.934

-0.941

-0.890
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)dnt
TVie_ure/'Code
AD
SC
NK

WD

PMSE
IF

NAE(I/3)

 sE(1/3)
NMSF/WVS)
L1
L2

L2(1/3)
L2(I-IyS)
L3

JPEG
0.803
0.325
0.895
0.895

-0.906
-0.417
-0.962
-0.989
0.989

"-0.975
-0.974
-0.948
-0.989
-0.988
-0.991
-0.975
-0.975
-0.974
-0.968
-0.975

EPIC
-0.101
-0.846
0.975
0.975
-0.962
-0.956
-0.992
-0.999
0.999

-0.994
-0.993
-0.987
-0.999
-0.995
-0.996
-0.994
-0.995
-0.993
-0.997
-0.996

RLPQ
0.926

-0.955
0.958
0.958
-0.737
:0.540
-0.938
-0.962
0.962

-0.956
-0.954
-0.936
-0.962
-0.959
-0.966
-0.956
-0.947
-0.943
-0.946
-0.934

SLPQ
0.880

-0.935
0.944
0.944

-0.812
-0.402
-0.934
-0.953
0.953

-0.946
-O.939
-0.925
-0.953
-0.934
-0.954
-0.946
-0.937
-0.920
-0.930
-0.925

Table4. (b)Correlationcoefficientsacrosstechniques

I) Lenna .
Measure/RaUo
AD
SC
NK

LMSE
MD
WD
PMSE
IF
NAE

NMSE(1/3)
NMSE rCS)
LI
1.2

.L2(1/3)
L2(HVS)
L3

69:1
-0.470
0.863

-0.834
-0.834

0.231
0.033

-0.914
0.188
-0.161
-0.805
-0.790
0.454
0.161
-0.627

0.589
-0.805
'6.1 
-0.607
0.553
0.461

59:1
-0.498
0.716

-0.705
-0.705
0.163
0.564

-0.221
0.533
-0.520
-0.295
-0.417
0.527
0.520
-0.342

0.664
-0.295
0.503
-0.313
0.632
0.627

52:1
-0.051
0.863
-0.834
-0.834
-0.010
0.332
-0.097....

0.360
-0.349
-0.133
-0.302
0.270

0.349
-0.349
0.397
-0.133
0.332
-0.326
0.373
0.401

42:1
-0.558
0.626

-0.675
-0.675
0.203
0.541
0.5i9
0.671

-0.666
0.534
0.434
0.53i
0.666
0.384
0.629
0.534
0.651
0.370
0.604
0.670

30:1
0.875
0.683

-0.582
-0.582
-0.720
-0.380
-0.254
-0.085
0.087
-0.015
-0.017
-0.272
-0.087
-0.119

-0.202
-0.015
-0.086
-0.123
-0.187
-0.139

20:1
0.260

-0.780

0.858
0.858

-0.471
-0.958
-0.792
-0.893
0.892
-0.862
-0.858
-0.828
-0.892
-0.879
-0.879
-0.862
-0.884
-0.867

-0.864
-0.893

10:1
-0.656
0.364

-0.455
-0.455
0.950
0.681
0.941
0.929

-0.928
0.915
0.915
0.874
0.928
0.928
0.909
0.915
0.932
0.934
0.894
0.938
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Gilbert
Measure/Ratio
AD
SC
NK

cq
LMSE
MD
WD
PMSE
IF
NAE

NAE(1/3)
NAEerVS)......
teaSE
NMSE(I/3)
NMSE(HVS)
L1
L2

L2(1/3)
LE(HVS)
L3

69:1 59:1 52:1 42:1 30:1 20:1 10:1
-0_01'5 ' 0.968 0.664 0.913 0.835 0.896 0.661

-0.883 0.466 -0.494 -0.641 -0.552 -0.697 -0.739
0.871 -0.654 0.617 0.728 0.636 0.760 0.741
0.871 -0.654 0.617 0.728 0.636 0.760 0.741

0.532 -0.600 0.171 -0_ 112 -0.403 0.125 0.673
-0.762 0.881 -0.935 -0.891 -0.761 -0.255 0.458
-0.048 0.871 0.132 -0.365 -0.480 -0.639 -0.616
-0.517 0.953 -0.700 -0.688 20_88 -0.866 -0.753
0.517 -0.953 0.700 0.688 0.788 0.866 0.753

-0_1140 0.947 -0.011 -0.318 -0.374 -0.628 -0.759

0.772 0.990 0.952 0.087 0.977 -0.174 -0.007
-0.941 -0.961 -0.962 -0.896 -0.834 -0.854 -0.835
-0.517 0.953 -0.700 -0.688 -0.788 -0.866 -0.753
0.560 0.993 0.961 0.118 0.982 -0.076 0.071

-0.967 -0.952 -0.973 -0.908 -0.843 -0.885 -0.895

-0.140 0.947 -0.011 -0.318 -0.373 -0.628 -0.759
-0.539 0.954 -0.712 -0.693 -0.786 -0.868 -0.754
0.584 0.999 0.93'5 0.084 0.974 -0.110 0.057

-0.965 -0.950 -0.967 -0.896 -0.832 '-0.878 -0.881
-0.787 0.984 -0.918 -0.904 -0.941 -0.893 -0.391

Measffre]Ratio
AD
SC
NK

CQ
LMSE
MD
WD
PMSE
IF
NAE

NAE(1/3)
NAE(WeS)
NMSE
NMSE(I/3)
NMSE(HVS)
L1
L2

L2(1/3)
L2(HVS)
L3

69:1
-0.871
-0.946
0.979

lllllll

0.979
0.804
0.735
0.057

-0.185
0.185

-0.304
-0.553
-0.888

-0.185
-0.826

59:1 52:1 42:1 30:1 20:1 10:1
0.878 -0.930 0.135 0.345 -0.093 -0.656

-0.925 -0.975 -0.960 -0.903 -0.953 -0.887
0.930 0.982 0.971 0.924 0.966 0.920
0.930 0.982 0.971 0.924 0.966 0.920

....'-'0.437 -0.592 0.208 0.014 0.002 0.232
0.977 0.999 0.309 0.573 -0.412 0.574

-0.126 -0.976 -0.881 -0.918 -0.993 -0.930

0.916 -0.920 -0.983 j -0.981 -0.989 -0.966
-0.916 0.920 0.983 0.981 0.989 0.966
1.000 -0.970 -0.999 -0.992 -0.989 -0.964

-0.024 -0.913 -0.994 -0.982 -0.980 _0.974
-0.404 -0.959 -0.977 -0.986 -0.946 -0.866
0.916 -0.920 -0.983 -0.981 -0.989 -0.966

-0.791 -0.923 -0.986 -0.969 -0.976 -0.968
-0.894 -0.442 -0.986 -0.983 -0.979 -0.961 -0.902
-0.304 1.000 -0.970 -0.999 -0.992 -0.989 -0.964
-0.192 0.914 -0.921 -0.984 -0.983 -0.990 -0.964
-0.830 -0.792 -0.926 -0.987 -0.972 '-'0.974 -0.967

-0.896 -0.440 -0.988 -0.985 -0.983 -0.962 -0.892
-0.195 0.862 -0.544 -0.960 -0.960 -0.988 -0.974

The measures in Group I cannot be reliably used with all techniques as the sign of the correlation
coefficient does not remain the same. Group II measures are consistent, but nevertheless have
poor correlation with the observers' response for some of the techniques. Among the useful
measures in Group HI, NMSE(HVS) is the best one for all the test images. Except for a single
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case, the incorporation of the HVS into NMSE makes the correlation slightly stronger. For the
other two measures NAE and L2, however, there is no such improvement. (In fact, the visual
model has an adverse effect on NAE.) The results reported in [4] and [5] support our conclusion
that the HVS model does not always improve the correlation, and when it does, the gain is small.
The nonlinear filter (.)1/3, on the other hand, seems to have a random behavior, but usually leads to
a weaker correlation. As IF is defined in terms of NMSE, the results for these two measures are
identical. It has been found that PMSE establishes the same relationship as well.

Part (b) of Table 4 is rather disappointing, and the information that can be extracted is limited. As
the compression ratio is increased, the measmes perform much poorer. This observation is not
surprising because different techniques introduce different types of degradation into the
reconstructed images. Since the metrics combine all the pixel differences between two given
images into a single number, one cannot expect to know much about the annoyance experie..nc_, by
the human observer. In our experiments, for instance, although ]PEG was the code for which the
errors were always the smallest, the observers found the tile effect very objectionable in Lenna, yet
favored blockiness in the higher frequency images Gilbert and Fingerprint.

To the best of our knowledge, histograms and Hosaka plots are the only two image quality
measures that are graphical. Before we evaluate their performance, a specification of the type of
impairment caused by the techniques is needed. Because of space limitation, the results for only
the first test image will be discussed here. Four degraded versions of Lenna for the highest
compression ratio (69:1) are given in Figure 1. The original image is also included for a
comparison. The major types of degradation in the images are blockiness with ]PEG, blurriness
with EPIC, both fuzziness and blockiness with RLPQ, and fuzziness with SLPQ (The term
fuzziness is used in the sense of equal amount of blurriness over the entire image).

A histogram of the compression error is constructed by plotting the number of times a specific
valueoccursinthedifferenceimage versusthevalueitself.Typically,itlookslikea Gaussian
curve; the more it resembles a spike at x=0, the greater the fidelity of the reconstructed image. The
seven histograms in Figure 2 were obtained using ]PEG. They clearly depict the.incre.ase in the
amount of blockiness as the compression ratio goes up. The concentration of low intensity pixels
for the lowest ratio is gradually reduced and the distribution becomes more uniform. Our
experience has shown that histograms may also be used to specify different types of degradation in
images. In Figure 3, the histograms with low intensity pixel concentrations are associated with
RLPQ and SLPQ, and they are in contrast with those corresponding to ]PEG and EPIC. The
uniform fuzziness over the entire image, it is understood, leads to a spiky histogram.
Nevertheless, the similarity between the histograms in each pair makes it difficult to distinguish
between the artifacts involved.

To constructa Hosaka plot,or an h-plot,we measure a number of featuresof thereconstructed
image andcompare thesewiththecorrespondingfeaturesintheoriginalimage [6].The difference
between the two feature vectors generates a vector error measure, which, unlike scalar quantities,
allows for a description of not only the amount, but also the type of degradation. In the process,
the original image is first segmented into blocks whose variance is less than some specified
threshold. These blocks are then grouped together to form a number of classes which depend on
the size of the blocks. Two features are computed for each class in both the original and the
reconstructed images. One of them is related to the mean intensity values and the'other is the mean
standard deviation. The h-plot is constructed by plotting the errors in the corresponding features in
polar coordinates. The radius denotes the feature error, the left and right half planes contain the
vectors associated with standard deviations and means, respectively.

It is reported in [6] that when noise is added to an image, the area of the h-plot is proportional to
the image quality, but the structure of the diagram depends on the type of distortion. If an image is
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Figure 1

SLPQ
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blurred, on the other hand, the pattern on the fight side of the diagram remains fixed and increases
in magnitude as the blurring increases while the left side is much less predictable.

The h-plots in Figure 4 were obtained using Lenna for all compression techniques and ratios. In
each diagram, the length of a radius is 2.75 units. The blockiness is reflected on the right side of
h-plots, whereas, the effect of blurriness can he trac_ on the left, By a simple comparison, we are
able to see the way each code reduces the fidelity of the image. One can even learn how the
distortion is distributed in the reconstructed images by looking at the relative lengths of the
components along the axes. For example, it is evident that/PEG preserves the high frequency
components (the feathers) of the image, whereas RLPQ induces uniform blockiness. Such
information is extremely helpful considering the sensitivity of the human observer to the location of
the image error. For the construction of the h-plots in Figure 4, the two parameters, the initial
block size N and the variance threshold T, were chosen as 16 and 10, respectively, as in Hosaka's
or Farrelle's work [6]. For high compression ratios, the h-plots for IPEG and RLPQ indicate that
it may be worth trying larger values for these parameters.

4. Conclusions

The results of an evaluation concerning the usefulness of a number of objective quality measures
for grayscale image compression have been presented. It is understood that although a group of
numerical measures can reliably he used to specify the magnitude of degradation in reconstructed
images for a given compression technique, an evaluation across different techniques is not
possible. This is because a single scalar value cannot be used to descrihe a variety of impairments.
A simple analogy would be the futility in comparing apples with oranges. The two graphical
measures, however, ate fairly successful in specifying the type of degradation. Hosaka plots, in
particular, provide a good indication of how images are degraded. A combination of numerical and

graphical measures may prove more useful in judging image quality. There is also a need for the
development of new graphical measures with superior judgment capabilities. Further research in
these areas is now ongoing.
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