NASA Cooperative Agreement NCC 2-303
INVESTIGATION OF ADVANCED FAULT
INSERTION AND SIMULATOR METHODS

FINAL TECHNICAL REPORT
covering the period
June 1984 - August 1986

```
(NASA-CR-195241) INVESTIGATION OF
N94-28511
ADVANCEC FAULT INSERTION AND
SIMULATOR METHODS Final Technical
Report, Jun. 1984 - Aug. 1986
Unclas
(Southern Colorado State Coll.)
6 8 \mathrm { p }

Principal Investigator: Dr. W.R. Dunn
Co-investigator: Dr. D. Cottrell
Research Assistants: Joel Flanders
Alan Javornik Michael Rusovick

Institution: University of Southern Colorado Electronics Engineering Department 2200 Bonforte Blvd. Pueblo, Colorado 81001

MAR 221994
TO CASE

\section*{TABLE OF CONTENTS}
Report Summary .....  1
Notation ..... 2
1.0 Introduction ..... 3
2.0 Pin-Level Fault Modelling in Failure Modes and Effects Analysis and Testing ..... 5
2.1 Pin Level Fault Model ..... 5
2.2 Gate-Level Fault Models ..... 5
2.3 Limitations of Gate-Level Fault Models ..... 9
3.0 Semiconductor Eailure Mechanisms and Modes ..... 9
3.1 Definitions ..... 9
3.2 Survey of Available Failure Mode and Failure Mechanism Data Bases ..... 10
3.3 Analysis of Failure Mechanism Data ..... 10
3.4 Analysis of Failure Mode Data ..... 13
4.0 Developing Pin-Level Device Models ..... 18
4.1 Overview ..... 18
4.2 Model Elements Based on Failure Mechanisms ..... 18
4.2.1 Interconnects ..... 18
4.2.2 Die Defects/Package Failures ..... 18
4.3 Model Elements Based on Failure Mode Data ..... 19
4.3.1 Open Circuits ..... 19
4.3.2 Short Circuits ..... 19
4.3.3 Excess Leakage and Out-of-Tolerance Parameters ..... 19
4.3.4 Functional Anomalies ..... 19
4.4 Semiconductor Device Stress Testing ..... 19
4.4.1 Rationale Behind Semiconductor Stress Testing ..... 19
4.4.2 Experimental Setup ..... 20
4.4.3 Stress Testing Results ..... 20
4.5 Functional Fault Modelling ..... 28
4.6 Summary ..... 28
5.0 Conclusions and Indicated Research Directions ..... 28
References ..... 38
Acknowledgements ..... 39

NASA Cooperative Agreement NCC 2-303
INVESTIGATION OF ADVANCED FAULT INSERTION AND SIMULATOR METHODS

FINAL TECHNICAL REPORT

\section*{Report Summary}

The cooperative agreement partly supported research leading to the open-literature publication cited below.

Additional efforts under the agreement included research into fault modelling of semiconductor devices. Results of this research are presented in this report which is summarized in the following paragraphs.

As a result of the cited research, it appears that semiconductor failure mechanism data is abundant but of little use in developing pin-level device models. Failure mode data on the other hand does exist but is too sparse to be of any (statistical) use in developing fault models. What is significant in the failure mode data is that, unlike classical logic, MSI and LSI devices do exhibit more than "stuck-at" and open/short failure modes. Specifically they are dominated by parametric failures and functional anomalies that can include intermittent faults and multiple-pin failures.

The report discusses methods of developing composite pinlevel models based on extrapolation of semiconductor device failure mechanisms, failure modes, results of (temperature) stress testing and functional modelling. Limitations of this model particularly with regard to determination of fault detection coverage and latency time measurement are discussed.

Indicated research directions are presented.

\section*{Reference}

Dunn, W.R., "Software Reliability: Measures and Effects in Elight Critical Digital Avionics Systems", 7th Digital Avionics Systems Conference, Fort Worth, Texas, October 1316, 1986.

Notation
```

DTL = Diode-Transistor Logic
EMEA = Failure Modes \& Effects Analysis
FMET = Failure Modes \& Effects Tests
LSTTL = Low Power Schottky Transistor-Transistor Logic
RAC = Reliability Analysis Center
SSI = Small Scale Integration
VLSI = Very Large Scale Integration

```

\subsection*{1.0 Introduction}

In the design and development of a flight-critical digital system, it is necessary to prove that the system can tolerate single- and multiple-component faults. Two widelyused methods supporting such proof are Failure Modes and Effects Analysis (FMEA) and Failure Modes and Effects Testing (FMET). FMEA is usually performed very early in the design process either by hand or, in more complex systems, through fault simulation. FMET is performed toward the end of development and prior to initial flight test. In Failure Modes and Effects Testing, actual or simulated faults are inserted in the actual digital system (generally configured in ground-based, "iron bird" environment) in order to validate system fault tolerance. Both FMEA and FMET activities require knowledge of probable component failure modes.

This report addresses the subject of digital integrated circuit semiconductor failure modes. The study leading to the report was motivated by the suspicion that the permanent, "stuck- at" type failure modes characteristic of relay, transistor and small-scale integrated circuit logic might not fully embrace possible failure modes in many of the Medium Scale Integration (MSI) and Very Large Scale Integration (VLSI) components employed in modern, flight-critical digital system designs. The study was therefore undertaken with the (admittedly ambitious) objective of developing an approach for deriving practical fault models for MSI digital integrated circuits. The work was subject to two important, practical constraints:
1) Owing to limited resources, detailed study would be confined to a limited number of Low Power Schottky Transistor-Transistor Logic (LSTTL) devices. (These devices are extensively employed in modern flight systems.)
2) The study would employ only that semiconductor reliability data available to the general public. (Superior data lies within the semiconductor houses but is, in general, not available to the avionics designer.)

As the informed reader might suspect, it was quickly determined that the latter reliability data was of very limited usefulness in terms of fault model development.*
*At the time, workers at Hughes aircraft independently reached the same conclusion. See Reference 1.

For this reason, the originally-planned research activities were supplemented with laboratory stress testing of select LSTTL devices.

The remainder of this report is organized as discussed in the following.

Section 2.0 explains in detail what is meant by "fault model" and discusses past approaches to realizing fault models. Limitations of these models are discussed.

Section 3.0 presents definitions of semiconductor failure mechanisms and failure modes. Results of a USC survey and analysis of available failure mechanism and mode data bases are presented.

Section 4.0 describes several approaches to fault model development including use of semiconductor failure mode data and extrapolation of failure mechanism data. The section also contains a description of the test methodology and results of USC semiconductor stress testing.

Section 5.0 presents conclusions and indicated research directions.
2.0 Pin-Level Fault Modelling in Failure Modes and Effects Analysis and Testing

\subsection*{2.1 Pin Level Fault Model}

Figure 2-1 shows the package outline of a general LSTTL device. In every device, two pins are dedicated to power supply source and return. The remaining pins are inputs and outputs. Under unfaulted conditions the device will output a predictable set of logic states (and/or state transitions) given a set of input states (and/or transitions) and (for sequential logic devices) a set of internal states. If there are failures internal to the device, output may be incorrect. To effect a pin-level fault model for the device, electrical characteristics at one or more pins are altered in such a manner that the resulting "new" device behaves exactly the same as the corresponding device with the internal failure.

In a FMEA these characteristics are introduced analytically. In a FMET, special circuitry is interposed between the good device and the system circuitry as shown in Figure 2-2 and altered characteristics are electrically introduced at the device pins. (Reference 2 \& 3.)

This report focuses on approaches (and limitations) for determining these pin-level characteristics for failures that can occur within the device. (The term "fault modelling" is used in this report to describe this process.)

\subsection*{2.2 Gate-Level Fault Models}

Prior to the introduction of integrated circuit logic (almost 30 years ago) it was relatively simple to correllate physical failures with the altered behavior of logic components. For example, the relay of Figure 2-3a could be associated with four fault characteristics: contact stuckopen, contact stuck-closed, coil short-circuited and coil open-circuited. Discrete component logic could be handled in a similar manner. For example, in the discrete component, diode-transistor-logic (DTL) gate of Figure \(2-3 \mathrm{~b}\), one could directly associate known physical failures (open and shorted resistors, open diodes, collector-base opens, open solder joints, etc.) with behavior at the input/output terminals of the circuit.


FIGURE 2-1 PACKAGE OUTLINE - LSTTL DEVICE


FIGURE 2-2 FAULT INSERTION CIRCUITRY

\section*{}
(a) Relay

(b) Discrete Diode-Transistor Logic

FIGURE 2-3 EARLY LOGIC DEVICES

The first digital integrated circuits consisted of single gates (such as the DTL gate of Figure 2-3b) implemented on a single chip. For reasons to be explained shortly (Section 3.3), on-chip physical failure mechanisms could not be translated to behavior at the output terminals. Instead, physical failures were considered in terms of altered behavior at the gate inputs and outputs which could be stuck-at-1, stuck-at-0, open-circuited or shortcircuited. Realistic FMEAs and FMETs could be performed for early systems employing these small scale, integrated gates by successively applying each of these failure characteristics to each pin in the logic circuit.

\subsection*{2.3 Limitations of Gate-Level Fault Models}

This report is concerned with fault modelling of commercial, non-custom MSI, LSI and VLSI digital semiconductor devices. (As noted, USC detailed studies were confined to LSTTL SSI and MSI devices. Findings with these specific devices appear however to apply to higher levels of integration and to other semiconductor technologies.) In attempting to apply classical, gate-level fault modelling to this class of devices, one encounters several practical roadblocks:
1) With a few exceptions, semiconductor manufacturers do not provide gate-level circuit schematics of their integrated devices. Consequently, one cannot perform a gatelevel FMEA.
2) With early gate-level circuitry, it was possible to perform fault insertions (as a part of FMET) by opening and/or shorting gate inputs and outputs. In MSI and LSI, gates are integrated on the chip with the result that internal gate imputs and outputs cannot be physically accessed.
3) As will be seen in the next section, failure mechanisms within the device can lead to failure modes other than open-circuit, short-circuit and stuck-at behavior at the device pins.

\subsection*{3.0 Semiconductor Failure Mechanisms and Modes}

\subsection*{3.1 Definitions}

In what follows, the term failure mechanism refers to a physical anomaly within the device. Eailure mode refers to altered electrical characteristics and/or behavior as a result of occurrence of the failure mechanism.

For example, a broken wire bond is a failure mechanism. It produces an open circuit failure mode at the pin to which it is connected.
3.2 Survey of Available Failure Mode and Failure Mechanism Data Bases

USC conducted a survey among some ten semiconductor manufacturers and three avionics firms in an effort to obtain failure mechanism and failure mode data to support pin-level fault modelling of select LSTTL devices. In the course of this survey, it was determined that these data are also collected by the DOD-sponsored Reliability Analysis Center (RAC) located at Griffiss AFB in New York.

Between the semiconductor manufacturers and the RAC, there is a copious amount of available data on digital semiconductor failure mechanisms. Failure mode data on the other hand is another matter. It is available only (with a few exceptions) from RAC which periodically publishes failure mechanism and failure mode data by semiconductor technology.

Tables 3-1 and 3-2 respectively summarize LSTTL failure mechanism and failure mode data taken from two RAC reports as referenced. Note that, in terms of the objectives of the study (to obtain pin level models of digital devices), these data represent the best* information gathered in the study.

\subsection*{3.3 Analysis of Failure Mechanism Data}

With the exception of wirebond failures, it is virtually impossible to directly correlate semiconductor failure mechanisms with behavior at the device terminals. (Again, it is assumed that details of the chip circuitry and layout are not known.) The reason for this is that die defects (or package defects that lead to die contamination) can be very local (e.g. bad metal contact on a single emitter) or regional (e.g. an oxide contamination effecting several transistors). With each defect, the digital circuit structure can be altered. Given the range of possible combinations of defects one is inclined to speculate that a device could exhibit every possible combination of outputs for any given input (and input history in the case of a sequential circuit).
*We had originally hoped to find failure mode data for each chip type. Unfortunately, (RAC) published data on each device type is too fragmentary to attach any statistical significance to the distribution of failure modes of any given device.

\title{
TABLE 3-1 - LSTTL Failure Mechanisms (SSI and MSI Devices)
}
1984 RAC Report (Ref. 4)
Failure Mechanism ..... No. of
(By Component) Devices
Percentage
Die:6825.1
Bulk Aspects ..... 15
Metallization ..... 38
Oxide/Dielectric ..... 10
Surface ..... 5
Interconnects:249
WireWirebond15
Package: ..... 179
66.1Seal116
Lid ..... 54
Die Attach Bond ..... 9
```

TABLE 3-2 - LSTTL Device Failure Modes (Ref. 4)
(SSI and MSI Devices)

```

\section*{Eailure Mode}
Percent Adjusted**
of Total Ad
\begin{tabular}{|c|c|c|}
\hline OPEN & 3.4 & 3.4 \\
\hline SHORT & 4.1 & 4.1 \\
\hline DEGRADED & 22.4 & 22.4 \\
\hline Unknown* & 3.4 & 0.0 \\
\hline Leakage & 6.1 & 7.2 \\
\hline Parameter Out-of-Tolerance & 12.9 & 15.2 \\
\hline FUNCTIONAL ANOMALY & 70.1 & 70.1 \\
\hline Unknown & 57.2 & 0.0 \\
\hline Non-Functional & 2.7 & 14.8 \\
\hline Improper Output & 9.5 & 51.6 \\
\hline Stuck-at-1 & 0.0 & 0.0 \\
\hline Stuck-at-0 & 0.7 & 3.7 \\
\hline
\end{tabular}

\footnotetext{
夫"Unknown" means failure mode was in major category (DEGRADED or FUNCTIONAL ANOMALY) but sub-category (leakage, improper output, etc.) is not known.
**Unknowns allocated to known categories in proportion to known percentages of total.
}

\subsection*{3.4 Analysis of Failure Mode Data}

Unlike failure mechanism data, failure mode data
(Table 3-2) describe faulted behavior at the device pins. What stands out most in the table is that the majority of failure modes in LSTTL are not the classical open, short and stuck- at modes but functional, parametric and leakage failures. (Table 3-3, prepared from the same RAC report, shows expectedly, that failure modes for the obsolescent DTL technology fall principally in the former category.)

Excess leakage and parameter out-of-tolerance failure modes could have three effects in an operational digital flight system:
1) If sufficiently severe, they could produce a hard or permanent device failure.
2) If borderline, they could produce a soft or intermittent device failure. (In working with LSTTL devices, one occasionally encounters what's called a "flaky chip": a device that works correctly most of the time but not always.)
3) If below fault-activating thresholds, the device could be expected to function properly but with reduced life.

It is observed that in both DTL and LSTTL implementations, leakage and parametic failures can constitute a significant portion of latent faults. Unlike the "stuck-bit" latent fault, leakage and parametric failure modes could conceivably be missed in preflight built-in-test yet become activated in the harsher environment of flight.

LSTTL failure mode data of Table 3-4 for both life test and field application would seem to indicate the presence of such latent faults in fielded equipment. It is important to qualify this latter statement as well as all of the RAC data related to LSTTL failure modes. Specifically the failure mode distributions of Table 3-2 correspond to a limited number of devices that does not span the full range of device types. Table 3-5 shows significantly different failure mode distributions for two separate LSTTL samples, one taken in 1984 (the data of Table 3-2) and another taken in 1980 (Reference 5). (As suggested by Table 3-6, this
difference in distributions does not appear to apply to DTL.)

\subsection*{3.4 Analysis of Failure Mode Data}

Unlike failure mechanism data, failure mode data (Table 3-2) describe faulted behavior at the device pins. What stands out most in the table is that the majority of failure modes in LSTTL are not the classical open, short and stuck- at modes but functional, parametric and leakage failures. (Table 3-3, prepared from the same RAC report, shows expectedly, that failure modes for the obsolescent DTL technology fall principally in the former category.)

Excess leakage and parameter out-of-tolerance failure modes could have three effects in an operational digital flight system:
1) If sufficiently severe, they could produce a hard or permanent device failure.
2) If borderline, they could produce a soft or intermittent device failure. (In working with LSTTL devices, one occasionally encounters what's called a• "flaky chip": a device that works correctly most of the time but not always.)
3) If below fault-activating thresholds, the device could be expected to function properly but with reduced life.

It is observed that in both DTL and LSTTL implementations, leakage and parametic failures can constitute a significant portion of latent faults. Unlike the "stuck-bit" latent fault, leakage and parametric failure modes could conceivably be missed in preflight built-in-test yet become activated in the harsher environment of flight.

LSTTL failure mode data of Table 3-4 for both life test and field application would seem to indicate the presence of such latent faults in fielded equipment. It is important to qualify this latter statement as well as all of the RAC data related to LSTTL failure modes. Specifically the failure mode distributions of Table 3-2 correspond to a limited number of devices that does not span the full range of device types. Table 3-5 shows significantly different failure mode distributions for two separate LSTTL samples, one taken in 1984 (the data of Table 3-2) and another taken in 1980 (Reference 5). (As suggested by Table 3-6, this difference in distributions does not appear to apply to DTL.)

TABLE 3-3 - DTL Failure Modes (Ref. 4)

Failure Mode
Percent
of Total Adercent

OPEN
0.0
0.0

SHORT
6.2
6.2

DEGRADED
18.8
18.8

Unknown *
Leakage
15.6
0.0

Parameter Out-of-Tolerance
1.6
9.4
1.6
9.4

FUNCTIONAL ANOMALY
75.0
75.0

Unknown
Non-Functional
46.9
0.0
1.6
4.2

Improper Output
1.6
4.2

Stuck-at-1
10.8
29.1

Stuck-at-0
14.1
37.5

\footnotetext{
*"Unknown" means failure mode was in major category (DEGRADED or FUNCTIONAL ANOMALY) but sub-category (leakage, improper output, etc.) is not known.
**Unknowns allocated to known categories in proportion to known percentages of total.
}

TABLE 3-4 - LSTTL Device Failure Modes Life Test vs. Field
\begin{tabular}{lcc} 
& \begin{tabular}{c} 
Life Test \\
Failure Mode
\end{tabular} & \begin{tabular}{c} 
Field \\
Percent \\
of Total
\end{tabular} \\
OPEN & \begin{tabular}{c} 
Percent Total
\end{tabular} \\
SHORT & 3.5 & 4.5 \\
DEGRADED & 2.8 & 4.5 \\
FUNCTIONAL ANOMALY & 22.4 & 10.7
\end{tabular}
```

TABLE 3-5 - LSTTL Device Failure Modes
(SSI and MSI Devices)
Comparison of 1984 and 1980 Data

```
\begin{tabular}{cc} 
Percent & Percent \\
of Total & of Total \\
1984 Data & 1980 Data \\
147 Devices) & \((450\) Devices
\end{tabular}

Failure Mode
\begin{tabular}{lcc} 
OPEN & 3.4 & 0.0 \\
SHORT & 4.1 & 0.4 \\
DEGRADED & 22.4 & 84.7 \\
FUNCTIONAL ANOMALY & 70.1 & 14.9
\end{tabular}
70.1
14.9

\title{
TABLE 3-6 - DTL Device Failure Modes Comparison of 1984 and 1980 Data
}
\begin{tabular}{ccc} 
& Percent & Percent \\
of Total & of Total \\
Failure Mode & 1984 Data & 1980 Data \\
& \((64\) Devices) & (59 Devices)
\end{tabular}

OPEN
0.0
0.0

SHORT
6.2
0.0

DEGRADED
18.8
20.3

FUNCTIONAL ANOMALY
75.0
77.7

\subsection*{4.0 Developing Pin-Level Device Models}

\subsection*{4.1 Overview}

Given the severe constraint that one does not "know" what's inside the semiconductor package, fault modelling becomes more art than science. This section, therefore, describes various approaches (employed by USC and others) which can be invoked collectively to develop a pin-level fault model. The approaches consist of device modelling based on,
(1) failure mechanisms
(2) failure mode data
(3) device stress testing
(4) functional modelling
4.2 Model Elements Based on Failure Mechanisms
4.2.1 Interconnects

Interconnect failure mechanisms consist of broken wire and detachment of die-pad and/or lead-frame wire bonds. These mechanisms can be modelled by:
1) introducing single (i.e. one-at-a-time) open-circuits at each pin.
2) introducing single short circuits across adjacent pins.
(These two failure modes are also discussed in Section 4.3)
4.2.2 Die Defects/Package Failures

As discussed in Section 3.3, die defects and package failures can lead to a virtually infinite combination of incorrect signal outputs.

With SSI devices and (to a limited extent) MSI devices, all combinations could be considered (in FMEA) and inserted (in FMET) provided that circuit complexity is low. In complex circuits employing both MSI and LSI devices, such exhaustive testing is impractical. As a result one must consider altering outputs by randomly selecting a subset of total combinations or employing a set of "worst case" combinations based upon the specific circuit design.
4.3 Model Elements Based on Failure Mode Data

\subsection*{4.3.1 Open Circuits}

Based on the 1984 RAC data, open circuits (pin-to-pad) constitute some \(3 \%\) of total failure modes (Table 3-2). (Wire bond data in Table 3-1 tends to collaborate this fraction.) Note that open-circuit failure modes are single failures.
4.3.2 Short Circuits

Short circuits would include single shorts of adjacent pins.

\subsection*{4.3.3 Excess Leakage and Out-of-Tolerance}

Parameters
Note that failure mode data applies to leakages and parameters at the pins. We are of the belief that equivalent (for FMEA) or actual (for FMET) analog interface circuitry could be interposed between device pins and socket host to effect excess leakages and out- of-tolerance voltage leveis, switching characteristics and delays. (This "parasitic circuit" model has, to date, not been pursued in the study.) Failure modes here would be single and multiple. With the same considerations discussed in Section 4.2.2, fault insertion testing involving all possible combinations of leakage currents and parameter values is not practical for complex circuitry. One would accordingly have to randomly select combinations or, where possible, select "worst case" combinations based on the design at hand.

\subsection*{4.3.4 Functional Anomalies}

The non-functional chip, improper output and latchedoutput failure modes can be modelled using the classical "stuck-at" approaches. Again, one faces a virtually infinite number of fault combinations for MSI and LSI devices employed in complex circuitry.
4.4 Semiconductor Device Stress Testing
4.4.1 Rationale Behind Semiconductor Stress Testing

The failure modes termed "degraded" in Table 3-2 are the result of altered transistor gains, switching thresholds, changed (diffused) resistance values and excess leakage
current. (Responsible failure mechanisms would include marginal semiconductor doping concentrations and/or die bulk and surface contamination.) As seen in Table 4-1, these circuit parameters are all temperature dependent. Consequently by operating an LSTTL device outside of its specified operating temperature limits* it is possible to induce failure of the device.

\subsection*{4.4.2 Experimental Setup}

USC students set up a high-temperature burn-in rig with which digital integrated circuits could be operated and monitored from room temperature up to 200 degrees Celsius.

Three LSTTL device types and one TTL device type were selected** for high temperature testing:

74 LSI 38
1-of-8-DECODER/DEMULTIPLEXER

74174
HEX D-TYPE FLIP FLOPS
74LS257
QUAD 2-TO-1 MULTIPLEXER
74LS194
4-BIT SHIFT REGISTER

Burn-in circuits for these devices are shown in Figure 4-1.

\subsection*{4.4.3 Stress Testing Results}

All devices tested were commercial components having a maximum operating temperature*** of 70 degrees Celsius.

The following describes results of operating the devices at elevated temperatures. (Device data sheets are presented in Appendix A.)

\footnotetext{
*These limits define the temperature range over which the device manufacturer guarantees minimum and maximum parameter values.
**These device types were concurrently being employed in fault insertion experiments at NASA Ames Research Center.
}

\footnotetext{
***As noted earlier, this is the temperature beyond which the manufacturer will not guarantee minimum and maximum parameter values.
}

\section*{Transistor Parameters vs. Temperature}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Units} & \multicolumn{3}{|l|}{Typical Values} \\
\hline & & \(-55 \mathrm{C}\) & 25 C & 70 c \\
\hline Resistance & Ohms & 320 & 360 & 450 \\
\hline \multicolumn{5}{|l|}{(Diffused Resistor)} \\
\hline (DC) Current Gain & dim. & 65 & 100 & 200 \\
\hline LeakageCurrent & nA & 10 & 70 & 300 \\
\hline Input Voltage Threshold & Volts & 0.95 & 0.82 & 0.70 \\
\hline
\end{tabular}


EIGURE 4-1a BURN-IN CIRCUIT FOR THE 74LS138


FIGURE 4-1b BURN-IN CIRCUIT FOR THE 74174


FIGURE 4-1c BURN-IN CIRCUIT FOR THE 74 LS 257


FIGURE 4-1d BURN-IN CIRCUIT FOR THE 74LS194

When testing the 74LS138, five different devices were tested under high temperature tests and the following results were obtained: In the first test, all of the outputs stuck high from 170 to 200 degrees Celsius. In the second test, all of the outputs stuck high from 170 to 200 degrees Celsius. For the other three tests, the circuits performed exactly as they were supposed to for temperatures from 20 to 200 degrees Celsius.

When testing the 74174, five different devices were tested and the following results were obtained: In the first test, output \(Q 3\) stuck low from 180 to 200 degrees Celsius. In the second test, the clock and output \(Q 5\) shorted together from 180 to 200 degrees Celsius. In the third test, output Q4 stuck high from 160 to 200 degrees Celsius. In the fourth test, all outputs stuck low from 100 to 200 degrees Celsius. In the fifth test, all outputs stuck low from 120 to 200 degrees Celsius.

When testing the 74LS257, five different devices were tested under high temperature tests and no change in the outputs was found from 20 to 200 degrees Celsius.

When testing the 74LS194, five different devices were tested under high temperature conditions and the following results were obtained: In the first test, outputs Q0, Q1, and \(Q 2\) were stuck high in the hold mode at 190 degrees Celsius. In the second test, all of the outputs stuck high at 200 degrees Celsius. In the third test, all of the outputs stuck high at 80 degrees Celsius. In the fourth test, all outputs were stuck high in the shift left mode at 200 degrees Celsius. In the fifth test, outputs Q1 and Q3 were stuck high in the parallel load mode from 80 to 200 degrees Celsius.

The foregoing test results are summarized in Table 42.

Appendix B shows the truth tables for each of the failed devices made at the time the device was failed. Note that all of the faults induced were permanent faults. (No attempt was made in the experiments to induce intermittent faults.)
```

TABLE 4-2
Semiconductor Device Stress Testing Results

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{DEVICE TYPE DEVICE NO.} & RESULTS \\
\hline \multirow[t]{2}{*}{74 LS 138} & 1,2 & ALI OUTPUTS STUCKHIGH \\
\hline & \(3,4,5\) & NO FAILURES \\
\hline \multirow[t]{4}{*}{74174} & 1 & Q3 STUCK LOW \\
\hline & 2 & CLOCK AND Q5 SHORTED \\
\hline & 3 & Q4 STUCK HIGH \\
\hline & 4,5 & ALL OUTPUTS STUCK LOW \\
\hline \multirow[t]{3}{*}{74 LS 257} & 1, 2, 3, 4, 5 & NO FAILURES \\
\hline & 1 & Q0, Q1, Q2 STUCK HIGH \\
\hline & 2 & ALL OUTPUTS STUCK HIGH \\
\hline \multirow[t]{3}{*}{74 LS 194} & 3 & ALL OUTPUTS STUCK HIGH \\
\hline & 4 & \begin{tabular}{l}
ALL OUTPUTS STUCK HIGH \\
(IN LEFT SHIFT MODE)
\end{tabular} \\
\hline & 5 & Q1 AND Q3 STUCK HIGH (IN PARALLEL LOAD MODE) \\
\hline
\end{tabular}

\subsection*{4.5 Functional Fault Modelling}

Given that gates in an LSI device are inaccessable (i.e. analytically in FMEA; physically in FMET), many workers have opted to employ functional models in performing fault free and fault insertion simulations (e.g. see References 6,7 \& 8). Functional fault modelling, quite simply, consists of altering pin states (in simulation during FMEA; or in real time during FMET) such that the function of the (individual or sets of) pins is defeated. Table 4-3 shows functional faults for a select number* of LSTTL devices along with the corresponding alteration of pin states. Note that some of the fault insertions in the table require that pin states be changed instantaneously. (For example, the insertion "invert state" in Table 4-3a requires that the corresponding pin state must be monitored and changed.) While "instantaneous" changes are feasible in simulation, they may be impossible to achieve in physical fault insertion particularly where victim circuit speeds equal or exceed that of the insertion circuitry. Finally, it is noted that the fault insertions of Table 4-3 can occur as single or multiple faults and as well as being permanent or intermittent in duration.

\subsection*{4.6 Summary}

As noted in the introduction to this section, a fault model for an LSTTL device would incorporate all of the approaches described above. These are summarized in Table 44 which also shows corresponding failure modes.

\subsection*{5.0 Conclusions and Indicated Research Directions}

As a result of our investigations, we find that semiconductor failure mechanism data is abundant but of little use in developing pin level device models. Failure mode data on the other hand does exist but is too sparse to be of any (statistical) use in developing fault models.

What is significant in the failure mode data is that, unlike classical logic, MSI and LSI devices do exhibit more than "stuckat" and open/short failure modes. Specifically they are dominated by parametric failures and functional anomalies that can include intermittent faults and multiple pin failures.

\footnotetext{
*These device types were concurrently being employed in fault insertion experiments at NASA Ames Research Center.
}
FUNCTIONAL FAULT INSERTION

PIN
FAULT

Register select failure (A port)
"
"
"

Register select failure (B port)
"
"
"

Microinstruction decode fail
"
"
"
"
"
"
"
"

Correct data shift fail (Q req.)
"

4 (AO) invert state
3 (A1)
2 (A2)
1 (A3)

17 (BO)
18 (B1)
19 (B2)
20 (B3)
12 (IO)

13 (I1)
14 (I2)

26 (I3)
28 (I4)
27 (I5)
5 (I6)
7 (I7)
6 (I8)

9
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
open
"

\section*{TABLE 4-3a FUNCTIONAL FAULT MODELLING 2901 MICROPROCESSOR SLICE (CONTINUED)}
\begin{tabular}{lcc}
\begin{tabular}{l} 
FUNCTIONAL FAULT \\
INSERTION
\end{tabular} & PIN & FAULT \\
& \\
Correct (Y) output fail \\
state
\end{tabular}
*Tied low on all 2901 chips.

TABLE 4-3b Functional Fault Modelling

\section*{2911 Microprogram Sequencer}
\begin{tabular}{|c|c|c|}
\hline FUNCTIONAL FAULT INSERTION & PIN & FAULT \\
\hline Address source select fail state & 10 & invert \\
\hline " & 11 & " \\
\hline Push/pop stock oper. fail & 19 & " \\
\hline " & 20 & " \\
\hline Internal reg. select fail & 3 & S-a-1 \\
\hline Zero enable fail & 9 (zero) & S-a-1 \\
\hline Zero disable fail & 9 & S-a-0 \\
\hline Y-enable fail & 16 & S-a-1 \\
\hline Y-disable fail & 16 & S-a-0 \\
\hline Incrementer carry-in fail & 17 & S-a-0 \\
\hline " & 6 & nvert st \\
\hline
\end{tabular}

TABLE 4-3c Functional Fault Modelling
\[
2918 \text { Quad D Register }
\]

EUNCTIONAL FAULT INSERTION

Y enable fail
Y disable fail
Clock fail
Correct \(Q\) output fail
"
"
"

Correcty output fail
"
"
"

PIN

7 (OE)
7 (OE)
9 (CP)

2 (QO)
5 (Q1)
11 (Q2)
14 (Q3)
3 (YO)

6 (Y1)
10 (Y2)
13 (Y3)

FAULT
-

11

11
\(\because\)
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
FUNCTIONAL FAULT \\
INSERTION
\end{tabular}} & \multicolumn{2}{|l|}{54LS253 Dual 4-Input Multiplexer} \\
\hline & PIN & FAULT \\
\hline Chip enable fail & 1 (Mux 1 enable) & S-a-1 \\
\hline " & 15 (Mux 2 enable) & " \\
\hline Chip disable fail & 1 & S-a-0 \\
\hline " & 15 & " \\
\hline Channel select fail state & 14 (select 0) & invert \\
\hline " & 2 (select 1) & " \\
\hline Correctoutput fail & 7 (Mux 1 out) & invert when pin \(1=0\) \\
\hline " & 9 (Mux 2 out) & \[
\begin{gathered}
\text { invert } \\
\text { when } \\
\text { pin } 15=0
\end{gathered}
\] \\
\hline
\end{tabular}

\title{
TABLE 4-3e Functional Fault Modelling \(54 L S 02\) - Quad NOR
}
\begin{tabular}{lrcc}
\begin{tabular}{l} 
FUNCTIONAL FAULT \\
INSERTION
\end{tabular} & PIN & FAULT \\
Fails to perform NOR \\
state
\end{tabular}

\title{
TABLE 4-3f Functional Fault Modelling 54LSOO - Quad NAND
}
```

FUNCTIONAL FAULT
INSERTION

```

Fails to perform NAND state

11

11

11

3 (A output) Invert

6 (B output)
8 (C output)
11 (D output)

11
"

11

\title{
TABLE 4-3g Functional Fault Modelling \\ 5404 Hex Inverter
}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
FUNCTIONAL FAULT \\
INSERTION
\end{tabular} & PIN & FAULT \\
\hline Fails to invert & 1 (A input) & Invert \\
\hline " & 3 (B input) & " \\
\hline " & 5 (C input) & " \\
\hline " & 9 (D input) & " \\
\hline " & 11 (E input) & " \\
\hline " & 13 (F input) & " \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline Failure Mode & Fault Model \\
\hline Functional Anomaly & Functional Fault Model (FMEA); Model Generated Fault Patterns (FMET) \\
\hline Degraded (At Pins) & Parasitic Circuit \\
\hline Degraded (On Chip) & Device Stress Tests to Corroborate Functional Fault Model \\
\hline Opens & Open-Circuit Pin \\
\hline Shorts & Short-Circuit Adjacent Pins \\
\hline
\end{tabular}

It is certainly possible, and this report discusses the methods, to develop pin-level models based on extrapolation of semiconductor device failure mechanisms, failure modes, results of (temperature) stress testing and functional modelling. Such a composite model would include credible faults that could be experienced by the device. Unfortunately, the number of such faults would be insignificant when compared to the (virtually infinite) number of possible fault patterns. At issue here is the fact that one could insert all the faults in a composite model and yet gain no accurate measure of fault detection coverage and/or fault latency times. I.e. one could demonstrate fault tolerance yet come away with no measures of the degree of fault tolerance.

The foregoing prompt several research questions:
1) Although single-pin "stuck-at" or open/short permanent fault insertions do not characterize the modern MSI and LSI device, can they be legitimately* employed to cover actual failure modes that might be experienced?
2) Is it possible to obtain a definition of coverage and coverage measures with a device which can exhibit permanent or intermittent failures at one or more device pins?
3) Is one better off considering failure patterns at electrical connection boundaries other than integrated circuit pins (e.g. data busses, I/O lines, etc.)?

\footnotetext{
*The approach is extensively used today with FMEA.
}

\section*{References}
1. P. Goddard, R. Davis, "Automated FMEA Techniques", Rome Air Development Center Report RADC-TR-84-244, Grifiss AFB, New York. December 1984.
2. Lala, J. \& T. Basil Smith III, "Development and Evaluation of a Fault - Tolerant Multiprocessor (FTMP) Computer", Volume III (FTMP Test and Evaluation), Charles Stark Draper Laboratory Report CSDL-R-1602, May 1983.
3. DeFeo, P., D. Doane, \& J. Saito, "An Integrated User Oriented Laboratory for Verification of Digital Flight Control Systems - Features and Capabilities", NASA Technical Memorandum 84276, August 1982.
4. "Digital SSI/MSI Data", Report MDR-19, Reliability Analysis Center, Rome Air Development Center, Griffiss AFB, New York, Spring 1984.
5. "Digital Evaluation and Failure Analysis Data", Report MDR-15, Reliability Analysis Center, Rome Air Development Center, Griffiss AFB, New York, Spring 1984.
6.J. Galidy, Y. Crouzet \& M. Vergniault, "Physical Versus Logical Fault Models in MOS LSI Circuits, Impact on Their Testability", 9th Annual International Symposium on Fault Tolerant Computing Madison, Wisconsin, June 1979.
7. Wadsack, R., "Fault Modeling and Logic Simulation of CMOS Integrated Circuits", Bell System Technical Journal, Vol. 57, No. 5, May-June 1978.
8. J. Armstrong, "Chip Level Modelling of LSI Devices", IEEE Transactions on Computer-Aided Design. Vol. CAD-3, No. 4, pp. 288 thru 297, October 1984.
V.McGough, J., "Feasibility Study for a Generalized Gate Logic Software Simulator", The Bendix Corporation, NASA Contractors Report 172159, July 1983. OK

Cooperative Agreement NCC \(2-303\) was jointly funded by NASA Ames Research Center (Douglas Doane, Technical Monitor) and the FAA Technical Center (William Larsen, Technical Monitor).

APPENDIX A DEVICE DATA SHEETS

, '174, 'LS174, 'S174 Contain Six Flip-Flops with Single-Rail Outputs
- '175, 'LS175, 'S175 Contain Four Flip.Flops with Double-Rail Outputs
2 Three Performance Ranges Offered: See Table Lower Right
- Buffered Clock and Direct Clear Inputs
, Individual Data Input to Each Flip-Flop
- Applications include:

Buffer/Storage Registers
Shift Registers
Pattern Generators

\section*{:escription}

These monolithic, positive-edge-triggered flip-flops utilize TTL arcuitry to impiement D-type flip-tloo lanic. All have a direct clear input, and the ' 175. 'LS175, and 'S175 feature complementary outputs from eacn flip-flops.

Iniormation at the \(D\) inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particutar voltage level and is not directly related to the transition time of the positive-going puise. When the clock input is at either the high or low level, the \(D\) input signal has no effect at the outout.

These circuits are fully compatible for use with most TiL or DTL circuits
FUNCTION TABLE
IEACH FLIP-FLOPI
\begin{tabular}{|cc|cc|}
\hline \multicolumn{2}{c|}{ INPUTS } & & OUTPUTS \\
\hline CLEAR CLOCK & \(O\) & \(O\) & \(\bar{Q} T\) \\
\hline\(L\) & \(X\) & \(X\) & \(L\) \\
\(H\) \\
\(H\) & & \(H\) & \(H\) \\
\(H\) & & \(L\) & \(L\) \\
\(H\) & \(L\) & \(X\) & \(Q_{0}\) \\
\(H\) & \(\bar{Q}_{D}\) \\
\hline
\end{tabular}
- - nian lever is resoy state)
\(x\) - isreievant
- - transition from low to nign level

Lig - the feval ot a betore the indicated slesov-state
mout conditions were estabisnad.
- 175 'LS 175 . and 'S 175 oniy


SN54175. SN54LS175. SN5AS175 . . . J OR W PACKAGE ITOP VIEWI

positive logic: see function table
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{TYPES} & TYPICAL & TYPICAL \\
\hline & Maximum & POWER \\
\hline & CLOCK & OISSIPATION \\
\hline & FREQUENCY & PER FLIP-FLOP \\
\hline -174.'175 & 35 MHz & 38 mw \\
\hline 'LSI74, 'LS175 & 40 MHz & 14 mw \\
\hline 'S174. 'S175 & 110 MHz & 75 nW \\
\hline
\end{tabular}
SN64LS/74LS257A - SNS4LS/74LS258A
 LS 194 A \& Alt Bidrectional Shith Aegister. The LSI94A is sumilar in operation to the Motorota LS 195 A Universat


 - The asvnchronous Master Aeser (MMAI, when LOW, overides all other inpur condicions and lorcer the O outpurs Low Two made conved inpurs \(S_{0}\). \(S\), determune the synchronous opetation of the device As thown in the Mode Selection



MOTOROLA SCHOTTKY TTL DEVICES
4.193
Universal Shift Register

\section*{(M) MOTOROLA}
DESCRIPTION - The SNS4LS/7aLS194A is a High Speod 4 Bin

 is simitar in operstion to the LS \(195 A\) Universal Shition Aganici.

- typical shift faequency of 36 mhz pinnames loginginoie ol
\(\begin{array}{ll}\mathrm{S}_{0}, \mathrm{~S}_{1} & \text { Mode Contrat innuir } \\ \mathrm{P}_{0}-\mathrm{P}_{3} & \mathrm{P}_{2} \text { alitel Oata inpuris }\end{array}\)
DSA Serial ISnitit Aigtit) Dosis innut

4.BIT BIDIRECTIONAL
UNIVERSAL SHIFT REGISIER
IOW POWER SCHOTTKY



MOTOROLA SCHOTTKY TTL DEVICES
\(4-192\)
\(54 \operatorname{LS} 194\) 4-Bit Bidirectional

\section*{RockwellCollins}

\section*{COMPONENT MAINTENANCE} MANUAL
FCC-201
PART NO 622-4967-001
general description
THE 2911 IS A FOUT-BIT WIDE ADORESS CONTROLLER INTENDED FOR SEQUENCING THROUGH A SERIES OF MICROINSTRUCTIONS CONTAIPIED IN A RRM IS MAY BE INTERCONWCTED TO GENERATE AN EIGHT-BIT ACORESS ( 256 MORDS). ANO THREE MAY BE USED TO GENERATE A TWELVE-BIT ADORESS (4K MORDS).
THE 2911 CAN SELECT AN AODRESS FROM ANY OF THREE SOURCES. THEY ARE: 1) A SET OF EXTERNAL OIRECT INPUTS (D) 21 A AFOUR- TORD DEEP
 PUSH/POIN STACK: LIHES SO THAT IT CAN EFFICIENTLY EXECUTE NESTED SUBROUTINE LINKAGE ZERTAES. THE OUTPUTS ARE THREE-STATE.

\[
\text { 4-Bit Controller Type } 2911
\]
general description
THE FOUR-BIT BIPOLAR MICROPROCESSOR SLICE IS OESIGNED AS A HIGH SPEED CASCADARI.E ELEMENT INIENDED FOR USE IN CPU'S, PERIPHERAL CONTROLIERS. PROGRAMMABLE MICROPROCESSORS ANO MMMEROUS OTHER APPPICATIONS. THE MICROINSTRUCTION FLEXIBILITY OF THE \(2901 A\) WILL ALLOW EFFICIENT EMLLATION OF ALMOST ANIY DIGITAL COMPUTING MACHINE. THE DEVICE, AS SHOMN IN THE BI.OCX DIAGRAM BELIOM, CONSISTS OF A16-HORD BY 4-BIT TWO-PORT RAM. A HIGH-SPEED ALU, AND THE ASSOCIATED SHIFTING, DECDOING AND MLTIPLEXING CIRCUITRY. THE NINE-BIT HICROINSTRUCTION PORD IS ORGANIZED INTO THREE GINUPS OF THREE BITS WORD IS ORGANIZED INTO THREE GITAP PERANOS, THE ALU EACH AND SELECTS THE ALU SOURCE OPERENOS, TER. THE FUNCTION, AND THE ALU DESTINATION REGISTER. THE MICROPROCESSOR IS CASCADAPLE WITH FULL IOTP AND PROVIOES VARIOUS' STATUS FLAG OUTPUTS FROM THE ALU


\section*{pin defintitions}

AO. 3
\(\mathrm{BO}_{\mathrm{O}-3}\)

10-8 THE NINE INSTRUCTION CONTPOL LINES TO THE 2901A. USED TO DETERMINE WHAT OATA SOURCES WILL BE APPLIED TO THE ALU (IOR2) WHAT PANCTION THE ALU WILL PERFORM (I 34E). THE REGISTER STACK (1 1 G78)
A SHIFT LINE at THE MSB OF THE \(Q\) REGISTER ( \(Q_{3}\) ) ANO THE REGISTER STACK (RAM3). ELECTR CALLY THESE LINES ARE THREE-STATE OUTPUTS CONNECTED TO TK INPUTS INTEFTIAL TO THE 2901A. WHEN THE OESTIRATION COOE ON I I IN INOICATES AN UP SHIFT (OCTAL 6 OR 7) THE THREE-STATE OATPUTS ARE ENABLED ANO THE MSB OF THE Q REGISTER IS AVAILABLE ON THE \(Q_{3}\) PIN ANO THE MSB OF THE N.U OUTPUT IS AVAILAELE ON THE ROM \(_{3}\) PIN. OTHERWISE. THE THREE-STATE OUTPUTS ARE OFF (HIUH-IMPEDANCE) AND THE PINS ARE E.ECTRICALLY L.S-TTL IMPUTS. MHEN THE DESTINATION CODE CALLS FOR A DOMN SHIFT the pins are used as the data inputs to the msb of the Q REGISTER (OCTAL 4) WO RAM (DCTAL 4 OR 5).
SHIFT LINES LIKE \(O_{3}\) AND RAM3, OUT AT THE LSE OF TME QREGISTER ANO RAM. \({ }^{\text {SHES }}\) THESE PIAS ARE TIED TO THE \(Q_{3}\) ANO REM3 PINS OF THE ADJACENT DEVICE TO TRANSFER DATA BETWEEN DEYICES FOR UP ANO DONN SHIFTS OF THE Q REGISTER AND ALU DATA.
direct data inputs. a four-bit fiel.d mhich may be SELECTED AS ONE DF THE ALU data sources FOR Entering DATA into the 2901a. Do is the LSE.
the four oata outruts of the 2901a, these are three. STATE OUTPUT LINES. MHEN EIABLED. THEY DISPLAY EI THER THE FOUR CUTPUTS OF THE ALU OR THE DATA ON THE A-PORT OF the register stack, as determined by the oestination COOE 1678 .
OUTPUT ENAELE. WHEN OE IS HIGH. THE Y OUTPUTS ARE OFF: WHEN OE IS LOH, THE Y OUTPUTS ARE ACTIVE (HIGH OR LOW): THE CARRY GENERATE ANO PROPAGATE OUTPUTS TF THE 2901A'S allu. these signals are used mith the 2902 for CARFY-LOOKAHEAO.
OVERFLOW. THIS PIN IS LOGICALLY THE EXCLUSIVE-OR OF THE CARPY - IN ANO CARRY-OUT OF THE MSB OF THE ALU. AT THE MOST SIGNIFICANT END OF THE MORD. THIS PIN INOICATES that the resel of an arit thetic' TMO's complement oper. ATION HAS OVERFLOWED INTO THE SIGN-BIT.
THIS IS AN OPEN COLECTOR OUTPUT WHIOH GOES HIGH (OFF) if the data on the four alu outputs fo. are all lom. in positive logic. it indicates the result of an allu operation is zero.
the most significant mu output bit.
THE CARPY-IN TO THE 2901A'S ALU.
THE CARRY -OUT OF THE 2901A'S ALU
the clock to the 2901a. The 0 register mo register STACK OUTPUTS CHANGE ON THE CLOCK LOW-TO-HIGH TRANSITION. THE CLOCK LOW TIME IS INTERNALLY THE MRITE ENABLE TO THE REGISTER STACK. WHILE THE CLOCK IS LOM. THE "SLAVE" LATCHES ON THE RAM OUTPUTS ARE CLOSED. STORING THE OATA PREVIOUSLY ON THE RAM OUTPUTS. THIS ALLOWS SYNCHRONOUS master-slave operation of the register stack.
general description
THE 2911 IS A FOUT-BIT WIDE ADDRESS CONTROLER INTENDED FOR SEQUENCING THROUGH A SERIES OF MICROINSTFUCTIONS CONTAIHED IN A ROM OR PRCM THO 2911'S MAY BE INTERCONNECTED TO GENERATE AN EIGHT-BIT ADORESS ( 256 MOROS). AND THREE MAY BE USED TO GENERATE A TWELVE-BIT ADORESS (4K WORDS).
THE 2911 CAN SELECT AN AOORESS FROM ANY OF THREE SOURCES. THEY ARE: 1) A SET OF EXTERNAL DIRECT INPUTS (D) PUS A AFOUR- WORO OEEP STMS
 CERTAIN CONTROL LINES SO THAT IT CAN EFFICIENTLY EXECUTE NESTED SUBROUTINE LINKAGES. A SEPARATE LIKE FORCES THE OUTPUTS TO ALL ZEROES. THE OUTPUTS ARE THREE-STATE.

MICROPROGRAM SEQuENCER BLOCK DIAGRAM



INPUTS TO 2911
\(S_{1}\). \(S_{0}\) CONTROL LINES FOR ADORESS SOURCE SELECTION FE,PUP CONTROL LINES FOR PUSH/POP STACK ENABLE LINE FOR INTERNAL ADORESS REGISTER LOGIC AND INPUT ON THE OUTPUT LINES OUTPUT EMABLE. WHEN OE IS HIGH, THE Y OUTPUTS ARE OFF (HIGH IMPEDANCE)
CARRY-IN TO THE INCREMENTER DIRECT INPUTS TO THE MLTIPLEXER CLOCK INPUT TO THE AR AND UPC REGISTER ANO PUSH.POP STACK.
OUTPUTS FROM THE 2911
Yi ACORESS OUTPUTS FROM 2911. (ACDRESS
INPUTS TO CONTROL MEMORY.)
Con 4 CARRY OUT FROM THE INCRDMENTER
EXTERNAL TO THE 2911
a NOORESS TO THE CONTRO MEMORY
I(A) INSTRUCTION IN CONTROL MEMREY AT ADORESS A INSTRUCTION IN CONTRCL MEMORY AT ADOR OUTPUT OF CONTROL MEMORY). THE MICROWORD REGISTER CONTAINS THE INSTRUCTION CURRENTLY REING EXECUTED.
Tn TIME PERIOO (CYCLE) n


\section*{(4) motorola}

DUAL 4 INPUT MULTIPLEXEA
WITH 3.STATE OUTPUTS
LOW POWERSCHOITKY



\(54 L S 253\) Dual 4-Input Multiplexer
（A）MOTOROLA

前


J Suffix－Case \(632-071\) Ceramic
N Suifix－Case 646．05 Plastic：

\section*{SN54LST2 \\ SN74LS조}

\section*{QUAD 2－INPUT NOR GATE}

LOW POWER SCHOTTKY
gUARANTEED OPERATING RANGES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETEF & & MIN & Tr & M．ax & URIT \\
\hline \(\checkmark\) CC & Supply voltage & \[
5 \div
\] & \[
\begin{gathered}
45 \\
475
\end{gathered}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
55 \\
525 \\
\hline
\end{gathered}
\] & V \\
\hline \(T_{A}\) & Oderating Ambient Temberature Range & \[
\begin{aligned}
& 5 \div \\
& 74
\end{aligned}
\] & \[
\begin{gathered}
-55 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& 25 \\
& 25
\end{aligned}
\] & \[
\begin{array}{r}
125 \\
70
\end{array}
\] & \(\because\) \\
\hline \({ }^{1} \mathrm{OH}\) & ｜Outpul Current－Hign & 5：．74 & & & －0： & mi \\
\hline 1 OL & ｜Output Current－Low & \[
54
\] & & & \[
\begin{aligned}
& 40 \\
& 80
\end{aligned}
\] & mi \\
\hline
\end{tabular}

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE（Unless otnerwise soecifiea
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMEOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{3}{|c|}{U9，\％} & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{TEST CONDITIONS} \\
\hline & & MIN & NiF & MAX & & \\
\hline \(V_{\text {IH }}\) & ；Inoul HIGH Vorage & 20 & & & V & Guaranteed Input HIGH Voltape for All induts \\
\hline \multirow[b]{2}{*}{\(V_{1 L}\)} & \multirow[t]{2}{*}{innout LOW Vohaop} & & & \(0^{-}\) & \multirow[b]{2}{*}{\(v\)} & \multirow[t]{2}{*}{：Guar anteed Input LOW Voltage tor －All Inputs} \\
\hline & & & & ご & & \\
\hline \(V_{10}:\) & I Input Clams Droce Vollace & \multicolumn{2}{|r|}{－こもこ} & －！ & \(\because\) & \(\cdots \mathrm{MCC}=\mathrm{MIN} \mathrm{IR}_{5}=-18 \mathrm{mi}^{2}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{CL}}\)} & \multirow[b]{2}{*}{1 Outbut HIGH Voltace} & \(2:\) & \(\vdots\) こ & & \(\because\) & \multirow[t]{2}{*}{\(V_{C E}=\) MIN \({ }^{I_{O H}}=\operatorname{MAX} . V_{I N}=V_{!H}\) －or Vif oer Trum Tabie} \\
\hline & & ：\({ }^{-}\) & ご & & \(\therefore\) & \\
\hline & 5x． & & \(\bigcirc\) こ & － & ＇ & \(\cdots{ }^{1}=40 \mathrm{~mA} \quad\) VCC \(=\) VCC MIt． \\
\hline VO： & IOutur LOW Voltage \(\quad \because\) & & ？ 2 & \(\because \because\) & v & \[
\begin{array}{ll}
1_{1}=80 \mathrm{~min} \\
\text { V ope Truin Taoir. }
\end{array}
\] \\
\hline & & & & － & fim & \(V_{C-}=\) MAX \(V_{\text {IN }}=27\) \\
\hline 14. & I Indout HIGH Curre：： & & & \(\because\) & ma & \(V_{C C}=\) MAX，\(V_{I N}=70 \because\) \\
\hline 年 & 1 Input LOW Currer－ & & & \(\because \because\) & \(\mathrm{m} /\) & \(V_{C C}=\) MAX \(V_{\text {IN }}=04\). \\
\hline los & Short Cireut Curro－． & \(\therefore\) & & \(-:\) & mm & \(V C C=M A x\) \\
\hline \({ }^{1} \mathrm{Cc}\) & ：Power Sudpir Lurper： Total．Outout Miun Total OUbut LO？ & & & \(\because\) & min & \(\because C==M ヵ\) \\
\hline
\end{tabular}

AC CHARACTERISTICS：\(T_{A}=25-C\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETEF} & \multicolumn{3}{|c|}{\(\underline{10.15}=\)} & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{TEST CONDITIONS} \\
\hline & & M1s & \(\cdots=\) & 为我 & & \\
\hline tPLH & Turn Off Delav．Input to Outeut & & 1. & ？ & ns & \(V C C=50 \%\) \\
\hline \(\stackrel{\text { PreL }}{ }\) & ＇Turn On Delay input to Durer： & & － & 15 & n： & \(C_{l}=15 \% \%\) \\
\hline
\end{tabular}

\section*{(A) motorola}


J Sulfix - Case 632.07 Ceramie
N Sulin - Case 646.05, Plasact

guaranteed operating ranges


DC CHARACTERISTICS OVER OPERATNG TEMPERATURE RANGE iunless oinemise spectited:

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{3}{|c|}{LIMITS} & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{TEST CONOITIONS} \\
\hline & & MIN & TVP & MAX & & & \\
\hline tPLH & Turn Oft Delay. Indul to Outbus & & 90 & 15 & ns & & \(V_{C C}=5.08\) \\
\hline \({ }^{\text {PPHL }}\) & 'Turn On Delav. Indut to Output & & ? & 15 & ns & & \(C_{L}=15 \mathrm{pF}\) \\
\hline
\end{tabular}

APPENDIX B
TEMPERATURE STRESS TEST RESULTS

```

○ エ エ エ エ エ エ エ エ エ エ 円

```



```

○ エ エ エ エ エ エ ナ エ エ エ エ エ エ

```














```

 M
 U
 O
O
\infty

```










\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\stackrel{\sim}{0}\) & H & \(\cdots\) & I & & \(\stackrel{\sim}{\circ}{ }^{-7}\) & H \\
\hline \(\stackrel{\square}{\square}\) & \(\dagger\) & \(\downarrow\) & 江 & & \(\underset{\sim}{\square 1}\) & \(\cdots\) \\
\hline a & \(\xrightarrow{-}\) & \(\xrightarrow{\square}\) & ェ & & \(\mathrm{a}^{-7}\) & \(\cdots\) \\
\hline \(\stackrel{\sim}{\sim}\) & \(\cdots\) & \(\square\) & I & & \(\mathrm{O}^{\text {a }}\) & \(\stackrel{ }{-}\) \\
\hline \(\stackrel{\square}{0}\) & \(\xrightarrow{+}\) & \(\stackrel{ }{\square}\) & ェ & & ご & \(\cdots\) \\
\hline 8 & \(\xrightarrow{+}\) & － & エ & \(\cup\) & \(\mathrm{O}^{-1}\) & H \\
\hline \(\stackrel{5}{\square}\) & \(\times\) & \(\cdots\) & エ & \[
\begin{aligned}
& \circ \\
& \infty \\
& \sim \\
& 0
\end{aligned}
\] & \(\stackrel{n}{\square}^{x}\) & H \\
\hline \(\stackrel{\square}{\square}\) & \(x\) & \(\cdots\) & 工 & J
N
ন & \(\underset{\square}{\text { a }}\) & \(\cdots\) \\
\hline n & \(x\) & \(\rightarrow\) & 它 & & \[
\underset{a}{m}
\] & \(\cdots\) \\
\hline N & \(\chi\) & \(\checkmark\) & 山 & & \(\stackrel{\text { N }}{\text { ® }}\) & \(\cdots\) \\
\hline \(\stackrel{\rightharpoonup}{\square}\) & \(\times\) & \(\checkmark\) & 山 & & \(\stackrel{-1}{\square} \times\) & \(\underline{-}\) \\
\hline 앙 & \(\times\) & \(\downarrow\) & 岃 & & \(8 \times\) & ＋ \\
\hline \(\stackrel{\sim}{\sim}\) & \(\rightarrow\) & 江 &  & & 品」 & I \\
\hline 号 & \(x\) & \(\leftarrow\) & \(\leftarrow\) & & 吅 \(x\) & \(\leftarrow\) \\
\hline
\end{tabular}



\section*{B-6}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & - \(\ 37\) & VULT & \(\triangle \mathrm{MO}\) & \(=\) & & & & \\
\hline & & & & & & NT & WLIO & H 9 & = & & & & \\
\hline & & & & asto & Y & T) 9 N & 5 & ILSO & \(=\downarrow\) & & & & \\
\hline & & & & & & & gप\% & 山, NO & \(=\mathrm{X}\) & & & & \\
\hline H & H & H & H & H & H & X & H & H & H & H & X & H & \(\downarrow\) \\
\hline T & T & T & T & H & H & X & T & ' & ' & T & X & H & \(\downarrow\) \\
\hline T & T & H & T & ' & H & X & x & X & X & X & ' & H & \(\downarrow\) \\
\hline H & T & T & H & ' & H & X & X & X & X & X & H & H & \(\downarrow\) \\
\hline I & H & T & I & H & T & T & X & X & X & X & X & H & \(\downarrow\) \\
\hline H & T & T & T & H & T & H & X & X & x & X & X & H & \(\downarrow\) \\
\hline T & T & I & T & T & T & X & X & X & X & X & X & H & \(\downarrow\) \\
\hline T & T & I & ' & x & X & X & X & X & X & X & X & T & X \\
\hline عర & 20 & T0 & 00 & IS & OS & TSa & \(\varepsilon \square\) & 20 & T] & OG & ySa & पW & a \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & TSTI & ＇ & \begin{tabular}{l}
コノヨ丁 \\
＾日＇ \\
ID 5
\end{tabular} & \begin{tabular}{l}
\[
19 \forall \mathrm{~L}
\] \\
VLTO \\
09 B \\
TGV？
\end{tabular} & \begin{tabular}{l}
\(\Lambda M\) \\
H \\
ILS \\
山，N
\end{tabular} & \[
\begin{aligned}
& = \\
& = \\
& = \\
& =
\end{aligned}
\] & & & & \\
\hline H & H & H & H & H & H & X & H & H & H & H & X & H & \(\downarrow\) \\
\hline T & T & T & T & H & H & X & T & T & T & T & X & H & \(\downarrow\) \\
\hline I & I & T & T & T & H & X & X & X & X & X & ＇ & H & \(\downarrow\) \\
\hline H & H & H & H & I & H & X & X & X & X & X & H & H & \(\downarrow\) \\
\hline I & H & H & H & H & I & ＇ & X & X & X & X & X & H & \(\downarrow\) \\
\hline H & T & H & H & H & ＇ & H & X & X & X & X & X & H & \(\downarrow\) \\
\hline T & H & H & H & ＇ & T & X & X & X & X & X & X & H & \(\downarrow\) \\
\hline ＇ & ＇ & T & T & X & X & X & X & X & X & X & X & ＇ & X \\
\hline \(\varepsilon ర\) & 20 & 10 & 00 & TS & OS & TSa & \(\varepsilon \square\) & \(2 \square\) & Id & Od & ça & ষฟ & d〕 \\
\hline
\end{tabular}



```

