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PARTI: INTRODUCTION

I.I General

Among various choices involved in applying the finite element

method for the resolution of problems of fluid or solid mechanics,

the choice of the element type associated with a given mesh and that

of the integration rule used on these elements often decide the pro-

perties of the approximation of the operator to be dlscretlzed. A

bad approximation generally results in a kernel larger than the ker-

nel of the continuous operator, and these spurious elements of this

kernel may appear in the discrete solutlon. This solution then can

exhibit undesirable oscillatlons and instabillties.

In particular, for the general class of problem:

Au - B*p = f

Bu = 0

oscillatlons and instabilities may arise from a bad approximation

of the governing operator A or of the constraint operator B.

As far as the constraint is conerned, numerous theoretical and

numerical studies of pressure instabilities have been done over the

last decade 17, I0, 33, 36, 45]. In these studies, it has been pro-

ven that a key stability condition, the L.B.B. condition, must be

satisfied in order to have existence and uniqueness of a solution

[31, 9, 2], and that the constant appearing in this condition must

be independent of the mesh size in order to have stability of the

element considered [39, 40, 41]. Several stable and unstable elements

have been studied with respect to the L.B.B. condition [19, 20, 42,43,

44].
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Our purpose in this report is to concentrate on a bad finite

element approximation of the governing operator obtained when under-

integration is used in numerical code for several model problems:

the Poisson problem, the linear elasticity problem, and for problems

in the nonlinear theory of elasticity. For each of these problems,

the reasons for the occurrence of instabilities will be given, way

to control or eliminate them will be presented, and theorems of exis-

tence, uniqueness and convergence for the given methods will be estab-

lished. Finally, numerical results are given which illustrate the

theory.

1.2 Major Results

Historical background as well as precise definitions and notations

will be given in the introductions of Parts II and III. However, we

list here the major results we have obtained:

I) In underintegrated finite element methods, a rank-deficlency

counting for each element cannot work to predict the exact number of

spurious modes of the gobal stiffness matrix.

2) When the spurious modes are known exactly, it is posssible

to eliminate them a-posteriori and obtain a unique, stable and accurate

solution.

3) Even when the spurious zero-energy modes cannot be predicted

from rank-deficiency observations, oscillations can be predicted from

the eigenvalue analysis of the stiffness matrix.

4) Concentrated forces are the most effective source of oscilla-

tions; a way to handle such loads without exciting oscillations is

theoretically obtained and its numerical implementation turns out to

be efficient.



5) In linear elastlcity, the spurious modes and their construc-

tion is described.

6) Stabilization methods proposed by several authors may not

work.

7) For a general mesh, an element-by-element spurious mode con-

trol is presented, as well as its numerical results: this control is

efficient and leads to an accurate solution.

8) This control is cheap, easy to implement, and can be used

independently of the material.

9) In nonlinear incompressible elasticity, several numerical

results are presented and confirm that the results previously listed

can be extended to nonlinear problems.

1.3 Report OrBanlzatlon

Part II is devoted to the analysis and control of hourglass modes

in underlntegrated finite element methods. The framework of the theo-

retlcal study is the simple two-dlmenslonal Poisson problem solved

using billnear elements; the comparison involves the 4- and l-integratlon

point rules. We prove that for some boundary conditions, the stiffness

matrix is rank-deflclent and spurious modes appear, but we also prove

that the solution obtained from the underlntegrated problem can be

processed a-posteriorl in order to obtain a stable and convergent solu-

tion in which the spurious modes have been eliminated. Moreover, the

method of proof a11ows us to demonstrate precisely why spurious modes

are excited, even though they cannot be predicted by a rank-deficiency

of the stiffness matrix. Numerical experiments are discussed which

not only illustrate the theory, but also generalize the results to

various elements (8- and 9-node elements) and operators (linear elasticity

operator).
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In Part III, we numerically investigate the behavior of under-

integrated 8- and 9-node elements associated with linear discontinuous

pressures for the analysls of problems in finite elasticity. We ob-

serve that whereas the 9-node element is stable, the 8-node element

exhibits pressure oscillations. We study the performance of the con-

trol presented in Part II to the control of oscillations appearing in

the finite element solution of rubber elasticity when underlntegration

is practiced.



PART II: ANALYSIS OF INSTABILITIES IN

UNDZRINTEGRATED FINITE ELEMENT METHODS

2.1 Introduction

For many years, a special type of numerical instability has been

observed in finite difference approximations of flow fields, which has

been referred to as "hourglassing", "keystoning", or "chickenwiring".

These graphic terms refer to geometrical patterns which appear in com-

puted flow fields (e.g. velocities) and which emerge as spurious oscil-

lations superimposed on an otherwise smooth field, the spurious oscilla-

tions often taking a zig-zag form which resembles an hourglass or a

chickenwire mesh. These spurious modes can be amplified upon refining

the mesh, and to control such numerical instabillties, various schemes

for incorporating "hourglass viscosity" or "hourglass damping" have

been proposed by some authors.

It is now known that hourglass modes can arise from an incomplete

(or poor) approximation of the kernel of the operators in the momentum

equations in flow or solid mec,hanics problems (or, more generally, of

the principal part of the operator in the governing differential equa-

tion of a given boundary-value problem). For example, in addition to

the rigid body motions residing in the kernel of the standard operators

appearing in the equilibrium (momentum) equations of solid and fluid

mechanics, one finds hourglass modes in various crude discrete models

of these operators.

In recent years, the occurrence of hourglass instabilities in



underintegrated finite element approximations has been observed. In

the implementation of most finite element methods, integrals defining

stiffness matrices are evaluated using numerical quadrature schemes.

To improve computational efficiency, the practice of ur_e_ntegrution

is often employed, by which is meant the use of a quadrature rule of

an order lower than that required to integrate polynomial integrands

exactly. This can produce rank-deflcient stiffness matrices or, equi-

valently, an expanded kernel of the equilibrium operation which contains

spurious hourglass modes_ and the result is again a numerically un-

stable scheme.

In order to overcome this difficulty_ artiflclal stiffness or vis-

cosity methods_ or other stabilization methods have been proposed by

several authors (e.g. [3-6, 18, 30]). These methods involve computing

an underintegrated matrix, and then adding a stabilization matrix which

effectively eliminates the hourglass modes. They turn out to be fairly

general and have been used for a long time in numerous codes. Whereas

all of these methods based on intuitive feeling give good numerical

results, their mathematical study remains often non-existent.

The most interesting challenge is to solve the problem using only

the crude rank-deflclent underintegrated stiffness matrix, the solution

is obtained up to within an arbitrary spurious mode, and then to elimi-

nate these modes from the solution in a post-processlng operation.

Unfortunately, even when the stiffness matrix is rank-sufflcient,

similar oscillations are observed when underlntegration is used. In

that case, the process of the excitations of modes similar to the hour-

glass modes is not completely understood and these modes have never been



mathematically studied.

In this report, we give precise mathematical Justifications

and answers to the questions previously mentioned. The next

Section (Section 2.2) is devoted to the proof that the Stabilization

method is mathematically Justified. Then, in Section 2.3, we pre-

sent a method which involves solving an underintegrated and not well-

posed problem, then in a-posteriori eliminating the unknown degree of

freedom. The proof of the accuracy of the method is given in Section

2.4, and its numerical aspects and results are described in Section 2.5.

In Section 2.6, we examine the case in which spurious oscillations

cannot be predicted from the rank-deficiency of the stiffness matrix and

we analyze why these modes may be excited. Finally, we apply the pre-

vious considerations to the linear elasticity problem.

It should be noted that the method and its results cannot be

embedded in a classical elliptic theory: Strang's ellipticity condition

[49] is here violated and this non-elliptic method cannot be studied by

the classical theory of finite element methods and numerical integration

[ii, 12, 51, 52]. Note in these references that, both Clarlet and

Wahlbin crucially suppose the exactitude of the numerical scheme for

the polynomials considered. This polynomial invariance plays a deci-

sive role in their error estimations. We also refer to Glrault [21,

22] for his approach to the same kind of problem, non-elliptic be-

cause of the use of partially underintegrated stiffness matrix, but

where hourglass modes did not appear.



2.2 A-Prlori Hourglass Control

2.2.1 Introductlon. This section is devoted to mathematical

preliminaries to several methods consisting of adding a stabilization

matrix to the underlntegrated matrix. For clarity, we shall confine

our attention to a simple model problem. Let R be a regular domain

in _2 with boundary _Q and consider the model Neumann problem,

(Po) Find u = u(x,y) such that

-An = f on G _ (2.1)

J_u = 0 on _
_n

where f is an L2(R)-function satisfying

I f = 0dxdy (2.2)

The questions of the existence and uniqueness of solutions to (2.1)

(which are well-known) are taken up in Part II.

We shall first consider a finite element approximation of (2.1)

constructed using Ql-elements, i.e., four-node quadrilateral elements

over which bilinear shape functions are used. Most of our notations

and results are reproductions of those of Flanagan [18] and Belytschko

[3, 5, 6 ]. Then we will attempt to extend our results to the Q2-

elements (nlne-node, blquadratlc elesents) and will indicate in which

ways they differ from Belytschko's [4].

The construction of finite element approximations of (2.1) involves

the calculatlon of the stiffness matrix K for a typical finite ele-
~e



ment _ , which is given by the formula,
e

I VN t • VN dxdy (2.3)
K e " _ ~ ~

where N is a vector representing the bilinear or blquadratlc shape

functions in each element _ , I < e < E .
e -- --

When Ql-(respectlvely Q2- ) elements are used to discretlze the

domain _ , K is a 4x4 matrix (resp. 9x9) and the N's contain four
_e

bilinear (resp. nine biquadratic) shape functions. We will distinguish

exact-, full-, and under-integrations. The full integration is obtained

using the number of Gauss integration points necessary to obtain the

exact integration on regular square elements: 4 (resp. 9) points in our

study. The underintegration will involve the Gauss rule of lower order:

I (resp. 4) points. The stiffness matrix associated with a rule involv-

ing k points will be denoted K (k), k = 1,4,9 .
~e

Several authors [3, 5, 6, 18, 30] proposed to add to the underinte-

grated stiffness matrix a stabilization matrix which exhibits several

special properties. In this section, we will prove that these proper-

ties are indeed satisfied and that the exact stiffness matrix K can
we

be computed by this method. This will be accomplished by first carry-

ing out the integration (2.3) exactly.

We first introduce some notations.

defined by the coordinates of its nodes

Suppose that element _ is
e

(xI, yl), 1 < I < p, p- 4 or

9 . We introduce the isoparametric mapping from a master element

= ,+ X ,+_

to _ such that
e



I0

X m

y 8

P

x I Nl(_,n)
I=1

P

Y yl NI(_,n )
I-i

(2.4)

where NI , 1 < I < p , are the shape functions for the quadrilateral

element on the master element. The node numbering convention is shown

in Figure I.

The stiffness matrix K
_e

(2.4) from _ to R :
e

is evaluated in (2.3) using the mapping

K = [ VN T VN dxdy
~e J_ _ ~ 1

Ed lwhere d_x is the Jacobian matrix of the mapping from _ to R e ,

J is the inverse of its determinant, and where the gradients of the

(2.5)

shape functions are derived with respect to the master element coordi-

nates (_,q) . These matrices can be computed using (2.4) :

TX m X * N

T
y m y * N

(2.6)

D

T dN

x d_

T dN
X
- dn

T
Y dE

T dN

Y dn

(2.7)
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4

1 (a)

4

1 (b)

Figure I. Node Numbering for a) 4-Node Element;

b) 9-Node Element.
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E_] .l-da/dEI-1.1_ d,_--- T
-

r_Tn

dN T

t.._nn J

T d_._. :

-Y d_ i

T dN IX

d_ J

(2 .B)

(2.9)

where J is the Jacobian of the mapping

dx
J -, det _-"-;-

_a
(2.10)

Finally, we obtain the expression,

K
~e

TAT AyyTAT_
(2.11)

where A is the antisymmetric matrix

~ dn d_ d_ dn
(2.12)

the Jacoblan J can be expressed as yTAx .

A study of K expressed as in (2.11) and the properties of the
~e

matrix A will then enable us to study the effect of the underintegra-

tion of the stiffness matrix. We will first concentrate on the 4 node-

element and derive the exact expression of the stabilization matrix.

Then we will discuss what form this matrix may take for the 9-node ele-

ment.
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2.2.2. The stabilization matrix for the bilinear element. For the

bilinear element, the shape function vector can be written as

where

1 _8+n ,
N~ = _ t -_-~ ~ _ s. + _rl h~ (2.13)

sT. (I, -I, -I, 1)

s,T = (i, i, -i, -i)

T = (i, i, i, i)

hT = (1, -i, i, -i)

(2.14)

then the explicit form of the (4x4) matrix A is

= 1. , T ,T) _ 8,h T) (2.15)

for (_,_) = (0, 0) , we obtain A0 which satisfies

1

yTAox = yTA[~~ _.__'0"_ " _(Y24X13 + Y31X24 )
(2.16)

which is merely the area of the element R , noted IRel .
e

At this point, we can define precisely the matrix resulting from a

1-point rule; this underlntegrated matrix, denoted by K (1) is given by

_0_ _oK (I) A0xTA_ T T= + (2.17)
-e l_el I_el

Also, if we denote B =(_i' _2 )T ,the discrete approximations of

the gradient VN evaluated at the integration point is given by

b2 A.0 .

(2.18)
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and,therefore,(2.17) takes the usual form

d + (2.19)

The rank deficiency of K (I) can now be verified.
e

Indeed, from (2.14) and (2.15) we note that

"hi°}
0

and then

Klhffi 0 i

_e

K1 t- 0
_e _

(2.20)

(2.21)

Therefore, if we consider H and T the global hourglass and transla-

tion, and K (I) the assembled underintegrated stiffness matrix, we have

Z(1)~ also'n= ezK(I)~K(1)'e-T'H='0 Ze K(1)~e .h = 0 I

(2.22)

and this proves the rank deficiency of K (I) . Note that this "+i"

pattern is independent of the regularity of the mesh and that h will

take alternating values +1 and -1 at neighbor nodes as shown in Fig. 2.

Our goal will now be to calculate a matrix K stab such that, if
~e

added to K (I), we obtain the exact stiffness matrix K given by
_e ~e

(2.11). This expression does not seem easy to integrate, but the image

of certain vectors mapped by this matrix can be easily computed using
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Figure 2. "±I" Pattern of the Hourglass Mode in an Arbitrary
Mesh.
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orthogonallty relations previously obtained (2.20) and the fact that

we obtain:

(2.23)

Kt-0
_e _

zx=b~e~ 1

Key" - b2 •

(2.24)

Equation (2.24) is not sufficient to compute K because it gives only
~e

9 out of the I0 coefficients of K (4 x 4, symmetric). It is enough
~e

to know Xt K X , where t, x, y, and X form a set of Independent

vectors. That is the case for X = h because
~ ~

det(x,y,t,h) = 4A _ 0

provided the element is not singular.

and the relations define uniquely K
~e

hTK h = 16 F
_e _

Then the knowledge of

If we set

hTK h
~ _e _

(2.25)

then K is given by
~e

K = Z (I) + F yyT
~e ~e - -

m

whereas, again, given by (2.25), E is a scalar, and

(2.26)

(2.27)
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While it is difficult to express E

y , its exact value can be written

nicely as function of x and

= ^ .... d£d_

n Inel + _(Y43X12 + Y12X34 ) + rl(Y32X14+Y14X23 )

(2.28)

We observe that for parallelogram elements, the denominator is constant

and its value is the area of the domain I_ I • In this case
e

-- 1 2 2 + 2 + 2
e - (x13 + x24 YI3 Y24 ) (2.29)

241 I
e

or for rectangular elements

£2 + £2
-- X y
E ffi

12££
xy

(2.30)

where £
x

element.

and £ are the lengths of the sides of the rectangular
Y

Also note that for such parallelogram elements y reduces to

h l

The expression (2.26) is often used to eliminate a-priori spurious

modes for the kernel of K, but the determination of E remains a prob-

I

lem. The choice e I 0 leads to the underintegrated matrix and to the

method to be studied in the next section. On the other hand, a cheaper

way than the full integration of the whole matrix would be to fully

integrate E given by (2.28). This method would lead again to the

full integration and is cheaper because it needs only one 4 x 4 integra-

tion per element instead of I0. A more common practice is to take for

I

a simple value independent of the geometry of the element, which
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is often the value obtained for a square 1/6 or sometimes any arbit-

rary constant, as used in [5, 6].

2.2.3. The stabilization matrix for the blquadratic element. In

this section, we will study the effect of the underintegration of the

9 x 9 stiffness matrix obtained in (2.11) with nine-node elements when

a 4- Gauss integration point rule is used. Whereas Belytschko et al.

[4] intuitively obtain another "7.7 T'' stabilization, we prove that this

decomposition is not even valid for regular meshes. We then propose a

decomposition derived on regular mesh.

But first we exhibit the spurious modes out of K (4). For the bi-
.e

quadratic element, the shape function vector can be written as

where S

S i

N = S _ (2.31)

is the 9 x 9 matrix

0 0 0 1 0

0 0 0 -1 0

0 0 0 1 0

0 0 0 -1 0

0 0 -1 0 0

0 1 0 0 2

0 0 1 0 0

0 -1 0 0 2

1 0 0 0 -4

0 -2 -2 4

0 2 -2 4

0 2 2 4

0 -2 2 4

2 0 4 -8

0 -4 0 -8

2 0 -4 -8

0 4 0 -8

-4 0 0 16

(2.32)

and

T

_- El, _, n, _n, _2, n2, _n2, _2n, _2n23 (2.33)

The integration rule we are interested in involves four integration

points (_, n_) , e - I, 4 . Associated with each of them, we denote
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by A and J the corresponding matrix A and Jacoblan.

integrated matrix is then

K (4) =
~e

E
J

o_I a

The under-

(2.34)

and can also be written

K(4)= 4
1 (bI aT a b2T ) (2.35)

where

sa= (2.36)

generalizes (2.18) to a 4- point rule.

The rank deficiency of K "4"(_ can now be verified.
-e

call t and h the vectors defined by

Indeed if we

t = , i, i, I, i, I, i, I, 1

hT = El, I, I, I,-i,-I,-i,-I, O_

(2.37)

we easily obtain:

and

T T
t • N = t • S'_ = 1

h T • N - hT • S • _ = -4(_ 2 + rl2 - 12 _2n2)

and then differentiating these expressions and using (2.12) we get:

A- t =0

A.h = -8 (1-12_2) "_ + _(l-12rl2) drl_J

the second expression vanishes when the point (_,_) is one of the four
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A

Gauss integration points of

(_a, rot) = (± 1 + 1

_herefore we have

; a - I, 4 (2.38)

• t-A .h-OA_ ~ (% ~ - i, 4 (2.39)

and, consequently,

K (4). t - K (4). h = 0 (2.40)

which proves the rank deficiency of K (4). Once agaln, we note that
~e

the pattern of h defined in (2.37) is independent of the geometry of

the element and is therefore valid for s rectangular mesh as well as

for irregular element meshes.

The analysis of the decomposition of underintegrated and stabiliz-

ing matrices for this element cannot be completed as completely as that

for the 4-node element. However, Belytschko and co-workers [3] have in-

tuitively arrived at a decomposition similar to (2.26) where y and _ are
~

y,,h- T -x _z..... al

(2.41)

" lO--_oz1 1 "b-1+_2 " (2.42)

This decomposition does in fact satisfy several properties also satis-

fied by the exact matrix,

Z. t'O
b e ~

4

be ~ a-I
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4

K -y= Z b 2 .
~e ~ Ot='l

but for a simple square element , K and its decomposition (2.26) do
~e

not coincide. Indeed, for this simple geometry, the calculation of

(2.11) can be carried out explicitly and the polynomial in (_,q) ob-

tained can be split into one part exactly integrated with 4 Gauss points,

and another part of higher order that requires 9 points. This calcula-

tion leads to the decomposition:

K(9) ffiK(4) + _ (_5 87" 8-T + 4 TXX XX e i--_ 89 " 89)

yy xx e _ _9" 8-9 )
t (2.43)

where

K I^
xx [_

-I^
Kyy f_

T A TA. y • y •

T
y Ax

A x x T A T

T
y • A " x

d_dq

d_drl

(2.44)

and 87 ' _8 ' _9 are the 7th, 8th and 9th column vectors of ~S (2.32).

These vectors correspond to the higher order of _ (2.33) that cannot
~

be exactly integrated by a 4-point rule. The form taken by the stabil-

T

ization matrix involves now three matrices (_i" _i ' i = 7,8,9), is

exact for a square element and cannot coincide with the decomposition

found in [4]. Finally, we note that both decompositions were used in

our a-posteriorl control described in Section 2.7 on a regular mesh,

* or also for a geometry for which the Jacobian is constant.



22

and optimal rates of convergence were only obtained with the decomposi-

tion (2.43).

2.2.4. The stabilization matrix for a Keneral heat transfer equa-

tion. In this paragraph we give the stabilization matrix for a slightly

more complicated operator. The case of the linear elasticity operator

is discussed later.

Let us consider the case in which the operator is defined by

A = _T C B (2.45)

where

and

C i

I Cll C21)

C12 C22

Then the stiffness matrix associated with this operator is given by

- [ VN T • C • VN dxdy (2.46)K
~e J_ ~ ~ ~

The generalization of the stabilization decomposition when Q1 elements

are used can then be written

where

K = K (I) + _ Y " T (2.47)
be be ~ ~

K(1) 1 BT
~e - _ C B (2.48)

= + (C12 + c + E (2.49)Cll Cxx C21) xy C22 yy
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and

- if^ I.-T ,T-_%8 y - r_s y)2 d_dn
exx = % n ....

-- i I I(_sT rib 'T.=- ,, • x - y)2 d_dr_
eyy 4 f2 .....

I _ T T T
=! ^ (_s -x - ns • x)(_ s.y- ns

Ly 4 _ ......
,T . y) d_dn

(2.50)

The quantities Y, B and J are the ones defined previously. Expres-

sions similar to those given in (2.29) and (2.30) can be used to

simplify £ .

For a regular geometry, and corresponding to (2.29) and (2.30), we

have

-- i 2 2
£ =
xx 24(_ e) (YI3 + Y24 )

-- i 2 2

£ = _(x13 +YY 24(_ e) x24)

-- i
£ =
xy 24(fZe)

(x13 YI3 + x24 Y24 )

(2.51)

As far as the 9-node element is concerned, the decomposition can

be obtained only for regular elements. First we note that

K (9) = K (4) (2.52)
~xy .xy

where the notations are similar to (2.43) and (2.44). Therefore, the

decomposition can be written:

_5 4 _s9 89 )K(9) = K(4) + "Qe Cll( _7 _°T + I-_~e _e

_5 4 T+ 9e C22( s-8 88 +'_ f9 -S9)

(2.53)
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2.3 A-Posteriorl Hourglass Control

2.3.1. Introduction and preliminaries. The basic ideas are more

easily understood when demonstrated for the same simple model problem.

We still focus on the model Neumann problem P0 or its variational

equivalent

Let

_fl and let

e •

be a regular (e.g. Lipschitz) domain in IR2 with boundary

f be a given L2-function. Problem P0 is then,

(P0) Find u such that

-Au - f in

_U
_= 0 on_fl
_n

(3.1)

where the data f satisfies the compatibility condition ,

I fdx = 0 (3.2)

Later we shall put further restrictions on _ and on

will need f G H(fl)). The kernel of the governing operator

_n) in (3.1) is, of course, the space of constants. Thus, whenever

(3.2) holds, there exists a solution to (3.1) which is unique up to an

arbitrary constant.

To formulate a variational statement of problem P0 ' we introduce

,
the spaces and inner products ,

* The elements of V (and L2(_)/ _) are cosets [v_ such that u _ Iv]

implies that u, v 6 HI(x) (or L2(9)) and v - u 6 _ . Throughout this

paper we frequently refer to functions v in V , meaning, of course,
that v is a representative function in the coset Iv].
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v - HI(n)/ m

(u,v)1

(f'g)o

- an inner product on V

f
- | Vu'Vvdx ; u, v @ V

Jn

= an inner product on L2(_)/ 1_

i j,d J.dx
f_ meas fl [_ f_

(3.3)

Three remarks are in order:

i) Theno_ I1-11o associated with the inner product

the canonical norm on the quotient space L2(_)/ ]R ,

("')0 is

IIf IIo " inf II f+x11

X@ ]R

L2(_)
(3.4)

ii) According to Temam [50], there exists a constant CO , depend-

ing only on fl , such that

II'.'II1 _ Coil',."IIo Vv G v (3.5)

iii) For all f satisfying the compatibility condition (3.2) and

any v @ V , we have

-- I fvdx< 11fIIo llv IIo
(f'V)o fl --

< !c0IIfIIo IIv II1

(3.6)

With these relations now established, we consider the variational

statement of P0 as problem P :
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(P) Find u 6 V such that

= (f,v) '_v 6 V (3.7)
(u'v)l 0

We can easily verify that any solution of P0 is a solution of P

and, conversely, the solution of P satisfies the condition of P0 in

at least, a distributional sense. Moreover, since the bilinear form

("')1 is continuous and coercive on V and since the linear form

(f'')0 is continuous on V if (and only if) f satisfies (3.2), the

following result is an immediate consequence of the Lax-Milgram Theorem:

THEOREM I. Let f satisfy (3.2).

Then there exists one and only one solution u 6 v to problem P

and this solution depends continuously on the data f • 0

We now consider a finite element approximation of the problem P.

Let us now construct a finite element approximation of problem P. We

begin by introducing a partition Q of _ into E finite elements

so that

E

n I U _e

eI1

We shall assume that _ is such that it can be partitioned in this

fashion into four-node quadrilateral elements over which bilinear shape

functions are defined. Thus, if

Ql(_e ) = space of bilinear functions defined on _e

we can introduce the finite-dimensional space

Vh = {vh _ cO(fl) such that
"l

6 ql(.qe), 1 _< e _< E ll_CV_2

(3.8)
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wherein, as usual, the label h is the mesh parameter (e.g. ,

max dla(_e) ). The functions in Vh are continuous and are stillh

l<e<E

defined up to an arbitrary constant.

Our finlte-element approximation of problem P is embodied in the

discret_ problem,

(Ph)
Find uh @ Vh such that

(uh, vh)l = (f, vh)0 _v h _ Vh

(3.9)

where, again, f satisfies condition (3.2).

In analogy with Theorem V, we have:

THEOREM II. Let f satisfy (3.2).

h
one solution u to problem Ph in Vh

continuously on the data f . Q

Then there is one and only

and this solution depends

In examining the convergence of such finite element approximations,

we shall confine our attention throughout this section to regular mesh

refinements. In such cases, we have the a priori asymptotic error

estimates,

]Iu-uh][l = 0(h) , ]Iu-uh]10 = O(h2) (3.io)

2.3.2 The underinteKrated problem. We now focus our attention

on finite element approximations of problem P in which incomplete

quadratures are used to evaluate the billnear form ("')I " To simpli-

fy this study, we shall now introduce some additional assumptions:

i) _ is the unit square,
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ii)

ill)

n = (0.i) x (0.i)

The finite elements are the squares,

nij , _) x ( N '

I < i, J <N

n - nlj
l<_i, J <N

The data f is L2-integrable; e.g.

f _ L2(a)

In this case, we take

1 vh
h=_, dim =

In Ph we can replace f by

defined by

(fh vh)o = (f, vh)0

(3.11)

(N+I) 2 - 1 = O(h -2) (3.12)

, V hfh its L2-proJection on is

_v h 6 V h (3.13)

For further use, we note that the projection satisfies

I{fhl{0 ! 11fl{0 (3.1_)

and can be chosen such that

I fh dx - 0 (3.15)

Now we turn to the issue of numerical integratlon of the stiff-

nesses. Let I(',') denote a discrete inner product on C0(_) defined

by a numerical quadrature rule as follows:
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E

IG(f,g ) = 7 iG(f,g)
e--i

G

J=l ~

(3.16)

Here W_ e
3 are the quadrature weights and _j are the quadrature points

for element e and G is the number of quadrature points used.

Assuming that Gaussian quadrature is used, the choice G=4 (2x2 - Gauss

rule) leads to an exact integration of the stlffnesses for each element:

(uh, vh)l = 14(uh , vh) = uTK v (3.17)

h h Vhfor any u , v G .

matrix and u and v

h
and v , respectively.

Here K is the fully-integrated stiffness

h
are vectors of nodal degrees of freedom of u

Instead of the correct bilinear form in (3.18), we wish to consider

an underintegrated approximation to

tion point per element is used:

in which only one integra-

(uh , vh)l,h = ll(uh , vh) = uTK(1)v

h h VhVu , v G

Here K (I) is the underintegrated stiffness matrix.

tween ("')I and ("')l,h (on Vh) is denoted

corresponding stiffness matrix is K stab : **

(3.18)

The difference be-

a'(. -) and theP

* Recall Section (2.2).

** Recall that KStab= _yyT where _ = 1/6

y is given by~(2.27) ~~

for a rectangular mesh and
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a'(u h , v h) = (uh , vh) 1

ffiuTKStabv

- (u h , vh) l, h

h h
VU , V 6 Vh (3.19)

The "underintegrated problem",

* u h Vh
(Ph) Find 6 such that

(uh , vh)l,h = (fh , vh)o Vvh 6 V h (3.20)

is, _.n generaZ, meaningless. This problem, in general, has no solution

except for the special case in which fh is orthogonal to the one-

dimensional space of hourglass modes,

H- {H G vhl(H, vh)l, h - 0 V v h S Vh} (3.21)

A way to overcome this difficulty is to note that the underintegration

of the righthand side also leads to a rank-deficient linear form

("')0,h :

(fh , H)0, h . 0 , _/fh G Vh

VHG 

Note that if fh satisfies (3.15) we also have

(fh , 1)0, h - 0 (3.23)

Therefore we now consider the underintegrated problem _h :

Find suchthat

(u--h, vh)l,h . (fh , vh)0,h Vvh 6 V-'h (3.24)
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where

v-h : Vh/H (3.25)

We can now state and prove

THEOREM III. There exists one and onZy one soZution u to .

Proof: This is an immediate consequence of the Lax-Milgram theo-

rein. Since

uh) 1 h(uh ' ,h " O_u _ YI H + Y2

½ ¢
we can consider ("')l,h as a norm on .

It is therefore coercive

and continuous on ¢ . As far as the continuity of the righthand side

h Vh
is concerned, a simple calculation shows that for any v in we

hay e

[(fh, vh)0,h] < l[fhl[ 0 [[vh[] 0

Also for any constants YI and Y2

l(fh' vh + YI + Y2 H)0,hl ,, l(f h, vh)o,h I

therefore

{(fh, vh) 0,h I < I]fh{l0 {{vh÷ YI ÷ Y2H{{0

! {Ifh{{o {{vh + h H{Iz

<_.%{1fh{{o 11vhl{l,h

Here we successively used (2.23), (2.22), (3,6) and the equivalence

between the canonical norm of _h and the norm I{ "{ll, h [J

We have obtained a solution to the underintegrated problem Ph
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This solution is unique in V-h , from a computational point of view it

is defined up to within an arbitrary hourglass mode• We now need a

--h
projection to obtain a reasonable solution from any representative u

chosen.

2.3.3. Projection of the underintesrated solution. In order to

h
construct this projection, we re_ark that, since u is a solution of

Ph and since H G Vh h, u satisfies

(uh , H) 1 , (fh , H)0 (3.26)

We wish to extend -'_u'"to all of Vh
~h

so that a new function u

G Vh is obtained which contains an hourglass mode and which also satis-

fies (4.8) Thus, if _ is an operator from V-h into Vh• , we define

~h -h --h
u = _ = u + _0H, l0 G • (3.27)

(sh,H)l = (fh, H) 0

This latter requirement determines _0 uniquely as

AO" 2

I[HN1

~h
so that u is uniquely determined as the function

~h --h (fh'H)0 (uh'H) 1

u =u + 2 H 2 H

IIHII1 II"II1

(3.29)

It is instructive to consider a geometrical interpretation of our

projection defined in (4.9). Note that the "component" of the fully

h Vh) _L (uhH) Iintegrated solution u orthogonal (in to H is = (fh,H) 0,
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as indicated in Flg. 3. The solutions _h of Ph constitute

the vectors generating a line "parallel to" the space H in the figure.

~h
The projection u is then the vector defined by the orthogonal projec-

h
tion of u onto this llne. Indeed, by construction,

h
"~(uh - u , H) = 0

I

At this point, we have established the following procedure for

processing an underlntegrated finite element approximation of problem P.

i) ComQute the underintegrated bilinear and linear forms ("')l,h

(fh,-)O, h

--h
ii) Solve problem _h for u

iii) Compute (u--h, H)I

~h
iv) Construct the enhanced solution u using (3.30).

Thus, this procedure involves the computation of an underintegrated

solution uh to a reduced problem and its enrichment via a post-

~h
processing operation to obtain a new approximation u . We shall now

~h
show that these post-processed solutions u converge to the exact

solution u of problem P as the mesh is refined, and, remarkably,

these approximations converge at precisely the same rate as the fully-

integrated solution!

Indeed we have:

h
THEOREM IV: Let u , u and u-_ be the solutions of P,

Ph and P--h" let f be in L2(_) and satisfy (3.2). Let _h be ob-
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h
U

Figure 3. Geometrical Interpretation of the Projection
~h --h
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tained by the projection of -hu defined in (3.30).

followin@ error estimates for s = 0 and I

Then we have the

and

lluh-jhlls <C 1 h2-s l!fll° (3.31)

< C 1 h2-S ]If II0 (3 32)Nu-ell s _

The next section will prove this theorem.

2.4. Convergence of the A-Posteriori Control

2.4.1 Introduction. This section is devoted to the proof of

Theorem VIII. The method of proof relies on the tensor properties of

the bilinear element and of the Gauss integration rules. The problems

Ph and Ph will be explicitly solved using an orthonormal basis of

eigenveetors of ("')i' ("')l,h and ("')0,h . Then we note that

for a regular domain and mesh, f G L2(_) implies u _ H2(_ and that

h (4.1)Ilu-u II1 < Chllfll 0

Likewise, the Aubln-Nitsche method provides also

h ,h 2 (4.2)IIu - u 110i c IIf 110

By the triangle inequality,

_h h ~h
Ilu - u II1 (4.3)IIu - u 111 <__Ch IIf II0

4-

with a similar estimate in the II"ll0-norm

Thus, it suffices to estimate the relative error
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h ~h h
e = u - u (4.4)

The L 2- and Hl-norms of this relative error will be explicitly calcu-

lated and estimated.

2.4.2. Some one-dlmenslonal results. For reasons to be made

clear in the next subsection, it is convenient to review briefly some

results on one-dimenslonal piecewlse-llnear approximations on a uniform

mesh for fl = (0,1) Our aim here is to establish concrete relation-

ships between various bilinear forms ("')0,h ' (*'')i ' and ("')l,h

on spaces of piecewise-linear functions.

Let D(k, a) and I denote the N+l-order matrices

k _ • • • 0

a 2k • • • 0

0 0 • • • 2k

0 0 • • •

I

0

0

cx

k

P

1 0 • • * 0

0 2 • • • 0

0 0 • • • 2

0 0 • • • 0

(i.e.

where

I' = (D(I,0) . Then, for u _ 0 , one can show that

det D(k, u) = (-a) N+I det D(-k -i)
_ C_ '

= (-a) N+I det D(-k)

def

D(k) ---D(k, -1)

The values of k for which det D(k)

iw
k i " cos-r._ , 0 _< i _< N

vanishes are

0

0

0

1

(4.5)

(4.6)

(4.7)

(4.s)
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and the corresponding vectors (D(ki)v i = 0)

vi = {cos i__ _ _N- ' 0 <J <N

are

(4.9)

The significance of the above matrices is that in one dimension,

the discrete HI(0,1) - , L2(0,1) - and underintegrated L2(O,l)-norms,

0
h of piecewise linear CN-functions on a uniform meshon the space V 1

of N elements on (0,I) ,

h h 6 Co vh [eh,(e+l)h],e=0, ,N-I)VI = (0,i) I is linear on ...

(4.10)

are associated with the matrices

h I h D(I, i)
A 0 = _ D(I,½) , A l = _ D(I, -i) and A0, h = _ ~

(4.11)

respectively. In other words,

IIvhll2 = v A v s = 0, i , (0,h) (4.12)
S _ ~S~

h
where v is the vector of nodal values of v

By using (4.6) through (4.8), one can verify that the numbers a i

and 8i which render _0,h - _i_O and _I - 8i_0 singular are

3(1 + cos_)

_i =
2(2 + cos_)

(4.13)

iTi
I - cos

6 N

8i = _ i_2 + cos
N

(4.14)

In particular, let _i = _i(x ) , x @ E0,1_ denote the piecewise
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linear functions associated with the vectors v i :

_i(J_span{_i}0<i< N= c°s i-_N= Vl'h0 _< i,J <_N I

(4.15)

Then,

(v h, _i)0, h = a i (v h , _i) 0

(vh, _i)1 = Si (vh. _i)0

Notice that the base functions _i

h h

v 6 V 1

(4.16)

(4.17)

are orthogonal for each of the

scalar products under consideration.

The following remarks are in order:

i) The denominators in (4.13) and (4.14) are non-zero.

ii) For i - N, ui " 0 and the corresponding eigenfunction is the

one-dlmensional hourglass mode:

(i, -I, i, -I, ...)

iii) For i - 0, 8i " 0 and the corresponding eigenfunction is

constant. Then we have the condition (vh,l)l - 0 as expected.

2.4.3. Discrete norms for two dimensional meshes. The extension

of the above results to two-dimenslonal rectangular meshes is straight-

forward. Since the bilinear basis functions for V h are tensor pro-

ducts of piecewise linear functions of one variable, we can define

iJ =
(x,y) _i(x)_J (y)

0 < i,J < N (4.18)
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Further, let us normalize these basis functions so that

[[¢ijiI° ,.1

We can then establish the following:

Le_ I.I. For vh g Vh we have
J

(v h, $iJ)o,h = ai _J (v h, $iJ)o

(v h, ¢iJ) 1 = (B i + Bj) (v h, ¢iJ) 0

(v h, eli)l, h - (aj8 i + ai8 j) (v h, ¢iJ)o

h vhMoreover, if arbitrary v g is expressed in the form,

(4.19)

(4.20)

(4.21)

then

h lj¢lj ]

"4 =" _. V

o<7, J<_N

vlJ = (vh, _lJ)o

2 E 2II vhho' = vij
o<j,JiN

][vhll21= z (Bi + 8j)v2ij
o<7,J<_N

(4.227

(4.23)

(4.24)

Proof: First note that

(v h, ¢lj)O,h = i(v h ¢i Cj )(x) (y)

v h _i(x)$J(y) dxdy

= a a (v h, eli)
i j 0
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We also have

' I _vh (_i' _J(vh _iJ )I = _--_-- (x) (y)

_vh _J '
+ _-y (y) _i(x)

Finally

dxdy

I vh_i(x)_J(y) dxdy
= Bi

I vh_i(x)_(y) dxdy+ Sj

= (8i+ Sj) (v h, ¢lJ)o

" I ( _vh _vh '
(vh' _lJ)l,h 1 _ _i'_J + _ _i_j )

- Bi_j(vh,_iJ)o + Bj_i(vh,_iJ) 0

The norms (4.23) and (4.24) are then directly obtained []

In analogy with our remarks on the one-dimensional case, we observe

that for i - J - N, _ij . H , the two dimensional hourglass mode. Then

24 (4.25)
(v h , H) I = _ (vh , H)O

and

Also, for

be written

(vh, R)O, h = 0 (4.26)

i = J - 0 , _lJ = i and the equilibrium condition (3.2) can

fo0 = 0 (4.27)



41

with

fiJ " (fh _lJ) (4.28)

2.4.4. Explicit resolution'of Ph

results in hand, let us now return to the fully-lntegrated finite-

h

element approximate problem Ph given in (3.9). The solution u

that problem can be written

m

and (Ph + _). With the above

to

h

u = l ui_J
0<_i,S<_N

ulj = (uh, _lJ)0

(4.29)

and since for EV h = _ij in (3.9)_,

(uh, _iJ) I = (8i + 8j) (uh, _lJ) 0

= (fh, _ij) 0 = fij

we have

fiJ ; (i,j) # (0,0)
(4.30)

Using constructions similar to those in (4.29) for the fully-

--h
integrated problem, we easily verify that the solution u to the

underintegrated problem _h is representable in the form,

u = Z _ij

(i,J)#(N,N) uij

(i,j)#(0,0)

with

_ ai aj

uij = ale j + aj _"
f.. ; (i,j) # (0,0) and (N,N)
13

(4.31)

(4.32)
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The cases (i,j) = (N,N) and (i,j) - (0,0) correspond to the arbi-

trary hourglass mode and arbitrary constant, respectively.

~h ~h -h
The projected approximation u defined by u - _u is con-

-h h
structed so that projections of u and u coincide;' i.e.

. =
is u ij

z

UN,N UN,N

(i,j) # (0,0) and (N,N)

(4.33)

h
U

2.4.5. Proof of theorem IV. Since the error function

is in V h , we use (4.29) and (4.31) to obtain

h h
e = u

where

h _t

(i,J)¢(N,N) eij

(i,J)¢(O,O)

eij = (eh, $iJ)o

= (6h, $iJ) o - (uh, _iJ)0

(4.34)

" uij - u i-3

Thus, from (4.30) and (4.33),

ala_

eij = _ai8 j + ajB i

(4.35)

Then, using (4.13) and (4.14),

eij = h2Kij fij

eij
can be written as

(4.36)

where
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i_ IX )
Kij " K(cos-'_" , COS N

and

K(x,y) =
1 (l+x) (l+y)
4

(l+x) (1-y)+(l+y) (l-x)

1 (2+x) (2+ 7)
6

(2+x) (1-y)+(2+y) (i-x)

On the square S= E-l,+13 x [-1,+1_/((-1,-1), (1,1)} , K(',')

bounded and there exists a positive constant K such that

(4.37)

(4.38)

is

{K(x,y){ < K _(x,y) @ S (4.39)

Therefore we have

{Kij [ <_K
_(i,J) # (0,0) and (N,N) (4.40)

and we can obtain using (3.13) and (4.23)

2 2

2 ffih4 Z Kij f{I ehll0 (i,J)¢(0.0) ij

(i,J)#(N,N)

2
< h4 K2 II fh{120 <__h4 K21] f IIo

Also, after calculation and use of (4.24), (4.14) and (3.14), we have

2 = h4 E{{ehlll
(i,j)¢(o,o)
(i,J)#(N,N)

2 2

(_i + _j)Kij fij

2
<__12 h 2 K2 IIf II0 m

2.5. Implementation and Numerical Results of the A-Posteriori Control

For the Laplace Equation.

In this section we first would llke to indicate how the a-posteriori
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control method is implemented, and how its time efficiency compares to

the a-priori method. Then several numerical results will be given,

illustrating the accuracy of the method and confirming the results

obtained in the previous sections.

2.5.1. Implementation of the a-posteriori method. First let us

indicate that from a mathematical point of view the problem p--h is

well-posed but computationally, the matrix obtained from this formula-

tion is singular and the dimension of its kernel is 2. Consequently, we

must pick two nodes, fix them a value, and solve. The first value fixes

the constant mode, and the second one fixes the hourglass mode to be

--h
eliminated later. Let us fix u equal to zero at the origin and at

the next point on the boundary (coordinates : h,0) (Figure 4.a).

According to the error estimates (3.30) and (3.31), we may write

h -h h2-8)u - u + XH + O( (5.1)

But u(h, 0) is

_u/_n(O,0) = 0)

2-C, £

and therefore, if we normalize H

i, _ measures precisely the value of

approaches u(h, 0)

= u(h,O) + O(h o)

0(h 2) for a smooth enough solution

and using L°°-estimates [Ii] , c

arbitrary. Finally, we have the estimate

= O(h2-e), e arbitrary

such that its nodal values are 0 or

h
u at (h,0) (Figure 4.b), and

(5.2)

(u(0,0) = 0 ,

can be evaluated to

(5.3)

Also, the choice of H leads to
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Figure 4.a. Two Fixed Nodes

u _

/^H

h -h 0(h2-S)Figure 4.b. u = u + AH +

Figure 4. Justification of the Omission of the Projection.
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[IH[I0 " 1/3

ilSlll . 2 _'.....__2

and therefore we obtain

(5.4)

II x.ll s - o(h2-s-E) s ffi 0,i (5.5)

and that proves that the post processor contribution XH can be neg-

lected if the fixed nodes are chosen as indicated for this type of

boundary condition. The error estimates of Theorem IV still hold up

-E
to within h .

Unfortunately this remark has two major drawbacks: it supposes

that u is smooth (u 6 H 2 (G)) and it is not valid to 9-node elements

that will later be discussed.

Before discussing the implementation of (3.30), we indicate that

h
this projection can be simplified. Indeed, taking v = H in (4.25)

we obtain

It (f_H)O H II <_II fhll IIH II_ h2
2 o IIHII21 " 2-_II fhll oII HilI

(5.6)

IIHII21
H IIl <_ II fhll0 IIH ll0 _h__ II fh{l

IIHII1 2_- 0

Therefore we have

h

II _ HII < c{l fhll h2-8
,, ,,2 s - o , s- o,1 (5.8)
HII il1

and this term can be neglected without affecting the estimate of Theorem
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VIII. The formula used in the post processor is then

~h -h
u = u - _H (5.9)

" (_'H_lIINil_2 (510)

In order to preserve the efficiency of the method provided by

underintegration, one must find an efficient way to compute the para-

meter _ in (5.9). One way that suggests itself is to calculate the

H I inner products of (5.10) using numerical integration. The use of a

one point rule would be absurd and would lead to a ratio 0/0. The use

of a 4 Gauss point rule has been numerically implemented and gives good

results (similar to those to be presented next) but cost of this inte-

gration is expensive, as shown in Table 3. This method is therefore

rejected.

We shall now describe a more efficient method with related numer-

ical results shown in the next subsection. This method relies on the

fact that, for the bilinear element, the stiffness matrix can be decom-

posed into two parts, one of which contains H in its kernel. The

other part is such that the image of H is cheap to calculate.

This decomposition proved in Section 2.2.2 can be written as

-- T
K exact = Kunder + E _e "_e (5.11)
e =e e

where K exact and Kunder respectively are the exact element stiffness
_e =e

matrix and its under-integrated form, ce and _e are obtained from

(2.2?) and (2.28). In particular

h.x h -_ b.2Y.e"h-_ (Sl2)
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Even though c given by (2.27) is still difficult to calculate, note
e

that, during the element calculations, the vectors _1 and _2 and the

Jacobian [_ I are necessarily computed. Therefore 7e is very easy
e

may, therefore, be calculated by

to calculate.

The inner product (u-'_ , H) 1

using the decomposition (2.1) of K exact . Introducing the nodal vec-

-- --h
tors U and H associated with the function u and H , we have

T
- uTK exa_t H - UT" Y._ 7e.7 e • H(U--_'H) I ~ = ~ ~ e e ~

zL( eT• T" !e " He)

where U and H are the values of U and H at the nodes of the
~e ~e ~ ~

element e . We note that if the values of H are +i or -i , the

T

scalar vector product _e -He is always ±4 . Therefore

-- i
(u-h, H) I - 4T ± _e I yei Ue (5.13)

e ill

and

D

(H, H) 1 - 16I E (5.14)e e

These expressions are still exact since no approximation has been

made on E . If we suppose that the Jacobian of the element is approx-
e

imately constant (true for parallelogram element) E is simply ex-
' e

pressed as

The calculation of the approximate projection can be summarized in
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the following algorithm:

• Loop on Elements

Calculate [e ' ee using (2.2) and (2.6)
Calculate +£-e (yT_e"_e )

_-Add

12 X2 + ee

• A - ll/4l 2

• Loop on Nodes

_ahlNode "_hlNode ± X

Remark: The notations previously used are essentially those found

in the work of Belytschko and co-workers [ 5, 6] on stabilization methods.

These methods rely on the decomposition (5.11) but the stabilization

T
term eY'Y is a-priori added to the under-integrated matrix to prevent

the spurious modes from the kernel of the stiffness matrix; whereas our

control method uses the very same term a-posteriori, after solving with

the underintegrated matrix. Therefore, our method seems to be cheaper

than the stabilization methods as summarized in Table I.

2.5.2. Numerical results.

2.5.2.a. Regular mesh of 4-node elements. In order to illus-

trate what has been stated, we have considered the Laplacian problem

solved on a square domain partitioned into N2(=h -2) subdomains, for

various values of N and we have studied the norms of the difference

h
between the solution obtained with a full integration u (4 point rule
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-h _hand with underintegration (1 point rule) u and (before and after

post processing). The results are shown as plot of Logll uh-uhll or

Logllu-uhl] in function of 1Log hi , for s = 0,1 . Data of vari-
s

ous regularities have been used:

i) fl is a cO-function, but not C1 :

3- 14

Ifl(x,y) _ _-(l-x) --_- y if Yl(X,y) >_0fl(x,y) y(23-(l-x) - y _5) if Y1 (x,y) < 0

where the cl-discontinuity line is

3
Y1 (x'Y)= _ (l-x) - y

ll) f2 is a non-continuous function

I f2(x,y) = I if Yl(X,y) > 0

f2(x,y) - -2 if Yl(X,y) < 0

where YI is the same as in i).

Remark: Both of these functions satisfy the compatibility

condition (3.2).

Results obtained with the continuous function fl are shown in

Figure 5. When the solution has been treated by the post processor

(Fig. 5a.), bor both L2 and HI norms, the representing points lie

on lines of slope 2. This proves that whereas the estimate (1-13) is

optimal for the L2 norm (s = 0), it is not in the HI norm and seems

to be in fact better than what was expected in our study. This does

not affect in any case the comparison with the exact solution (1.14).

--h
Figure 5.b shows the comparison with the crude solution u ,

obtained with two fixed nodes, and not treated by the post-processor.
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Figure 5. Results Obtained with a Continuous Data Function:

Comparison between : a) uh and _h uh -h; b) and u .
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Slopes 2 and I are observed and the loss (I. instead of 2. for the H 1

norm) corroborates the final remark of Section 3.32.

When the function f2 is used (Figure 6), the points show os-

cillations around two lines of slope 2. (for the L2-norm) and 1.65

(for the Hl-norm) proving that the estimate (3.315 still holds (Fig.

6.a). When the solution has not been treated by the post-processor

(Fig. 6.b), the slope 1.65 becomes i. as expected.

The next series of examples was intended to study the influence

of a singularity (at the origin) for a unit square domain regularly

partitioned. The data functions are of the form

f (x,y)__ _ r - C , a> - 2 (5.16)

where C

(2.2) is satisfied.

of data:

is a real number chosen such that the equilibrium condition

The family {f } represents various regularities

f 6 HS(_) a > s - I

The result shown in Fig. 7.a is a plot of _ (regularity) versus O

~h h _ 15 The pattern of the (_, o5Crateof co.vergenceof llu - u I-0,

plot seems to show a linear increase of slope i towards the maximum

value 2 reached for f G L2(_ ffi-15 for the L2-norm (sffi0) As far as

the Hl-norm (s=l) of the error is concerned, the linear increase of

slope i reached i for f 6 L 2 but keeps increasing towards 2 . This

shows that the expected error estimate

(5.1_5

< C h k llf II s = 0,I (5.18)IIuh-u hlls -- m '
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where

k = 1 + min (I, m) - s

s - i and m > 0 .

(5.19)

The estimate (3.32) remainsis not optimal for

optimal however.

In conclusion, these numerical results suggest that the method is

accurate for regular meshes with a convergence rate equal to the fully

integrated case.

2.5.2.b. Regular mesh of 8- and 9-node elements. Since the be-

ginning of Part II we have not discussed the underintegration of the

stiffness matrix of the 8-node elements. It is well known that this

matrix is not rank-deficlent, and the practice of the underintegratlon

has been widely used with good results when the mesh is regular. Since

there is not any spurious mode, the a-posteriori control previously

described is not needed.

Unfortunately, the method of proof presented in Section 2.4 cannot

be used because this element does not possess the nice tensor product

properties on which the method relies. The only hope for a proof of

convergence would be to obtain the result as a by-product of a result

for the 9-node elements.

As far as this element is concerned (9-node element), we have

proved (Section 2.2.3) that the underintegration of this element leads

to a rank-deficlent matrix; in fact, the procedure described in Section

2.3, for the resolution of the underintegrated problem and the projec-

tion of its solution is completely applicable to a mesh of 9-node ele-

ments. Thus, Theorem VII is valid and the projection defined in (3.3)



57

a convergence theorem is concerned, one can establish generalizations

of (4.16) and (4.17) to 3-node, one-dlmensional elements: there exist

ai , Bi , $i and @i such that

(vh, ¢I)0, h = ai(vh , ¢i) 0

Vv h

(vh, _i)1 = Si(vh, _i)0

Unfortunately, the basis functions _i and _i are different for the

L2-underlntegrated and Hl-norms and a lemma as Lemma i.i cannot be ob-

tained.

However, in this subsection we will show numerical results

obtained by use of the projection (3.30) for regular meshes of 9-node

elements. Note that two types of control have been tested with similar

T
results: the control only involving the term in y.y predicted by

T

Belytschko [4] and the complete control calculated with 8i8 i , i = 7,

8,9. (See Section 2.2.3). The results obtained with either of them are

similar for this operator (-4).

For 8 and 9-node elements, the optimal rates of convergence are

given by

where

]lu-uhl[8 !c hk Ilfl] m 8 = 0,1 (5.20)

k = 2 + min(l,m) - s (5.21)

and the best rates of convergence O(h 3-s) are obtained when f G HI(Q).

The results obtained with functions presenting a singularity llne (such

as the functions fl and f2 previously defined and others) are pre-
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sented in Table 2 (first and second lines). We obtained 1.99 and 1.74

for a discontinuous function (f G L2) , then 2.43 and 1.97 for a con-

tinuous, not C1 , function (f G HI), 2.95 and 1.95 for a CI, not C2

function (f G H2) and finally 4 and 3 for a C°° data. Therefore, the

rates 3 and 2 are reached when f is at least H2 or equivalent when

the solution u is in H4 . In this case, the convergence rate (5.1)

does not seem to be reached.

The second series of data involving the singularity at the origin

(5.16) has been tested and results are shown in Fig. 6.b. The pattern

of the (_,o) plot shows linear increases of slope I, the predicted

values 3 and 2 are reached for f 9 Hl(r) according to (5.21), but the

maximum values 4 and 3 are reached for f G H2(R) .

2.5.2.c. Irregular mesh of 4- and 9- node elements. Finally, the

method has been tested on the quarter unit disk shown in Fig. 8 with

2
f-r --- _>-2

_+2

The plot (u,o) is shown in Fig. 9 and we can point out.

• The general pattern is respected (linear increase towards a

maximum value)

• The maximum values 4 and 3 (9-node elements) are reduced to

values slightly lower than 3 and 2

2.6 Excitation of Spurious Modes

The previous sections were devoted to the study of the Laplace

equations with Neumann boundary conditions. The choice of these bound-

ary conditions is convenient for the analysis of the hourglass instabil-
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Table 2..Rate of Convergence ILog!!ell Iv.s!Log hl(0=0,1)
S

for 8- and 9-node Elements

9:.............. 9: 9: 9:......... * ......... 9:

I REGULARITY I I I I I
I I f G L2 I f e HI I f _ H2 1 f 6 C_ I

IBOUNDARY CONDITIONS I _ HI I _ E2 I e H3 I I
I AND ELEMENT I I I I I
• ..................... * .......... 9:......... 9:......... 9:......... 9:

INEUMA/_, 9-NODE

I+SPECIAL PROJECTION

INEL.'M._N,8-NODE EL.

I

I1.99 12.43 12.95 14.00 I
I 1.741 1.971 1.94 3.001
9:.......... 9:......... 9:......... , _ ........ *

Jl.99 J2.00 [2.97 J4.00 J
I 1.791 1.931 1.95 3.001

9: ............... 9:.......... * ......... * ......... ' -- ...... ----9:

IDIRICHLET,9-NODE EL. 12.35 12.85 12.99 13.00 I
I I 1.471 1.991 1.99 2.001
9:..................... * .......... * ......... 9:......... . __ ........ .

IDIRICHLET,8-NODE EL. 12.30 12.71 [2.99 13.00 I
I I 1.461 2.121 1.99 2.001
9:......... * .......... 9:......... * ......... _ ......... 9:

IHIXED,9-_':ODEEL. 12.00 12.00 13.83 14.00 I
I I 1.671 2.281 2.84 3.001

IMIXED,8-NODE EL. 12.00 12.00 13.84 14.00 I
! I 1.741 2.271 2.84 3.001
9:..................... 9:.......... 9:......... * ......... : *
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Figure 8. Typical Mesh on a Quarter Circle Domain.
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Itles because these modes appear explicitly in the kernel of the under-

integrated discrete operator. When Dirlchlet conditions are applied

on a part of the boundary, even though the kernel of the underlntegrated

stiffness matrix is not rank-deficlent, instabilities may appear.

In this section we would llke to study the influence the boundary

conditions have on the solution of the underintegrated problem, and

obtain results analogous to Theorem VIII. Also we would llke to explain

how the oscillations may be excited in certain problems. The method of

proof is similar to that presented in Section 2.4. For various boundary

conditions, we are able to exhibit the exact elgenvalues and elgen-

functions of the various linear and bilinear form involved. The expla-

nation of the excitation of oscillations will result from the comparison

of these elgenvalues. The procedure also allows us to study the under-

integration of the operator -A+I and the control of resulting spurious

modes. Numerical results will illustrate the theory.

2.6.1. The underinte_rate d problem with Dirichlet or mixed bound-

ary conditions. This section is devoted to a generalization of the

results obtained in Section 2.4 to the Laplacian equation with Dirichlet

or mixed Dirichlet-Neumann boundary conditions. Only proofs for the

Dirichlet case will be given in this section, but their equivalent for

the mixed case can be found in Appendix A.

The Dirichlet case is simpler than the Neumann case because the

hourglass mode does not belong to the new approximation space defined

to handle the boundary condition. Therefore the stiffness matrix is no

longer singular and can be inverted directly. In the variational for-

mulation, similar to (3.7), the projection of the data function is not
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necessary and the problem p--h is written:

where

h such that
(p-h) Find u-h G V 0

Vh)l vh)0 h h(u-'_ ' ,h = (fh , ,h v 6 V 0 (6.17

Voh = {vh/v h 6 cO(_) , vhl_ij G Ql(_iJ) , 1 _< i,J _< N ,

h
v .Ig - o}

Remarks

h does not make
it The fact that ("')l,h is not singular on V0

the problem classically elliptic in the sense that the constant in the

Lax Milgram Theorem is h-dependent.

ii) When Dirichlet or mixed boundary conditions are applied,

Ker AI = Ker AI, h - {0}

Thus the post processor is not Justified anymore and we may compare

--h h
directly u and u .

This comparison is carried the same way as in Section 2.4 and a

h
basis of the approxlmation-space V0 can be obtained. One useful

basis is the common elgen-basis of the matrices of the HI-, L 2-, and

underintegrated HI- L2-or inner product. Let us consider the N-I x

N-I matrix

D(k) =

2k -I 0

0 -I 2k

D
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The values for which det D(k) vanishes are

Iw

ki = cos _ l<_i<_N-i
(6.2)

and the corresponding vectors (D(ki)v i = 0) are

= {sin _ }
v i

J=l, N-I

(6.3)

Let _i . _i(x ) , x G [0,i_ , denote the piecewise linear function

associated with the vector v i :

¢i(jh) - sin lJ_ 1 < i,j < N-I (6.4)
N _ --

h (6.5)
span{_i}l<i<N_ 1 - VI, 0

where

h ffi {vh _ c°(o,l) vh(O) = vh(1) - 0
Vl, 0

h
v is linear on eh, (e+l)h , 0<e<N-l}

From this point, the remainder of the proof goes as in Section 2.4 and

the variational problem and its underintegrated formulation can be ex-

plicitly solved and the decomposition (4.29), (4.30) and (4.31), (4.32)

are obtained for 1 < i,J < N-I , and we finally obtain the result for

Dirichlet boundary conditions:

THEOREM V: Let f be a function in L2(_). Let u be the

solution of P :

i / (u, - (f,v)
P : Find u G H 0 v) I 0

be the L2- p_ojzc2_on of f o_to V h

¢:

I (6.6)
_Tv G H0

and £_t u-_ be the _olu-



65

h / (u--h, vh)l . (fh _/vh @ hFind G vo ,h vh)o,h Vo

Then we have the following e_or estimate:

(6.7)

II u-u-hlls <_.C h 2-s Ill [I 0 s = 0,1 [] (6.8)

This theorem proves that the use of the underintegrated matrix does not

affect the rate of convergence of the solution. The method is there-

fore accurate and efficient.

Data with various regularity have been tested for meshes of 4-, 8-,

and 9-node elements, with various boundary conditions. Results are

summarized in Tables 2 and 3. They indicate that the optimal rates of

convergence are obtained for f _ L2(_) for the 4-node case and f e H2

(Q) for the 8- and 9-node case.

2.6.2. The underinte_ration of the operator -A+I. In this sub-

section we consider the underintegration of the operator associated with

the problem

P0 : Find u G HI(_) such that

I - Au+ u = f in f2B...pu. Bf2
Bn O on

(6.9)

The usual variational formulation of PO

P : Find u G HI(_) such that

is

(u, v) I + (u, v) 0 - (f, V)o , v (; HI(_) (6.10)

The results of existence, uniqueness of solutions of P are well-known
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Table 3: Rate of Convergence tLog llel! tv.s. ILog h I for
S

4-node Elements (s=O,l)

. ...................... . .......... .-- * ......... .

I REG_ITY I [ I I
I I f EL 2 I fell I I fec _= I

I OPERATO._ &HD I HI I _ I I
J BOUNDARY CONDITIONS I _ I _ "'- I I

J I NEUMANN II.99 12.00 12.00 l

J I +PROJECTION J 1.611 2.00l 2.00l

J -& J DIRIC_LET JI.99 J2.00 12.00 I

I I 1 1.501 1.851 2.001

J I MIXED J2.00 I2.00 J2.00 J
I I i 1.501 1.991 1.991

I I NEl/MANN J2.00
I I+PRCJECTION J

J -A + 1 J DIk_CHLET 12.00
I I I

l J MIXED 12.00

I I I

12.00 12.00 I
1.501 2.001 2.001

12.oo 12.oo I
1.501 1.851 2.001

12.00 12.00 I
1.501 1.851 2.001

* W ......... *
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as are those for its discrete formulation:

Ph : Find u h 6 Vh such that

(uh, vh)l + (uh, vh)0 = (f, vh)0 ,

where Vh is an approximation of HI(_.)

The underintegration of ("')I + (''')0

integrated problem:

k_'vh _ Vh (6.11)

using bilinear elements.

leads to the following under-

_h : Find u-h _ V-h such that

vh)l,h + (3, vh)o,h

where the choice of approximation space

@ - vh/H

= (f, vh)o, h ,

(6.13)

is Justified by

(vh, H)l, h + (vh, H)0, h = 0 ,
_v h S vh (6.14)

Then, the method of proof used in Section 2.3 allows us to obtain the

--h
existence and uniqueness of u . A projection similar to (3.30) can

be obtained by analogy: we have

(uh, H) I + (uh, H) 0 - (f, H) 0

We therefore construct the projection as:

(6.15)

~h -h
u = _u = u + l 0 l-I (6.16)

(_h, H) I + (_h, H) 0 = (f, H) 0 (6.17)
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This defines uniquely 10 as

(f,H)0 - (u,H)l - (u,H) 0

I0" 2 + I[H{120 (6.1S)IIHII1

Similarly to what was done in Section 2.5.1, we can use (4.25), (5.6)

through (5.8), simplify I0 without any loss of accuracy and still use

(5.9), (5.10) for the projection

~h --h
u = u - IH (5.9)(repeated)

" (_' ")l 11.II_2 (5.10)(repeated)

The proof of the convergence of Gh towards u is again done by

h ~h
direct calculation of u and u : the explicit resolution of Ph

and (Ph + W) leads to :

1

ui,j = 1 + 8 i + Bj fiJ 0 < i,J < N

(6.19)

and

~ cxic_j

ui,j = ai_j + ai8 j + aj8 i

_NN " UNN

fiJ 0 <__i,J <__N
(i,J)_(N,N)

(6.20)

h ~h
These decompositions allow us to obtain u - u as done in Section

(2.4). Provided that f G L2(_) , we can obtain

< c h2-81[f IIo 8 " 0,1 (6.21)IIuh-_h l1_

Once again, the underintegration does not seem to affect the rate

of convergence. The result can also be obtained with various boundary
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conditions. Numerical results are summarized in Tables 5 and 6 and

confirm the theory.

2.6.3. Excitation of oscillations. The existence of spurious

oscillations when underintegration is used is not only encountered

when Neumann boundary conditions are applied on the whole boundary.

this subsection, we analyze precisely how modes that oscillate with

wavelength of order h are excited when underlntegration is used,

whereas they are damped when the integration is exact.

For this discussion we consider the unit square

In

discretized into NxN elements.

(6.22)

We consider the Laplace equation on

-Au = f in _

u - 0 on _f'_{x = O}

= g on _/{x - O}
an

(6.23)

For the first time we include two kinds of load: body forces and sur-

face loads, and we will observe separately the effects of each of them.

The eigenfunctions associated with these particular mixed boundary

conditions are constructed as in Section 2.4.

xiJ(x,y) = _i(x)$J(y) ; l<i<N (6.24)

o_-j<--N

where _J is defined in (4.15) (associated with Neumann boundary con-

ditions at both ends) and _i is similarly defined (see Appendix A).

These functions are defined through sine and cosine functions and there-

fore oscillate. Among them we will distinguish "smooth" modes with
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longer wavelengths (0(I)) from "irregular" modes with shorter wave-

lengths (0(h)). Smooth (respectively irregular) modes correspond to

smaller (respectively larger) values of i or J . Examples of each

extreme are shown in Fig. i0 for N-10.

The resolution of the fully integrated problem leads to the

search for coefficients uij such that

h

u = Z uij X ij
l<i<N

0<3<_N

--{Xij} is an eigenbasls for (',')
i

ulj= Aij[(f.×iJ)0 + (z, XlJ)0,_

The basis

where

(6.25)

and therefore we have

(6.26)

with

i

Aij = 8 i + Bj (6.27)

6 1 - cos(--_ - _-_)
t t

81 h2 2 + cos(_ -_)

6 1 - cos( N )

8j _ 2 + cos( N )
= -

(6.28)

The values Aij have been calculated exactly with these formulae

and their values are reported in Table 4.a for N-10. The 20 highest

values are in the shaded zone. We clearly can observe that

i) these values range from the highest value to 1% of this value,

ii) these values are associated with smooth modes (tensor products

of smooth modes).
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!
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_1 "Smooth"
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Figure i0. Examples of "Smooth" or "Irregular" Eigenfunctions.
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J
0
1
2
3
4
5
6
7
8
9

10

J
0
1
2
3
4
5
6
7
8
9

10

J
0
1
2
3
4
5
6
7
8
9

10

Table 4: Arrcys of EiBen Values Aij, _ij and AIj

Table 4a. Arra:- Aij

i 1 2 3 4 5 6 7 8 9 10

o.,5, 42: .54 0. 0
8;05 3.07 1.34 0.7010.41 0.26 0.17 0.12 0.10 0.08
2_31"-1.58"0.951"0";5710.36 0.24 0.17 0.12 0.09 0.08
1.02 ().85 0.62_0.30 0.21 0.15 0.11 0.09 0.08
0._55 0.49 "0-4110.32 0.24 0.18" 0.13 0.10 0.08 0.07

0.33 0,31 0.27 0.23 0.19 0,15 0,12 0.09 0,08 0.07
0.21 0.21 0.19 0.17 0.14 0.12 0.10 0.08 0.07 0.06
0.15 0.14 0.14 0.12 0.11 0.10 0.08 0.07 0.06 0.05
0.11 0.11 0.10 0.10 0.09 0.08 0.07 0.06 0.05 0.05
0.09 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.05 0.04
0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.04 0.04

Table 4b. Array _iJ

I I 2 3 4 5 6 7 8 9 10

!0 99 3"02"1"27"'0"6210"33 0.18 0.09 0.04 0.01 0.000.18 0.09 0.04 0.01 0.00

| 2.24 1.53 0.90 0.52|0.30 0.17 0.09 0.04 0.01 0.00
I 0.94 0.79 0.58 "0.___0.25 0.15 0.09 0.04 0.01 0.00
| 0.'47 0.43 0.3610.28 0.20 0.13 0.08 0.04 0.01 0.00

0.25 0.24 0.21 0.18 0.14 0.11 0.07 0.04 0.01 0.00
0.13 0.13 0.12 0.11 0.10 0.08 0.05 0.03 0.01 0.00
0.06 0.06 0.06 0.06 0.05 0.05 0.04 0.03 0.01 0.00

0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.00

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4c. Array Aij

i 1 2 3 4 5 6 7 8 9 I0

40.45 4.4"2_1.54 0.43 0.27 0.18 0.13 0.10 0.08

0_75

8.b8 3.11 1.36 0.71 0.42 0.26 0.18 0.13 0.10 0.09
2.32 1.62 0.99 0.61 0.39 0.26 0.18 0.13 0.I0 0.09
1.o20.87  0340240180130100.09
0.55 0.51_0.44 0.37 0.2 o 0.23 0.17 0.14 0.11 0.10
0.33 0.32 0.30 0.27 0.24 0.20 0.17 0.14 0.12 0.11
0.22 0.21 0.21 0.20 0.19 0.18 0.17 0.16 0.14 0.14
0.15 0.15 0.15 0.15 0.15 0.16 0.17 0.17 0.18 0.19
0.II 0.II 0.II 0.12 0.13 0.14 0.16 0.20 0.26 0.33

0.09 0.09 0.09 0.I0 0.II 0.13 0.16 0.23 0.42['_'_
0.08 0.08 0.09 0.09 0.I0 0.12 0.16 o.25_-_-4:57l
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On the other hand, the elgenvalues of Irregular modes are smaller and

because of this, these modes will be damped; only smooth modes will

contribute in (6.25).

When the underintegration is used, and when g is zero, the solu-

~h
tion u is

~h ~ xiJ (6.29)
u = Z uij

l<i<N

o<3<_N

with

where

_lj = _ij (f' ×iJ)o (6.30)

!

~ ei sl (6.31)
Aij =

%Bi+

and

I z

iw w

3(1 + cos(--_- - _-_))

2(2+ cos(_- - _'_'))

//.
3(1 + cos(N ))

J/
2(2 + cos( N ) )

(6.32)

Again, the values of Aij have been calculated exactly and they

are reported in Table 4b. The 20 highest values are in the shaded

zone. The comparison between Tables 7a and b shows that these 20 values

are approximately the same and they are associated with the same smooth

modes. In this case, irregular modes will still be damped , and one

can predict that no oscillation will occur.

When a load is only applied on the boundary (f = 0, g _ O) ,
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_iJ is now

where

_iJ = A--lj(g' xiJ)0,_ (6.33)

-- , 1 , (6.34)

Aij ffiajBi + aiBj

Again the values of Aij are reported in Table 4.c and the 20 highest

values are in the shaded zone. Among these 20 values, three correspond

to very irregular modes. In particular, the third value is associated

with ×i0,I0 . Therefore, we can predict a strong contribution of

~h
irregular modes within the solution u , which will show oscillations.

Finally, one could wonder if the calculation of the boundary

be calculated such that (g, xiJ)0,_ is damped forintegral largecan

i and J . Unfortunately, no precise method has been obtained. In par-

ticular, if the load g is a concentrated load at (x0, y0 ) , then

(g, ×iJ)0,_a = ×iJ(x 0, y0 ) (6.35)

and this value is not necessarily zero. A procedure, consisting in

xiJ)0,5R to zero in (6.35), can be obtained in the caseforcing (g,

in which the load is concentrated. This procedure is discussed in a

more general context in the nextsubsectlon.

2.6.4. A-priori Ortho_onalization of the Data. Our purpose in

this subsection is to illustrate how simple orthogonalizatlon consider-

ation can drastically prevent the excitation of spurious modes. In

particular, one interprets the existence of artificial antl-hourglass
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forces that can be applied to damp spurious oscillations.

In order to solve the underintegrated system

A U ffiF

we must have the orthogonallty condition

(6.36)

£ (ker _)T (6.37)

From a practical point of view, the applied load must be orthogonal to

the spurious mode (compare with 6.35). If this is not the case, con-

centrated spurious forces may be induced at the nodes that have been

fixed to solve the system mOdUlO spurious modes.

This is clearly demonstrated in the following example where

is a square partitioned into 4 or 9 4-node elements. For the Laplace

equation, we consider two loads concentrated in two opposite points

and satisfying the equilibrium condition as shown in Fig. ii. When

the number of elements is even (Fig. ll.a), the system of forces are

orthogonal to the hourglass mode H(±l-pattern indicated at the nodes)

and, therefore, the reactions at the fixed points are zero as desired.

Conversely, when the number of elements is odd (Fig. 11.b), the system

of forces is not orthogonal to H and two reactions R 1 and R 2

appear at the fixed points such that the system FA, FB, R1 and R2 is

orthogonal to both translation and hourglass mode. Such considerations

can explain the peculiar rates of convergence obtained on the unit

square dlscretized with NxN elements with the data

-6x(y2-1) + 4 x3(1-3y 2) if x _

f = (6.38)

_(y2-I)2 + + 24x - if x >_(-12x 2 7) (I-3y 2 )
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Figure ii: Spurious Reactions: a) Even Mesh and

b) Odd Mesh
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Figure 12.a shows the rates of convergence of _h towards u h in the

H I ~h
L2/'_- and norms, where u is obtained from the underintegrated

h
problem and the projection, and u is the solution of the fully in-

tegrated problem. We can clearly see the good (more than optimal)

behavior of the rates when the mesh is even; in this case, the discon-

tinuity line (x = _) corresponds to a mesh llne. However, the quality

of the solution deteriorates when the mesh is odd or when the discon-

tinuity llne is across the mesh and coincides with the integration

points. Note that when fl is averaged on x = _ :

f(_, y) ffi _(f(_+, g) + f(_-, y)) (6.39)

then all the points on both plots lay on one straight line. Also

note that the knowledge of the exact solution

i x 3 (y2 _ 1)2 if x _

u = (6.40)

T_.(-12x 2 + - - 1) x7)(y 224x if )

The interpretation of (6.37) has been possible when Neumann

boundary conditions are applied. When Dirichlet conditions are ap-

plied, any right-hand side vector can produce a solution, but essen-

tially the same type of behavior is observed (Figure 12.b). These

results, the interpretations of (6.35) and (6.37) suggest that for any

problem, one must pay attention to the data and make sure that it is

orthogonal to the spurious modes. In particular, the procedure con-

sisting in splitting a concentrated load between neighboring elements

seems to give good results and will be discussed for elasticity prob-

lems in the next section.
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2.7 The Practice of Underinte@ration in Linear Elasticity

We devote this section to the discussion of the effects of under-

integration in linear elasticity. We first exhibit the kernel of the

underintegrated operator and obtain a post-processor formula similar

to (3.30) to a-posteriori control the spurious modes. This global

control can only be used in a very limited number of problems, but it

suggests a local control that gives satisfactory results for all the

examples considered. We discuss this control, its easy implementation,

and several numerical results.

This study is entirely qualitative -- the basis functions obtained

in Section 2.4 cannot be used to obtain eigen-functions for the elas-

ticity operator. Both 4- and 9-node elements are discussed with an

emphasis on the 9-node element in the numerical studies.

2.7.1. The kernel of the discrete underinte_rated linear elasti-

city operator. We consider the linear elasticity operator defined by

where

A - _T C B (7.1)

T

o
~ _

0 _

_y _x

(7.2)

and C is a 3x3 symmetric matrix.

particularize C :

In the plane strain case we may

C m

k+2u
_+2_

0 0

0

U

(7.3)
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In order to exhibit the spurious modes we consider the operator A

associated with Neumann boundary conditions. In that case, the kernel

of A consists of the usual 2-dlmensional rigid body modes denoted by

t , t and r
~x ~y ~

RBM- span {t.x = (I); ty -(0); r_~ (-:)]
(7.4)

We consider the problem

P : Find u = (ul) G _HI(_)_2/RBM

~ u 2

such that

where

I u T 8 T C 8 v dxdy = [ fT . v dxdy (7.5)

f2 )T is a force satisfying the equilibrium conditionsf (fl'
~

f 6 RBM T (7.6)

or equivalently

I_ fl dxdy = I_ f2 dxdy ffi0 1

I (fl y - f2 x) dxdy = 0

(7.7)

The existence and uniqueness of a solution for P are well known. The

construction of finite element approximations of (7.5) involves the cal-

culation of the (2Nx2N) stiffness matrix K
~e

, which is given by the formgla
e

for a typical element

K = [ NT 8T C 8 N dxdy

_e j_ .....

(7.8)

where N is a vector representing the bilinear (N-4) or blquadratlc

1 < • < E . In computa-
(N-9) shape functions in each element _e ' -- --

tional applications K e is evaluated using an integration rule:
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L

K = Z
~e

W B_T C B °L

where, similar to (2.36),

T

-h o b2

(7.9)

(7.10)

and w is the weight at the integration point

siderations allow us to predict the rank of K
=e

. Simple rank con-

. Indeed, since

and

rk(A • B) <_max(rk A, rk B)

Jrk(A + B) < rk A + rk B

(7.11)

we have

rkK < 3L
re

(7.12)

When the full integration is used, (7.12) provides no information,

but we know that K full has the correct kernel containing only rigid
~e

body modes. However, when underintegration (L-l) is used on 4-node

elements, we have

rk K < 3 (7.13)

Therefore, the 8x8 matrix K possesses at least two spurious modes.
e

In fact, only two are present. Similarly, when underintegration

(L=4) is used and 8- or 9-node elements, we have

rk K < 12 (7.14)
re

This inequality predicts one spurious mode for the 16x16 matrix associ-
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ated with 8-node elements, but when the procedure is repeated for two

neighboring 8-node elements, the spurious modes can no longer exist in

the global matrix [53]. We can also interpret this elimination of the

spurious mode by noticing that neighboring element cannot share the

mode [14]. Also note that, in spite of failing an element stability

test [24], there are no extraneous zero energy modes in the kernel of

the underintegrated stiffness matrix and this element is stable.

As far as 9-node elements are concerned, the inequality (7.14)

indicates that the 18x18 stiffness matrix has at least three spurious

modes. In fact, there are exactly three such modes and they can be

shared by adjacent elements. Next the modes will be explicltyly de-

scribed.

2.7.1.a. The Spurious Modes for 4-node Elements. Let _x and

H be the two hourglass vectors defined as
~y

H -(h) H -(0) (7.15)~x ~y

where h is the hourglass nodal dlsplacement defined in (2.14). Then

when L-1 , we obtain from (2.18) and (2.20)

  "X bT01O
u o

and similarly

B I .H =0
~y

* In this section, nodal values and associated functions will be denoted

by the same letter, the underlining "." dlfferentlatln& them. The
nodal values are expressed component by component.
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Therefore,

K (I)- H - K (I)- H = 0 (7.16)
~e ~x ~e ~y

These element displacements can be put together to obtain two

global spurious modes, also denoted by H and H and we have :
-x ~y

Ker Kunder= {span _x' _y' r,~ _x' H~y} (7.17)

This defines entirely the kernel of the underlntegrated matrix and the

spurious modes for 4-node elements.

Remark: In problems where symmetry is used for simplifications,

the kernel of K under must respect the s)nmnetry. If one axis of sym-

metry (say, the x-axis) exists, then

Ker K under = span {t , H }
~ ~x ~x

If the problem has two axes of symmetry (x- and y-axls)

Ker Kunder - {0}

The spurious modes are eliminated by the symmetry conditions.

2.7.1.b. The spurious modes for 9-node elements. Let H~x and

H be the two vectors defined as
~y

(7.18)

where h is the spurious mode of 9-node elements defined in (2.37).

Using (2.36), (2.39) and (7.9), we easily get

K(4_H - K(4_H = 0
~e ~x ~e ~y ~

(7.19)

Therefore, H and H are two out of the three spurious modes of
~x ~Y
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K(4). We remark that the pattern (2.37) defining them does not depend
~e

on the geometry of the mesh. As far as the third spurious mod_ denoted

by

w1

w- (w2)
(7.20)

is concerned, one can show that the equations defining it are

b aT • Wl = b aT = b aT • w2 + b aT • Wl = 0 ; a-1,4 (7 21)_i .2 " .i .2

or equivalently :

yTAaw_ = 0

xTAaw 2. _ . = 0 a = 1,4

xTA%I TAaw- " - = _ 2

(7.22)

Note that for this system of 12 equations, we have 18 unknowns. If

we add 5 orthogonality equations between W and ~tx' _ty' r,~ H~x and H~y.,

the system will define only one W (up to within a multiplicative fac-

• one cannot exhibit an explicittor) For a general geometry of Re ,

, is a quadrilateral (strait-sided),form for W • however, when Re

and when x and y are of the form

= (xI, x 2, x3, x 4, ½(x I + x2), ½(x 2 + x3),

½(x3 + x4), ½(x4 + Xl), %(x I + x 2 + x 3 + x4)) (7.23)

we can prove that one candidate for W can be written as

(7.24)
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wh ere

I 4 2 0 2 -i 0 0 -I 0 \T ffi -2 -4 -2 0 1 I 0 0 0_ (7.25)
0 2 4 2 0 -I -I 0 0

-2 0 -2 -4 0 0 1 i 0

and _' ' Z' are the vectors constructed with the first four components

of x and An example of W for a geometry satisfying (7.23) is

shown in Figure 13 and can be constructed as follows:

i) the displacement of a mld-slde node is normal to the side,

alternatively inwardly and outwardly oriented, with magnitude

proportional to the length of the side.

ii) the displacement of a corner is obtained by multiplication

by -2 of the sum of the two displacements of the closest

mid-side nodes.

iii) the displacement of the centroid is zero.

On a square, the pattern of W is well-known:

W m

-2, , 2, -2, 0, -I, 0, I, 0 /2, 2, -2, -2, -i, 0, I, 0, 0

(7.26)

Contrary to 8-node elements, and because of the presence of Hx

and H , this mode can "propagate" from one element to another. For
Y

example, on a square mesh, if the nodal displacement vector is W

given by (7.26) on an element _0 ' then the displacement vectors W~

+ 3H + t and W - 3Hy - t on the elements to the right of n 0~X ~X ~ ~Y

and above _0 allow us to construct a continuous global displacement

also denoted W , on the mesh as shown in Figure 14.

We finally have
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\

\

Figure 13. Spurious Mode W for a General Quadrilateral Element.
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Figure 14. The Spurious Node W : (a) Construction,

(b) The Mode on a 16 Element Mesh.
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Zer --z"nder. span (t,._ _y, r,. H.x' _y' "]. (7.27)

Remark: Similar to what we have with 4-node elements, the exis-

tence of one axis of symmetry (say, the x-axis) reduces the kernel of

the underintegrated stiffness matrix:

Ker Kunder - span {t. H1, H 2 + H3}

H I - 3/2(H- t x) 1

JH2 = -3/2(Hy - ty)

n3 -w+2(t x- ty)

where

(7.28)

(7.29)

have been chosen such that the displacements of these modes are zero at

the intersection of both axes for a square mesh. Contrary to the 4-node

case, we still have a spurious mode when two axes of symmetry exist:

Ker Kunder = span {_1 + _2 + _3 ) (7.30)

This mode is shown in Figure 15.

It is also important to point out that whereas the pattern of

the spurious modes H and H are independent of both the geometry
~x ~y

and the element, the mode W depends upon both of them. Moreover, we

can see by construction on a square mesh that the amplltude varies

strongly when we consider successive elements. In fact, the pattern we

may observe is a succession of pattern H and H vlth increasing
~x ~y

amplitude.

2.7.2. Global A-Posterlorl Control in Linear Elasticity. In this

subsection we wish to generalize (3.30) with regard to the discrete

operators, using various kernels discussed in the previous subsection.
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Figure 15.The Spurlous Mode _1 + _2 + _3 "
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We consider the general case where

Ker Kunder = RBM _) span{H i, i = 1,I) (7.31)

where I may have the values 1, 2 or 3 . We recall that for I = 1 ,

we obtained a control formula similar to

.h --h .I)

u = u - a(H1 ' H1 ) H1
(7.32)

where the bilinear form a(*,.) was obtained in the variational formu-

lation of the initial problem. This projection satisfies:

a(Hh,- HI ) = 0 (7.33)

~h
or, in other words, u is orthogonal to the spurious mode. We gener-

allze this property to the elasticity problem by supposing the projection

to be orthogonal to all the spurious modes. Therefore the control will

consist of looking for I constants ki (i - l,I) such that

I.h --h

u I u -

" " I=1, I

a(_ h, H.) = 0

_i Hi

for i=l, I

(7.34)

This leads to the system of I equations with I unknowns :

Find _i ' i = 1,I such that

Z kj a(H i, Hj) = a(u_, Hi) , i-l,I
J-l,I ~

(7.35)

The computations involved in the control are computations of products

-.h
of u and the spurious modes by themselves. The implementation of

these computations is discussed in the next section.
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2.7.2.a Implementation of the Spurious Modes Control. For the

computation of the coefficients in (7.35), we again use the decomposition

Kfull - Kunder + K *

where Kunder satisfies

(7.36)

Kunder • H i = 0 (7.37)

Then

a(u-h, H i ) " I _T .K. H i (7.39)
~ efl,E

The expressions used for

elements.

K p are next given for 4- or 9-node

2.7.2.b. Control for 4-node Elements. For the operator defined

in (7.1) and (7.2) with

I CII C12 C13 1

- C21 C22 C23 (7.40)

C31 C32 C33

we have the exact decomposition for any geometry of _ :
e

T T

KexaCt~e " Kunder- + (Sll _'[ _12 v.yT )
e21 7"TT _22 !'!

where

(7.41)

......E?_,, l Cll ....EXx+(C13"t'C31) £xy+C33 Eyy ; C13Exx+(C12"l'C33) gxv+C3 2£vv
C31Exx+(C21+C33 )exy+C23£yy;C33Exx+(C32+C23 )£xy+C22Eyy

(7.42)
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m

The vector y and the ¢'s are defined in Section 2 ((2.41) and

(2.50)). For practival use. the expressions (2.51) are used for _ .

For linear isotropic linear material, C is given by (7.3) and

_ Exy

+ IJe
YY Exy

+(I+2 _) /Cxx y

(7.43)

This expresslon of [_] can be compared to the general strain-stress

r elat ionship:

/ (X+2t_) cx +
[_]" HEy

_xy

(7.44)

An algorithm similar to the one presented in Section 2.5.1 can be con-

structed. It involves the computation of y , _ and a , then the

computation of a(Hi, Hi) and a(u-h~ . H i) , and finally the coeffi-

cients Ai are obtained by resolution of a NxN system 0 N measuring

the rank deficiency of Kunder (N=l or 2).

2.7.2.c. Control for 9-node Elements. In this subsection, devoted

to 9-node elements, we first show why the results obtained by Belytschko

are not sufficient to obtain a generalization of the linear elasticity

problem, and then we propose an implementation of the control that

leads to a stable solution converging to the exact solution with the

optimal rate of convergence. However, for 9-node elements, we have

not yet been able to obtain a computatlonally easy way to exhibit

the third spurious mode, and the proposed results are only appllca-

ble to regular discretizations of a domain.
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As far as the stabilization method proposed in [4] is concerned,

algebra similar to that in Subsection 2.7.3.a leads to (7.41) where y

was defined in 2.41. But, whereas the stabilization matrix constructed

with the submatrlx y.yT eliminates H and H from the kernel of
~ ~ ~x ~y

the stiffness matrix, it does not take W into account. Indeed, we
~

have

all !'! T _21 !'! T _. w - 0
a12 !'ff all _'ff/ ~ ~

Therefore this procedure cannot be used to control W .

In order to obtain an accurate control, we have to consider a

generalization of (2.43). Now we have

an _i) " _j + 2

e21

for 7<i<9

l<__J<__3

where the vectors si are defined in Section 2.2.3. Finally, using

(2.43) and (2.52), we have

T

I(C11+C33 _9_9K_ 9)ffiK(e4)+ -_5 (C31+C23)8989 T

(C13+C32)_9ZgT7

(C22+C33)s989 T

_eCCll'STs_TT C13S-TS-7:l V _"_-"l_
+_ T +

C31878_7 C338.7_S7 _'C238888 T C22S8S8T-]/
(7.45)

Similarly, for the 4-node case, the algorithm for the computations
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of the coefficients in (7.35) has been obtained and implemented. Numer-

ical results agree with our presumptions concerning a "y.yT"-type of

control and incline in favor of the decomposition (7.45). On a square

domain discretized with NxN elements, we have calculated and compared

the solutions obtained with full (exact) and underintegration for vari-

ous boundary and symmetry conditions. Various examples considered are

described in Figure 16. The rates of convergence were calculated by

comparing the error norms (6=0: L2/RBM norm; 6=I: energy norm) ob-

tained with N=5,6 and 7. We consistently obtained the rate O(h 2"6)

T
using a ¥.¥ decomposition and O(h 3"6) with (7.45) for homogeneous

ma_crials under the action of gravity (f @ C=) ; the order 3-6 being

optimal, we may conclude that the method presented below is accurate.

It is also efficient: for one second taken for the fully integrated

stiffness matrix, only .61 are taken when the underintegration is used

and only .05 seconds are taken for the control Also note that the

Example 4 in Figure 30 is also optimal (u G H1/H 2) -

Unfortunately, this control is far from general. In particular,

it can only be used when the exact shape of the spurious modes is known,

which is the case only when Neumann (traction) boundary conditions are

applied on a domain discretized with regular square elements.

2.7.3. A Local Control of the Spurious Modes

2.7.3.a. Introduction. The major drawbacks of the global control

are overcome by considering the procedure consisting of eliminating,

element by element, the components of H , H and W and then of aver-
~x ~y

aging the nodal values obtained in neighboring elements. For any ele-

ment, we choose to do the following simplifications:
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Figure 16. Results Obtained with the Global Control.
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i) the nodal values of W are taken as if the element was

stralt-sided quadrilateral

It) C is dia&onal.

iii) Kstab is given by (7.41) or (7.45).

These simplifications lead to simple calculations detailed in Appendix

B for the 9-node element and that are easily implemented in the sub-

routine listed in Appendix C. Note that the expression obtained for

the control is uniquely geometric, does not depend upon the material

properties and can be used in any linear or nonlinear problem. It only

requires that the shape of the element not deviate too much from a

quadrilateral.

2.7.3.b. Numerical Results. The examples displayed in this sec-

tion illustrate the efficiency and the accuracy of the local control

previously described. However, we only consider linear elastic mater-

lal in plane strain, on domains discretlzed with biquadratlc (9-node)

elements. Three examples are described.

The first example is defined in Figure iJ.a. We consider a square

domain with one fixed side, under the action of pressure, gravity or a

prescribed compressive displacement. Under any of these loads, a sing-

ularity appears at the neighborhood of the origin. Figure 17. b shows

how the underintegrated solution behaves in the singularity region and

how the control affects the results. Whereas the underlntegrated solu-

tion shows oscillations, the displacements obtained after control are

smooth and similar to those obtained with the full integration of the

stiffness matrix. The shear along a line AA' across the singularity

region is also shown in Figure 18. Whereas undesirable oscillations
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are o oserved before control, the shear behaves properly after control.

In the second example, we consider a ring under the action of an

external pressure (Figure 19). Here again the oscillations generated

by the underintegratlon are damped when the control is applied. Only

very slight oscillations remain, not exceeding 5Z, and these can be

easily interpreted: in the control, the expression taken for the mode

was obtained for quadrilateral elements. For the mesh considered,

the elements are slightly bent and this difference explains these

slight oscillations. The same domain (quarter ring) has also been dis-

cretized using quadrilateral elements and the control of the underlnte-

grated solution has led to a displacement field without any oscillations

and similar to the underintegrated displacements. Calculations of the

stress along a radius show behavior identical to the previous example.

The third example involves a concentrated force and illustrates

our discussion concerning the excitation of spurious modes and the or-

thogonalization of the data. A point force is applied at a corner of

a fixed side square dlscretized with a mesh refining in the neighbor-

hood of the singularity. Strong oscillations appear in this region

when underintegration is used, whereas the full integration solution

is smooth (Figure 20). These oscillations show a pattern similar to

the one used to construct the mode W (Figure 14): amplification of

the mode 3H~x + -xt (respectively 3Hy~ + ty) along the x- (resp. y-)

direction. Therefore, according to the previous interpretations of

(6.35) and (6.37), a way to prevent oscillations is to consider a sys-

tem of loads similar to the load concentrated in a point A but ortho-
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(b)

Figure 19. Quarter Ring Under External Pressure

(a) Undeformed Configuration and Underintegrated

Solution, and

(b) Fully- and Controlled Underlntegrated Solution.
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gonal to 3H + t . This is obtained by splitting the force into 3

equal forces applied at A and its two closest nodes. Indeed, the dis-

placements obtained with this system of load only show slight oscilla-

tions. Finally, note that this control produces displacement fields

similar to the fields obtained using full integration.



PARTIII: APPLICATION TO NONLINEAR

INCOMPRESSIBLE ELASTICITY

3.1 Introduction

In this concluding part, we analyze instabilities observed in dis-

crete solutions of nonlinear problems in finite elasticity involving

incompressible materials. We compare the behavior of the biquadratic

(g-node) and isoparametric (B-node) elements associated with linear

(PI) discontinuous pressures. Then we focus on 9-node elements to

discuss the efficiency and accuracy of control of the underintegrated

solution introduced in Part II for linear operators.

Only Mooney-Rivlin materials are considered. They are charac-

terized by the strain energy function

o = C1(I 1 3) + C2(I 2 - 3) (3.1)

where II , i=1,3 are the principal invariants of the Cauchy-Green

deformation tensor

C = (I + vu)T(1 + Vu) (3.2)

where 1

They are:

is the unit tensor and Vu is the displacement gradient.

II " tr

I 2 - _(tr C2 _ (tr C)2)

13 = det

(3.3)

The condition of incompressibility can be expressed as

103



104

13 - 1 (3.4)

and is taken into account in a mixed formulation of the equilibrium

problem by introducing a Lagrange multiplier P . The energy function

o can be replaced by o Lag :

Lag
= Cl(I 1 - 3) + C2(I 2 3) + P('_ - 1) (3.5)o

.J

For this choice of energy function, P is the hydro-statlc pressure.

We consider the usual virtual work equilibrium equation:

6 ;Q00Lag- dv0 " SQ0 P0 _ " 6u dv 0

t • 6u ds = 0 (3.6)
" S_Q2 "

The solution of this highly nonlinear problem is accomplished in this

work using Newton's method. Details of the finite element method

applied to this particular class of problems are discussed at length

in the book of Oden [38]. A more recent account is given in Aly [I].

3.2 Behavior of 8- and 9-Node Elements (Full In_esratlon)

In this section, we briefly review some observations made by

Miller [37] that are now clearly understood with the results

obtained by Oden and Jacquotte [42, 43].

We consider a fixed side rectangular domain dlscaretlzed with

the refining mesh shown in Figure 21.a. We compress this domain

imposing a displacement on the top side. The displacement

increments are 5, 10, 15 and 17.5g of compression with respect to

the original shape.
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The solution of this problem is complicated by a stress singularity

that occurs in the neighborhood of the corner A . Both 8- end 9-node

displacement elements were tested associated with a linear discontin-

uous Legrange multiplier. The displacements show similar behaviors.

As far as pressure is concerned, oscillations similar to the pattern

of ker Bh in [44] are observed (Figure 21.b) when 8-node elements

are used, whereas the pressure distribution is smoother with 9-node

elements. Finally, note that the nodal averaging technique described

in Section 1.8 has been tested by Hiller [37] for a problem with simi-

lar singularity and his conclusions corroborate ours from Part I.

3.3 Control of the 9-Node Underlnte_rated Element

In this section, we analyze how the displacements and pressures

behave when underlntegratlon is used. We noticed in Section 2.7 how

the control obtained was only geometric. This is particularly useful

for rubber-llke materials and makes it very efficient when constitutive

relations are numerically expensive to obtain. Also note that the cal-

culation of the projected element solution (Appendix B) involves the

knowled e of the mode

geometry of the element.

drawbacks of the method:

which is computed using the cu_nt deformed

We may foresee what will oe one of the major

is only exactly known for quadrilateral

elements. When the element is too distorted, the approximation we do

assuming it to be quadrilateral is too poor and the control is not

accurate.

Finally, we point out that the control is applied at each load

increment. We present three examples.
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3.3.1 Stretch of a Rubber Material Domain. The first example in-

volves the stretch of a rubber square (Fig. 22). The domain is parti-

tioned in 49 elements (450 degrees of freedom). The materlal is a

Hooney Rivlln material with

C 1 = I00
(3.7)

C 2 - 20

and the incremental stretches are 25, 50, 75 and 1007. of its undeformed

configuration. Whereas the underlntegrated solution shows slight

oscillations of the displacement in the singularity region, the con-

trolled solution is _mooth and similar to a fully integrated solution.

As far as pressure is concerned, similar observations to the ones in

Section 2.7.3.b for stresses can be made. However, the convergence is

obtained slower: for the various displacement increment, 6, 4, 4 and

4 (respectively 6, 5, 5 and 4) Newton iterations have been needed to

obtain convergence with the full (resp. under) integration. Neverthe-

less, the gain in time is almost 40% (673 sec. versus 413 sec.).

3.3.2 Behavior in the Neighborhood of a Concentrated Force. This

second example illustrates the ability of the orthogonalizatlon of the

data to obtain an underlntegrated solution. We consider the same

Mooney Rivlln material (1.1, 1.7) and the problem defined in Figure

23.a. The application of the force at only one point leads to the be-

harlots:

i)

ii)

Slight oscillations are observed in the singularity region

when full integration is performed (Fig. 23.b)

Uncontrollable oscillations appear when underintegratlon is
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Figure 22.b. Controlled Solution.

Figure 22. Stretch (25, 507*) of a Rubber Material Domain.
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used: Figure 23.c shows the displacements after only 3 iterations

for the first load increment. Later the solution diverges.

As in the linear case discussed in Section 2.7.3.b, we split the

concentrated force into three equal forces at the closest nodes; we

observed that (Fig. 24)

ill) When underintegration is performed, without control, the

solution converges, but oscillations still develop (Fig.

24 .a).

iv) The control of this solution is smooth and similar to the

one obtained with full integration (Figs. 24.b and c).

For this example, one supplemental iteration was needed in the third

load increment and the gain in time also approaches 4OZ.

3.3.3 Compression of a Fixed Rubber Material Domain. This final

example reconsiders the problem used to compare the performances of

the 8- and 9-node elements (Section 3.2). We consider two dlscretiza-

tions of the domain with 25 and 49 elements, and displacement incre-

ments of 5, I0, 15 and 17.5% with respect to the original shape.

For the crude mesh, oscillations appear very soon when underintegration

is performed, but the control easily corrects the solution and a dis-

placement field close to the fully integrated field is obtained (Fig.

25.a). But when the mesh is refined, the oscillations become more

important and deform the element to a degree such that the control is

not able to restore the shape of the element corner (Fig. 26.b). Ne

interpret this lack of performance to the fact that the control has

been exactly obtained for quadrilateral elements . In this case, the

element sides curve and the element is too deformed. Also this lack
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113

/

J
!
/

(a)

(b)

, l

., l l _llJl
I ,1 I

(c)

/

7

Figure 26. Compression (10, 15%) of a Rubber Material Domain

(49 Element Mesh): a) Underlntegration, b) Con-

trolled Underintegration, and c) Full Integration.



114

of performance is observed when looking at the number of iterations

required for the convergence of the Newton algorithm: they are 5, 5,

5 and 5 (respectively 5, 5, 6, 7_ for the fully (resp. under-) integra-

tion in the 25 element mesh and 6, 6, and 6 (resp. 5, 6 and 13) in the

49 element mesh.



PART IV: CONCLUSIONS

In this work, we study instabilities appearing in the finite

element resolution of linear and nonlinear, compressible and

incompressible elasticity. The study is carried both mathematically

and numerically. Some of the principal conclusions are listed as

follows :

i) The use of underintegration in the stiffness matrix

calculations results in rank-deficlent stiffness matrix. These rank-

deficiencies correspond to additional modes supplied to the rigid

body modes that appropriately belong to the kernel of the operator.

2) There is a significant class of problems in which, with

appropriate filtering, it can be shown that an underintegrated solution

with hourglass control can yield very satisfactory answers, and

produce a finite element method which has the same rate of convergence

as the fully integrated method. The fact that this does indeed hold

has been rigorously proved in this dissertation for a class of scalar

elliptic boundary value problems, and numerically verified for a

class of linear and nonlinear elasticity problems.

The method developed in this work seems to give satisfactory

results in a broad class of problems. Several questions have,

however, arlsen:

• When an element is too distorted, the control cannot restore

a reasonable shape. The accuracy of the control relies on the

ll5
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approximation madeon the modeW, supposing that the element remains

quadrilateral. Does an exact computation of W (7.21) for very

distorted elements give a better answer?

• The lack of stiffness seems to slow the speed of convergence

of the Newton's scheme. Can the method be modified in order to

increase the speed of convergence?

• Finally, do the results generalize to three dimensional

ela st ic ity?

The answer to these questions may provide a tremendous gain in

computation time.



APPENDIX A

As far as mixed boundary conditions are concerned, we suppose

that a Dirichlet boundary condition is applied at 0 and a Neumann

boundary condition at I . For the interval E0,1_ , we consider the

NxN matrix

D(k) "

2k -I 0

The values for which det K(k) vanishes are:

ki " cos _+-_ , 1 < i <N

and the corresponding vectors (D(ki)vi _ 0) are :

v i = {sin i2-_N_ } 1 < J <N

h
VI, ½ with basis {¢J} is con-

Then, depending upon the sides

(D or N) are applied, tensor

The results of

The corresponding approximation space

structed as in [25]or in Section 2.4.

where the various boundary conditions

h h h

product of V1 , VI, 0 or VI, ½ are to be considered.

Theorem II hold for the Mixed Problem.

i17



APPENDIX B

According to the simplification introduced in Section 2.7.3.a

we have

KStab l_e /3(_7"6/T+68"_sT) + _9"_9T ; 0 /
= -- T ST)135 0 ; 3(67.67 + 68-6 + 469.69 T

Note that

87. hT = 88.h T = 0

89 • h T = 12

and that we can choose = (Wl, w2 )T

T T
69. w I = 89.w 2 - 0

such that

Then the control is

with

ki = a9. ul/12 t=1,2

s

T T T (88.ui)+(8 T T • T T(87-wi) (87.ul)+(88"wl) 7"w2) (87" u2)+(68 w2) (88"u2)
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APPENDIX C

C
C

C
C

C

C

C

SUBROUTINE PROJ(U,XY)

THIS SUBROUTINE PROJECTS THE ELEMENT SOLUTION

ORTHOGONALLYW.R.T. HX,HY AND W
INPUT :U SOLUTION

XY NODAL COORDINATES(CURRENT CONFIGURATION)
OUTPUT :U PROJECTED SOLUTION

DIMENSION U(2,9) ,XY(2,9) ,W(2,9) ,$7(9) ,$8(9) ,$9(9) ,N(9)

DIMENSION S7U(2), S8U(2) ,$9U(2), S7N(2) ,S8W(2)

INTEGER SIGN

DATA S7U, SSU, sgu, S7W, SSW/I0-0. /

DATA S7/-l., I., I.,-I., 0.,-2., 0., 2., 0./
DATA SS/-l.,-l., I., I., 2., 0.,-2., 0., 0./

DATA $9/ I., I., I., I.,-2.,-2.,-2.,-2., 4./
DATA H/ I., I., I., I.,-I.,-1.,-I.,-1., 0./
SlGN=-I

DO I K=I,2
KI=3-K

IF(K. EQ. 2) SlGN=I

W(K, l)=SIGN*(+3. *XY (KI, I )-XY (K1,2 )-XY(K1,3 )-XY (K1,4) )

W(K, 2) =SlGN*(+XY(KI ,I )-3. *XY (KI, 2) +XY(K1,3 )+XY (K1,4) )

W(K, 3) -SIGN*(-XY(K1,1 )-XY (K1,2)÷3 .*XY (K1,3 )-XY (K1,4) )

W(K,4) =SIGN*(+XY(KI, I )+XY(KI, 2)÷XY(K1,3)-3 .*XY (KI ,4) )

N(K, 5 )=SIGN*(XY (K I,3 )-X_ (K1,4 ))

W(K,6 )=SlGN*(XY (KI ,I)-XY (K1,4) )

W(K,7 )=SIGN*(XY (K1,1)-XY (KI ,2) )

W(K, 8) =SIGN*(XY(KI, 3)-XY (K1,2) )

W(K, 9)=0.

DO 2 K=1,9

DO 2 J=l,2

S7U(J) =S7U(J) +ST (K)*D(J, K)
S8U(J) =S8U(J) +$8 (K)*U(J, K)

S9U(J) =S9U( J)+S9 (K)*U(J, K)

S7W(J) =S7N(J) +S7 (K)*W (J,K)

S8W(J)=S8W(J) +S8 (K)*W( J,K)
S9U( 1)=s9u( i)I12.

sgu( 2)-sgu (2) /12.

WI= (S7W( I)*STU(I )+SSW(

• (S7N(1)*S7W(1)+S8W(

DO 3 K=I,9

DO 3 J=l,2

U(J,K)=U(J,K)-SJU(J)*(_(K)+I. 13.)-WI*W(J,Z)

RETURN

END

2)*S8U(2)+S7W(2)*S7U(2)+S8W(t)*S8U(1))/

2)*S8W(2)+S7W(2)*S7W(2)÷S8W(1)*S8W(1))

I19
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