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Data

Hyperspectral sensors are electro-optic sensors which typically operate in visible and near
infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e.,
tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic
spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral
bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors,

measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed
as a three dimensional array of samples in which two dimensions correspond to spatial position
and the third to wavelength.

Because they multiply the already large storage/transmission bandwidth requirements of
conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine
spectral resolution typically results in high redundancy in the spectral dimension, so that
hyperspectral data sets are excellent candidates for compression. Although there have been a
number of studies of compression algorithms for multispectral data [1,2,3,4], we are not aware of
any published results for hyperspectral data.

In this paper we compare three algorithms for hyperspectral data compression. They were
selected as representatives of three major approaches for extending conventional lossy image
compression techniques to hyperspectral data. The simplest approach treats the data as an
ensemble of images and compresses each image independently, ignoring the correlation between
spectral bands. The second approach transforms the data to decorrelate the spectral bands, and
then compresses the transformed data as a set of independent images. The third approach directly
generalizes two-dimensional transform coding by applying a three-dimensional transform as part
of the usual transform-quantize-entropy code procedure. The algorithms studied all use the
discrete wavelet transform. In the first two cases, a wavelet transform coder (using the algorithm
described in [5]) was used for the two-dimensional compression. The third case used a three
dimensional extension of this same algorithm.

These algorithms were tested on several data sets obtained from the TRW imaging
spectrometer (TRWlS). This sensor provides measurements from 90 uniform width spectral
bands which cover a wavelength range from approximately 400 nm to 800 nm, and is mounted in
a helicopter or small plane. Spectra are obtained simultaneously from a linear array of 256 spatial
resolution cells. Platform motion is utilized to scan this array, thus obtaining spatial samples in a

second spatial dimension. A typical TRWIS data set consists of a 90x256x450 array of one byte
samples.

Although signal to noise ratio (SNR) and related mean square distortion metrics are
convenient and widely used, their relevance to practical utility or perceptual quality is uncertain.
This is of particular concern with respect to hyperspectral data, since the art of interpreting and
utilizing this data is still developing, To supplement SNR measurements for the different
algorithms, we also applied example pixel classification and image segmentation algorithms to the
reconstructed data sets in order to assess the impact of compression losses on automatic data
exploitation. These applications include pixel classification using a k-means algorithm and region
based spectral image segmentation.

Our results showed substantial differences in the performance of the three algorithms. The
spectral decorrelation algorithm produces the best results, but also requires the most
computational effort. The three dimensional wavelet algorithm's performance came in second, but
well ahead of the band independent algorithm. These results clearly demonstrate the importance of
exploiting the spectral redundancy. Spectral decorrelation performs best because the transform is
optimally matched to the data, whereas the wavelet transform is suboptimal but computationally
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moreefficient.Interestingly,individualspectralbandsdisplayedasimagesoftenlook betterin the
reconstructeddatathantheoriginal image,particularlyfor thespectraldecorrelationalgorithm.
This is becausethecompressionprocessin effectfiltersoutsensornoisefrom theoriginalsignal.
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Band-independent Wavelet Compress|on. This algorithm was primarily studied as

a reference point for measuring the gains due to inter band processing. One advantage is that
individual bands can be reconstructed without having to decompress the entire data cube. This is
useful if one knows in advance that only a few spectral bands will be reconstructed from the

compressed data, but not specifically which bands.
The performance of this algorithm of course depends entirely on the algorithm used to

compress the individual bands. We selected the wavelet transform coding algorithm in [5] because
our previous studies had shown its performance to be superior to DCT and DPCM algorithms and
comparable to other wavelet algorithms. This algorithm first computes the discrete wavelet
transform of the image using the Mallat [9] recursion and a Daubechies 4-tap wavelet kernel [8].

The transform is then partitioned into a collection of rectangular blocks, and quantizer bit rates are
optimally assigned to each block using the algorithm described in [6,7]. The quantized
coefficients are Huffman coded, and the side data consisting of the bit rate allocations for each
block is losslessly compressed using the UNIX "compress" utility.

Three Dimensional Wavelet Transform Compression. This algorithm is a

straightforward generalization of the two dimensional algorithm described above. All the
components of the two dimensional algorithm have obvious three dimensional analogs; the major
difficulty is the more complex bookkeeping required to manage three dimensional data. Our
implementation emphasized simplicity and flexibility over efficiency, relying instead on a
powerful workstation (a Sun SPARC 10), plenty of memory, and patience. However,

hyperspectral data sets are generally large (around 36MB in our examples) and the despite the
algorithm's moderate complexity, processing can be time consuming. We expect that optimizing
the implementation, particularly by improving memory management, would speed computation
significantly, even on fast machines with large memories.

The three dimensional wavelet transform is constructed as a separable extension of the two
dimensional transform, much as the two dimensional transform can be constructed by applying
one dimensional wavelet filter banks over each dimension. Each stage of the separable three

dimensional transform applies one dimensional filter banks successively across the two spatial
dimensions and the spectral dimension. This decomposes the data into seven highpass channels
and one lowpass channel. The seven highpass channels contain oriented edge information (in the
two spatial directions, the spectral direction and the four diagonal combinations of these
directions). Each channel contains one eighth of the original number of samples. Applying this
operation recursively to the lowpass channel produces a series of nested octant decompositions.

We quantize the transform coefficients by partitioning each channel at each scale into
three-dimensional sub-blocks. Within a sub-block, coefficients are quantized with the same

number of bits per sample. Because large magnitude high pass coefficients tend to be sparsely
distributed, many blocks can be quantized at low bit rates while introducing little distortion as a
result. The actual bit allocation is determined using the algorithm described in [6,7]. This

algorithm assumes that the mean square quantizer distortion is an exponential function of the bit
rate times the sample variance of the data. It produces a bit allocation which minimizes the mean

square quantization error subject to a constraint on the maximum average bit rate.
As in the two dimensional algorithm the quantized coefficients are Huffman coded. One

difference is that three dimensional case uses a Lloyd-Max quantizer which is optimized for-each
data set, and Huffman codes are determined based on the actual sample distributions for each bit
rate. The two dimensional algorithm uses a fixed uniform quantizer and fixed Huffman codes

(both optimized for Laplacian statistics). For large hyperspectral data sets, the additional side data
needed to transmit the quantizer coefficients and Huffman code tables is relatively insignificant.

124



Thesidedata also contains the quantizer bit rate allocations, and is compressed using the UNIX
"compress" utility.

Band Decorrelatlon Wavelet Compression. The compression algorithm consists of

the following steps. First we organize the data as a collection of spectral vectors D = {dk.i},

where a spectral vector dk.t consists of all spectral samples corresponding to spatial resolution cell

(k,1). The spectral vectors lie in an n-dimensional Euclidean space, where n is the number of
spectral bands. To each vector in D we then apply an affine transformation

T(dk,l) - Ck, l, where c_: has dimension m < n, to produce the transformed data setT:dk, /

C = {ck.t}. This data set is then compressed on a band by band basis using two dimensional

wavelet coding as described above, with one key difference. The band independent algorithm
compresses each spectral band to the same bit rate, but the band decorrelation algorithm varies the
bit rate from plane to plane (subject to an upper bound constraint on the average bit rate). This is
done because the transformation T concentrates most of the energy in a few spectral bands, so that

allocating higher bit rates to these bands (and correspondingly lower rates to lower energy bands)
significantly reduces distortion. The bit allocation is determined by the optimal algorithm
described in [6,7]. This algorithm minimizes distortion assuming that the band compression
algorithm has an exponential bit rate vs. mean square distortion curve with amplitude proportional
to the sum squared in-band energy, and assigns bit rates to bands in proportion to their log-sum-

square energy.
To reconstruct the data, C is reconstructed from the wavelet encoding for each band, and

then the pseudo-inverse transformation T+:ek._ _ T:r(e_j)-¢lk,_is applied to reconstruct the

original data. Note that distortion is introduced both from the lossy wavelet coding and because
the transform T generally has no true inverse. However, the pseudo-inverse transform spreads
reconstruction errors in C over many spectral bands, making them much less perceptible.
Furthermore, the decorrelation transform is structured to minimize the loss of information due to

its singularity.
Although we use the well known discrete Karhuenen-Loeve transformation (or principle

components analysis) for spectral decorrelation, we feel it is worthwhile to outline a derivation of
this transform from a physical and geometric approach that may be less familiar than the statistical

approach. This approach shows that the transform is optimal in a sense that does not depend on
statistical assumptions that may be hard to justify in practice. It also provides insight into the
effectiveness of this transform for compression.

We assume that the spectra in any given data set are primarily linear combinations of
spectra corresponding to the various materials constituting the scene. Generally, the number
different materials is much less than the number of spectral bands. We therefore expect most of

the spectral vectors to lie in, or close to, a linear subspace whose dimension is much lower than
the dimension of the spectral vectors. If we could find the basis vectors for this space, than we

could produce a lower dimensional approximation by projecting the original spectral vectors onto
this space.

Stated more precisely, given a collection D = {dl,d2,. }• .,alp of data vectors in a n-

dimensional linear space L, we wish to find a set of m orthonormal n-vectors (with m < n),

spanning a subspace S of L, such that the sum of the squ_tred distances between each data vector
in L and its orthogonal projection onto S is minimized. If we define the sample autocovariance

matrix R = _P Tk= dkdk it can be shown that the required basis vectors are the unit eigenvectors

{e l,e2,...,e,.} corresponding to the m largest eigenvalues of R. Note that the coordinates in S of

the projection any d in L onto S are simply its inner products with the basis vectors,
T T T

(eld,ezd,...,e,,d). Furthermore, any vector c in S with coordinates (q,...,c,,) can be
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representedin L asalinearcombinationof thebasisvectors c = _'=_ckek • We thus have the

transform T:L _ S represented by the matrix T whose rows are the (transposed) basis vectors

of S, i.e. T(d) = Td. Furthermore, this transformation has the pseudo-inverse T:_:S _ L with

T!:(e) = Trc.

Note that in our algorithm, T is determined specifically for each data set, based on the

sample autocovariance R. Some spectral decorrelation algorithms, such as [1] use a fixed T
derived from statistical model that is independent of the actual data. Although this saves

computation, it sacrifices the optimality of the transform. Computing T might appear

burdensome, but for hyperspectral data the effort required to apply T is typically many times the

effort of the eigensystem solution needed tofind T. A more serious objection may be that T
must be sent as side data in order to decompress the data.

As a corollary of the construction of T, it turns out that the eigenvalues of R
corresponding to basis vectors in S equal the sum of squares of the coefficients in the
corresponding "spectral" band of the transformed data set C. The fact is quite useful because these
sum squared band energies are the statistics required to allocate average quantizer bit rates to each
band. This means that these bit allocations be determined before the spectral decorrelation
transform is actually applied. As a result, rows corresponding to zero or near zero bit rates can

simply be dropped from T, significantly reducing the number of operations required to compute
the transform.

Experimental results. We present results for two data sets produced by the TRWIS
sensor. These data sets each contain 90 uniformly spaced and contiguous spectral bands,
spanning a wavelength range of 400 to 800 nm. Within each spectral band, there are 450 raster

lines with 236 samples per line, with eight bit deep samples. They have been calibrated to
compensate for variations in illumination intensity with bandwidth, so that the samples actually
represent estimated percent reflectance. Consequently, one expects sample values between zero
and 100, but because the calibration is with respect to a diffuse white reference reflector, specular

reflections can produce values above 100. Figures 1 and 2 show images from one spectral band in
each of these data sets. The first data set ("houses") shows a residential area with houses and

vegetation. The second data set ("tents") is an aerial view of tents and military vehicles on a sandy
background.

Figure 3 shows plots of peak-signal to noise ratio (PSNR) as a function of compression
ratio for each data set and each algorithm. We define PSNR as the square of maximum sample

value in the original data set divided by the mean squared error between the original and
reconstructed images. The vertical scale in the figure shows PSNR in decibel units. The
horizontal scale shows the ratio of the original file size to the compressed file size. For every
algorithm, the "tents" PSNR is higher than the corresponding PSNR for the "houses", which
reflects the greater compressibility of this image. Other than this uniform vertical shift, the results
for the two data sets are quite similar. Substantial differences between the algorithms are evident.
The PSNR for the 3-D wavelet transform is two to three dB higher than the band independent
algorithm, and in turn the spectral decorrelation PSNR exceeds the 3-D wavelet transform by
about four dB.

Comparisons of spectral band images clearly reflect the differences in the rate-distortion
curves. Figure 4 shows images of the same spectral band from'original and
compressed/reconstructed versions of the "houses" data set. The band independent algorithm was
used for the top row of images, the 3-D wavelet algorithm for the middle row, and the band
decorrelation algorithm for the bottom row. Within each row, the leftmost image is the original
data, and the three remaining images correspond to increasing compression ratios from left to
right. Tke spectral decorrelation images are clearly much less distorted than the others. When
viewed on a high quality display, distinguishing the reconstructed spectral decorrelation image

from the original requires close observation, even at the highest compression ratio. In the case of
the 3-D wavelet transform, many of the fine, high contrast details are preserved fairly well, but
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thereis anoticeablelossof textureanddetailin low contrastregions.At thehighestcompression,
theselossesarequiteobvious.Thequalityof thebestbandindependentreconstructionappearsto
beaboutequivalentto theworst3-Dreconstruction.At thehighestcompression,all detail is lost,
althoughhighcontrastedgesarefairly wellpreserved.

Examiningthe spectraldecorrelationimagesrevealssomeinterestingeffects.Although
distortion is almost imperceptible,at the highestcompressionratio thereare a few regionsin
which therearesystematicshiftsin thegray levelsat which certainfeaturesin original dataare
reproduced.(E.g.,thesmall,crescentshapeddarkareaimmediatelybelowthehouseatthecenter
left of theimageandacurved,darkareacontainedwithin abright,semi-ellipticalareaat thecenter
of theright edge).Theseareasapparentlycontainmaterialswhosereflectionspectraareoutside
thesubspacespannedby thespectraldecorrelationbasis.Sincethebasisis selectedto optimizea
meansquaredcriterion,smallor infrequentlyoccurringspectratendto bepoorlyrepresented.As
a consequence,in applicationswhereone wishesto detectspectralshapesthat are sparsely
representedin theoriginal image(suchasfinding a few camouflagedtentsin aforest),spectral
decorrelationmayperformpoorlydespiteproducingexcellentmeansquareerrorbasedfiguresof
merit,suchasPSNR.In contrast,thebandindependentand3-D waveletalgorithmsappearto be
freeof suchsystematicgraylevelshifts.

This illustrates the point that it is difficult to assessreconstructionquality without
consideringhow thedatais to beused.In dealingwith ordinarytwo dimensionalima.ges,it is
often assumedimplicitly that using the data meansthat a human being looks at it. With
hyperspectraldata,it is muchmore likely thathumanvisual processingwill be augmentedor
supplantedby automatedprocessing.Onemight evengo so far asto view hyperspectraldata
simply asanensembleof onedimensionalspectralsignals,sothattheconceptof an ,'image"is
irrelevant. In order to comparethe different algorithmsfrom this standpoint,we appliedtwo
spectrallybasedautomaticprocessingalgorithmsto the reconstructeddata.Although these
algorithmsmayhavelimited practicalutility by themselves,theyarepotentialelementsof more
practicalprocessingsystems,andserveasusefulillustrations.

Thefirst algorithmclassifiesspatialresolutioncellseitheras"object" (i.e.,tentor house)
or backgroundcells basedon the shapeof their spectralprofiles through the useof a simple
Bayesianclassifierasdescribedin [10].This approachwaschosenfor its simplicity andeaseof
interpretation.Althoughother,morepowerfulclassifiersexist,wewantedto avoidcloudingthe
compressionevaluationwith questionsabouttheclassifier.Also, thisclassifieriswell knownand
waseasilyimplementedthroughtheuseof theKhorosImageProcessingsystem[11].

Theclassifier wasdesignedin severalsteps.First, the imagewaspreprocessedsothat
eachspectrahadunit energy.This wasdonesothattheclassifiermadeits decisionsbasedon the
shapeof the spectrarather thanon theoverall intensity and would work equally well under'
different sceneilluminations. Second,the image was clusteredby the k-meansclustering
algorithmwhich is essentiallytheLloyd-Max vectorquantizer.Clusteringis performedby first
startingwith aninitial setof clustercentersand,ateachiteration,assigningeachdatapoint to the
nearestclustercenterandthenrecomputingtheclustercenters.Both thenumberof clustersand
theinitial setwerechosenby handsothatrepresentativesamplesfrom eachclasswereincluded.
Third, theclusterswereassignedto classesby visually inspectingthe image.Theresult of the
classifierdesignwas,for eachdataset,a setof clustersfor eachclassandstatistics(meanand
covariance)for eachcluster.Pixelby pixelclassificationis performedby finding theMahalanobis
distanceto eachclustercenter(usingtheclustermeanandcovariance)andfinding theminimum.
Theclasscontainingthisclusterasamemberis theclassassignmentfor thedatapoint.

We appliedtheclassifierto thereconstructeddatasets,andcollectedstatisticson spatial
cellsthatwereclassifieddifferentlyin theoriginalandreconstructeddatasets.Figure5 showsthe
percentagesof "object" pixels in the original datamisclassifiedin thereconstructeddataasa
function of compressionratio for eachcompressionalgorithm(the linesmarkedwith o's). The
sametrendsseenin the PSNRmeasurementsareevident in this table: spectraldecorrelation
classifiedthemost accurately,followed by 3-D wavelets,thentheband-independentalgorithm.
Thedifferencesbetweenalgorithmsaredramatic.The3-Dwaveletsalgorithmmissclassifiesabout
half asfrequentlyasthebandindependentalgorithmat similarcompressionratios,andtheworst
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casespectraldecorrelationalgorithm performanceis better than the bestcasefor the other
algorithms.Figure6 showsmapsof cell classificationsfor theoriginaldatasetsandreconstructed
datasetsat thehighestcompressionratefor eachalgorithm.Figure7 showscorrespondingmaps
of misctassifiedcells. All of thesemapsareat the lowestcompressionratio testedfor each
algorithm.Theseresultsshowthattheclassificationalgorithmis moresensitiveto distortionthat
visualcomparisons.At theserelatively low compressionrates,spectralbandimagedistortion is
notreadilyvisible.Nonetheless,it inducessignificantclassificationerrors.

The secondexamplealgorithmsegmentsa completehyperspectraldatasetinto spatial
regionssuchthatcells within aregionhavesimilar spectralprofiles. The segmentationprocess
comparesthe spectralprofile of thedataat eachspatial locationto its neighbors;thusboth the
spatialandspectralpropertiesof thedataareimportant.Segmentationsof theoriginalcubeandthe
compressedanduncompressedversionarecompared,bothby visual inspection,and througha
measureof differencesbetweenthe edgemaps.This measurecombinesdiscrepanciesof two
types: those where a pixel was marked as an edge in the original and not in the
compressed/uncompresseddata, and those where a pixel was marked as an edge in the
compressed/uncompressedandnot in theoriginal. Thetwo typesof "errors"werecombinedto
giveafinal measureof edgedetectionerrors,expressedasapercentageof pixelsacrosstheentire
image.While thiserrormeasureis simple,it is sufficientto provideameasureof theamountof
distortionin thespatialandspectralpropertiesof thecube.

Theresultof applyingthespectralsegmentedto the "tents"datacubeis shownin Figure
8. Theboundariesof eachregionof theimageare markedin dark. Theresultingsegmentations
of applying the samealgorithm to the compressed]uncompresseddata setsusing the three
compressionalgorithmswith threedifferentcompressionratioseacharealsoshownin Figure9.
Quantitativemeasuresof theedgeerrorsfor eachof thethreeapproaches(atvariouscompression
ratios)are shownfor threedifferentdatasetsin Figure5 (theline labeledwith x's). Forall three
cases,thespectraldecorrelationalgorithm producedsegmentationsclosestto theoriginal data,
followedby the threedimensionaltransformapproach.

References

[1] T. Markos and J. Reif, Multispectral Image Compression Algorithms, Proceedings of 1993
Data Compression Conference, Mar. 1993, pp. 391-400.

[2] J.N. Bradley and C.M. Brislawn, Applications of Wavelet-Based Compression to
Multidimensional Earth Science Data, Proceedings of 1993 Data Compression Conference,
Mar. 1993, pp. 496.

[3] B.R. Epstein, R. Hingorani, J.M. Shapiro and M. Czigler, Multispectral KLT-Wavelet Data
Compression for Landsat Thematic Mapper Images, Proceedings of 1992 Data Compression
Conference, Mar. 1992, pp. 200-208.

[4] R.L. Baker and Y.T. Tse, Compression of high spectral resolution imagery, Proceedings
SPIE: Applications of Digital Image Processing, Aug. 1988, pp. 255-264.

[5] B. W. Evans, Coding Quantizer Parameters for Wavelet Image Compression, TRW IOC
G685.6-0301, Jun. 1992.

[6] B. W. Evans and R. L. Renner, Optimal Bit Rate Allocation for Wavelet Transform Coding,
Proceedings of 1993 Data Compression Conference, Mar. 1993, pp. 473.

[7] B.W. Evans, Optimal Quantizer Bit Allocation for Wavelet Image Compression, TRW IOC
G685.6.0294, Feb. 1992.

[8] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE
Trans. Information Theory, vol. 36, Sept. 1990, pp. 961-1005.

[9] S. Mallat, A theory for muhiresolution signal decomposition: The wavelet representation,
IEEE Trans. Acoustics, Speech and Signal Processing, Dec. 1990, pp. 2091-2110.

[10] R. Duda and P. Hart, Pattern Classification and Scene Analysis, Wiley and Sons,
N.Y.,1973.

[11] Rasure, Williams, Agiro and Sauer, "A Visual Language and Software Development
Environment for Image Processing", International Journal of Imaging Systems and
Technology, Vol. 2, pp 183-199, 1990.

128



Figure 1. Single spectral band image

from "houses" data set.

Figure 2. Single spectral band image
from "tents" data set.
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Figure 4. Examples of reconstructed images. Top row: band independent coml_ression,

from left to right: original image, 19:1, 34:1 and 59:1 compression. Middle row: 3-D

wavelet compression, from left to right: original, 21:1, 41:1 and 92:1 compression. Bottom

row: Spectral decorrelation compression, left to right: original, 60:1, 112:1,171:1 compression.
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A. Original
B. B and Ind_p eadeat C. 3-D Wavelet

Transform D. Spectral
Decortelation

Figure 6. Cell classification maps, "Object" cells shown in white.
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Figure 7. Misclassified cell maps. Incorrectly classified cells shown in white.
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Figure 8. Region boundaries for original "tents" data set.
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Figure 9. Region boundaries for reconstructed data sets. Left column: band
independent algorithm. Middle column: spectral decorrelation algorithm. Right column: 3-D
wavelet transform algortithms. Compression ratios shown to left of each image.
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