@ https://ntrs.nasa.gov/search.jsp?R=19940024315 2020-06-16T15:18:47+00:00Z

. ey,
577
NASA Contractor Report 187507 / 5 /

Transferable Output ASCII Data (TOAD) Editor
Version 1.0 User's Guide

Bradford D. Bingel, Anne L. Shea, and Alicia S. Hofler

Computer Sciences Corporation ©
Applied Technology Division a " -
Hampton, VA 23666-1379 i e 4
<+ v)
o c o
z D o
-l
O
~
o
Contract NAS1-19038 o
<u
February 1991 b
x Q.
woE
4~ 0
wm = Q)
<O~
o W
w
u o~ w
noo
Z I~ QO
0>
& - O W0
NASA =28y
) -
National Aeronautics and - : o
Space Administration ~ W~
QO OV
Langley Research Center W o DQa
Hampton, Virginia 23665-5225 o 5
-) e
| Ve~
o g 7]
O ZY
I =0
D~ C
waunvo
- -4
- N VERN V)
w O > Wv

Preface

This document describes the Transferable Output ASCIl Data (TOAD) Editor, production release 1.0.
It is intended to serve as a tutorial for new users and as a reference source for all experienced users.
All readers are urged to review the sample sessions in appendix A of this document. Readers not
familiar with the TOAD format should refer to appendix B or to NASA Contractor Report 178361.

Because of the ongoing development of this package, the current production release may offer
features in addition to those described in this document. When and if changes are made, every effort
will be made to preserve existing capabilities.

This software was developed by Computer Sciences Corporation’s Applied Technology Division
under contract to the National Aeronautics and Space Administration's Langley Research Center, from
late 1989 through late 1990. CSC directly supports this product only at Langley Research Center.

Table of Contents

Section 1 - Introduction . 1
General Description and Purpose . 1
Features .. 1
Limitations . 2
Associated Products . 2

Section 2 - Concepts. 3
TOAD Files .o 3
Commands vs. Directives . 3
Startup File 3
Directive History 4
Directive Files. 5
Macros 5
Session File Coe . 6
Targeting and Object Lists. 6

Section 3 - Directive Syntax . 9
Commands, Parameters, and Keywords 9
ParameterType 9
Simple Expressions 10
Aliases T S 10}
Omitted Parameters10
QuotationMarks A B
Assumed Commands.M
Continuations12
Comments ¥
Summary of Special Characters 14

Section 4 - Interactive Use B 4
Files e I 4
Execution 17
On-LineHelp. 18
Envionmentals 18
Symbols . V'

define, redefine 24
rensymbol, delsymbol 2§
File Operations 25
open,save,close. 28
sean L ... 27
repot,tmenu 28
Targeting and Using Object Lists 28
selection criterialists 29
watlDlists 32
Tabulating 35
RawData(tabulatey _ 35
Statistical Profile (stats) 37

PAGE ___ L1 INTENTIONALLY BLANK "
PRECEDING PAGE BLANK NOT FILMED

Section 5

Section 6

Table of Contents - concluded

The Undo Command .

Moving Data
Copying from One Column to Another (copy) .
Sorting (sort) . . . - - - - =
Exchanging Data Between Columns (exchange)

Replacing Data P
Changing a Variable’s Name (rename) .
Erasing Data (clear) .
Direct Replacement (assign) -

Mathematical Operations . . . - - - -
Basic Arithmetic (add, subtract, multiply, divide)
Utilities (abs, invert, sqr, factorial, sign)
Powers and Roots (power, root) . . - - -
Logarithms and Exponents (/0g, log10, exp, exp10)
Trigonometry (sin, oS, tan, arcsin, arccos, arctan) . . -

38
40
40
41
42
45
45
46
47
49
49
51
55
56
56

Hyperbolic Trigonometry (sinh, cosh, tanh, arcsinh, arccosh, arctanh) 57

Statistics (freq, sum, min, max, range. mean, var, sd, se)
Conversions (convert) .
Adding and Deleting Data . .
Creating a New Column (create)
Deleting an Existing Column (delete) .
Removing Existing Warts (knockout) .
Wart Editing . . - - - - - -
Adding Zero-Filled Warts (addwart)
Duplicating Existing Warts (dupwart) . . - - -
Using the Wart Paste Butter (copywart, cutwart, pastewart) .
Using Extemnal Files . L e
Single Column (write, read) .
Multiple Columns (export, import) .
General File Insertion (before, after)

. Directive Files and Macros .

Directive Files

Macros

Creating and Executing Macros (macro, endmacro)
Renaming and Deleting Macros (renmacro, delmacro) .
Undoing Macros (undomacro).

Creating a Directive File from a Macro . . - - - - -

Embedding Messages within Directive Files and Macros (echo)

Changing the Macro Character and Continuation Character (store, restore) .

- In Case of Problems.

Appendix A - Sample Sessions

Appendix B - The TOAD Format (Summarized)

iv

58
60
61
61
63
64
68
68
69
69
72
73
76
85

87

87
89
89
95
95

101
102

107

.11

Section 1
Introduction

General Description and Purpose

The Transferable Output ASCIl Data (TOAD) Editor is a software tool for manipulating the contents of
TOAD files. It offers many of the advantages of a spreadsheet program (mathematical operations,
row/column manipulations, cut/copy/paste, selective data extraction/replacement, macros) without
the initial purchase cost or the need to transfer the data files 1o a PC or Macintosh. The Editor also
offers many other features (such as statistical operators and unit conversion functions) designed for
manipulating scientific/engineering data which are not available from many spreadsheet packages.

Features
The most beneficial features of the TOAD Editor are:

Directive Driven - Rather than working through a long series of menus, the user enters
operational commands, which the Editor performs immediately.

Allases - Most commands and keywords have multiple aliases and/or abbreviations. This
significantly reduces the number of keystrokes necessary to perform a particular operation.

On-Line Help - A complete description of each command is available through an on-line
help facility. Each description contains the command's purpose, its syntax, an explanation of
its keywords and/or arguments, and a list of aliases. Additional information (such as what
happens when an argument is omitted) is also provided.

General Undo - Any operation which changes the TOAD file can be “undone.”

Directive Flles - The user may create a long directive sequence within an external file, then
have it executed by providing the file's name to the Editor. Further, a directive file may in tumn
execute another directive file, greatly simplifying extremely long or repetitive tasks.

Macros - A repetitive sequence of directives may be grouped into a macro, then executed
by simply entering the macro's name. Although macros may be defined “live” during an
editing session, many users find it more convenient to define their macros in a “startup” file,
which is automatically read before each session.

Symbols - A symbol is a name (e.g., “pi") assigned a numeric vaiue. When a symbol appears
where a number is expected, the symbol's numeric equivalent is automatically substituted.

Targeting - If desired, almost all directives may be restricted to work upon a select data
subset. This is especially useful when merging or extracting data.

Mathematical Operations - A variety of mathematical operations are provided for
advanced data manipulations. Included are the four basic arithmetic functions (addition,
subtraction, multiplication, and division) along with factorials, power and root functions,
logarithm and exponential functions, trigonometrics, hyperbolic trigonometrics, and various
statistical functions.

Conversion Functions - Many conversion functions are provided, including conversions
for angles (degrees and radians), temperatures (Celsius, Kelvin, Rankine, and Fahrenheit),
and various times, lengths, masses, volumes, velocities, pressures, and energy.

AutoSave - If the user attempts 1o end an editing session in which the file was altered but
not saved, the Editor asks if it should be saved. As a result, it is almost impossible to “forget”
{o save revisions.

Directive History - A limited history of the directives used during an editing session is
retained. This history may be reviewed at any time, and an individual directive may be
selected by index number for reexecution.

Session Flle - A complete history of the interactive session is recorded on a session file.
This file may be edited later and used as a directive file.

Error Messages - All error messages are written in plain English. Without going to
extremes, every effort has been made to identity the problem as clearly as possible.

Portabllity - A critical factor in this product's design is portability. The Editor successfully
executes under CONVEX, IRIS, SUN, and VAX host environments.

Limitations

The TOAD Editor reads and writes entire data files, not file fragments. Consequently, there is a limit on
the volume of raw data which can be accommodated. The capacity of the Editor is 1,000 “columns” of
data and 10,000 raw data ceils. However, these capacities may change as the Editor is installed on
various hosts.

Both limits are set once in a central part of the Editor and are easily modified. If and when a file
exceeds either limit, a clear error message is written.

Associated Products

A companion package, the TOAD Gateway, allows the user to translate raw data files between TOAD
and other data formats, such as the Standard Interface File (SIF), Program to Optimize Simulated
Trajectories (POST), and a variety of PC- and Macintosh-based spreadsheet programs. Both the
TOAD Editor and the TOAD Gateway are available and supported at NASA Langley Research Center.

Section 2
Concepts

TOAD files

A TOAD file contains tabular data stored in a specific format. It is convenient to think of “tabular” data
as a row-by-column table, similar to a spreadsheet. Each column of data has an associated 15-
character name, called a yariable. For example, a TOAD file which contains the variables deltacp,
temp, x/c, 2y/b, alpha, and Mach presumably stores pressure and temperature data as a function of
chord location, span location, angle of attack, and Mach number.

Again using the spreadsheet analogy, a TOAD data wad is equivalent to a “row” of data. Because a
row of data may require more than one 80-character record within a TOAD file, the collection of records
associated with a single spreadsheet “row” is commonly called a “‘wart.”

A tadpole file is the generic name given to a file which stores a subset of data from a TOAD file. Most
of the commands which work with external files assume the name tadpole if the file name is omitted.
Although the name may be somewhat misleading, a true tadpole file conforms to all TOAD standards.

A TOAD file becomes active when it has been opened by the Editor for processing. Only one TOAD
file may be active at any one time. All other TOAD files are jnactive. An active file is not really a file at all
-- merely the Editor's own representation of a file. As a result, changes made to the active file exist
only within the Editor and will not exist as a disc file until you perform a save operation. For example, if
you open file “test21” and delete some columns of data, only the Editor's version of the file is affected
-- the original disc copy is untouched.

Commands vs. Directives

The distinction between a command and a directive is often confusing. In actual practice, the terms
“command” and “directive” are often used interchangeably. Strictly defined, a command is a type of
instruction given to the Editor. For example, opening a TOAD file for editing is accomplished via the
open command. A directive is the actual instruction given to the Editor. Thus the directive

open test201

is but one example of how you might use the open command. Many more directives using the open
command are possible. This concept is fully discussed in Section 3, “Directive Syntax.”

For the remainder of this document, the term “command” is used when referring to an element within
the Editor's vocabulary, and the term “directive” is used to describe the actual instruction the Editor
reads, interprets, and executes.

Startup File

A startup tilg is used to submit a stream of directives to the Editor before the first edit> prompt
appears. The most common use of a startup file is to create the desired macros, symbols, and
environmental settings without entering them manually during each session. For example, a simple
startup file might contain the directives

disable session
set page 23
set tolerance 5%

3.1415926

define pl =
e = 2.7182818

define

macro tab1
tabulate alpha deltacp 2y/b 95 x/c .05
endmacro

macro tab2
tabulate temp x/c .05 alpha 15
endmacro

macro fix

convert alpha degrees2radians
convert temp rankine2kelvin
endmacro

This example startup file turns off the session recording file, resets the page length to 23 lines, resets
the default tolerance to a relative 5 percent, defines the symbols pi and e, and creates three macros.
This example also illustrates two useful and highly recommended techniques. First, notice that all
commands and keywords are spelled out in full, rather than abbreviated. Second, blank lines group
logical instruction sets. Both features significantly improve readability.

Using a startup file is optional. On UNIX systems the file must be called startup and it must exist in the
local directory when the Editor is executed. An alternate method is to establish a file link called
startup which points to the desired file. VAX/VMS requirements are the same except the file name or
global definition is startup.dat.

Note

The directives read from the startup file do not appear in the directive history or in the
session file.

Directive History

Because it is often convenient to repeat previous directives, the Editor retains a limited history of
directives entered during the editing session in a directive history. UNIX users should recognize this
as the standard UNIX history mechanism and VAX/VMS users should recognize this as a command
recall buffer. Its contents may be displayed with the directive

history
Currently, 20 directives are retained (this may increase with future releases). If fewer than 20 directives
have been entered prior to a history directive, only those directives are displayed. if more than 20
directives have been entered, only the last 20 are displayed.

To reexecute a previously entered directive, enter its associated index. For example, if the desired
directive appears in the history list as

71. tabulate alpha deltacp 2y/b .95 x/c .05
then it may be reexecuted by entering
71
Notice that the directive image appears in brackets
[tabulate alpha deltacp 2y/b .95 x/c .05]

to confirm which directive was selected. An aiternative method is to use a relative reference. For
example, entering

-1

requests that the most recent directive be repeated. Similarly, the directive
-4

asks that the fourth most recent directive be repeated.

Only directives which appear on a current history list may be referenced. Directives which “scroll off"
the log cannot be referenced and must be reentered.

Directive Files

Lengthy or complex editing sessions are often difficult to perform when entering all of the necessary
directives by hand. An alternate approach is to create a text file containing the desired directives, in
the desired order, then have the Editor read it. Such afile is called a directive file. Many users create
directive files when performing the same operations within a series of TOAD files. This significantly
reduces the researcher’s workload while allowing the TOAD files to be consistently edited.

Using a directive file interrupts the Editor's normal interactive dialog. That is, after a directive file is
invoked the Editor accepts its instructions from that directive file, not from your keyboard. You regain
control only after the entire directive file is read and processed. Of course, very long or very complex
directive sequences will require a commensurate amount of processing time, which may create a
noticeable delay.

A directive file may itself use another directive file which may in turn use another directive file, and so
on. There is no limit on the number of levels, nor any limit on the number of files per level, which can
be used within a directive file hierarchy. Repetitive calls to a directive file, even from within another
directive file, are allowed. However, a directive file cannot call itself; that is, directive file recursion is not
allowed.

For more information conceming directive files, please refer to Section 5, “Directive Files and Macros.”

Macros

Creating a macrg allows you to execute a sequence of directives whenever you enter that macro's
name. For example, imagine converting ten columns’ worth of data from Fahrenheit to Kelvin by
entering the directive convtemp or creating five new columns of data by entering only newcols. Using

a macro is very similar tousing a directive file -- once invoked, the Editor accepts its instructions from
the macro, not your keyboard, and retums contro! to you after the macro is completed. Also, a macro
may itself use another macro which may in turn use yet another macro, and so on. Macros and
directive files may be freely intermixed - a macro may use a directive tile which may use a macro which
may use a directive file, and so on.

Macros offer one substantial advantage over directive files: arguments. Unlike a directive file, in which
all commands and associated parameters are known, a macro may use arguments to alter the
directives processed. Further, each argument may also be assigned a default value, permitting
omitted arguments when invoking the macro. In effect, crealing a macro actually creates a new,
customized command.

For more information concerning macros, please refer to Section 5, “Directive Files and Macros.”

Session File

The session file retains all directives read and processed during the course of an editing session
(except those read from the startup file). This canbe particularly useful when trying to reconstruct a
directive sequence for the development of a directive file or macro. A session file also verifies that the
directive files or macros perform the intended sequence of directives.

Note

The Editor does not write warning or error messages to the session file.

A session file is always created. On UNIX systems the session file is called sessionand is created in
the local directory. You may reroute it to a different directory by creating a file link called session. The
file is similar under VAX/VMS except the name is session.dat.

Targeting and Object Lists

ingis a technique which allows you to restrict the actions of most directives to a specific subset
of the entire TOAD file. For example, perhaps you want to calculate pressure coefficients along a
wing's leading edge or tabulate fuel consumption at a particular mission milestone. You may target
only those data cells containing data along the leading edge or only those cells associated with the
mission milestone, then perform the desired operation. Targeting is also useful when extracting and
accepting raw data from external files. Depending on the target scheme used, a single cell, a partial
row, a partial column, an entire row, an entire column, or the whole active file may be moved to and from
an external file.

Targeting is accomplished through the use of an gbject list. An object list identifies the variables being
targeted, and, where necessary, their target range. For example, targeting a wing's leading edge
requires an object list with, at a minimum, the name of the airfoil chord location variable and its value
associated with the leading edge. If other independent variables need to be controlled (such as angle

of attack) they too must be included in the object list.

A full explanation of object lists will be presented later. For now, we'll only work with a few simple
examples. Suppose we have a TOAD file with the following variables:

deltacp pressure

temp temperature

x/c nondimensional chord location of the control point
2y/b nondimensional semispan location of the control point
alpha angle of attack (in degrees)

where dependent variables deltacp and temp are functions of independent variables x/c, 2y/b, and
alpha. Further, there are mutiple values of x/c within each value of 2y/b, and there are multiple values
of 2y/b within each value of alpha. Let's also assume that there are 10 chordwise control points along
each spanwise station.

To tabulate pressure along a spanwise station (let's say 80% outboard of the wing root, or 2y/b=.8) we
enter the directive

tabulate deltacp x/c 2y/b .8
which reads “tabulate all values of deltacp and x/c when 2y/b equals .8." If there was only one angle
of attack we'd see ten values, just as we expect. If, however, there are 5 angles of attack on the file,
we'd see 50 values (10 x 5). To avoid this, we should also specify controlling values for alpha, such as
tabulate deltacp x/c 2y/b .8 alpha 10
which reads “tabulate all values of deltacp and x/c when 2y/b equals .8 and ajpha is 10 degrees.”

Using the same file, suppose we instead want to tabulate temperature and span location along the
leading edge (x/c =.05) at an angle of attack (ajpha) of 15 degrees. The directive is

tabulate temp 2y/b x/c .05 alpha 15

If we want to see pressure at the tip (2y/b =.95) leading edge (x/c =.05) as a function of angle of attack
(alpha), we use the directive

tabulate deltacp alpha 2y/b .95 x/c .05

How do we know when we may use targeting and object lists? Let’s look at the help text for command
tabulate :

TABULATE displays the targeted portion of the TOAD file.
syntax: Tabulate [object 1list]

object list see the help text for command Target
If omitted, the default target 1list
is assumed.

aliases: tabul tab type typ ty print pri

It says that the tabulate command has no parameters and may contain an optional object list. Further,
when the object list is omitted, the default target list is used in its place. The default target list serves
as a backup specification whenever a direct object list isn't provided. So far we haven't used a default
target list, only direct object lists. To illustrate how a default target list may be used, the previous
example,

tabulate deltacp alpha 2y/b 95 x/c .05
may also be entered as

target deltacp alpha 2y/b .95 x/c .05
tabulate

Why use two directives? Using target creates a default target list which will be used by all subsequent
directives when and if a direct object list is omitted. This is particularly useful when you aré performing
a series of manipulations on the same data subset -- set the default target once, then let subsequent
directives assume that same data subset for their operations. For example, the directive sequence

target temp probe_id alpha 15 30
tabulate

convert temp rankine2kelvin
tabulate

establishes a default target, tabulates the data subset, converts from Rankine to Kelvin those
temperatures associated with 15-30 degrees angle of attack, then retabulates the data subset.
Without a default target the same process would require the directives

tabulate temp probe_ld alpha 15 30
convert temp rankine2keivin alpha 15 30
tabulate temp probe_id alpha 15 30

What happens when the two types of target lists are mixed? Consider the directive sequence

target deltacp 2y/b .85 .95 alpha
tabulate temp x/c .05 .15 alpha 15 20
tabulate

The direct object list within the first tabulate temporarily overrides the detault object list. Theretore,
the first tabulate report contains the variables temp, x/c, and alpha. The second tabulate report,
using the default target list, contains the variables deltacp, 2y/b, and alpha.

We've already used a few Editor directives in our previous examples but haven't gone into much detail
as to how they are constructed, what rules govern their use, and how they may be manipulated to suit
your individual needs. All readers who hope to use the Editor's full capabilities must have a complete

understanding of the principles presented here.

Commands, Parameters, and Keywords

An Editor directive begins with a command which may be followed by one or more parameters and
keywords. For example, the directive

sort Mach

uses the command sort and has the parameter Mach (this directive uses the data in Mach to control
sorting the file).

Each individual item is separated from its neighbors using a comma or one or more blanks. This same
directive could also be entered in any of the following forms:

sort,Mach

sort, Mach
sort ,Mach
sort , Mach
sort Mach

Keywords are used to indicate specific actions within directives. For example the directive
convert temp rankine2kelvin

uses the command convert, the parameter temp, and the keyword rankine2kelvin (this directive
converts temperatures from a Rankine scale to a Kelvin scale).

Parameter Type

Most Editor commands accept a variety of parameter types. For example, the sqrt command, which
calculates square roots, can be in any of the following forms:

sqrt flowrate
sqrt maxarea
sqrt 12
sqrt 5*7

where flowrate might be a variable within the active TOAD file, maxarea a symbol, 12 a numeric value,
and 5°7 a simple numeric expression. Obviously the type of parameter used should be appropriate
for the command. For example, a negative value is inappropriate for a square root function and a
fractional value is improper for a factorial (n!) operation.

'Simple Expressions
At times it is convenient to express a numeric value as a simple expression. For example, “.333333"
can be entered much faster, clearer, and more accurately as “1/3". Any of the four basic arithmetic
functions (+,-,"/) may be used once within a simple expression. Thus the expressions

13

12-4.3

5.6+1.234

9*25.5

are all valid. Do not use parentheses (), brackets [], or braces {}.

Aliases

Aliases are alternative or abbreviated names for the same item. Commands and keywords generally
have a number of aliases. Variables rarely, if ever, have aliases. For example, the directive

convert temp rankine2kelvin
could also be entered as

con temp r2k
The command convert has been replaced with the alias con, and the keyword rankine2kelvin has
been replaced with the alias r2k. Notice that the variable name, temp, was nof aliased. The on-line
help facility provides a list of aliases available for each command.
Omitted Parameters
At times you may wish to omit a parameter. For example, the directive

scan test report

scans the TOAD file test and writes the resulting information to file report. If you omit the report file
report, the directive becomes

scan test

in which case the Editor displays the report to your screen. Similarly, if you omit the TOAD file test the
directive becomes

scan ,, report

in which case the Editor assumes the active TOAD file. In fact, the directives
scan,,report
scan ,, report

scan, ,report
scan , , report

10

are all equivalént. Two consecutive commas are the only way to indicate an omitted parameter or
keyword.

Quotation Marks
Suppose we have a TOAD file containing the variables

node
inner temp
outer temp

How would we tabulate the inner and outer temperatures as a function of the node ID? The directive
tabulate node Inner temp outer temp

asks to tabulate the variables node, inner, temp, outer, and temp, which isn't correct. The solution is
to use quotation marks to indicate embedded blanks within a single item. For example, the directive

tabulate node ‘Inner temp’ ‘outer temp’
or

tabulate node “Inner temp” “outer temp”
or

tabulate node ‘Iinner temp’ *“outer temp”

asks to tabulate the variables node, inner temp, and outer temp, which is correct. However, the
directive

tabulate node ‘inner temp” “outer temp’
or
tabulate node “inner temp’ ‘outer temp”

improperly mixes single and double quotation marks.

Assumed Commands

Sequences of the same command may be streamlined using the “assumed command” feature. For
example, the directives

define pl=3.14159

deflne e=2.71828

deflne ¢=2.99793E8
could also be written as

define pi=3.14159

“ e=2.71828
“ c=2.99793E8

11

Continuations

Some directives may be too long to fit within a single 80-character entry and must be continued on
another line. The continuation character is the ampersand (&). For example, the directive

target deltacp temp x/c 2y/b .95 alpha 10
could also be entered as

target deltacp temp &
x/c 2y/d .95 alpha 10

oras

target &
deltacp temp &
x/c &

2y/b 95 &
alpha 10

Terminating an entry with the continuation character allows you to provide the remainder of the
directive on subsequent entry lines. The Editor responds by replacing the regular edit> prompt
with the . .edit> prompt. Up to 800 characters (including any embedded blanks) may be entered
for a single directive, spread over as many entry lines as you wish.

The continuation feature is commonly used to arrange complex directives more clearly. Our previous
example directive

target deltacp temp x/c 2y/b .95 alpha 10
creates a target object list containing the dependent variables deltacp and temp, as controlled by the
independent variables x/c (all values), 2y/b (at 95% span), and alpha (at 10 degrees angle of attack).
Using continuations, we might rewrite it as
target deltacp temp &
xic &
2y/b 95 &
alpha 10

which many users find easier to read.

Comments
Any entry which begins with a pound sign (#) or exclamation point (!) is assumed to be a comment and
is not processed. This provides a way of including notes inside a startup file, directive file, macro, or
sassion file. For example, our previous example startup file

disable sesslon

set page 23

set tolerance 5%

define pl = 3.1415926

12

deflne e = 2.7182818
macro tab1
tabulate alpha deltacp 2y/b .95 x/c .05
endmacro
macro tab2
tabulate temp x/c .05 alpha 15
endmacro
macro fix
convert alpha degrees2radlans
convert temp rankine2kelvin
endmacro
might be clearer if we added some comments:
TOAD Editor startup file
turn off the sesslon recorder
disable sesslon

sot the screen size and default tolerance

* R * 3"

set page 23
sot tolerance 5%

define the mathematical constants pil and e

* 3R

1415926

define pl = 3.
e = 2.7182818

define

create two tabulation macros and one conversion macro

* B

macro tab1
tabulate alpha deltacp 2y/b .95 x/c .05
endmacro

macro tab2
tabulate temp x/c .05 alpha 15
endmacro

macro fix
convert alpha degrees2radians
convert temp rankine2kelvin
endmacro

#

end of startup flle

All comments, except those within the startup file, are passed to the session file, allowing
explanations to be inserted during a long or complicated editing session.

13

Summary of Speclal Characters

The Editor reserves many characters for special purposes. They are:

#or!

[blank]

[0

When either is the first character in a directive, the entire entry is assumed to be a
comment.

A general separator. For example, commas separate arguments within a directive or
numeric values within a wart id list. Two consecutive commas indicate an omitted item.

Also a general separator. Like commas, blanks may also be used to separate items
within a list. Unlike commas, however, the number of consecutive blanks between
items is insignificant. When blanks and commas aré intermixed, the commas take
precedence.

A single quotation mark is commonly used to enclose a variable name which contains
an embedded blank. For example, the variable name

test panel

would normally be interpreted as two names, test and panel. Using single quotes
‘test panel’

preserves the embedded blank.

Double quotation marks can always substitute for single quotation marks. For
example, the previous variable name test pane! could also be specified as

“test panel”

Double quotes can also be used to clarify names with an embedded single quote
used as an apostrophe. For example,

RPM's
could be clarified as
llRvasn

Finally, double quotes also indicate an assumed command. For example, the
directive sequence

define deft 1000

define def2 2000

define def3 3000
could also be written as

define deft 1000
* def2 2000
“ def3 3000

14

The default continuation character. When the last character in a non-comment entry,
an ampersand is interpreted as a continuation mark and the next entry is appended.
For example, the directive
tabulate press temp port [1,20] model 34 run 1025
could be broken up into the sequence
tabulate press temp &
port [1,20] &
model 34 &
run 1025
The continuation character may be changed via the set command.

The default macro character, discussed in Section 5, “Directive Files and Macros.” It
too may be changed via the set command.

15

16

Section 4
Interactive Use

This section introduces most of the Editor's commands. Organized as a tutorial, it begins with the
simpler ones and builds up to the more complex ones. If you are a new user and wish to learn all of the
Editor’s features we urge you to skim this entire section and try out new commands as they pique your
curiosity. If you are an experienced user you may find the detailed information and recommendations

useful.

Most of the examples in this section do not use aliases for commands or keywords. This is done to
improve clarity. In reality, aliases are frequently used and have no adverse effect upon the Editor's
performance or the TOAD files’ contents. Likewise, the examples may not demonstrate the best way
of performing a particular manipulation; many were fabricated solely for the purpose of illustrating how
a specific command might be used.

Finally, remember that the terminal “screen” is actually the standard output device you have assigned.

If you are working interactively the standard output device would indeed be your terminal screen. If
you redirect your output it will go to a file rather than to the screen.

Files

The user is responsible for ensuring that any requested TOAD files are available to the Editor. This
normally requires that you have at least “read” permission. You will need “write” permission for those
TOAD files you plan to create or rewrite.

Execution

How the Editor is executed depends entirely upon the host operating system. Through the use of
procedures, global definitions, or shell scripts, most installations require only that you enter

toaded

to start execution. Regardless of the host operating system, the following welcome banner appears:

T OATD File Editor

Release 1.0 October 1990

The release number and date will change as new versions of the Editor are installed.

To stop execution, enter the directive

PRECSDING PAGE BLANK NOY FRL.MED

CMeanr TT enpumovar o

17

end
or any of its aliases,
stop
halt
exit
exl
quit
qui
q

On-Line Help
Help is readily available. Atthe edit> prompt enter
h
or, if you prefer,
help
and a list of all commands appears. If the list stops without the edit> prompt, you're probably at a
page break -- just press the return key to keep going. Or, if you'd rather cancel the list, enter g and

press the return key.

At the conclusion of this help list, or anytime you're at an edit> prompt, you can find out more by
entering the directive

h command

where command is the name of the command you want to know more about. For starters, you might
inquire about help itself by entering

h help
to verify that h is indeed an alias for help.
The help tacility was the very first module installed in the Editor and to this day it remains the best

source for quick, up-to-date information. You are urged to use the on-line help facility for most of your
needs and to refer to this document for those occasions when the help facility is inadequate.

Environmentals

There are a number of items which, while not directly affecting the contents of any TOAD file, do
control aspects of the interactive dialog. Because they affect only the Editor's environment they are
called environmentals. The Editor initializes all environmentals to their default settings. You may

change any environmental via the set command. The general formis:

set environmental value

18

where environmental is the keyword identifying the environmental being changed and value is its
new value or state. Similarly, you may display any environmental’s current setting via the show
command. lts general formis:

show environmental

where environmental is the keyword identifying the environmental being displayed. For on-line
assistance with either the set or show command, or to see a list of the aliases for any environmental
keyword, use the on-line help facility:

h set
h show

There are three types of environmentals: numeric, text, and toggle. Numeric environmentals contain
whole or fractional constants (e.g., the default tolerance). Text environmentals contain a single
character (e.g., the directive continuation character). Toggle environmentals are turned “on” or “off"
(e.g., the AutoSave protection toggle). Each group of environmentals is individually presented
below.

Two numeric environmentals are available: page length and the default tolerance. Page length is
the number of text lines displayed before a page break occurs. For example, without a page length, if
your screen had a capacity of 24 lines, and a tabulate directive created 50 lines, you'd watch the first
26 lines scroll right off the screen. Using the default page length of 20, the tabulation breaks every 20
lines, then waits for your signal. Pressing the return key continues the tabulation -- entering g and
then pressing the return key stops the tabulation (but not the Editor).

To change the page length, enter

set page n
where n is the number of lines your screen can handle. Zero, negative, or fractional page lengths are
not accepted. Batch users may prefer to remove the page size limit (and avoid unexpected prompts
to continue with a display) by using the directive

set page unlimited

or

set page nolimit
To display the current page length (whether you altered it or not), use the directive

show page
The default tolerance is used whenever an item within a targeting object list omits a tolerance
(more on this later). There are two types of tolerances: absolute and relative. An absolute tolerance is
an unvarying quantity. For example, the specification “10 plus or minus 5" creates the interval [5,15}.
A relative tolerance varies according to its target value. For example, the specification “10 plus or
minus 5% creates the markedly different interval [9.5,10.5). Initially, the Editor establishes the default
tolerance to be relative, at 1%.
To declare a new absolute tolerance, enter the directive

set tolerance value

19

where value is the new detault tolerance. Zero or negative tolerances are not accepted. To declare a
new relative tolerance, the directive is

get tolerance value %

Note

The only difference between declaring an absolute tolerance and declaring a relative
tolerance is the inclusion of the percent sign (%).
To display the default tolerance and its type (whether you changed it or not), use the directive
show tolerance
Two text envionmentals are available: the continuation character and the macro character. The
continuation character is used to mark the end of an entry which continues on the next line. It is

initially set to an ampersand (&). For example, the entries

target deltacp &
x/c 2y/b .94

are interpreted as the single directive
target deltacp x/c 2y/b .94

because the continuation character (&) appears at the end of the first entry. You may change the
continuation character to any other character by entering

set contchar x
where x is the new continuation character. To restore the original continuation character, enter
set contchar &
or, more simply,
restore contchar
which assumes that you want to restore the previous continuation character.
The macro character is used to mark dynamic variables within a macro definition. It is initially setto a
dollar sign ($). A full discussion of using the macro character is presented in Section 5, “Directive Files
and Macros.” For now, our concern is how it can be changed using the set command:
set macrochar x
where x is the new macro character. To restore the original macro character, enter

set macrochar $

or, more simply,

20

restore macrochar

which assumes that you want to restore the previous continuation character.

There are nine toggle environmentals: MacroEcho, OverWrite, AutoSave, EniryEcho, ShoWartList,
InfoMess, Session, Expand, and History. In general, each may be turned on (enabled) by entering

set foggle on

or
set loggle yes
or
set foggle true
or

enable toggle

where toggle is the keyword identifying the toggle you want changed. Similarly, any may be turned
off (disabled) by entering

set foggle off

or
set toggle no
or
set foggle false
or

disable toggle
The current state of any toggle may be displayed by entering
show toggle
and the current states of all toggle environmentals may be displayed by entering

show toggles

or
show Indicators
or
show states
or
show flags
or

show switches
Each toggle’s purpose is discussed in the following paragraphs.
Toggle MacroEcho controls whether directives are echoed during the execution of a user-defined

macro. When enabled, each directive in the macro's script is displayed, in brackets, as it is performed
during the macro’s execution. When disabled, no such information is provided. It is initially enabled.

Note

Enabling the MacroEcho toggle automatically enables the OverWrite and AutoSave

21

toggles.

Toggle OverWrite controls whether you are prompted for a confirmation when you ask to overwrite
an existing external file. When enabled, the prompt

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

appears whenever a directive attempts to overwrite an existing file. Entering “yes” tells the Editor to
go ahead and overwrite the file. Entering “no” instructs it not to perform that directive. When the
OverWrite toggle is disabled, no such prompt appears and external files are overwritten without
warning. It is initially enabled.

Note

The OverWrite toggle is automatically enabled when the MacroEcho toggle is
enabled.

Toggle AutoSave controls the built-in safety feature which keeps you from inadvertently stopping
the Editor without saving changes made to the active TOAD file. When enabled, the prompt

The active TOAD file’s contents have not been saved.
Do you really want your last command performed ?

appears whenever you attempt to end an editing session in which you've altered the active TOAD
file’s contents without first saving your changes to an external TOAD file. Entering “yes” instructs the
Editor to go ahead and end the session. Entering “no” keeps the editing session active, giving you a
chance to save the changes. When the AutoSave toggle is disabled, no such prompt appears. Itis
initially enabled.

Note

The AutoSave toggle is automatically enabled when the MacroEcho toggle is
enabled.

Toggle EntryEcho controls whether or not directives are echoed as they are read. When enabled,
every directive accepted, whether from the keyboard or from a directive file, is echoed back to your
screen (or whatever you have assigned as the standard output device). This is above and beyond the
normal echoing provided by the host operating system. When the EntryEcho toggle is disabled, the
directives are not echoed. Itis initially disabled.

Helpful Hints
When the EntryEcho toggle is enabled and you enter a directive interactively, the
operating system echoes the directive as you type it and the Editor echoes it after
you press the RETURN key, in effect echoing the directive twice. We suggest leaving
the EntryEcho toggle disabled during an interactive editing session.

The toggle is, however, particularly useful when using directive files. Under normal

22

circumstances, the Editor displays little if any progress information after you've started
executing the contents of a directive file. If, at the beginning of the directive file, you
enable the EntryEcho toggle, each directive is displayed as it is executed, providing a
live report of the Editor's progress. We highly recommend this practice, and offer the
following as a pattern for all of your directive files:

Enable entryecho
directive
directive

directive
Disable entryecho

Additional information regarding directive files can be found in Section 5, “Directive
Files and Macros.”

Toggle ShoWartLIst controls the format of wart ID target list reports. When enabled, a full wart ID list
is displayed in response to a show target directive. When disabled, a full list may or may not appear,
depending upon its size. A more detailed description of this toggle is presented with the target
command, described later in this section. This toggle is initially disabled.

Toggle InfoMess controls whether or not informative messages are written after select operations.
For example, with the InfoMess toggle enabled, a tabulate command displays the requested data wart
subsets and then tells you how many were displayed. Similarly, mathematical commands, such as
divide, perform their operations and then tell you how many data warts were changed and how many
improper operations (e.g., dividing by zero or finding the square root of a negative value) were
attempted. When the InfoMess toggle is disabled, no such messages appear. This toggle is initially
enabled.

Toggle Sesslon controls the “door” for the session file. When enabled, all directives interpreted are
written to the session file (“open door”). When disabled, no directives are routed to the session file
(“closed door”). The Session toggle is initially enabled.

As an illustration, the directives

set page 23

set tolerance 5%

disable session

define pl = 3.1415926

detine e = 2.7182818

macro tab1

tabulate alpha deltacp 2y/b .95 x/c .05
endmacro

enable session

macro tab2

tabulate temp x/c .05 alpha 15
endmacro

create the sessionf le

set page 23

23

set tolerance 5%

disable session

macro tab2

tabulate temp x/c .05 alpha 15
endmacro

Toggle Expand controls whether or not directives executed as a result of using a macro appear in
the session file. A full discussion of this toggle is presented in Section 5, “Directive Files and Macros.”
It is initially disabled.

Toggle History is very similar to the Session toggle. When enabled, interpreted directives are
written to the directive history. When disabled, the directive history remains idle. In other words, if
you're entering a series of directives which you may iater want to repeat via the directive history, the
History toggle should be enabled. If, on the other hand, you're entering a series of directives which

you'd rather not have displace the current contents of the directive history, the History toggle should
be disabled. Initially, the History toggle is enabled.

Symbols
There are times when you may wish to use a session variable or symbol to represent numerical data.
For example, accurate values for pi and e are troublesome if they must be entered whenever needed.
instead, you may create a symbol, which is automatically replaced with its numeric equivalent. For
example, to create a symbol for pi, enter

define pi 3.1415926

or
define pl = 3.1415926

Then, when the symbol pi appears where a number is expected, it is automatically converted. As
another example, the directives

define epsllon = .001
set tolerance epsilon

create the symbol epsilon and then use its value to set the default tolerance. Similarly, the directives

define angle 20
target 2y/b .95 alpha angle

create the symbol angle and then use its value to create a target object list of 2y/b=.95 and alpha=20.
To change the value of a symbol, use the redefine command. For example, the directive
redefine alpha 30

assigns a new value to the symbol alpha. Although redefine is designed to assign new values to
existing symbols, it also creates new symbols. For example, the directive

redefine mach .6

assigns the value .6 to the symbol mach. If mach already existed, it is reassigned. If mach did not
already exist, it is created.

24

To display all existing symbols, enter
show symbols
To display the value of any symbol, use the directive
show symbol symbol!
where symbol is the name of the symbol to be displayed.
To rename an existing symbol, use the directive
rensymbol old_name new_name
where o/d_name is the name of the symbol being renamed and new_name is its new name. Both
parameters are required -- the Editor cannot make any assumptions if either or both are omitted. In

addition, old_name must be an existing symbol; new_name cannot be an existing symbol, the name
of an active file variable, or a numeric image (e.g., “4").

To delete an existing symbol, use the directive
deilsymbol symbol!

where symbol is the name of the symbol to be deleted.

Warnings

When used to set other variables (such as the default tolerance or target angle of
attack, as shown above), the symbol is converted to a numeric constant. Therefore,
setting the default tolerance to symbol epsilon actually sets it to the value .001, potto
the symbol epsilon. Subsequent changes to the symbol epsilon will not affect the
retained value for the detfault tolerance.

You cannot create a symbol whose name duplicates one of the active file's variable
names. However, you can create a symbol before opening a TOAD file containing a
variable with the same name. This could create severe problems when using target
object lists. When this situation occurs the Editor writes a warning to your screen hut

icti inition. We strongly urge you to either
avoid this situation altogether or, at the very least, change the symbol's name or the
variable’s name within the active TOAD file.

File Operations

A number of commands are available for manipulating entire files. The open command initiates a
TOAD file for editing. The save command writes the active file back to disc. The close command
aborts the editing session without retaining any changes. Commands scan, report and menu

provide information about TOAD files. Each of these commands is individually presented.

You must open a TOAD file before any editing operations can be performed. To open a TOAD file,
use the directive

25

open file

where file is the name of the TOAD file being opened. If your TOAD file contains variable names
which are center- or right-justified, open automatically converts them to left-justified. if any of the file’s
variable names are blank, duplicates of each other, match existing symbol names, of could be
mistaken for a numeric image, a brief warning message appears.

The open command creates an active TOAD file. As explained in Section 2, “Concepts,” an active
TOAD file really isnt a file at all, merely the Editor's internal representation of a file. Thus open creates
acopy of the TOAD within the Editor and it is this copy which is subsequently affected, not the original
disc file. For this reason, if changes made to the active TOAD file are to be retained you must
specifically request that it be written back 1o a disc file. To save the active TOAD tile, enter the directive

save
or
save file

where file is the name of the file being written. If the file name is omitted, the TOAD file originally
opened is assumed. If the named file does not exist, it is created. If the file does exist, the message

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

may appear, depending upon the state of the OverWrite protection toggle. Answering “yes” instructs
the Editor to overwrite the file. Entering “no” instructs it to ignore the previous save command.

Helpful Hints
Periodic saves are highly recommended during editing sessions. The associated
disc file is kept updated and a recent backup file is available in case you make a severe
change by mistake.

It you make such periodic backups to the same external file, the above message
about overwriting an existing file appears repeatedly. To disable the built-in safety
teature which issues this warning, use the directive

disable overwrite

For more information concerning the external file overwrite protection, refer to the
discussion of the OverWrite toggle on page 21.

Warning
Once a TOAD file is rewritten, its original contents are lost and cannot be recovered. It

the original contents of a TOAD file are 10 be retained for future use, we strongly
recommend you first make a copy of the file, before executing the Editor.

Under certain circumstances, such as immediately after a catastrophic error, it may be advantageous to
abandon the current active file and start anew. To do this, enter the directive

26

close

Unlike save, the close command does not retain the changes made to the active file. It should only be
used to abandon the current active file. If the file was altered during the session, the message

The active TOAD file’s contents have not been saved.
Do you really want your last command performed ?

may appear, depending upon the state of the AutoSave protection toggle. Answering “yes” instructs
the Editor to go ahead and abandon the current active file. Entering “no” instructs it to ignore the
close command and retain the current active file.
Once a TOAD file has been opened, you may ask for a descriptive report by entering

scan
which creates a report in the form

This TOAD file contains 6 variables:

mach cldes planform
x/c 2y/b deltacp

. and has a total of 150 data warts.

This report indicates that the variable order within this TOAD file is mach, cldes, planform, x/c, 2y/b,
and deftacp, listed from left to right. Command scan can also be used on external TOAD files by
entering

scan ffile

where ffile is the name of the external TOAD file to be scanned. In addition, you may ask the resulting
report to be written to a file, rather than to your screen. The directive is

scan ffile rfile
where tfile is the name of the external TOAD file to be scanned and rfile is the name of the external
file in which to write the report. f you want to scan the active file, and write the report to an external file,
you must omit the TOAD file name, as illustrated in the directive

scan,,report

Notice that the omitted parameter is marked with two consecutive commas.

The scan command and the concept of the active file are closely related. For example, if you open a
TOAD file called “test21” and then enter the directives

scan
scan test21

two identical reports are displayed. However, if you then delete a column from the active file, then

reenter the same directives, two different reports are displayed. Why? Because only the active file
has been altered, not the corresponding disc file. If you subsequently save the active file and then

27

reenter the directives the reports would again match, although both would lack one of the TOAD file's
original variables.

In addition to scan, there are two other commands which provide similar information. The report

command displays the number of variables and the number of data warts within the active TOAD file,
but does not list the variable names. For example, the directive

report
creates the report
This TOAD file has

6 variables
150 DATA warts

It is useful when you do not wish 1o see a long list of variable names. Like scan, command report
allows you to send the report to an external file, rather than to your screen. For example,

repont rfile

where rfile is the name of the external file in which to write the report. If omitted, the report is
displayed on your screen.

Command menu lists the variable names available within the active TOAD file, but does not display
the number of data warts. Its only form is

menu
which creates a report in the form
This TOAD file contains 6 variables:

mach cldes planform
x/c 2y/b deltacp

Targeting and Using Object Lists

There are two ways 1o target data subsets: directly and by default. A direct target is defined and used
whenever you use a directive with an explicit object list. A default target is defined using the target
command and is retained and used whenever a directive omits its object list.

The object list syntax, whether in a direct or default target definition, is the same. For example, in
order to display the values for pressure (deltacp) at an angle of attack of 20 degrees (ajpha=20) and a
wing semispan location of 95% (2y/b=.95), we can enter

tabulate deltacp alpha 20 2y/b .95 direct targeting
or

target deltacp alpha 20 2y/b .95 default targeting

tabulate

There are two formats for object lists: selection criteria and wart 1D lists. A selection criteria object list

28

qualifies a data wart only when its numeric contents meet some predefined guidelines. For example, a
data wart qualifies when its value for angle of attack falls between 10 and 30 degrees. A wart ID object
list selects data warts solely on the basis of their position within the TOAD file (e.g., the first six warts),
regardless of their numeric contents.

Each form provides unique advantages. The selection criteria format performs the intended targeting
even after data warts are sorted, removed, or inserted within the active file. It is sometimes called a
dynamic 1arget because it locates the qualifying data warts regardless of how many exist or where they
are positioned within the file. On the other hand, the wart ID list format is much easier to use,
assuming you already know the exact positions of the warts to be targeted. It is often called a static
target because it does not vary as the active file's contents are reorganized. Each format is individually
presented.
A selection criterig object list can be broken down into its subordinate items:

[data specification] [data specification)
Each data specification can be further broken down into:

variable [filter specification]

where variable is one of the available TOAD file variables. The filter specification can be further
broken down into:

minimum maximum

or

[minimum, maximum)
or

[minimum, maximum)
or

(minimum, maximum |
or

{minimum, maximum)
or

target_value [/ tolerance[%]]

It the filter specification is omitted, the entire column of data corresponding to the named variable is
selected. For example, the object list

alpha
selects all values of variable alpha, which is expected since no filter was established.

There are two ways to establish a numeric range. Using a minimum and maximum value pair creates
the interval directly. For example, the object list

alpha 10 30
or
alpha [10,30]

creates the interval [10,30], read “all values of alpha greater than or equal to ten, and less than or
equal to thirty.” Similarly, the object list

29

alpha [10,30)
creates the interval [10,30), read “all values of alpha greater than or equal to ten, and less than thiry.”
alpha (10,30}
creates the interval (10,30}, read “all values of alpha greater than ten, and less than or equal to thinty.”
alpha (1 0,30)
creates the interval (10,30), read “all values of alpha greater than ten and less than thiry.”

Either the minimum or maximum value can be replaced with a star (*), which indicates “no limit.” For
example, the filter specification

* 40
or

[*,40]
or

(*,40]

reads “all values less than or equal to forty.” Similarly, the filter specification

20 *
or

[20,"]
or

[20,%)

reads “all values greater than or equal to twenty.” In addition, the filter specification

. *

is allowed, but because it has the same effect as omitting the specification entirely, it is not
recommended. Thatis, the object list

alpha * * 2y/b * *
is equivalent to the object list
alpha 2y/b

Using a target value and optional tolerance offers more flexibility. In general, the selection range is
created as the target value, plus or minus the tolerance.

There are two very different types of tolerances: absolute and relative. An absolute tolerance is an
unvarying quantity. For example, the filter specification

10/5

reads “ten plus or minus 5, which creates the interval [5,15].

30

Note

We strongly recommend using a space before and after the slash (/") character when
specifying a target value / tolerance pair. Without any spaces, the filter specification

10/5

is interpreted as the simple numeric expression “ten divided by five,” or the value 2,
creating a very different interval.

A relative tolerance varies according to its target value. For example, the filter specification

10 / 5%
reads “ten plus or minus five percent of ten,” which creates the markedly different interval [9.5,10.5].
Initially, the Editor establishes the default tolerance to be relative, at 1%. However, you are free to
change both the tolerance value and its type using the set command, as previously described.

It the tolerance is omitted, the interval is defined as the target value plus or minus the default
tolerance. For example, the directives

set tol 5
target alpha 10

create a default target of alpha within the interval [5,15]. By comparison, the directives

set tol 5%
target alpha 10

create the default target of ajpha within the interval [9.5,10.5). Notice, however, that the directives
set tol 5
target alpha 10
set tol 5%
stili resuits in an alpha interval of [5,15]. Why? Because the target command established the interval
[5,15] before the default tolerance was changed -- therefore changing the default tolerance had no
effect upon the established interval for alpha.
All types of filter specifications may be freely intermixed. For example, the object list
alpha 10 2y/b .75 .95 x/c deltacp

selects alpha at ten degrees, span locations 75% through 95%, and all values of x/c and deltacp. In
use, the directives

target alpha 10 2y/b .75 .95 x/c deltacp
tabulate

add deltacp pzero

tabulate

set a default target list, tabulate 2y/b, x/c, and deltacp which meet the targeting criteria, adds the value

31

of symbol pzero to deltacp within the targeted subset, and retabulates. As another example, the
object list

2y/b .85 x/c .05 alpha -20 * deitacp

selects span location 85%, chord location 5%, all values of alpha greater than or equal to -20 degrees,
and all values of deltacp. In use, the directives

tabulate 2y/b .85 x/c .05 alpha -20 * deltacp
tabulate 2y/b .95 x/c .05 alpha -20 * deltacp

tabulate leading edge (chord location 5%) pressure as a function of angle of attack, at span locations
85% and 95%, respectively.

A wart D object list can be broken down into its subordinate items:
warts mx mix

where warts is awart 1D list and mix is either awart ID listor a variable name. Eachwart ID list has the
form

i[Tj[BkIl
iftjlbkl]

whare i is the beginning wart index, j is the ending wart index, and k is the increment factor. For
example,

or

13

identifies wart #13;
1113

identities warts 1,2, 3,4,5,6,7,8,9, 10, 11, 12, and 13; and
1113b6

identifies warts 1, 7, and 13. Reversed lists may also be created. For example,
13t1b6

or

13t1b-6

yields warts 13,7, and 1, in that order.

The wart ID lists are prepared exactly as specified, even if duplicate or overlapping ID's result. For
example, the object list

1t7 7110 8t12

creates the wart ID list 1, 2,3, 4,5, 6, 7.7,8,9,10,8,9,10, 11, and 12. However, a negative wart iD
(e.g., “-5n) orawart D exceeding the number of data warts in the active file is not accepted.

32

Note
in the previous example the wart ID's 7, 8, 9, and 10 are specified twice. Does that
mean these warts will be used twice? No. A target object list only “qualifies” or

“disqualifies” each data wart. Thus, a data wart specified twice in an object list is
treated like a data wart specified only once -- it is considered “qualified.”

When variable names are not used within a wart ID object list, all columns of data are targeted. If any
names are used, only the columns associated with those variables are targeted. Thus the object list

1t61b6
targets eleven data warts and all columns, while the object list
1t31b6 deltacp x/c 2y/b
targets six data warts and three columns.
Wart ID object lists are somewhat order-independent. That is, the object list
116 deltacp 31t36 x/c 61t66 2y/b
creates the exact same target scheme as the object list
116 31136 61t66 deltacp x/c 2y/b
* 116 deltacp x/c 2y/b 31136 61t66
However, among wan lists and among variable names order is significant, as the object list
116 31136 61166 deltacp x/c 2y/b
creates a different target scheme than either
116 31t36 61t66 2y/b x/c deltacp
or

61166 31t36 16 2y/b x/c deltacp

When you open a new TOAD file for editing, the default target list is initially set to all, as if you entered
the directive

target all

This effectively qualifies all data contained on the active TOAD file for any subsequent operations. For
example, the directives

open test21
convert alpha r2d

perform the same function as the directives

open test21

33

convert alpha r2d all
or the directives
open test21
target all
convert alpha rad
To display the current default target, use the directive

show target

An example of a selection criteria default target scheme is

Variable Interval Value Tol
deltacp all - -
x/c all - -
2y/b [.9000,.9800) - _
alpha - 10 1%

where all of variables deltacp and x/c qualify, 2y/b qualifies only over the interval [.9,.98], and alpha
qualifies when it equals 10 degrees, plus or minus 1%.

Wart 1D list target schemes appear as
Wart ID list:
1, 2, 3, 4, 5, 6
Variables: all
where the first six warts are targeted, including all variables. Another form is
Wart ID list:
3, 4, 5, 6, 7
Variables:
deltacp x/c 2y/b

where the third through seventh warts are targeted, including only variables deltacp, x/c, and 2y/b. i
long series of warts are targeted the report may appear as

Wart ID list:
1t145b6, 6t1l50b6
Variables:

deltacp x/c 2y/b

34

which uses the abbreviated notation 1t145b6 and 6t150b6 rather than create the full list. You can
control this in either of two ways. First, enabling the ShoWarlList toggle forces the full list to appear,
regardless of its length (obviously, this is not recommended for extremely long wart ID lists). Second,
you can use the keywords full or brief within the show target directive. For example,

show target full
asks for a full wart ID listing, such as
Wart ID list:
1, 2, 3, 4, 5, 6
Variables: all
regardless of how long a full listing might be. The directive
show target brief
asks for an abbreviated wart ID listing, such as
Wart ID list:
1t145b6, 6t150b6
Variables:
deltacp x/c

regardless of how short a full listing might be.

Note

2y/b

Toggle ShoWartList and the keywords full and brief affect only how wart ID list target
schemes are displayed and have no effect upon how selection criteria target scheme

reports are displayed.

Tabulating

There are two commands which display the contents of the active TOAD file: tabulate and stats.
Command tabulate is used to display selected subsets of raw data. Command stats provides a
statistical profile of a selected variable. Each command is presented individually.

Baw Data

Command tabulatedisplays selected sets of raw data. Its form is

tabulate [objectlist]

where the optional object list selects the desired data subset. If omitted, the current default target list

is assumed.

35

The object list provides two types of information: the data subset selected and those variables to be
displayed. For example, using the example file toad1, the directive

tabulate 2y/b .9 .94 x/c deltacp

creates the report

wart # 2y/b x/c deltacp
133 0.900000 0.416667E-01 6.09007
134 0.900000 0.208333 3.02826
135 0.900000 0.375000 2.12340
136 0.900000 0.541667 1.60278
137 0.900000 0.708333 1.17190
138 0.900000 0.875000 0.711813
139 0.940000 0.416667E-01 7.38284
140 0.940000 0.208333 3.76906
141 0.940000 0.375000 2.71414
142 0.940000 0.541667 2.03536
143 0.940000 0.708333 1.50435
144 0.940000 0.875000 0.937932

which tabulates pressure (deftacp) across all airfoil chord locations (x/c) at a 90-84% (.90-.94) wing
semispan location (2y/b). This same report could also be generated using the directive

tabulate 133t144 2y/b x/c deltacp

Bacause of screen width limitations, only four columns of data can be displayed. If you ask to tabulate
more than four columns of data (directly or via the default target list) only the first four appear.

in the above example 2y/b and x/c appear to be independent variables and deltacp appears to be a
dependent variable. When possible, tabulate attempts to simply the resulting repon by eliminating
those variables which you request to remain constant (usually independent variables). For example,
the directive

tabulate 2y/b .9 x/c deltacp

creates the slightly different report

wart # x/c deltacp
133 0.416667E-01 6.09007
134 0.208333 3.02826
135 0.375000 2.12340
136 0.541667 1.60278
137 0.708333 1.17190
138 0.875000 0.711813

Notice that, while the numbers are the same, the variable 2y/b doesn't appear in the report. Why?
The directive specifically requests that 2y/b remain at .9 — tabulate therefore assumes the value for
2y/b is already known and there’s no need to repeat it in the report.

36

Helpful Hint
When you want to display more than four columns of data, consider “‘windowing" the
active file. A simple windowing technique is illustrated in the following dialog (the bold
entries indicate user input):

edit> open test
edit> scan

This TOAD file contains 6 variables:

coll colz2 col3
colid colb colé
col? col8

. and has a total of 40 data warts.

edit> tabulate 1t20 coll c¢ol2 col3 cold
edit> tabulate 1t20 col5 colé col? col8
edit> tabulate 21t40 coll col2 col3 cold
edit> tabulate 21t40 col5 colé col7 col8

which creates four “windows,” each four columns wide and 20 rows long, displaying
the entire contents of the active TOAD file.

Statistical Profile

Command stats displays a statistical profile of the selected data set. Its form is
stats variable [objectlist]

where variable is the name of the variable to be profiled, and the optional object list selects the
desired data subset. If the object list is omitted, the current default target list is assumed.

The report created by stats displays basic statistics, including

- frequency count

- sum

- range

minimum and maximum values

- mean and unbiased variance

- biased standard deviation and standard error

For example, using the example file toad1, the directive
stats deltacp all

profiles all occurrences of deltacp and creates the report

Frequency Count: 150
Sum: 213.588
Range: 10.2899

37

Minimum: 0.292267

Maximum: 10.5822

Mean: 1.42392

Variance: 2.07422 (unbiased)
Standard Dev: 1.44504 (biased)
Standard Error: 0.117987 (biased)

The directive
stats deltacp 2y/b .9

profiles deltacp only at a 90% (.9) wing semispan location (2y/b), which creates the report

Frequency Count: 6

Sum: 14,7282

Range: 5.37825

Minimum: 0.711813

Maximum: 6.09007

Mean: 2.45470

Variance: 3.17727 (unbiased)
Standard Dev: 1.95262 (biased)
Standard Erxror: 0.797154 (biased)

Command stats is particularly useful when determining which variables are constant and which are
not. For example, the directive

stats mach

creates the report

Freguency Count: 150

Sum: 90.0000

Range: 0.

Minimum: 0.600000

Maximum: 0.600000

Mean: 0.600000

Variance: 0. (unbiased)
Standard Dev: 0. (biased)
Standard Error: 0. (biased)

The mean of .6 and range of zero indicate that variable mach is constant at .6 throughout this file.

The Undo Command

Up to this point we've discussed commands which don't change the contents of an active TOAD file.
Beginning with the next subsection, Moving Data, we will be presenting commands which have the
potential of making substantial changes 1o the active file. But before we begin with these commands
you should be aware of undo.

The undo command allows you to restore the active file back to the state it was in immediately before

the most recent directive which changed it. That is, undo removes the effects of the last directive
which changed the active file. For example, it you open a TOAD file, then add 100 to the contents of a

38

column of data, you've changed the active file. An undo would restore the active file’s contents back
to what they were before the add operation.

The mechanics of an undo are simple. The Editor copies the active file to the undo buffer when it
receives a directive which looks like it would change the active file. Then it performs the directive. A
subsequent undo simply exchanges the contents of the active file and the undo buffer. A graphic
portrayal of this sequence is

active file copied to the undo buffer

,V] m_—m;i Ie o 1] I undo buffer ﬂ

directive executed

the shading indicates a modification
as a result of the directive executed

|| undobuter T

undo simultaneous exchange
H TR

active file

undo buffer

active file

We want to make four points clear. First, only a directive which changes the active file can be undone
(virtually none of the commands discussed so far change the active file). For example, suppose you
open a TOAD file, establish a new target (using command target), add a constant to a column of data
(command add), tabulate the results (command tabulate), then use undo. The most recent command
used is tabulate, but the most recent command which changed the active file is add. Therefore the
undo command undoes the effect of add, not tabulate. (This makes intuitive sense when you
consider what it means to undo a tabulate or scan.)

Second, only the most recent operation which changed the active file can be undone. For example,
suppose you open a TOAD file, establish a new target, add a constant to a column of data, subtract a
constant from another column of data, tabulate the result, then use undo. Which operation is
undone? Both the add and subtract operations changed the active file, but the subtract operation is
the more recent and therefore it is undone.

Third, using two consecutive undo commands does NOT undo the previous two operations.

Because undo simply exchanges the contents of the active file and the undo buffer, the second
undo undoes the effects of the first undo. This has two ramifications: 1) undo does not correct a
mistake made many operations ago (again, only the most recent operation which changed the active
file can be undone); and 2) undo itself can be undone.

Fourth, only the active file is restored to its previous state. Environmentals, symbols, and macros are

not affected by undo. Further, changes made to the default target object list cannot be revoked via
the undo command.

39

Moving Data
Copying from One Column to Another

Command copy moves data from one column to another. lts formis

copy variable1 variable2 [object list]
where variable1 identifies the source column, variable2 identifies the destination column, and the
optional object list selects the desired data subset. Both variables must exist within the active file and
each must be unique. If the object list is omitted, the current default target list is assumed.

To illustrate how copy may be used, consider the following dialog:

edit> open test
edit> scan

This TOAD file contains 3 variables:

Y

and has a total of 5 data warts.

edit> tabulate

wart # X y z
1 101.000 201.000 301.000
2 102.000 202.000 302.000
3 103.000 203.000 303.000
4 104.000 204.000 304.000
5 105.000 205.000 305.000

edit> copy x Y
edit> tabulate

wart # x Y z
1 101.000 101.000 301.000
2 102.000 102.000 302.000
3 103.000 103.000 303.000
4 104.000 104.000 304.000
5 105.000 105.000 305.000

edit> copy z x 2t4
edit> tabulate

wart # X Y z
1 101.000 101.000 301.000
2 302.000 102.000 302.000
3 303.000 103.000 303.000

40

4 304.000 104.000 304.000
5 105.000 105.000 305.000

rnin
The original contents of the column selected to receive the data are overwritten.
It is your responsibility to ensure that data from the source column is appropriate for

the destination column. Improper use of the copy command can create worthless or
misieading TOAD files.

Sorting

Command sort performs either an ascending or descending sort of the selected data subset. Its
form is

sort variable order [objectlist]

where variable is the column of data on which the active file is soned, order is “ascend” (“a”) or
“descend” (“d") to indicate the type of sort, and the optional object list selects the desired data
subset. If order is omitted, an ascending sort is performed. If the object list is omitted, the current
default target list is assumed.

When a variable is sorted it is used as a guide to reorder the entire TOAD file or the selected data
subset. To illustrate this, using the example file toad?, consider the following dialog:

edit> open toadl
edit> target 2y/b .86 .94 x/c deltacp
edit> tabulate

wart # 2y/b x/c deltacp
127 0.860000 0.416667E-01 5.30779
128 0.860000 0.208333 2.59059
129 0.860000 0.375000 1.82227
130 0.860000 0.541667 1.36944
131 0.860000 0.708333 0.998986
132 0.860000 0.875000 0.604424
133 0.900000 0.416667E-01 6.09007
134 0.900000 0.208333 3.02826
135 0.900000 0.375000 2.12340
136 0.900000 0.541667 1.60278
137 0.900000 0.708333 1.17190
138 0.900000 0.875000 0.711813
139 0.940000 0.416667E-01 7.38284
140 0.940000 0.208333 3.76906
141 0.940000 0.375000 2.71414
142 0.940000 0.541667 2.03536
143 0.940000 0.708333 1.50435
144 0.940000 0.875000 0.937932

41

edit> sort x/c
edit> tabulate

wart # 2y/b x/c deltacp
127 0.860000 0.416667E-01 5.30779
128 0.900000 0.416667E-01 6.09007
129 0.940000 0.416667E-01 7.38284
130 0.860000 0.208333 2.59059
131 0.900000 0.208333 3.02826
132 0.940000 0.208333 3.76906
133 0.860000 0.375000 1.82227
134 0.900000 0.375000 2.12340
135 0.940000 0.375000 2.71414
136 0.860000 0.541667 1.36944
137 0.900000 0.541667 1.60278
138 0.940000 0.541667 2.03536
139 0.860000 0.708333 0.998986
140 0.900000 0.708333 1.17190
141 0.940000 0.708333 1.50435
142 0.860000 0.875000 0.604424
143 0.900000 0.875000 0.711813
144 0.940000 0.875000 0.937932
edit>

Notice that the associated values for 2y/b and deftacp are moved along with x/c as itis sorted. In
reality, entire data warts are moved according o how the guide variable is sorted, whether or not the
other variables have been targeted (sorting only the guide variable, without carrying along the
remainder of the data wart, would create a useless or misleading file). The target object list, therefore,
serves only to restrict the vertical (row-wise) scope of the data to be sorted, and has no effect on the
horizontal (column-wise) scope of the data.

Note

The sort command erases the default target list only if it uses the wart ID list format.
Selection criteria target schemes are not affected by sort.

Exchanging Data Between Columns
Command exchange swaps columns of data. Its formis

exchange variable1 variable2 [objectlist]
where variable1 and variable2 identify the two columns of data to be exchanged and the optional
object list selects the desired data subset. Both variables must exist within the active file and each
must be unique. If the object list is omitted, the current default target list is assumed.
Variable names are exchanged only when the entire data set is targeted (object list af). Otherwise,

only the targeted data are exchanged and the variable names remain unattered. To illustrate this,
consider the following dialog:

42

edit> open test
edit> scan

This TOAD file contains 3 variables:

X Y
press

and has a total of 6 data warts.

edit> tabulate

wart # b4 ¥ press
1 0.600000 0.250000 7.38284
2 0.600000 0.750000 3.76906
3 0.700000 0.250000 2.71414
4 0.700000 0.750000 2.03536
5 0.800000 0.250000 1.50435
6 0.800000 0.750000 0.937932

edit> exchange x y
edit> tabulate

wart # Y be press
1 0.250000 0.600000 7.38284
2 0.750000 0.600000 3.76906
3 0.250000 0.700000 2.71414
4 0.750000 0.700000 2.03536
5 0.250000 0.800000 1.50435
6 0.750000 0.800000 0.937932

edit> exchange x y x .7
edit> tabulate

wart # y X press
1 0.250000 0.600000 7.38284
2 0.750000 0.600000 3.76906
3 0.700000 0.250000 2.71414
4 0.700000 0.750000 2.03536
5 0.250000 0.800000 1.50435
6 0.750000 0.800000 0.937932
Warning

The second exchange directive in the previous dialog illustrates a situation in which
data for the two independent variables (xand y) are improperly exchanged. Because
the exchange command makes no assumptions regarding the active file's structure, it
is up to you to ensure that all exchanges are proper and suitable for the file being
edited. Note that the first exchange directive in the previous dialog is proper.

43

Commands exchange and sort are often used together to alter the hierarchy of the file's
independent variables. For example, consider the following dialog:

edit> open test
edit> scan

This TOAD file contains 3 variables:

X Y
press

. and has a total of 6 data warts.

edit> tabulate

wart ¥ X Y press
1 0.600000 0.250000 7.38284
2 0.600000 0.750000 3.76906
3 0.700000 0.250000 2.71414
4 0.700000 0.750000 2.03536
5 0.800000 0.250000 1.50435
6 0.800000 0.750000 0.937932

edit> sort y
edit> tabulate

wart # X y press
1 0.600000 0.250000 7.38284
2 0.700000 0.250000 2.71414
3 0.800000 0.250000 1.50435
4 0.600000 0.750000 3.76906
5 0.700000 0.750000 2.03536
6 0.800000 0.750000 0.937932

edit> exchange x Yy
edit> tabulate

wart # Y be press
1 0.250000 0.600000 7.38284
2 0.250000 0.700000 2.71414
3 0.250000 0.800000 1.50435
4 0.750000 0.600000 3.76906
5 0.750000 0.700000 2.03536
6 0.750000 0.800000 0.937932
edit>

Originally, variable x was the outermost independent, and variable y its subordinate, with press as the
dependent variable. After this sequence of directives, variable y is now the outermost independent,
and variable x its subordinate, a complete reversal!

44

in addition, the order of variables may be significant. For example, when the TOAD Gateway translates
TOAD files into POST (Program to Optimize Simulated Trajectories) files, it assumes the first variable
to be dependent and all remaining variables to be independent, with the outermost independent as
the last variable. In order to “condition” the above file for the Gateway's POST translator we need one
more operation:

edit> exchange y press
edit> tabulate

wart # press x Y
1 7.38284 0.600000 0.250000
2 2.71414 0.700000 0.250000
3 1.50435 0.800000 0.250000
4 3.76906 0.600000 0.750000
5 2.03536 0.700000 0.750000
6 0.937932 0.800000 0.750000

Now the file is properly conditioned for translation into the POST format.

Replacing Data
Changing a Variable’s Name
Command rename allows you to change a variable name within the active TOAD file. Its form is
rename old _name new_name
whére old_name is the name of the existing variable being changed and new_name is its new name.
Both parameters are required -- the Editor cannot make any assumptions if either or both are omitted.
In addition, old_name must be an existing variable, and new_name cannot be an existing variable or
symbol name (commands scan and menu display a list of the active file's existing variable names;
show symbols displays a list of the current symbols).
Using the example file toad1, the directive
rename deltacp pressure

changes the variable name deltacp to pressure, as illustrated in the following dialog:

edit> open toadl
edit> menu

This TOAD file contains 6 variables:

mach cldes planform
x/c 2y/b deltacp

edit> rename deltacp pressure
edit> menu

45

This TOAD file contains 6 variables:

mach cldes planform
x/c 2y/b pressure

edit>

Erasing Data

Command clear “erases” data cells (i.e., sets them to zero) without removing data rows or columns.
its form is

clear variable [objectlist]

where variable is the name of the variable to be cleared and the optional object list selects the desired
data subset. If the object list is omitted, the current default target list is assumed.

Using the example file toad1, the directive
clear deltacp 2y/b .94

substitutes zero for pressure data only ata 94% (.94) wing semispan location (2y/b), as illustrated in
the following dialog:

edit> open toadl
edit> target 2y/b [.90,.98] x/c deltacp
edit> tabulate

wart # 2y/b x/c deltacp
133 0.900000 0.416667E-01 6.09007
134 0.900000 0.208333 3.02826
135 0.900000 0.375000 2.12340
136 0.900000 0.541667 1.60278
137 0.900000 0.708333 1.17190
138 0.900000 0.875000 0.711813
139 0.940000 0.416667E-01 7.38284
140 0.940000 0.208333 3.76906
141 0.940000 0.375000 2.71414
142 0.940000 0.541667 2.03536
143 0.940000 0.708333 1.50435
144 0.940000 0.875000 0.937932
145 0.980000 0.416667E-01 10.5822
146 0.980000 0.208333 5.61437
147 0.980000 0.375000 4,43053
148 0.980000 0.541667 3.78733
149 0.980000 0.708333 3.15396
150 0.980000 0.875000 2.12793

edit> clear deltacp 2y/b .94
edit> tabulate

46

wart # 2y/b x/c deltacp

133 0.900000 0.416667E-01 6.09007
134 0.900000 0.208333 3.02826
135 0.900000 0.375000 2.12340
136 0.900000 0.541667 1.60278
137 0.900000 0.708333 1.17190
138 0.400000 0.875000 0.711813
139 0.940000 0.416667E-01 0.
140 0.940000 0.208333 0.
141 0.940000 0.375000 0.
142 0.940000 0.541667 0.
143 0.940000 0.708333 0.
144 0.940000 0.875000 0.
145 0.980000 0.416667E-01 10.5822
146 0.980000 0.208333 5.61437
147 0.980000 0.375000 4.43053
148 0.980000 0.541667 3.78733
149 0.980000 0.708333 3.15396
150 0.980000 0.875000 2.12793
edit>
Direct Replacement

Command assign allows you to set one or more raw data cells to a desired numeric value. Its form is:
assign value [object list]

where value is the numeric value being assigned and the optional object list identities the affected

raw data cells. If the object list is omitted, the current default target list is assumed. As an illustration of

how assign may be used, consider the following dialog:

edit> open test
edit> scan

This TOAD file contains 4 variables:

coll col2 col3
col4d

and has a total of 6 data warts.

edit> tabulate

wart # coll col2 col3 col4
1 101.0000 102.0000 103.0000 104.0000
2 201.0000 202.0000 203.0000 204.0000
3 301.0000 302.0000 303.001.0 304.0000
4 401.0000 402.0000 403.00)0 404.0000
5 501.0000 502.0000 503.0000 504.0000

47

6

edit> assign 991 1 col2

601.

edit> tabulate

wart #

e W

edit> assign 992 3t4 coll col2 col3

0000

coll

101.
201.
301.
401.
501.
601.

edit> tabulate

wart #

s W N

0000
0000
0000
0000
0000
0000

coll

101
201.
992
992
501.
601

.0000

0000

.0000
.0000

0000

.0000

edit> assign 993 5
edit> tabulate

wart #

N b W N

edit> assign 994 col4

coll

101
201.
992.
992,
993.
601

edit> tabulate

wart #

AU D W

edit>

.0000

0000
0000
0000
0000

.0000

coll

101.
201.
992
992
993.
601

0000
0000

.0000
.0000

0000

.0000

602.

0000

col?2

991.
202
302
402
502
602

0000

.0000
.0000
.0000
.0000
.0000

col2

991.
202
992
992
502
602

0000

.0000
.0000
.0000
.0000
.0000

col2

991.
202,
992.
992.
993.
602.

0000
0000
0000
0000
0000
0000

col?2

991.
202.
992.
992.
993.
602.

0000
0000
0000
0000
0000
0000

48

603.

0000

col3

103.
203.
.0000
.0000
.0000
603.

303
403
503

0000
0000

0000

col3

103.
.0000
.0000
.0000
503.
603.

203
992
992

0000

0000
0000

col3

103.
203.
992.
992.
.0000
.0000

993
603

0000
0000
0000
0000

col3

103.
203.
992.
992.
993.
.0000

603

0000
0000
0000
0000
0000

604.

0000

col4d

104.
204.
304.
404.
504.
604.

0000
0000
0000
0000
0000
0000

col4

104.
204.
304.
404.
504.
604.

0000
0000
0000
0000
0000
0000

colid

104
204
304.
404.
993.
604.

.0000
.0000

0000
0000
0000
0000

col4d

994
994.
994.
994,
9594,
994

.0000

0000
0000
0000
0000

.0000

Warning
It is important to realize that the Editor alters data as instructed and that yoy are
responsible for judging the validity of any assignment. The trivial operations

performed in this example dialog are intended only to demonstrate how clear and
assign are used, not when such assignments are warranted.

Mathematical Operations

Bagic Arithmetic

The four basic arithmetic functions are provided via the add, subtract, multiply, and dlvide
commands. Each has the form

command item1 item2 [item3] [objectlist]
where command is the command name, item?1 and item2 are the two operands used, item3 receives
the result of the operation, and the objectlist selects the desired data subset. Using command add
as an example, the directive

addxyz
reads “x plus y yields z” and can be expressed as

X+y=2
item1 and item2 are variable names, symbols, or numbers. /tem3 is either a variable name or a
symbol. If item3 is omitted, the result of the operation is placed back into item?1. For the add and
multiply commands, if item3 is omitted and item1 is a number or numeric expression, the result is
placed back into item2. If item3 is omitted and both item1 and item2 are numbers or numeric
expressions, the result is displayed on your screen. If the object list is omitted, the default target list is
assumed.
These commands can be used in a variety of ways. For a few examples, consider the foliowing dialog

edit> open test
edit> scan

This TOAD file contains 3 variables:

X y

. and has a total of 4 data warts.

edit> tabulate

wart # X Yy z
1 101.000 201.000 301.000
2 102.000 202.000 302.000
3 103.000 203.000 303.000

49

4 104.000 204.000 304.000
4 wart subsets listed.
edit> add x y z
4 data warts were changed.

edit> tabulate

wart # X y z
1 101.000 201.000 302.000
2 102.000 202.000 304.000
3 103.000 203.000 306.000
4 104.000 204.000 308.000

4 wart subsets listed.

edit> define ten 10
edit> mult x ten

4 data warts were changed.

edit> tabulate

wart # X Yy z
1 1010.00 201.000 302.000
2 1020.00 202.000 304.000
3 1030.00 203.000 306.000
4 1040.00 204.000 308.000

4 wart subsets listed.
edit> subtract 1000 z =z 2t3
2 data warts were changed.

edit> tabulate

wart # X y z
1 1010.00 201.000 302.000
2 1020.00 202.000 696.000
3 1030.00 203.000 694.000
4 1040.00 204.000 308.000

4 wart subsets listed.

edit> define temp O
edit> subtract 1000 z temp 3

50

edit> show symbol temp
306
edit>
Notice in the last subtract example that the object list was used to select which value of z was used to
calculate temp. Without this object list, four results from four subtraction operations would have been

generated, one per data wart, which would have overwhelmed a single symbol and triggered an error
message.

Utllities

Four utility functions are provided: abs, Invert, sqrt, factorial, and sign. The first four commands
have the form

command item1 [item2] [objectlist]
where command is the command name, item1 is the operand used, item2 receives the the result of
the operation, and the object list selects the desired data subset. Using command abs as an
example, the directive

abs xy
reads “the absolute value of x yields y” and can be expressed as

x| =y
Similarly, the inverse, sqrt, and factorial commands perform the functions

ix=y

xt =y
respectively.
Item1 is a variable name, symbol, or number. /temn2 is either a variable name or a symbol. If itemz2 is
omitted, the result of the operation is placed back into item?. If item2 is omitted and item1 isa

number or numeric expression, the result is displayed on your screen. If the object list is omitted, the
default target list is assumed. In addition, the functional domains are:

abs unlimited

invert any nonzero value

sqrt any positive value

factorial positive integer less than 70

To illustrate how these commands may be used, consider the following dialog:

edit> open test
edit> scan

51

This TOAD file contains 3 variables:

X b4

and has a total of 5 data warts.

edit> tabulate

wart # X y z
1 11.0000 21.0000 31.0000
2 12.0000 22.0000 32.0000
3 13.0000 23.0000 33.0000
4 14.0000 24.0000 34.0000
5 15.0000 25.0000 35.0000

5 wart subsets listed.
edit> mult x -1 y 2t4
3 data warts were changed.

edit> tabulate

wart # X y z
1 11.0000 21.0000 31.0000
2 12.0000 -12.0000 32.0000
3 13.0000 -13.0000 33.0000
4 14.0000 -14.0000 34.0000
5 15.0000 25.0000 35.0000

S wart subsets listed.
edit> abs y
3 data warts were changed.

edit> tabulate

wart # X Y z
1 11.0000 21.0000 31.0000
2 12.0000 12.0000 32.0000
3 13.0000 13.0000 33.0000
4 14.0000 14.0000 34.0000
5 15.0000 25.0000 35.0000

5 wart subsets listed.

edit> invert =z

52

S5 data warts were changed.

edit> tabulate

wart # X y z
1 11.0000 21.0000 0.322581E~01
2 12.0000 12.0000 0.312500E-01
3 13.0000 13.0000 0.303030E-01
4 14.0000 14.0000 0.294118E-01
5 15.0000 25.0000 0.285714E-01

S5 wart subsets listed.
edit> factorial x y 1it3
3 data warts were changed.

edit> tabulate

wart # X s z
1 11.0000 0.399168E+08 0.322581E-01
2 12.0000 0.479002E+09 0.312500E-01
3 13.0000 0.622702E+10 0.303030E-01
4 14.0000 14.0000 0.294118E-01
5 15.0000 25.0000 0.285714E-01

5 wart subsets listed.
edit>
The sign command has the form
sign item1 item2 [item3] [objectlist]

where item1 is the magnitude used, item2 supplies the sign information, item3 receives the the
result of the operation, and the object list selects the desired data subset.

Because the sign operation may be new to many readers, a brief description is in order. The operation
sign(at,a2)
is interpreted as “combine the magnitude of a1 and the sign of a2.” Similarly, the directive
sighxyz
reads “combine the magnitude of x with the sign of y and store the result in z.”
Item1 and item2 are variable names, symbols, or numbers. /tema3 is either a variable name or a
symbol. If item3 is omitted, the result of the operation is placed back into item1. ¥ item3 is omitted

and item1 is a number or numeric expression, the result is displayed on your screen. If the object list
is omitted, the default target list is assumed. In practice item1 is usually the numeric value 1.

53

The sign command is somewhat specialized and at times may be indispensable. For example,
suppose we are given an aircraft performance data file which contains the square of the angle ot
attack, both positive and negative values, which we must convert to just plain angle of attack. How can
we adjust the angle of attack while preserving its sign? Consider the following dialog:

edit> open testl
edit> tabulate press portid 1 2 alpha

wart ¥ press portid alpha
101 6.09007 1 -25.0000
102 7.38284 2 -25.0000
201 3.02826 1 -4.00000
202 3.76906 2 -4.00000
301 2.12340 1 4.00000
302 2.71414 2 4.00000
401 1.60278 1 25.0000
402 2.03536 2 25.0000
501 1.17190 1 100.000
502 1.50435 2 100.000
601 0.711813 1 225.000
602 0.937932 2 225.000

edit> sign portid alpha
edit> tabulate press portid -2 2 alpha

wart # press portid alpha
101 6.09007 -1 -25.0000
102 7.38284 -2 -25.0000
201 3.02826 -1 ~4.00000
202 3.76906 -2 -4.00000
301 2.12340 1 4.00000
302 2.71414 2 4.00000
401 1.60278 1 25.0000
402 2.03536 2 25.0000
501 1.17190 1 100.000
502 1.50435 2 100.000
601 0.711813 1 225.000
602 0.937932 2 225.000

edit> abs alpha
edit> sqrt alpha
edit> tabulate press portid -2 2 alpha

wart # pr=ss portid alpha
101 6.09007 -1 5.00000
102 7.38284 -2 5.00000
201 3.02826 -1 2.00000
202 3.76906 -2 2.00000
301 2.12340 1 2.00000
302 2.71414 2 2.00000

54

401 1.60278 1 5.00000
402 2.03536 2 5.00000
501 1.17190 1 10.0000
502 1.50435 2 10.0000
601 0.711813 1 15.0000
602 0.937932 2 15.0000

edit> sign alpha portid
edit> abs portid
edit> tabulate press portid 1 2 alpha

wart # press portid alpha
101 ¢£.09007 1 -5.00000
102 ©.38284 2 -5.00000
201 5.02826 1 -2.00000
202 3.76906 2 -2.00000
301 2.12340 1 2.00000
302 2.71414 2 2.00000
401 1.60278 1 5.00000
402 2.03536 2 5.00000
501 1.17190 1 10.0000
502 1.50435 2 10.0000
601 0.711813 1 15.0000
602 0.937932 2 15.0000
Powers and Roots

Two functions are available: power and root. Each has the form

command item1 item2 [item3] [objectlist]
where command is the command name, item?1 and item2 are the operands used, item3 receives the
the result of the operation, and the object list selects the desired data subset. Using command
power as an example, the directive

power x y z
reads “x raised to the yth power yields 2" and can be expressed as
)Y = 2
Similarly, the root command pertorms the function
) =z
Item1 and itemn2 are variable names, symbols, or numbers. item3 is either a variable name or a
symbol. If item3 is omitted, the result of the operation is placed back into item1. f item3 is omitted

and item1 is a number or numeric expression, the result is displayed on your screen. If the object list
is omitted, the default target list is assumed. In addition, the general functional domains are:

55

power x: any nonzero value
y: unlimited

root x: any nonzero value
y: any nonzero value

There are further limitations. Roots of negative values are allowed only when the order (y) is an odd

integer. Fractional powers of negative values are allowed only when the order (y) is the inverse of an
odd integer. All other instances involving negative values are illegal.

Four functions are provided: log, log10, exp, and exp 10. Each has the form
command item1 [item2] (objectlist]
where command is the command name, item1 is the operand used, item2 receives the the result of

the operation, and the object list selects the desired data subset. Using command /og as an
example, the directive

log xy
reads “the natural log of x yields y" and can be expressed as
In(x) =y

Similarty, the log 10, exp, and exp10 commands perform the functions

logqo(X) = ¥

respectively.

ltem1 is a variable name, symbol, or number. ltem2 is either a variable name or a symbol. If item2 is
omitted, the result of the operation is placed back into item1. tf item2 is omitted and item1 isa
number or numeric expression, the result is displayed on your screen. If the object list is omitted, the
default target list is assumed. In addition, the functional domains are:

log any positive value

log10 any positive value

exp unlimited

exp10 unlimited
Irigonometry

A full set of trigonometric functions is provided: sin, cos, tan, and their inverses. Each has the form
command item1 [item2] [objectlist]

where command is the command name, item1 is the operand used, item2 receives the the result of
the operation, and the object list selects the desired data subset. Using command sin as an example,

56

the directive
sinxy

reads “the sine of x yields y” and can be expressed as
sin(x) =y

Similarly, the other commands perform the functions

cos(x) = ¥
tan(x) = y
respectively.

Jtem1 is a variable name, symbol, or number. /tem2 is either a variable name or a symbol. If item2 is
omitted, the result of the operation is placed back into item1. If item2 is omitted and item1 isa
number or numeric expression, the result is displayed on your screen. If the object list is omitted, the
default target list is assumed. In addition, the functional domains are:

sin uniimited
cos unlimited
tan unlimited

All three of these commands assume the incoming angle (x) to be in radians. The mirror commands for
angles in degrees are: sind, cosd, and tand.

The inverse functions are called arcsin, arcsind, arccos, arccosd, arctan, and arctand, corresponding
to the functions

sin1(x) = y
cos'l(x) = y
tan"1(x) = y

respectively. Their functional domains are:

arcsin [-1.1]
arcsind [-1,1]
arccos [-1.1]
arccosd [-1,1]
arctan unlimited
arctand unlimited
Hyperbolic Trigonometry

A full set of hyperbolic trigonometric functions is also provided: sinh, cosh, tanh, and their
inverses. Each has the form

command item1 [item2] [objectlist]

57

where command is the command name, item1 is the operand used, item2 receives the the result of
the operation, and the object list selects the desired data subset. Using command sinh as an
example, the directive

sinh x y
reads “the hyperbolic sine of x yields y” and can be expressed as

sinh(x) =y

Similarly, the other commands perform the functions

cosh(x) = y
tanh(x) = y
respectively.

Item1 is a variable name, symbol, or number. /tem2 is either a variable name or a symbol. If tem2 is
omitted, the result of the operation is placed back into item?. K item2 is omitted and item1 isa
number or numeric exprassion, the result is displayed on your screen. If the object list is omitted, the
default target list is assumed. In addition, the functional domains are:

sinh unlimited
cosh unlimited
tanh unlimited

The inverse functions are called arcsinh, arccosh, and arctanh, corresponding to the functions

sinh'l(x) = y
cosh'l(x) = y
tanh'(x) = y

respectively. Their functional domains are:

arcsinh unlimited
arccosh greater than or equal to 1
arctanh (-1,1)

Statistics

The following descriptive statistics can be generated from the raw data:

: l Descrigi
frequency # of raw data ceills qualified by the target object list.
sum summation of the targeted values.

minimum minimum value contained in the targeted set.
maximum maximum value contained in the targeted set.

range difference between the minimum and maximum values.
mean average value -- an unbiased estimate for the mean (u).
variance an unbiased (n) estimate for the variance (02).

58

stdeviation a biased (n-1) estimate for the standard deviation ().
sterror ‘ a biased (n-1) estimate for the standard error.

Most have the form

command variable [symbol] [object list})
Where command is the command name, variable identifies the column supplying the raw data for the
operation, symbol is the symbol to receive the statistic, and the object list selects the desired data
subset. If the symbol is omitted, the result will appear on your screen. if the object list is omitted, the
default target list is assumed. Using command max as an example, the directive

max temp hottest

presumably searches all temperature data (femp) and puts the highest value in symbol hottest.
Similarty, the directives

variance temp mé mach 6
variance temp m9 mach 9

presumably processes temperatures (temp) at Mach 6 and Mach 9 and puts the variance in symbols
mé and m9, respectively.

The freq command has a different form:

freq [symbol] [objectlist]
where symbol is the symbol to receive the frequency count (always in integer) and the object list
selects the desired data subset. If the symbol is omitted, the result will appear on your screen. If the
object list is omitted, the default target list is assumed. For example, the directive

freq nwarts all
counts the number of data warts available from the active file. A more realistic example directive is

freq nhot temp [1000,"]

which presumably counts the number of temperature readings over 1000 degrees and puts the result
in symbol nhot.

The statistical commands are unique because they only place results in symbols -- a variable hame

cannot receive the statistic. Why? Unlike the other mathematical commands, which generate a result

for each data cell or data pair processed, the statistical commands generate an aggregate result for all

data cells processed (i.e., what is the variance of a single raw data cell?). As an illustration, the directive
log temp temp2

is interpreted as each temperature generating another, logarithmic temperature. However, a similar
case for variance might look like

varlance temp temp2 ?

How do we interpret this? It looks like the variance of each temperature reading is placed in another

59

data column, but that doesn't make sense. A variance is a single value describing one attribute of a
collection of raw data, rather than of a single piece of raw data. Therefore it doesn't make sense for
vaniance to pair up an operand data column with a results data column. It does make sense to provide
some way of capturing the single quantity generated, and that’s why symbols are used.

Another source of confusion is the notion of “biased” and “unbiased” estimators. An unbiased
estimator is not adjusted to compensate for small sample sets. For example, the sample set average
calculated using mean is unbiased because it is the sum of the raw data, divided by the number of raw
data cells used (n). The variance is also an unbiased estimator. In contrast, the standard deviation and
standard error are biased estimators, meaning that both are adjusted (divided by (n-1) rather than by
n) to compensate for small sample sets. Why compensate? An unbiased standard deviation tends to
underestimate the larger population’s true standard deviation -- the smaller the sample set, the more
pronounced the error. Biasing the standard deviation and standard error eliminates much of this
discrepancy and significantly improves their reliability.

Conversions

Command convert provides an assortment of functions for converting units of measure. Its form is

convert item1 function item2 [objectlist]

where item1 is the operand used, function is the desired conversion function, item2 receives the
the result of the conversion, and the object list selects the desired data subset. Using the conversion
function m2ft (meters to feet) as an example, the directive

convert x m2ft y
reads “converting x from meters to feet yields y" and can be expressed as

x * 3.280839895 =y

item1 is a variable name, symbol, or number. /tem2 is either a variable name or a symbol. I item2 is
omitted, the result of the operation is placed back into item1. If item2 is omitted and item7 isa
number or numeric expression, the result is displayed on your screen. If the object list is omitted, the
default target list is assumed.

Many conversion functions are available, including

degrees <---> radians
Celsius <> Fahrenheit
Fahrenheit <> Rankine
Rankine <> Kelvin
Kelvin <> Celsius
kilometers <> miles
meters <> feet
millimeters <> inches
kilograms = <---> pounds
liters <> gallons
seconds <> minutes
minutes <---> hours
mph <> knots
mph <> fps

60

BTUs <> joules
Pascals <> psi
Pascals <> atmospheres
Pascals <> mmHg
A current list of the conversion functions is displayed when you enter the directive

help convert

Adding and Deleting Data
Creating a New Column

Command create establishes a new data column and a new variable within the active TOAD file. Its
formis

create variable [presetvalue]
where variable is the name of the variable being created and preset value is the numeric value to
which all new data cells are initialized. The new variable name must be unique among existing variable
and symbol names. If the optional preset value is omitted, all data cells are initialized to zero. For
example, the directive

create cl_ratio 1

creates a new variable called c/_ratio and presets all values to 1. Using a spreadsheet analogy, a
create operation can be portrayed as

TS
Hletsdtete

— KRR
Adatelels
e I
s
AT
ettetels
POCOCS
waley
25
T,

where h is the new column created.

Because creating a new variable increases the overall size of the active TOAD file, it's possible to
exceed either the variable capacity (number of columns) or the raw data capacity (number of data cells)
of the Editor. If the request would cause the capacity to be exceeded, the Editor writes the message

Unable to create this variable - Insufficient capacity.

Only n additional raw data can be accommodated
or all n data columns are already full.

61

and does not perform the create request. If the current capacity prevents you from effectively using
the Editor, we suggest you follow the instructions presented in Section 6, “In Case of Problems.”

The create command is particularly useful when performing operations on variables whose original
values are 1o be retained. For example, suppose you had a column of temperature data, measured in
degrees Kelvin, which you want to retain and use to make another column of temperature data,
measured in degrees Celsius:

edit> open test
edit> scan

This TOAD file contains 2 variables
eta temp
and has a total of 9 data warts

edit> tabulate

wart # eta temp
1 0.100000 1303.72
2 0.200000 1285.43
3 0.300000 1231.13
4 0.400000 1142.45
5 0.500000 1022.10
6 0.600000 8B73.736
7 0.700000 701.860
8 0.800000 511.696
9 0.900000 309.024

edit> rename temp kelvin
edit> create celsius
edit> scan

This TOAD file contains 3 variables

eta kelvin
celsius

and has a total of 9 data warts

edit> tabulate

wart # eta kelvin celsius
1 0.100000 1303.72 0.
2 0.200000 1285.43 0.
3 0.300000 1231.13 0.
4 0.400000 1142.45 0.
5 0.500000 1022.10 0.
6 0.600000 873.736 0.
7 0.700000 701.860 0.

62

8 0.800000 511.696 0.
9 0.900000 309.024 0.

edit> convert kelvin kelvin2celsius celsius
edit> tabulate

wart # eta kelvin celsius
1 0.100000 1303.72 1030.57
2 0.200000 1285.43 1012.28
3 0.300000 1231.13 957.977
4 0.400000 1142.45 869.302
5 0.500000 1022.10 748.953
6 0.600000 873.736 600.586
7 0.700000 701.860 428.710
8 0.800000 511.696 238.546
9 0.900000 309.024 35.8738

After changing the variable name from temp to kelvin, a new variable, celsius, is created. The
temperature data is then converted from the Kelvin scale to the Celsius scale.

There is an additional item worth mentioning. When variable celsius was created it automatically
qualified in the default target list al. Had the default target list been anything other than all, the new
variable would not have been added, and the directive
tabulate eta kelvin celslus
would have been necessary.
letin Istin lym
Command delete removes an existing variable within the active TOAD file. Its form is
delete variable

where variable is the name of the existing variable being deleted.

The delete command removes the entire column of data associated with the named variable. For
example, the directive

delete alpha

removes the variable alpha, it's associated column of data, and any related entries in the default target
list. Using a spreadsheet analogy, a delete operation can be portrayed as

63

where ¢ is the column deleted.

Warnings
Deleting a variable used in the default target list removes that variable from the default
target list. This makes the default target list less selective, qualifying more warts than
intended. In general, a delete never constricts the target selection criteria.

Like all of the other commands which alter the active file, delete can be revoked via
the undo command. However, while undo restores the active file back to its previous
state it does not restore the default target list. Thus deleting a variable used in the

default target list followed immediately by an undo still changes the default target list.
Exi
Command knockout removes selected data warts from the active TOAD file. Its form is
knockout [objectlist]

where the optional object list selects those data warts to be eliminated. If the object list is omitted, the
current default target list is assumed. For example, the directive

knockout 2y/b .9

removes all data warts associated with a 90% (.9) span location (2y/b). Using a spreadsheet analogy, a
knockout operation can be portrayed as

———T0 QTN

ooooooo TR R XXX XXX ERKRXRLS
A L T R AN R et i et

_-RE—— T~ QOTN

where the shaded rows represent data warts to be eliminated from the active file. Remember that
delete removes columns of data -- knockout eliminates rows of data.

64

To further illustrate the knockout command, consider the following dialog:

edit> open test
edit> scan

This TOAD file contains 2 variables
eta temp
and has a total of 9 data warts

edit> tabulate

wart # eta temp
1 0.100000 1303.72
2 0.200000 1285.43
3 0.300000 1231.13
| 0.400000 1142.45
5 0.500000 1022.10
6 0.600000 873.736
7 0.700000 701.860
8 0.800000 511.696
9 0.900000 309.024

edit> knockout 3té6
edit> scan

This TOAD file contains 2 variables

eta temp

and has a total of 5 data warts

edit> tabulate

wart # eta temp
1 0.100000 1303.72
2 0.200000 1285.43
3 0.700000 701.860
4 0.800000 511.696
5 0.900000 309.024
edit>

It the default target list is used in a knockout directive, subsequent directives which also use the
default target list may trigger the message

No qualifying data

For example,

65

edit> open test
edit> scan

This TOAD file contains 2 variables
eta temp
and has a total of 9 data warts

edit> tabulate

wart # eta temp
1 0.100000 1303.72
2 0.200000 1285.43
3 0.300000 1231.13
4 0.400000 1142 .45
5 0.500000 1022.10
6 0.600000 873.736
7 0.700000 701.860
8 0.800000 511.696
9 0.900000 309.024

edit> target eta .3 .6
edit> knockout
edit> scan
This TOAD file contains 2 variables
eta temp
and has a total of 5 data warts
edit> tabulate

No qualifying data

edit> tabulate all

wart # eta temp
1 0.100000 1303.72
2 0.200000 1285.43
3 0.700000 701.860
4 0.800000 511.696
5 0.900000 309.024
edit>

Why? By definition, all data meeting this criteria were eliminated by the knockout directive, usually
ieaving none for subsequent operations. The solution is to either provide a direct object list or
redefine the default target list.

66

The knockout command removes those rows of data identified in the object list. This can sometimes
lead to the deletion of more data than intended. For example, again using our example file test,
consider the following dialog:

edit> open test
edit> scan

This TOAD file contains 2 variables
eta temp
and has a total of 9 data warts

edit> tabulate

wart # eta temp
1 0.100000 1303.72
2 0.200000 1285.43
3 0.300000 1231.13
4 0.400000 1142 .45
5 0.500000 1022.10
6 0.600000 873.736
7 0.700000 701.860
8 0.800000 511.696
9 0.900000 309.024

edit> knockout temp
The entire file cannot be KO’d.

edit> knockout temp * 1000
edit> tabulate

wart # eta temp
1 0.100000 1303.72
2 0.200000 1285.43
3 0.300000 1231.13
4 0.400000 1142 .45
5 0.500000 1022.10

The first knockout directive
knockout temp

qualifies the entire active file, since all values of variable temp are selected. This request is essentially
the same as the directive

knockout all

which would normally erase the entire contents of the active file. To avoid potentially catastrophic
results, this request is denied. We then enter

67

knockout temp * 1000

eliminating all data warts containing temperatures less than or equal to 1000, our original intention.

Wart Editing

Sometimes the easiest way to edit a file is to work directly with the data warts. For example, “squaring
out” data often requires that data warts be inserted at specific locations. Likewise, it may be
convenient to use an aircraft's starboard wing’s pressuré data to create the port wing's pressure
distribution. All commands which allow you to directly manipulate entire data warts are called “warnt
editing” commands. Five such commands are currently available: addwart, dupwart, copywart,
cutwart, and pastewart (Macintosh and Sun workstation users may already be familiar with the
concept of copy, cut, and paste operations). Eachis presented individually.

Adding Zero-Filled Warts
Command addwart expands the active file by creating empty (zero-filled) data warts one or more
times. Its formis

addwart wart id [n]

where wart_id identifies a location within the active file after which the new wart is inserted and n is an
integer counter. The wart_id must be a valid wart id (a posttive integer less than or equal to the
number of current warts) or one of the keywords top, first, bottom, or last. Normally, the new warts are
inserted immediately after the specified wart. However, when the keyword top or first is used the new
warts are inserted before the first wart. The counter, n, must be a positive integer. If omitted, one new
wart is assumed. For example, the directive

addwart 5 2

creates and inserts two new zera-filled warts following wart 5. Graphically portrayed, the operation
looks like

NN AL~
.
&
o
ml
O
&
X
Ml

addwart 5 2

1 11 b1 el [d1
2 a2 | b2 | c2 | d2
3 _a3|/b3| c3|d
4 ad | b4 | c4 | d4
5§ _a5|b5| c¢5|d5
6 0|01 0] 0|
7 ool olo
8

9

0

-~

68

where the vertical bar marks the new zero-filled warts added to the active file.

Because addwart increases the overall size of the active TOAD file, it's possible to exceed the raw
data capacity of the Editor. If the request would cause the capacity 1o be exceeded, the Editor writes
the message

Unable to add n new warts - Insufficient capacity.
Only n additional warts can be accommodated.

and does not perform the addwart operation. If the current capacity prevents you from effectively
using the Editor, we suggest you follow the instructions presented in Section 6, “In Case of
Problems.”

Duplicating Existing Warts

Similar to addwart, command dupwart expands the active file by duplicating existing warts one or
more times. Its formis

dupwart wart id [n]

where wart_id identifies which wart is duplicated and n is an integer counter. All duplicate warts are
inserted immediately after the original. The wart_id must be a valid wart id (a positive integer less than
or equal to the number of current warts) or one of the keywords top, first, bottom, or last. Normally, the
new warts are inserted immediately after the specified wart. However, when the keyword top or first is
used the new warts are inserted hefore the first wart. The counter, n, must be a positive integer. f
omitted, one duplicate wart is assumed. For example, the directive

dupwart 4

duplicates wart 4 and inserts it immediately after wart 4. A graphic portrayal of this operation is

1 1 ec1]d1
2 |2 | d2.
3 c3 | d3
4 _c4 | d4.
5 c5 | d5
6 | c6 | db6
7 c7 | d7
8 c8 | d8
dupwart 4 ;

1 at | b1 | ct] dt
2 | a2 | b2]| c2!| d?
3 a3 | b3 | ¢3! d3
4 ad | b4 | c4 | d4 |
5 [ad | bd]| c4 [dd]
6 (a5 b5 | c5 | d5
7 | a6 | b6 | c6 | db
8 | a7:ibr| c7 | d’
9 | a8 | b8 | c8 | d8

where the marked wart represents a duplicate of wart 4.

69

Because dupwart increases the overall size of the active TOAD file, it's possible to exceed the raw
data capacity of the Editor. If the request would cause the capacity to be exceeded, the Editor writes
the message

Unable to add n new warts - Insufficient capacity.
Only n additional warts can be accommodated.

and does not perform the dupwart operation. If the current capacity prevents you from effectively
using the Editor, we suggest you follow the instructions presented in Section 6, “In Case of
Problems.”

Using the Wart Paste Buffer

More advanced wart editing commands are also available: copywart, cutwart, and pastewart. The
copywart and cutwart commands move one or more warts to the paste buffer for later use by the
pastewart command. Command copywart moves the warts to the paste buffer but leaves the original
active file undisturbed -- cutwart moves the warts to the paste buffer and removes them from the
active file. Both have the form

command [object list]

where command is the command and the optional object list selects the warts to be copied or cut. If
the obiject list is omitted, the default target list is assumed.

Once one or more warts are moved to the paste buffer they may be inserted back into the active file via
the pastewart command. It has the form

pastewart wart_id

where wart_id identifies the insertion point within the active file. The wart_id must be a validwart id (a
positive integer less than or equal to the number of current warts) or one of the keywords top, first,
bottom, or last. Normally, the warts contained on the paste buffer are inserted immediately after the
specified wart. However, when the keyword top or first is used the buffered warts are inserted before
the first wart.

To illustrate how copywart and pastewart are used together, consider the following directive
sequence:

70

b3

c3

a4

b4

| a3 | b3 c3 | d3] FB

copywart 3t5 a5

bs

c5

XN AWN -
| (e

%

5

ONOOAWN-
T !
BaRE

S
123
&

pastewart 7

ad | bd | c4 | d4 Note that the targeted warts are
5 retained in the active file.

b3

c3

d3

b4

c4

d4

~0OVoLHNOONHB WA~
73
19,
s
[}
(9]
(+)
&

~

1 b5

c5

Warts 3-5 are moved from the active file to the paste buffer, then pasted back following wart 7.
bars mark the affected portions of the file during each operation. Notice how copywart left the active

file undisturbed.

das

Vertical

The cutwart and pastewart commands are used in a similar manner. As an illustration, consider the

following directive sequence:

1 lal|bl] el]dl

2 b2 | e2 | d2

3 _,«32‘,.%3” €3 d3 . 5 -

4 | a4 4! c4 | d4 4 4| c4 | dd
cutwart 4t7 5 [a5 | b5] c5] d5 a5 | b5 | c5 | d5

6 ab | b6 | c6 | d6 1.516 b6 | c6 | d6

7 (a7 |b7]| ¢c7] d7 i a7 | b7 | ¢7 | d7 |

8 a8 | b8 | c8 | d8

; _2772_; g;g% Note that the targeted warts are

3 a3 | b3]| c3]| d3 removed from the active file.

4 a8 | b8 | c8 | d8

1 [[a4 | bd | cd | dd] o a4 | b4 cd | di]

2 | a5 | b5 c5 | d5 J as | b5 | ¢5 | ds

3 | aé gs c6 | Zb‘ o . ab 26 cb | db6

4 a7z 71 c7 7 a7 71 c7 | d7
pastewart top 5 [al | bl | cl] di

6 a2 b2| ¢c2| d2

7 [Ta3 | b3 | c3| d3

8 a8 81 c8 | d8

71

Warls 4-7 are moved from the active file to the paste buffer, then pasted back at the top of the file.
Vertical bars mark the affected portions of the file during each operation. Notice that cutwart removed
the targeted warts from the active file.

Because pastewart increases the overall size of the active TOAD file, it's possible 1o exceed the raw
data capacity of the Editor. If the request would cause the capacity to be exceeded, the Editor writes
the message

Unable to add n new warts - Insufficient capacity.
only n additional warts can be accommodated.

and does not perform the pastewart operation. If the current capacity prevents you from effectively
using the Editor, we suggest you follow the instructions presented in Section 6, “In Case of
Problems.”

The paste buffer is maintained by the Editor. Although you can't directly edit its contents you can
enter

show buffer
or
show paste

which tells you how many warts and how many columns of data the paste buffer contains.

Finally, the contents of the paste buffer are retained after a pastewart operation. Thus, you can move
some warts into the paste butfer and then repeatedly insert them using multiple pastewart operations.
In fact, the paste buffer is retained until you use another copywart or cutwart, replacing its contents.
The paste buffer is not, however, retained between editing sessions. If you attempt to use an empty
paste buffer (e.g., using a pastewart before a copywart or cutwart), the Editor writes the message

The paste buffer is empty.

Note

The wart editing commands move gntire warts of data, not wart subsets. If you wish to
move only a few columns of data, consider using export and import, discussed in the
next subsection.

Warning

It is important to realize that the Editor moves warts as instructed, and that you are
responsible for judging the validity of any wart editing operation. Careless use ot the
wart editing commands may create a meaningless or misleading TOAD file.

Using External Files

It is often necessary to have access to external files from within an ongoing editing session. For
example, merging two or more TOAD files together requires that the Editor be able to read at least one
external file. Selectively extracting data requires an ability to rewrite existing or create new external
files.

72

The Editor offers six commands for exchanging data between the active TOAD file and external files.
Commands write and read are designed to access and create, respectively, single-column TOAD
files. Commands export and Import perform similar functions for multi-column TOAD files.
Commands before and after insert blocks of data warts at selected locations. All are individually
presented.

Single Column

Command write extracts data from a selected column and places it into an external, single-column
TOAD file. lts formis

write variable ([file] [objectlist]

where variable identifies the column from which to extract the data, file is the optional name of the
external file to be written, and the optional object list selects which data warts are used. The variable
provided must already exist. If the external file name is omitted, file tadpole is assumed. If the external
file does not exist, it is created. If the file does exist, the message

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

may appear, depending upon the state of the OverWrite protection toggle. Answering “yes” instructs
the Editor to overwrite the file. Entering “no” instructs it to ignore the previous write directive. If the
object list is omitted, the current default target list is assumed. For example, the directive

write temp nose eta .1 .5

extracts all temperature data (temp) for eta .1 through .5 and writes them to external file nose. The
directive

write deltacp

extracts all of the available pressure data (assuming the default target list is set to all) and writes it into
file tadpole.

The write command is normally used to create temporary files which are later accessed with the read
command. A full discussion of how the two work together is presented within the description for read,
presented next.

Command read places data from an external, single-column TOAD file in a selected column. Its form
is
read variable [file] [objectlist]

where variable identifies the column to receive the data, file is the optional name of the extemnal file to
be read, and the optional object list selects those data warts to receive the data. The variable name
provided must already exist -- the Editor does not create it. If the external file name is omitted, file
tadpole is assumed. If the object list is omitted, the current default target list is assumed. For
example, the directive

read temp hotcase eta .2 .7

reads TOAD file hotcase and places its contents in variable temp as the values of efa fall within the

73

interval [.2,.7]. The directive
read press nose

reads the TOAD file nose and places its contents into variable press, as controlied by the default
target list.

Note

The read command replaces values within existing data cells -- it does not increase
the size of the active TOAD file. If you want to increase the file's size, use create,
before, after, addwart, dupwart, or pastewart.

Only single-column TOAD files are accepted. If the file provided contains more than one variable, the
file is rejected and an error message is written. Further, the number of values available from the
external file and the number of data celis to be filled must match exactly. It the extemnal file contains
either too little or too much data for the number of targeted data cells, an error message is written and
no data is transferred.

In practice, few single-column TOAD files exist outside of those created using the write command.
The read and write commands are often used together to transfer blocks of data between two
different TOAD files. As an illustration, suppose we monitored an experiment in which reentry vehicle
skin temperature (temp) and pressure (press) data were collected as a function of nondimensional
body station (eta). Unfortunately, the temperature data and the pressure data, although measured at
the same locations, were stored in two different TOAD files. The following dialog demonstrates how
the data can be merged into one file:

edit> open hot_press
edit> tabulate

wart # eta press
1 0.100000 3.080525
2 0.200000 3.033725
3 0.300000 2.894747
4 0.400000 2.667813
5 0.500000 2.359819
6 0.600000 1.980124
7 0.700000 1.540263
8 0.800000 1.053602
9 0.900000 0.5349276

edit> write press holdl
edit> open hot_temp
edit> tabulate

wart # eta temp
1 0.100000 1303.72
2 0.200000 1285.43
3 0.300C00 1231.13
4 0.400000 1142.45

74

1022.
873.7
701.8
511.6
309.0

10
36
60
96
24

This TOAD file contains 2 variables

temp

and has a total of 9 data warts

This TOAD file contains 3 variables

5 0.500000
6 0.600000
7 0.700000
8 0.800000
9 0.900000
edit> save hot_both
edit> open hot_both
edit> scan
eta
edit> create press
edit> menu
eta
press
edit> tabulate
wart # eta
1 0.100000
2 0.200000
3 0.300000
4 0.400000
5 0.500000
6 0.600000
7 0.700000
8 0.800000
9 0.900000
edit> read press holdl
edit> tabulate
wart # eta
1 0.100000
2 0.200000
3 0.300000
4 0.400000
5 0.500000
6 0.600000
7 0.700000
8 0.800000
9 0.900000

temp

1303
1285.
1231.
1142.
1022.
873.7
701.8
511.6
309.0

temp

1303.
1285
1231.
1142.
1022.
873.7
701.8
511.6

temp

.72

43
13
45
10
36
60
96
24

72

.43

13
45
10
36
60
96

309.024

75

press

OO O O0OCOoCOoOOCOOo
v v e e e

press

.080525
.033725
.894747
.667813
.359819
.980124
.540263
.053602
0.5349276

HoE e DD WW

edit>

rnin

It is important to realize that the Editor merges data as instructed, and that you are
responsible for judging the validity of any merge operation. In this example both
temperature and pressure are measured at the same values for eta, and in the same
order. This ensures that the resulting file correctly matches eta, temp, and press. Had
the separate temperature and pressure files not been compatible, the same merge
operation would create a meaningless or misleading file.

Multiple Columns

Command export extracts a selected data subset and places it into an external, single- or multi-
column TOAD file. lts formis

export [file] [objectlist]
whare file is the optional name of the external file to be written and the optional object list selects the
desired data subset. If the external file name is omitted, file tadpole is assumed. |f the external file
does not exist, it is created. I the file does exist, the message

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

may appear, depending upon the state of the OverWrite protection toggle. Answering “yes” instructs
the Editor to overwrite the tile. Entering “no” instructs it to ignore the previous export directive. If the
object list is omitted, the current default target list is assumed. For example, the directive

export nose eta .1 .5 temp press

writes a TOAD file called nose containing three variables (eta, temp, and press) using data from those
warts in which the value of eta falls within the interval [.1,.5].

To illustrate how export may be used to extract data, consider the following dialog:

edit> open toadl
edit> tabulate 2y/b .9 x/c deltacp

wart # x/cC deltacp
133 0.416667E-01 6.09007
134 0.208333 3.02826
135 0.375000 2.12340
136 0.541667 1.60278
137 0.708333 1.17190
138 0.875000 0.711813

edit> export tip_cp 2y/b .9 x/c deltacp
edit> open tip_cp
edit> tabulate

76

wart #

oUW

O O OO OO

2y/b

.900000
.900000
.900000
.900000
.900000
.900000

edit> open toadl

edit> tabulate x/c

wart #

1

7
13
19
25
31
37
43
49
55
61
67
73
79
85
91
97
103
109
115
121
127
133
139
145

O OC OO OC O OO OO OCO O COOCOOoOCOODOOO OO

edit> export

edit> open

wart #

~N oo W

2y/b

.200000E-01
.600000E-01
.100000
.140000
.180000
.220000
.260000
.300000
.340000
.380000
.420000
.460000
.500000
.540000
.580000
.620000
.660000
.700000
.740000
.780000
.820000
.860000
.900000
.940000
.980000

le_cp x/c

le_cp
edit> tabulate

S OO OO OO

x/c

.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01

OO OO QOO

.041666 2y/b

x/c

.416667E-01
.208333
.375000
.541667
.708333
.875000

deltacp

1.05367
1.16457
1.29959
1.43850
1.57196
1.70156
1.82998
1.95902
2.09000
2.22420
2.36313
2.50851
2.66236
2.827117
3.00611
3.20335
3.42449
3.67719
3.97186
4.32299
4.75334
5.30779
6.09007
7.38284
10.5822

deltacp

6.09007
3.02826
2.
1
1

12340

.60278
.17190

0.711813

deltacp

.041666 2y/b deltacp

O OO OO OO

2y/b

.200000E-01
.600000E-01
.100000
.140000
.180000
.220000
.260000

77

deltacp

[™)

.05367
.16457
.29959
.43850
.57196
.70156
.82998

8 0.416667E-01 0.300000 1.95902

9 0.416667E-01 0.340000 2.09000
10 0.416667E-01 0.380000 2.22420
11 0.416667E-01 0.420000 2.36313
12 0.416667E-01 0.460000 2.50851
13 0.416667E-01 0.500000 2.66236
14 0.416667E-01 0.540000 2.82717
15 0.416667E-01 0.580000 3.00611
16 0.416667E-01 0.620000 3.20335
17 0.416667E-01 0.660000 3.42449
18 0.416667E-01 0.700000 3.67719
19 0.416667E-01 0.740000 3.97186
20 0.416667E-01 0.780000 4.32299
21 0.416667E~-01 0.820000 4.75334
22 0.416667E-01 0.860000 5.30779
23 0.416667E-01 0.900000 6.09007
24 0.416667E-01 0.940000 7.38284
25 0.416667E-01 0.980000 10.5822

edit>

The first export directive creates the file tip_cp containing pressure (deltacp) as a function of chord
location (x/c) at a 90% wing semispan (2y/b =.9), which is near the wing's outboard tip. The second
export directive creates another tile, le_cp, containing pressure (deltacp) as a function of wing

semispan (2y/b) at a 1/24th chord location (x/c =.0416667), which is along the wing's leading edge.

These examples are simplified to illustrate how export is used. In practice, actual TOAD files and
target object lists tend to have more controlling independent variables and are much more complex.

By no means should you feel constrained in the use of export. It you can identify the data subset
using an object list, the Editor can extract the data and write the corresponding TOAD file.

Command import replaces a selected data subset with data contained on an external, single- or
multi-column TOAD file. Its form is

imponrt [file] [objectlist]
where file is the optional name of the external file to be read and the optional object list targets the
receiving data cells. If the external file name is omitted, file tadpole is assumed. !f the object list is
omitted, the current default target list is assumed. For example, the directive

import tip_cp 2y/b .98 x/c deltacp

reads a TOAD file called tip_cp and places the incoming values into data cells belonging to variables
2y/b, x/c, and deltacp only when the original value for 2y/b is 98% (.98).

Note

The import command replaces values within existing data cells -- it does not increase
the size of the active TOAD file. If you want to increase the file's size, use create,
before, after, addwart, dupwart, or pastewart.

78

Single- or multi-column TOAD files are accepted. The number of variables contained on the external
file must match the number of variables in the target list. If the file contains either too few or too many
variables, the file is rejected and an error message is written. Further, the number of values available
from the external file and the number of data cells to be filled must match exactly. If the external file
contains either too little or too much data for the number of targeted data cells, the file is again rejected
and an error message is written.

To illustrate a few of the import command's many variations, consider the following dialog:

edit> op tip cp
edit> scan

This TOAD file contains 3 variables:

2y/b x/c
press

and has a total of 6 data warts

edit> tabulate

wart # 2y/b x/c press
1 0.980000 0.416667E-01 10.1589
2 0.980000 0.208333 5.38980
3 0.980000 0.375000 4.25331
4 0.980000 0.541667 3.63584
5 0.980000 0.708333 3.02780
6 0.980000 0.875000 2.04281

edit> op toadl
edit> scan

This TOAD file contains 6 variables:

mach cldes planform
x/c 2y/b deltacp

and has a total of 150 data warts

edit> target 2y/b .94 * x/c deltacp
edit> tabulate

wart # 2y/b x/c deltacp
139 0.94000¢0 0.416667E-01 7.38284
140 0.940000 0.208333 3.76906
141 0.940000 0.375000 2.71414
142 0.940000 0.541667 2.03536
143 0.940000 0.708333 1.50435
144 0.940000 0.875000 0.937932
145 0.980000 0.416667E-01 10.5822
146 0.980000 0.208333 5.61437

79

147 0.980000 0.375000 4.43053
148 0.980000 0.541667 3.78733
149 0.980000 0.708333 3.15396
150 0.980000 0.875000 2.12793

edit> import tip_cp 2y/b .98 x/c deltacp
edit> tabulate

wart # 2y/b x/c deltacp
139 0.940000 0.416667E-01 7.38284
140 0.940000 0.208333 3.76906
141 0.940000 0.375000 2.71414
142 0.940000 0.541667 2.03536
143 0.940000 0.708333 1.50435
144 0.940000 0.875000 0.937932
145 0.980000 0.416667E-01 10.1589
146 0.980000 0.208333 5.38980
147 0.980000 0.375000 4.,25331
148 0.980000 0.541667 3.63584
149 0.980000 0.708333 3.02780
150 0.980000 0.875000 2.04281
edit>

Notice that external file tip_cp contains three variables and six data warts, exactly the size of the
import directive’s object list. Also notice the values for 2y/b and x/c within the external file tip_cp
exactly match those within the active file toad1. Finally, notice the values associated with variable
press from the external file are used to replace values for deltacp. There is nothing special about the
variable names press or deltacp. Rather, the Editor merely substituted values from the external file's
third variable for those values associated with the active tile's third variable in the object list. This can
be portrayed graphically as

am | we | press | External File
| |
C
l 2y>/3 ,, { x/c l deltacpj Object List
! H 2y/b N { - x/c 1 : deltécp t Active File

It doesn really matter what the external file’s variable names are, as long as the number of variables it
contains matches the number of variables specified in the object list. For example, the external file

80

wart # span chord press

1 0.980000 0.416667E-01 10.1589

2 0.980000 0.208333 5.38980

3 0.980000 0.375000 4.25331

4 0.980000 0.541667 3.63584

5 0.980000 0.708333 3.02780

6 0.980000 0.875000 2.04281

would still be imported as

(span chord ; press_] External File
o | xe | deltacp | object List
2 { xle I deltacp | Active File

Suppose another external file contains the same data, only arranged differently:

wart # press chord span
1 10.1589 (.416667E-01 0.980000
2 5.38980 0.208333 0.980000
3 4.25331 0.375000 0.980000
4 3.63584 0.541667 0.980000
5 3.02780 0.708333 0.980000
6 2.04281 0.875000 0.980000

Can we still import its data?

The answer lies within the concept of targeting and object lists. We can't change how the external file
is structured, or how it is read, but we can control the receiving pattern of the active file's targeted data
cells. For example, consider the following dialog:

edit> op tip_press
edit> scan

This TOAD file contains 3 variables:

press chord
span

81

edit>

wart

s W N

edit>
edit>

edit>
edit>

wart

139
140
141
142
143
144
145
146
147
148
149
150

edit>
edit>

wart

139
140
141
142
143
144
145

and has a total of 6 data warts

tabulate
¥ press chord span
10.1589 0.416667E-01 0.980000
5.38980 0.208333 0.980000
4,25331 0.375000 0.980000
3.63584 0.541667 0.980000
3.02780 0.708333 0.980000
2.04281 0.875000 0.980000
op toadl
scan
This TOAD file contains 6 variables:
mach cldes
x/c 2y/b
and has a total of 150 data warts
targ 2y/b .94 * x/c deltacp

tabulate
2y/b x/c deltacp
0.940000 0.416667E-01 7.38284
0.940000 0.208333 3.76906
0.940000 0.375000 2.71414
0.940000 0.541667 2.03536
0.940000 0.708333 1.50435
0.940000 0.875000 0.937932
0.980000 0.416667E-01 10.5822
0.980000 0.208333 5.61437
0.980000 0.375000 4.43053
0.980000 0.541667 3.78733
0.980000 0.708333 3.15396
0.980000 0.875000 2.12793
import tip_press deltacp x/c 2y/b .98

tabulate

2y/b x/c deltacp
0.940000 0.416667E-01 7.38284
0.940000 0.208333 3.76906
0.940000 0.375000 2.71414
0.940000 0.541667 2.03536
0.940000 0.708333 1.50435
0.940000 0.875000 0.937932
0.980000 0.416667E-01 10.1589

82

planform
deltacp

146 0.980000 0.208333 5.38980

147 0.980000 0.375000 4.25331

148 0.980000 0.541667 3.63584

149 0.980000 0.708333 3.02780

150 0.980000 0.875000 2.04281
edit>

Notice that only the import directive’s object list was altered to accommodate what initially appeared to
be an incompatible external file structure. This last import operation can be graphically portrayed as

presrsi [chorrdr l N span I External File
7;e_ltacp] Wx/c R 2y/b | ' Object List
e . L I
I }
b | xe] deltacp 1 Active File

Therefore, the key to using the import directive’s object list is to match variable positions between the
external and active file. The variable names within the import directive's object list serve only to
identify which columns receive the incoming data.

This flexibility can easily be misused. For example, consider the following dialog:

edit> op tip_press
edit> scan

This TOAD file contains 3 variables:

press chord
span

. and has a total of 6 data warts

edit> tabulate

wart # press chord span
1 10.1589 0.416667E-01 0.980000
2 5.38980 0.208333 0.980000
3 4.25331 0.375000 0.980000
4 3.63584 0.541667 0.980000
5 3.02780 0.708333 0.980000

83

6 2.04281 0.875000 0.980000

edit> op toadl
edit> scan

This TOAD file contains 6 variables:

mach cldes planform
x/c 2y/b deltacp

and has a total of 150 data warts

edit> targ 2y/b .94 * x/c deltacp
edit> tabulate

wart # 2y/b x/c deltacp
139 0.940000 0.416667E-01 7.38284
140 0.940000 0.208333 3.76906
141 0.940000 0.375000 2.71414
142 0.940000 0.541667 2.03536
143 0.940000 0.708333 1.50435
144 0.940000 0.875000 0.937932
145 0.980000 0.416667E-01 10.5822
146 0.980000 0.208333 5.61437
147 0.980000 0.375000 4.43053
148 0.980000 0.541667 3.78733
149 0.980000 0.708333 3.15396
150 0.980000 0.875000 2.12793

edit> import tip_press 2y/b .98 x/c deltacp
edit> tabulate

wart # 2y/b x/c deltacp
139 0.940000 0.416667E-01 7.38284
140 0.940000 0.208333 3.76906
141 0.940000 0.375000 2.71414
142 0.940000 0.541667 2.03536
143 0.940000 0.708333 1.50435
144 0.940000 0.875000 0.937932
145 10.1589 0.416667E-01 0.980000
146 5.38980 0.208333 0.980000
147 4.25331 0.375000 0.980000
148 3.63584 0.541667 0.980000
149 3.02780 0.708333 0.980000
150 2.04281 0.875000 0.980000
edit>

Because the import directive's object list doesn't properly align the external file’s data with the active
file's columns, the external file's span data (span) and pressure data (press) end up in the active file's
columns for coefficient of pressure (deltacp) and span location (2y/b). Such an operation is a clear

84

misuse of import.

Note

The export and import commands are designed for manipulating scattered warts or
wart subsets. If you are manipulating contiguous blocks of entire warts, copywart,
cutwart, and pastewart may be easier to use.

Warning
It is your responsibility to ensure that the incoming data from the external file is

appropriate for the targeted cells within the internal active file. Improper use of import
can create worthless or misleading TOAD files.

General Flle Insertion

Commands before and after insert the contents of a single- or multi-column TOAD before or after,
respectively, the specified data wart. Their forms are

before wart id [file]
and
after wart_id [file]

where wart_id identifies where the new data is inserted and file is the optional name of the external
file to be read. If the external file name is omitted, file tadpole is assumed. For example, the directive

before 32 extra
inserts the contents of file extra between existing data warts 31 and 32. Similarly, the directive

after 32 extra

inserts the contents of file extra between existing data warts 32 and 33. In addition to a numeric wart
id, the keywords top, first, bottom, and last may also be used, as in the directives

before top extra after bottom extra
or or
before first extra after last extra

which insert the contents of file extra before the first data wart or after the last, respectively.

Using a spreadsheet analogy, a before or after operation can be portrayed as

IR,
>
W,

QO TN

Qo -0 qQaon

85

where the shaded rows represent those data wars added to the active file.

Single- or multi-column TOAD files are accepted. The number of variables contained on the external
file must match the number of variables in the active file. If the file contains either too few or too many
variables, the file is rejected and an error message is written.

Because adding more data warts increases the overall size of the active TOAD file, it's possible to
exceed the raw data capacity (number of data celis) of the Editor. If the request would cause the
capacity to be exceeded, the Editor writes the message

Unable to use this file - Insufficient capacity.

Only n additional raw data can be accommodated.
and does not perform the before or after request. If the current capacity prevents you from

effectively using the Editor, we suggest you follow the instructions presented in Section 6, “In Case of
Problems.”

Warning

It is your responsibility to ensure that the incoming data from the external file is
appropriate for the targeted cells within the internal active file. For example, pressure
data should not be brought in and subsequently treated as temperature data.
Improper use of before or after can create worthless or misleading TOAD files.

86

Section 5
Directive Files and Macros

Directive Files

You may prefer to have the Editor read long or repetitive directive sequences from an external file,
rather than entering them interactively. Such a file is called a directive file and is executed via the
Include command:

Include file

where fife is the name of the directive file to be executed. For example, suppose we have the disc file
group1 which contains the following directives:

open toadi
target deltacp x/c 2y/b [.94,.98] alpha [0,30]
tabulate

It is invoked by entering
include group1
whereupon the directives

open toad1
target deltacp x/c 2y/b [.94,.98] alpha [0,30]
tabulate

are read and executed.

Under normal circumstances the editing session is controlled by your keyboard entries. However,
when a directive file is invoked it assumes control and returns it only after all of the directives within the
file have been processed. Very long or very complex directive files take a commensurate amount of
time to process, which may create a noticeable delay.

Helpful Hin

The EntryEcho toggle is particularly useful when using directive files. Under normal
circumstances, the Editor displays little if any progress information after you've started
executing the contents of a directive file. If, at the beginning of the directive file, you
enable the EntryEcho toggle, each directive is displayed as it is executed, providing a
live report of the Editor’'s progress. We highly recommend this practice and offer the
following as a pattern for all of your directive files:

Enablé entryecho

directive
directive

87

directive
Disable entryecho

More than one directive file may be executed during a single editing session. For example, imagine
we have two directive files: findq and findcp. File findq contains the directives

create dynamicp

create spare

power freev 2 spare
mult spare rho

divide spare 2 dynamicp
delete spare

and file findcp contains the directives

create cp

create spare

subtract press staticp spare
divide spare dynamicp cp
delete spare

Entering the directives

include findq
include findcp

executes the directive sequence

create dynamicp

create spare

power freev 2 spare

mult spare rho

divide spare 2 dynamicp
delete spare

create cp

create spare

subtract press staticp spare
divide spare dynamicp cp
delete spare

which creates dynamic pressure and pressure coefficient tables.
A directive file itself may call another directive file. For example, consider the directive file 5et200:

open run203
include findq
include findcp
save

open run204
include findq
include findcp
save

88

open run205
include findq
include findcp
save

which makes three calls to the directive files findq and findcp, already defined. Entering
include set200

creates a directive sequence which opens three files, performing calculations for the dynamic
pressure and pressure coefficient tables in each. There is no limit on the number of levels within such
a directive file hierarchy, nor is there a limit on the number of directive files which may be called within
the same level. Repetitive calls to a single directive file, as illustrated above, are allowed. However, a
directive file cannot call itself; that is, directive file recursion is not allowed.

Macros

A macro is a sequence of directives which, taken collectively, is executed by name. For example,
suppose you have a series of wind tunnel results files in which the modei’'s angle of attack must be
converted from degrees to radians and the temperature readings must be converted from degrees
Rankine to degrees Kelvin. You could consolidate the necessary directives as a macro called fix and
then have them executed by simply entering

fix

Why use a macro when you could use a directive file? There are two reasons. First, macros are
generally more convenient than directive files simply because fewer keystrokes are required.
Entering

fix
is easier and more convenient than entering
include file

Second, macros have the ability to pass and use arguments. This allows the macro to customize its
directives according to the information you pass it. Unlike a directive file, which always executes the
same set of directives, a macro execution may be “adjusted” via passed arguments. A full description
of macro arguments will be presented on the next page.

Creating and Executing Macros

Macros are created using the macro and endmacro commands, as illustrated below:

edit> macro fix

macro> convert alpha degrees2radians
macro> convert temp rankine2kelvin
macro> endmacro

edit>

This dialog creates the macro fix, which converts all angle of attack values (alpha) from degrees into
radians (degrees2radians } and converts all temperatures (temp } from the Rankine scale to the Kelvin

89

scale (rankine2kelvin). Notice that after the macro directive the prompt becomes macro> and that
after endmacro it changes back to the original edit> prompt. All directives entered after a macro
directive and before an endmacro directive are considered to be that macro’s “script.” You must
complete the definition of a macro before beginning to define another. That is, you are not permitted
1o begin another macro definition at the macro> prompt.

Once macro fix is defined, the two conversion directives

convert alpha degrees2radians
convert temp rankine2kelvin

can be executed by simply entering

fix

Warning

Macro names must not match Editor commands, or their aliases, unless you intend to
i . Also, macro names which match active
variable or symbol names have the potential for creating severe problems.

Macros may also be created to accept arguments. For example, the macro definition

macro halfsquare $a
divide $a 2

power $a 2
endmacro

creates the macro halfsquare, which divides a variable in half and then finds its square. This definition
also declares one variable, a, which appears as $a. The dollar sign prefix (called the “macro character”)
marks all occurrences of the argument a. Use of the macro character is optional for declaring a macro
variable but is mandatory when marking the variable within the macro script. Thus, the same macro
definition could also be written as

macro halfsquare a
divide $a 2

power $a 2
endmacro

where the macro character is omitted from variable a only when it is declared in the macro directive.

To repeat,) jriables w
To illustrate the significance of using the macro character, consider the macro definition

macro halfsquare a
divide a 2
power a 2
endmacro

Variable a is correctly declared on the first line. However, because the macro character is not used to

mark subsequent appearances, the parameter a in the divide and power directives is assumed to be
a variable name within the active TOAD file, not occurrences of the macro variable a.

90

Why use macro arguments? Declaring and using macro arguments provide versatility not found in
directive files. For example, again using our example macro definition

macro halfsquare a
divide $a 2
power $a 2
endmacro

when we enter the directive
halfsquare alpha

the Editor substitutes and processes the directives

divide alpha 2
power alpha 2

Similarly, entering the directive
haifsquare ‘yaw angle’
leads to the execution of the directives

divide ‘yaw angle’ 2
power ‘yaw angle’ 2

Thus the argument “mimics” whatever is entered in its position when the macro is invoked.

Multiple arguments are declared and used in a similar manner. For example, consider the macro
definition

macro findrpm base delta final
create $final

add $base $delta $final

mult $final .918333
endmacro

which creates macro findrpm with three variables: base, delta, and final. Entering the directive
findrpm msid1021 msid1078 rpmioxpump
leads to the execution of the directives
create rpmloxpump
add msid1021 msid1078 rpmioxpump
mult rpmloxpump .918333

Macro arguments may be omitted only if a suitable default value is available. For example, the macro
definition

macro findrpm base=msid1021 delta=msid1078 final=rpmloxpump

create $final
add $base $delta $final

91

mult $final .918333
endmacro

declares the same macro arguments as before, with the addition of default values. Now, if variable

base is omitted, it takes on its default value, msid1021. Likewise, if macro variables deita or final are
omitted, the values msid1078 or rpmioxpump are assumed, respectively. Thus the directive

findrpm
executes the directives
create rpmloxpump
add msid1021 msid1078 rpmloxpump
mult rpmioxpump .918333
When values are provided they override any defaults. For example, entering
findrpm msid1022
executes the directives
create rpmloxpump
add msid1022 msid1078 rpmloxpump
mult rpmioxpump .918333
Entering
findrpm ,, msid1079
executes the directives
create rpmloxpump
add msid1021 msid1079 rpmloxpump
muit rpmioxpump .918333
And entering
findrpm msid1056 msid1097 rpmh2pump
executes the directives
create rpmh2pump
add msid1056 msid1097 rpmh2pump
muit rpmh2pump .918333

Macro arguments pass any type of information, including commands and keywords. For example,
consider the macro definition

macro merge filet column1 file2 column2 command column3 object_list
create $columni

create $column2

create $column3

read $columni $filet $object_list

92

read $column2 $file2 $object_list
$command $columni $column2 $column3 $object_list
endmacro

Macro merge reads the contents of two extemal files into two new columns, then uses a mathematical
function to calculate the contents of a third new column, all subject to an object list. Entering

merge loxdata loxmass h2data h2mass add propmass ‘time 1500 2500’
executes the directives

create loxmass

create h2mass

Create propmass

read loxmass loxdata ‘time 1500 2500’

read h2mass h2data ‘time 1500 2500

add loxmass h2mass propmass ‘time 1500 2500’

which presumably reads liquid oxygen and hydrogen mass tables from the external files loxdata and
h2data, respectively, then sums the two columns to arrive at total propellant mass (propmass), all
between the event times 1500 and 2500. Although it's an unusual example, this macro does show
how file names, commands, and object lists can be transmitted to the macro via arguments. A more
realistic example is the macro definition

macro yanklep file1 file2

open $fllet

define leading_edge=0

min x/c leading_edge

export $file2 deltacp x/c leading_edge 2y/b
delsymbol leading_edge

close

endmacro

which can be used as

yanklep run203 lep203
yanklep run204 lep204
yanklep run205 lep205
yanklep run206 lep206

to isolate and extract leading edge pressure tables from a series of raw TOAD files.

Helpful Hints

Our experience with defining and using macros with arguments suggests that, when
properly designed, a few macros can go a long way. We recommend that, until you
become proficient in their use, you limit their number, size, and complexity.

Our experience also suggests that allowing omitted parameters is justified in only a
few situations -- the most common being when working with a series of files which
contain the same type of data with the same variable names. Using an improper
detault value for an omitted parameter may create severe problems which may go

93

unnoticed. If you decide to allow omitted parameters, it is usually best to place them
after the required parameters. For example, the macro definition

macro frame scene color=blue
may be invoked by

frame missile
whereas the definition

macro frame color=blue scene
leads to the directive

frame ,, missile

which adds contusion 1o an already difficult feature.

neral N

There's no need for you to define all of your macros “live” from the keyboard. We
suggest putting all macro definitions in the startup file. In fact, the startup file is
intended to be the place to keep your macros and have them defined automatically
before every editing session.

How macro definitions are arranged within the startup file is a matter of personal style.
However, macro novices should be aware of two extreme schools: the “big bang”
approach and the “fragment” approach. The big bang approach puts all of the macro
definitions directly into the startup file (embedded comments are always helpful). This
method centralizes all macro definitions but may complicate later editing. The
fragment approach puts each macro in a separate file, each to be included as a
directive file within the startup file. This method makes the macro definitions more
modular but often grows into a large file set. Again, it's a matter of personal style, so
there's no “right” or “wrong” way to use your startup file.

To display a list of all current macros, enter
show macros

which creates a report in the form

The defined macros are:

macro #1
macro #2

macro #n

To display the argument list and directive script associated with a particular macro, enter

94

-2

show macro name

where name is the name of the macro to be displayed, which creates a report in the form

Macro: macro name
Parameters: parameter #1 = default value
parameter #2 = default value
parameter #n = default value
Script:
directive
directive
directive

Benaming and Deleting Macros

To rename an existing macro, use the directive
renmacro old_name new_name

where old_name is the name of the macro being renamed and new_name is its new name. Both
parameters are required -- the Editor cannot make any assumptions if either or both are omitted. In
addition, o/d_name must be an existing macro, and new_name cannot be an existing macro.

To delete an existing macro, use the directive
delmacro name

where name is the name of the macro to be deleted.

Undoing Macros

The undomacro command allows you to restore the active file back to what it was immediately before
the most recent macro execution, whether that macro changed the file or not. As an illustration,
consider the following dialog:

edit> macro z

macro> add c¢oll 1000
macro> mult col2 -1
macro> endmacro

edit> open testl

edit> tab
wart # coll col2 col3 cold
1 101.000 102.000 103.000 104.000

95

WOV e W

9 wart subsets listed.

edit> =z

201.
301.
401.
501.
601.
701.
801.
901.

[add coll 1000]

000
000
000
000
000
000
000
000

9 data warts changed.

[mult col2 -1]

9 data warts changed.

edit> tab

wart #

O O <1 bWk

9 wart subsets listed.

edit> undomacro

col

1101.

1201
1301
1401

1501.
1601.

1701

1801.

1901

1

00
.00
.00
.00
00
00
.00
00
.00

202.
.000
.000

302
402

502.
.000
.000
802.
.000

602
702

902

000

000

000

col?2

-102.
.000
-302.
~-402.
-502.
.000
.000
.000
.000

-202

-602
-702
-802
-902

000

000
000
000

The active fil: has reverted back to
before the last macro was executed.

edit> tab

wart #

S W

col

101.
201
301
401
501
601
701.

1

000

.000
.000
.000
.000
.000

000

col2

102

302
402
502
602

96

.000
202.
.000
.000
.000
.000
702.

000

000

how it

203

503

803

.000
303.
403.
.000
603.
703.
.000
903.

000
000

000
000

000

col3

103.
203.
303.
403.
503.
603.
703.
.000
903.

803

was

000
000
000
000
000
000
000

000

col3

103

303
403

.000
203.
.000
.000
503.
603.
703.

000

000
000
000

204

404
504
604
704
804

.000
304.
.000
.000
.000
.000
.000
904,

000

000

cold

104
204
304

704
804

.000
.000
.000
404.
504.
604.
.000
.000
904.

000
000
000

000

cold

104
204
304
404
504

.000
.000
.000
.000
.000
604.
704.

000
000

8 801.000 802.000 803.000 804.000
9 901.000 902.000 903.000 904.000

9 wart subsets listed.
So far, so good. But suppose we entered undomacro by mistake - can we “undo” the undomacro
command? Yes, since undomacro is the most recent directive which changed the active file. This is
shown in the continuing dialog:

edit> undo

The active file has reverted back to how it was
before the last UndoMacro command.

edit> tab
wart # coll col?2 col3 col4
1 1101.00 -102.000 103.000 104.000
2 1201.00 -202.000 203.000 204.000
3 1301.00 -302.000 303.000 304.000
4 1401.00 -402.000 403.000 404.000
5 1501.00 -502.000 503.000 504.000
6 1601.00 -602.000 603.000 604.000
7 1701.00 -702.000 703.000 704.000
8 1801.00 -802.000 803.000 804.000
9 1901.00 -902.000 903.000 904.000

9 wart subsets listed.

Oops! Maybe we wanted to undo that macro after all - can we recover the file back to where it was just
after undomacro (or just before the last undo)? Sure, as shown below:

edit> undo

The active file has reverted back to how it was
before the last Undo command.

edit> tab
wart # coll col2 col3 cold
1 101.000 102.000 103.000 104.000
2 201.000 202.000 203.000 204.000
3 301.000 302.000 303.000 304.000
4 401.000 402.000 403.000 404.000
5 501.000 502.000 503.000 504.000
6 601.000 602.000 603.000 604.000
7 701.000 702.000 703.000 704.000
8 801.000 802.000 803.000 804.000
9 901.000 902.000 903.000 904.000

9 wart subsets listed.

97

edit>

Notice that undomacro is itself undone via undo, as opposed to another undomacro. Why? Consider
what it means to use two consecutive undomacro directives. The first undomacro revokes all
changes made by the previous macro execution, but what should the second undomacro do? We
can't revoke a macro previous to the one most recently executed, so we've already revoked the only
macro we can. Therefore the second undomacro again restores the active file to its state immediately
before the last macro execution. Because the first undomacro already did this, the second
undomacro merely duplicates the restoration and has no real effect upon the active file.

Commands undo and undomacto have some interesting and very handy interactions. Graphically
portrayed, a macro execution and subsequent undomacro operation appear as

active file copied to the undomacro buffer

Hr_ active file ﬂ - = H undd;n;cro buffer 1

macro executed

the shading indicates a modification

active file as a result of the macro executed
undomacro step 1: active file copied to the undo buffer
— - undo buffer

active file

step 2: undomacro buffer copied to the active file

| active file - - undomacro buffer l

In other words, after the active file is copied to the undo bufter, undomacro replaces the active file with
the undomacro buffer, provided that the undomacro butfer was initially filled via a macro execution.

Unlike undo and the undo butfer, an undomacro does not exchange the active file and the
undomacro buffer. Thus it is possible to issue an undomacro long after other directives have made
substantial changes to the active file. This has the effect of a “superundo” because it can revoke the
effects of a series of directives, compared to the undo command's ability to revoke only the most
recent directive. Some users deliberately create a null macro just for this purpose. As an illustration,
consider the following dialog (the echo command is discussed later in this section):

edit> disable macroecho

edit> macro backup

macro> echo

macro> echo Active file written to undomacro buffer.
macro> echo

macro> endmacro

edit> open testl

edit> backup

Active file written to undomacro buffer.

98

edit> tab

wart # col

101.
201.
301.
401.
501.
601.
701.
801.
901.

O D Jdo s WwWN

9 wart subsets lis

1

000
000
000
000
000
000
000
000
000

ted.

edit> add 1000 coll

9 data warts changed.

edit> mult -1 col2

9 data warts changed.

edit> assign 999 col3

edit> tab
wart # coll
1 1101.00
2 1201.00
3 1301.00
4 1401.00
5 1501.00
6 1601.00
7 1701.00
8 1801.00
9 1901.00

9 wart subsets listed.

edit> undomacro

col2

102,
202.
302.
.000
.000
602.
.000

402
502

702

802.
902.

000
000
000

000

000
000

col2

-102
-202

-502
-602
-702

.00¢0
.000
-302.
-402.
.000
.000
.000
-802.
-902.

000
000

000
000

The active file has reverted back to
before the last macro was executed.

edit> tab
wart # coll
1 101.000
2 201.000
3 301.000

col2

102.

000

202.000
302.000

99

how it

col3

103
203

703

.000
.000
303.
403.
503.
603.
.000
803.
903.

000
000
000
000

000
000

col3

899.
999.
999.
999.
999.
999.
999.
999.
.000

999

was

000
000
000
000
000
000
000
000

col3

103.

000

203.000
303.000

coli4

104.
204.
.00¢
.000
.000
.000
704.
804.
904.

304
404
504
604

00¢
060

000
000
000

cold

104
204

504
604
704

.000
.000
304.
404.

000
000

.00¢
.000
.000
804.
904.

000
000

colid

104.
204.

000
000

304.000

4 401.000 402.000 403.000 404.000
5 501.000 502.000 503.000 504.000
6 601.000 602.000 603.000 604.000
7 701.000 702.000 703.000 704.000
8 801.000 802.000 803.000 804.000
9 901.000 302.000 903.000 904.000

9 wart subsets listed.
edit> undo

The active file has reverted back to how it was
before the last UndoMacro command.

edit>
Notice that the second undomacro revokes the effects of the preceding three directives, which is

beyond the capabilities of a normal undo. The final undo revokes the effects of the undomacro
command. This dialog can be portrayed graphically as:

macro backup

endmacro

open test1
backup - . ?9!"&9 file copied to the undomacro buffer
P active file 1 ‘ — " 1 undomacro buffer E

add 1000 colt
mult -1 col2
assign 999 col3

: active file the shading indicates the modifications as a result

i1 of the add, mult, and assign directives executed
undomacro

active file copied to the undo buffer

active file

undo buffer

undomacro buffer copied to the active file
active file ﬂ _— undomacro buffer
undo
simultaneous exchange
e e i T S e e e
active file - [1 undo buffer H

One last point. Once a past version of the active file is in the undomacro buffer it can be recalled at any
time in the future. We could enter another series of directives (excluding macro executions) and again

100

use undomacro to restore the version of the active file saved by macro backup. Thus a null macro and
undomacro provide a simple means for intermediate file backups.

Creating a Directive File from a Macro

Macros generally offer more control (via undomacro) and more flexibility (via parameters) than a
directive file equivalent. However, there may be times when you wish to create a directive file from a
macro using specific parameters. As an example, suppose we've been determining turbopump rpm’s
using the macro findrpm :

macro findrpm base delta final

create $final

add $base $delta $final

mult $final .918333

endmacro
Further, suppose we've noticed that the base rpm and deltarpm are almost always measurement id’s
msid1021 and msid1078, respectively, and that the final rpm goes into rpomloxpump. Instead of
continually entering

findrpm msid1021 msid1078 rpmloxpump
we would prefer to enter

Include loxrpm
In other words, we want to take a specific instance of a macro and turn it into a directive file.
The key is the session file. By default, directives executed within a macro are echoed to the terminal
screen but are not echoed to the session file. (Recall that the session file is intended to serve as a
step-by-step record of your entries, to the extent that you could use the resulling session file as a
directive file to exactly duplicate the editing session. Echoing the call to the macro is proper. Echoing
each directive within the macro defeats the original purpose of the session file because, if used as a
directive file in a subsequent editing session, it would twice execute each directive within the macro.)
This can be changed by entering

enable expand
which enables the session file expansion toggle. To illustrate, consider the following UNIX dialog:

% toaded

T OAD File Editor

Release 1.0 October 1990

101

[No startup file]

edit> macro findrpm base delta final

edit> create $final

edit> add Sbase $delta $final

edit> mult $£final .918333

edit> endmacro

edit> enable expand

edit> findrpm msidl021 msidl078 rpmloxpump
edit> quit

Normal session.

% cat session
]
' TOAD Editor session file.
1
macro findrpm base delta final
create $final
add Sbase Sdelta $final
mult $final .918333
endmacro
enable expand
findrpm msidl021 msid1078 rpmloxpump
1
! Expanding macro findrpm.
1

create rpmloxpump
add msidl1021 msid1078 rpmloxpump

mult rpmloxpump .918333
g o S

1 End macro expansion.

t

quit
Now all we have to do is edit the session file and copy the highlighted directives to the file loxrpm,
which would then be available as a directive file.

Embedding Messages within Directive Files and Macros

The echo command is similar to the UNIX shell command echo -- whatever text follows the command
is written to your terminal screen. its form is

echo text
where text is the text string to be displayed. For example, the directive

echo LOX pump calculations finished . . . Begin H2 pump
displays the message

LOX pump calculations finished . . . Begin HZ pump

102

The echo command is designed to be used within the startup file and directive files to provide some
measure of progress feedback. For example, consider the startup file

#

TOAD Editor startup file

_

echo Begin startup sequence...

ienvironmental settings)

.echo ...Environmentals set
Es ymbol definitions]

'echo ...Symbols deflned
imacm definitions)

echo ...Macros defined
echo End startup sequence

Such a startup file would display the following messages at the beginning of each editing session:

Begin startup sequence...
...Environmentals set
...Symbols defined
...Macros defined

End startup sequence

Such messages can be highly customized within macros by virtue of the macros ability to perform
parameter substitution. Consider our previous example macro yanklep:

macro yanklep file1 file2

open $fllet

define leading_edge=0

min x/c leading_edge

export $file2 deltacp x/c leading_edge 2y/b
delsymbol leading_edge

close

endmacro

This macro could be modified to include a few echo directives, such as

macro yanklep file1 file2

#

echo

echo Using raw data file $file1 to create summary file $file2
echo

echo Leading edge x/c location:

min x/c

#

open $filet

define Jeading_edge=0

103

min x/c leading_edge
export $flle2 deltacp x/c leading_edge 2y/b
delsymbol leading_edge
close
#
endmacro
Now macro yanklep provides some feedback when it's executed:
edit> yanklep run203 lep203
Using raw data file run203 to create summary file lep203
Leading edge x/c location:
.025

edit>

Notice that, in the above macro example, parameter substitution was performed. If you would prefer
not to have this substitution performed, either leave off the macro character prefix

echo Using raw data file filel to create summary file file2
which creates the message
Using raw data file filel to create summary file fileZ2
or surround the parameter with single or double quotation marks:
echo Using raw data file ‘$file1’ to create summary file “$file2”
which creates the message
Using raw data file $filel to create summary file S$file2

The echo command can also be used as a debugging tool when developing a new macro. For
example, again using the macro yanklep:

macro yanklep filet file2

open $filet

define leading_edge=0

min x/c leading_edge

export $file2 deltacp x/c leading_edge 2y/b
delsymbol leading_edge

close

endmacro

suppose we aren't sure that the macro parameters file1 and file2 are coming in correctly. We could
verify their values by adding the directives

echo fllel: $tilet
echo file2: $tile2

104

and commenting out the export directive, as illustrated below:

macro yanklep file1 file2

echo ‘flle1: ’ file1

echo ‘file2: ’ file2

open $file1

define leading edge=0

min x/c leading_edge

#export $file2 deltacp x/c leading_edge 2y/b
delsymbol leading_edge

close

endmacro

When executed, this version of the macro only displays the values of its two parameters. For example,
entering

yanklep run21 lep21
displays the messages

filel: run2l
file2: lep21

which verifies that the desired file names were indeed brought in correctly. This technique is
particularly useful for tracing parameters passed down through many macro layers. As a more realistic
example, consider the following macro hierarchy:

macro wingstats span chord pressure lefile tefile tipfile
FrontBackCp $chord S$pressure S$leflle $tefile
OutboardCp $span $pressure $tipfile

endmacro

macro FrontBackCp xloc Cp lefile tefile
le $xloc $Cp $lefile

te $xioc $Cp Steflle

endmacro

macro le x scalar file
define xle = 0

min $x xle

export $file $x xle $scalar
delsymbol xle

endmacro

macro te x scalar file
define xte = 0

max $x xte

export $tile $x xte $scalar
delsymbol xte

endmacro

macro OutboardCp y scalar file
deflne ytip = 0

105

max $y ytip

export $flle $y ytip $scalar
delsymbol ytip

endmacro

By instrumenting the macro scripts (i.e., inserting diagnostic echo directives and commenting out the
active directives) we can trace all of the parameters used. Instrumented versions of these macros
might be

* * » » - » - 2 »

*

macro wingstats span chord pressure lefile tefile tipfile
echo wingstats incoming parameters:

echo span: $span

echo chord: $chord

echo pressure: $pressure

echo leflle: $lefile

echo tefile: S$tefile

echo tipfile: $tiptile

echo

echo calling FrontBackCp

FrontBackCp $chord S$pressure S$lefile S$tefile
echo

echo calling OutboardCp

OutboardCp $span $pressure $tiptile

echo

echo macro wingstats complete

endmacro

macro FrontBackCp xloc Cp leflle tefile
echo entering FrontBackCp with parameters $xloc $Cp S$lefile S$tefile
echo

echo calting le

le $xloc $Cp Slefile

echo

echo calling te

te $xloc $Cp Stefile

echo

echo macro FrontBackCp complete
endmacro

macro le x scalar file

echo entering le with parameters $x $scalar $file
define xle = 0

#min $x xle

#export $flle $x xle $scalar

delsymbol xle

echo macro le complete

endmacro

macro te x scalar file

echo entering te with parameters $x $scalar $file
deflne xte = 0

#max $x xte

#export $file $x xte $scalar

106

delsymbol xte
* echo macro te complete
endmacro

macro OutboardCp y scalar file
* echo entering OutboardCp with parameters $y $scalar $file
define ytip = 0
#max $y ytip
#export $file $y ytip $scalar
delsymbol ytip
* echo macro OutboardCp complete
endmacro

where the * marks the echo directives added during instrumentation. If we execute macro wingstats
by entering

wingstats 2y/b x/c deltacp run23le run23te run23tip

the following messages are displayed:

wingstats incoming parameters:

span: 2y/b

chord: x/c

pressure: deltacp

lefile: run23le

tefile: run23te

tipfile: run23tip

calling FrontBackCp
entering FrontBackCp with parameters x/c deltacp run23le run23te

calling le

entering le with parameters x/c deltacp run23le

macroc le complete

calling te

entering te with parameters x/c deltacp run23te

macro te complete

macro FrontBackCp complete

calling OutboardCp

entering OutboardCp with parameters 2y/b deltacp run23tip
macro QutboardCp complete

macro wingstats complete

which verifies that all macro parameters are passed as expected.

Changing the Macro Character and Continuation Character

Under normal conditions the macro character and continuation character remain as dollar sign ($) and

107

ampersand (&), respectively. However, there may be an occasion when changing either or both may
be more convenient. For example, if your TOAD file contains variables beginning with a dollar sign
and you plan to use macros, it's probably in your best interest to change the macro character to
something other than dollar sign.

The process of changing either control character is usually performed in three steps: save the current
setting for later restoration, change the setting, and restore the setling back to its original state. The
second step, change the setting, is accomplished via set and has already been covered under
subsection “Environmentals,” beginning on page 15. The first and third steps are accomplished via
the store and restore commands, respectively. Their forms are

store environmental
restore environmental

where environmental is a keyword identifying the environmental to be stored or restored. Only two
environmentals are currently available: the macro character (keywords macrochar or mchar) and the
continuation character (keywords contchar or cchar). As an illustration of how these commands are
used, consider the following dialog:
edit> show macrochar
The macro character is 'S$'.
edit> store macrochar
edit> set macrochar @
edit> show macrochar
The macro character is '@'.
One previous macro character is available:
— 1 A] s 1]
edit> restore macrochar
Macro character restored to '$'.
edit> show macrochar
The macro character is '$'.
edit>
Conceptually, store writes the environmental's setting to a “stack” or LIFO (Last In, First Out) list, and
restore reads an environmental’s setting from the stack. Additional store and restore directives write
and read additional entries in the stack, as shown in the following dialog:
edit> show macrochar

The macro character is 'S$'.

edit> store macrochar
edit> set macrochar @

108

edit> store macrochar
edit> set macrochar %
edit> store macrochar
edit> set macrochar ~
edit> show macrochar

The macro character is

3 previous macro characters are available:

_1 l%l
_2 l@‘
_3 lsl

edit> restore macrochar

5¢

Macro character restored to
edit> show macrochar
'%l

The macro character is

2 previous macro characters are availabl=:

_1 l@l
_2 |$l
edit> -2
[restore macrochar |}
Macro character restored to '@'.
edit> -1
[restore macrochar]
Macro character restored to '$'.
edit>

One particularly useful application of store and restore involves changing the macro character within a
single macro. For example, suppose we have a TOAD file which we know contains variables
beginning with a dollar sign. We want to write a macro which will be effective for this file yet we want
the macro to be useful for other TOAD files as well. How can this be accomplished?

The answer is to store, change, and restore the macro character within the macro itself. For example, if
the macro is supposed to add two columns together into a third, then multiply the result by 80%, we'd
normally write the macro as:

macro fix p1 p2 p3
add $pt $p2 $p3
multiply $p3 .9
endmacro

109

However, because the TOAD file we're using contains variables beginning with dollar signs, this macro
may work but it would be very confusing to debug or read in the session file. The solution is to use a
different macro character only within this macro. An alternate macro definition is

macro fix p1 p2 p3
store macrochar
set macrochar @
add @p1 @p2 @p3
multiply @p3 .9
restore macrochar
endmacro

which changes the macro character to “@” only for the duration of the macro. This revised macro
satisfies both of our requirements: it accommodates variable names beginning with a dollar sign yet is
useful for general TOAD files.

Helpful Hint

The store and restore commands are intended for the advanced user who prefers a
highly customized editing environment. Because of the complexities involved, we do
not recommend changing either the macro character or the continuation character. In
general, variable names which begin with a dollar sign (the default macro character) or
end with an ampersand (the default continuation character) are best renamed.

110

Section 6
In Case of Problems ...

General

No software is above design and development errors. If you uncover an error, or notice some strange
behavior, please follow the steps described below. One minute of your time may save others hours or
even days of effort.

Langley Users - All Systems
If possible, assemble the following information:
1. Your host computer's manufacturer, model, operating system, and location.
2. The name of the active TOAD file.
3. A directive sequence which reproduces the error, or a description of the operations
performed immediately before the error occurred.

Then call Bradford Bingel at Computer Sciences Corporation, (804) 865-1725. Every attempt will be
made to correct the problem, when possible, within a few minutes.

Non-Langley Users - All Systems
Computer Sciences Corporation does not support the TOAD Editor outside of NASA Langley. All

questions and problems concerning this software should be directed to Dr. John E. Lamar, mail stop
361, (804) 864-2851.

All comments are appreciated and welcomed !!!

111

Appendix A

Sample Sessions

Sample Session #1

The file toad1 contains general pressure data over the surface of an aircraft wing.
We want to familiarize ourselves with the file, then extract five subsets of data:
pressure as a function of chord location at three spanwise locations, and pressure as
a function of spanwise location along the wing's leading and trailing edges.

% toaded
T OAD File Editor
Release 1.0 October 1990
[No startup filel
edit> open toadl
edit> menu

edit>

edit>
edit>

This TOAD file contains 6 variables:

mach cldes planform
x/c 2y/b deltacp

Because we may have to modify this file, we'll make a copy, and work from the copy.
save toadlm

This request will overwrite the original contents of

an existing file. Do you really want it performed ?
Note: This question appears only when toadm1 already exists.

op toadlm
show targ

The entire TOAD file.

edit> menu
This TOAD file contains 6 variables:

mach cldes planform
x/c 2y/b deltacp

We suspect that some of the variables in this TOAD file are not of interest in this
sassion, so we'll use the stats command to help identify them. Because variables
cldes and planform are constant and fulfill no useful purpose in this analysis, they
are removed. We also use stats to determine that variable mach is constant at .6.

edit> stat cldes

Frequency Count: 150
Sum: 150
Range: 0
Minimum:
Maximum:

Mean:

variance:
Standard Dev:
Standard Error:

(unbiased)
(biased)
(biased)

OO O = =

edit> del cldes
edit> stat planform

Frequency Count: 150
Sum: 150
Range: 0
Minimum:
Maximum:

Mean:

Variance:
Standard Dev:
Standard Error:

(unbiased)
(biased)
(biased)

O O O K ==

edit> del planform
edit> stat mach

Frequency Count: 150
Sum: 90
Range: 0
Minimum: 0
Maximum: 0
Mean: 0
Variance: 0 (unbiased)
Standard Dev: 0 (biased)

Standard Error: 0 (biased)

edit> scan

mach

deltacp

x/c

This TOAD file contains 4 variables:

and has a total of 150 data warts.

2y/b

Looking at the first few data warts, we notice two things: the wing semispan location
(2y/b) should come before the airfoil chord location (x/c), and that the wing
semispan location is ordered numerically, from wing's inboard root to its outboard tip.
We want the data arranged differently, so we exchange 2y/b and x/¢ and perform a
descending sort on 2y/b.

edit> tab 1t1l0

wart #

=W oo oUW

0

edit> x x/¢ 2y/b

edit> -2

[tab 1t10]

wart #

H W oo do0nW; s W)

0

edit> sort 2y/b d

OO OO0 OOO O

O OO OO OC OO oo

mach

.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000

10 wart subsets listed.

mach

.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000

10 wart subsets listed.

o oo OoCoC oo oo

QOO OO OO0 OO

x/c

.416667E-01
.208333
.375000
.541667
.708333
.875000
.416667E-01
.208333
.375000
.541667

2y/b

.200000E-01
.200000E-01
.200000E-01
.200000E-01
.200000E-01
.200000E-01
.600000E-01
.600000E-01
.600000E-01
.600000E-01

O O C OO0 O0OC o O

2y/b

.200000E-01
.200000E-01
.200000E-01
.200000E-01
.200000E-01
.200000E-01
.600000E-01
.600000E-01
.600000E-01
.600000E-01

x/c

.416667E-01
.208333
.375000
.541667
.708333
.875000
.416667E-01
.208333
.375000
.541667

deltacp

1.05376
.843582
.737244
.622884
.479829
.292267
1.16457
0.864949
0.748665
0.631585

o O O OO

deltacp

1.05376
.843582
.737244
.622884
.479829
.292267
1.16457
0.864949
0.748665
0.631585

OO O OO

edit> -2
[tab 1t10]

wart # mach 2y/b x/c
1 0.600000 0.980000 0.416667E-01
2 0.600000 0.980000 0.208333
3 0.600000 0.980000 0.375000
4 0.600000 0.980000 0.541667
5 0.600000 0.980000 0.708333
6 0.600000 0.980000 0.875000
7 0.600000 0.940000 0.416667E-01
8 0.600000 0.940000 0.208333
9 0.600000 0.940000 0.375000
10 0.600000 0.940000 0.541667

10 wart subsets listed.
The first few data warts also tell us that there are 6 chord locations at each wing

semispan location. To check the file's integrity, let's display the first data wart within
each block of 6 warts associated with each semispan location.

edit> tab 1t145b6

wart # mach 2y/b x/c
1 0.600000 0.980000 0.416667E-01
7 0.600000 0.940000 0.416667E-01
13 0.600000 0.900000 0.416667E-01
19 0.600000 0.860000 0.416667E-01
25 0.600000 0.820000 0.416667E-01
31 0.600000 0.780000 0.416667E-01
37 0.600000 0.740000 0.416667E-01
43 0.600000 0.700000 0.416667E-01
49 0.600000 0.660000 0.416667E-01
55 0.600000 0.620000 0.416667E-01
61 0.600000 0.580000 0.416667E-01
67 0.600000 0.540000 0.416667E-01
73 0.600000 0.500000 0.416667E-01
79 0.600000 0.460000 0.416667E-01
85 0.600000 0.420000 0.416667E-01
91 0.600000 0.380000 0.416667E~01
97 0.600000 0.340000 0.416667E-01
103 0.600000 0.300000 0.416667E-01
109 0.600000 0.260000 0.416667E-01
115 0.600000 0.220000 0.416667E-01
{Return]
121 0.600000 0.180000 0.416667E-01
127 0.600000 0.140000 0.416667E-01
133 0.600000 0.100000 0.416667E-01
139 0.600000 0.600000E-01 0.416667E-01
145 0.600000 0.200000E-01 0.416667E-01

deltacp

10.5822
.61437
.43053
.78733
.15396
.12793
.38284
.76306
.71414
.03536

DN WNINWW s W,

deltacp

10.5822
.38284
.09007
.30779
.75334
.32299
.97186
.67718
.42449
.20335
.00611
.82717
.66236
.50851
.36313
.22420
.09000
.95902
.82997
.70156

H o= NN DDWWwWWwWWwsS S oy

.57196
.43850
.29960
.16457
.05376

= e

25 wart subsets listed.
Good. Since there are 150 data warts in all, and 6 warts per semispan location, we
should see 25 semispan locations' worth of data. Let's try it again, only this time we'll
isolate the third wart within each block.

edit> " 3t147bé

wart ¥ mach 2y/b x/c deltacp
3 0.600000 0.980000 0.375000 4.43053
9 0.600000 0.940000 0.375000 2.71414
15 0.600000 0.900000 0.375000 2.12340
21 0.600000 0.860000 0.375000 1.82227
27 0.600000 0.820000 0.375000 1.62033
33 0.600000 0.780000 0.375000 1.47393
39 0.600000 0.740000 0.375000 1.36207
45 0.600000 0.700000 0.375000 1.27218
51 0.600000 0.660000 0.375000 1.19711
57 0.600000 0.620000 0.375000 1.13281
63 0.600000 0.580000 0.375000 1.07686
69 0.600000 0.540000 0.375000 1.02764
75 0.600000 0.500000 0.375000 0.984011
81 0.600000 0.460000 0.375000 0.945151
87 0.600000 0.420000 0.375000 0.910150
93 0.600000 0.380000 0.375000 0.879452
99 0.600000 0.340000 0.375000 0.851804
105 0.600000 0.300000 0.375000 0.827234
111 0.600000 0.260000 0.375000 0.805593
117 0.600000 0.220000 0.375000 0.786984
[Return]

123 0.600000 0.180000 0.375000 0.771897
129 0.600000 0.140000 0.375000 0.761138
135 0.600000 0.100000 0.375000 0.754821
141 0.600000 0.600000E-01 0.375000 0.748665
147 0.600000 0.200000E-01 0.375000 0.737244

25 wart subsets listed.
Good. Now let's set up a default target list and see if the same data is tabulated.
edit> show tol
The default tolerance is 1% (relative).

edit> targ mach 2y/b x/c¢ .375 deltacp

edit> tab
wart # mach 2y/b deltacp
3 0.600000 0.980000 4.43053
9 0.600000 0.940000 2.71414
15 0.600000 0.900000 2.12340

21
27
33
39
45
51
57
63
69
75
81
87
93
99
105
111
117
[Return]
123
129
135
141
147

25 wart subsets listed.

Great! Recall our objective in this first sample session is to create a series of data
files: pressure (deitacp) as a function of airfoil chord location at three semispan
locations; and pressure as a function of semispan location along the wing's leading

OO OO O0OO0OOODOOOOO 00O

[« TR > I o BN - -]

.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000

.600000
.600000
.600000
.600000
.600000

.860000
.820000
.780000
.740000
.700000
.660000
.620000
.580000
.540000
.500000
.460000
.420000
.380000
.340000
.300000
.260000
.220000

OO0 00O OO OO0OOOOCOOOO0o

.180000
.140000
.100000
.600000E-01
.200000E-01

[e B o B o R]

OO OO OO O O

OO0 OO0

[= T e i i

.82227
.62033
.47393
.36207
.27218
.19711
.13281
.07686
.02764

.984011
.945151
.910450
.879452
.851804
.827234
.805593
.786984

.771897
.761138
.754821
.748665
.737244

and trailing edges. As a reminder, let's look at the first few data warts again. We know
we want to use the export command, but can't remember its syntax, so we'll also use

the help facility.

edit> targ all
edit> tab 1tl5

wart #

W~ d W

N el el
Vb Wl o

C OO O OO0 COOoCOOO OO0

mach

.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000

2y/b

.980000
.980000
.980000
.980000
.980000
.980000
.940000
.940000
.940000
.940000
.940000
.940000
.900000
.900000
.900000

OO0 O OO OO OO oo OO0

O QO OO OO OO0 OO oo

x/c

.416667E-01
.208333
.375000
.541667
.708333
.875000
.416667E-01
.208333
.375000
.541667
.708333
.875000
.416667E-01
.208333
.375000

deltacp

10.5822
.61437
.43053
.78733
.15396
.12793
.38284
.76906
.71414
.03536
.50435
0.937932

6.09007

3.02826

2.12340

H NN WSS WWesOm

15 wart subsets listed.

edit> h export
EXPORT writes a multi-column data fragment.
syntax: Export [(file] [object list]

file the name of the file to be written. If
omitted, "tadpole"™ is assumed.

object list see the help text for command Target
If omitted, the default target list
is assumed.
info: Command Write is simpler for single-column data.
If you're moving entire warts, commands CopyWart
and CutWart may be simpler.
aliases: extract
Now that we have the export command's syntax, we'll create the first three files.
edit> export toad98 mach 2y/b .98 x/c deltacp

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

>y
Note: This question appears only when toad98 already exists.
4 variables, 6 warts written.
edit> " toad%4 mach 2y/b .94 x/c deltacp

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

>y
Note: This question appears only when toad94 already exisis.
4 variables, 6 warts written.
edit> " toad90 mach 2y/b .9 x/c deltacp
This request will overwrite the original contents of
an existing file. Do you really want it performed ?
Note: This question appears only when toad90 aliready exists.

4 variables, 6 warts written.

No problems there. We expected four variables and six data warts for each file, and
that's exactly what happened. Now for the last two files. How did we do that
hopscotch tabulation? Let's check the directive history and try to recreate it.

edit> hist
12 del planform
13 stat mach
14 scan
15 tab 1t10
16 x x/c 2y/b
17 tab 1t1l0
18 sort 2y/b d
19 tab 1tl10
20 tab 1t145bé6
21 " 3tl1l47bé6
22 show tol
23 targ mach 2y/b x/c .375 deltacp
24 tab
25 targ all
26 tab 1t15
27 h export
28 export toad98 mach 2y/b .98 x/c deltacp
29 " toad94 mach 2y/b .94 x/c deltacp
30 " toad9%0 mach 2y/b .9 x/c deltacp
31 hist
edit> 20

{ tab 1t145b6]

wart # mach 2y/b x/c deltacp
1 0.600000 0.980000 0.416667E-01 10.5822
7 0.600000 0.940000 0.416667E~-01 7.38284
13 0.600000 0.900000 0.416667E-01 6.09007
19 0.600000 0.860000 0.416667E-01 5.30779
25 0.600000 0.820000 0.416667E-01 4.75334
31 0.600000 0.780000 0.416667E-01 4,32299
37 0.600000 0.740000 0.416667E-01 3.97186
43 0.600000 0.700000 0.416667E-01 3.67719
49 0.600000 0.660000 0.416667E-01 3.42449
55 0.600000 0.620000 0.416667E-01 3.20335
61 0.600000 0.580000 0.416667E-01 3.00611
67 0.600000 0.540000 0.416667E-01 2.82717
73 0.600000 0.500000 0.416667E-01 2.66236
79 0.600000 0.460000 0.416667E-01 2.50851
85 0.600000 0.420000 0.416667E~01 2.36313
91 0.600000 0.380000 0.416667E-01 2.22420
97 0.600000 0.340000 0.416667E-01 2.09000
103 0.600000 0.300000 0.416667E-01 1.95902
109 0.600000 0.260000 0.416667E-01 1.82997
115 0.600000 0.220000 0.416667E-01 1.70156

{Return]

edit>
edit>
edit>
edit>
edit>

edit>

>y

edit>

edit>

121 0.600000 0.180000 0.416667E-01
127 0.600000 0.140000 0.416667E-01
133 0.600000 0.100000 0.416667E-01
139 0.600000 0.600000E-01 0.416667E-01
145 0.600000 0.200000E-01 0.416667E-01

25 wart subsets listed.

Notice that the chord location (x/c) is constant at .041667, or 1/24th. These are
quarter-chord locations of panel control points, so we expected them to be 1/6th
apart, beginning at 1/24th. Sure enough, 1/24th plus 1/6 is 5/24ths, or .208333,
and 1/24th plus 5/6ths is 21/24ths, or .875. We could specify the leading edge and
trailing edge as the numeric values 1/24 and 21/24, respectively, but it is easier to

create and use two symbols (le and t e) for this purpose.

define le 0
" te 0

min x/c le
max x/c te

sho sym
The defined symbols are:
le = 0.04166667
te = 0.875
export toadle mach 2y/b x/c 1le deltacp

This request will overwrite the original contents of
an existing file. Do you really want it performed ?
Note: This question appears only when toadle already exists.
4 variables, 25 warts written.
export toadte mach 2y/b x/c te deltacp
This request will overwrite the original contents of
an existing file. Do you really want it performed ?
Note: This question appears only when toadte already exists.

4 variables, 25 warts written.

[T S S

Again, the number of variables and data warts written matches what we expect. After

making sure we're editing the right file, let's save it, then open and tabulate the new

files we've just created.
show file

Active file: toadlm

.57196
.43850
.29960
.16457
.05376

edit> save

This request will overwrite the original contents of

an existing file.

i 4

edit> open toad98
edit> tab

wart #

AU WN
o0 OO0 oo

6 wart subsets

edit> op toad9%4

edit> tab
wart #
1 0
2 0
3 0
4 0
S 0
6 0

6 wart subsets

edit> open toad90
edit> tab

wart #
1 0
2 0
3 0
4 0
5 0
6 0

6 wart subsets

mach

.600000
.600000
.600000
.600000
.600000
.600000

listed.

mach

.600000
.600000
.600000
.600000
.600000
.600000

listed.

mach

.600000
.600000
.600000
.600000
.600000
.600000

listed.

2y/b

.980000
.980000
.980000
.980000
.980000
.980000

OO OO OO

2y/b

.940000
.940000
.940000
.940000
.940000
.940000

OO0 O o oo

2y/b

.900000
.900000
.900000
.900000
.900000
.900000

OO0 O O o O

OO0 O OO0 =l e le e NNl

O OO O O o

Do you really want it performed ?

x/c

.416667E-01
.208333
.375000
.541667
.708333
.875000

x/c

.416667E-01
.208333
.375000
.541667
.708333
.875000

x/c

.416667E-01
.208333
.375000
.541667
.708333
.875000

deltacp

10.5822

NW WU

.61437
.43053
.78733
.15396
.12793

deltacp

7
3
2
2
1

.38284
.76906
.71414
.03536
.50435

0.937932

deltacp

6.09007
3.02826
2.
1
1

12340

.60278
.17190

0.711813

edit> open
edit> tab

[Return]

25 wart subsets listed.

edit> open toadte

edit> tab

toadle

wart #

W@ JdJh s WN

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25

wart #

OO doaUy W R

OOOOOOOOOOOOOOOOOOOO

S oo oo

OOOOOOOOOOOOOO

mach

.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000

.600000
.600000
.600000
.600000
.600000

mach

.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000
.600000

OOOOOOOOOOOOOOOOOOOO

OO OO o

OOOOOOOOOOOOOO

2y/b

.980000
.940000
.900000
.860000
.820000
.780000
.740000
.700000
.660000
.620000
.580000
.540000
.500000
.460000
.420000
.380000
.340000
.300000
.260000
.220000

.180000
.140000
.100000
.600000E~01
.200000E-01

2y/b

.980000
.940000
.900000
.860000
.820000
.780000
.740000
.700000
.660000
.620000
.580000
.540000
.500000
.460000

OOOOOOOOOOOOOOOOOOOO

OO OC OO

OOOOOOOOOOOOOO

x/c

.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E~-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01

.416667E-01
.416667E-01
.416667E-01
.416667E-01
.416667E-01

x/c

.875000
.875000
.875000
.875000
.875000
-875000
.875000
.875000
.875000
.875000
.875000
.875000
.875000
.875000

deltacp

10.5822
.38284
.08007
.30779
.75334
.32299
.97186
.67719
. 42449
.20335
.00611
.82717
.66236
.50851
.36313
.22420
.0%000
.95902
.82997
.70156

HHHNNNNNN&WWWW;&AU’O\\]

.57196
.43850
.29960
.16457
.05376

o b

deltacp

2.12793
.937932
.711813
.604424
.537458
.490354
.454841
.426885
.404250
.385577
.369983
.356865
.345797
.336463

OOOOOOOOOOOOO

15
16
17
18
19
20

[« elNo oo

[Return]
21
22
23
24
25

S O OO0 o

25 wart subsets listed.

.600000
.600000
.600000
.600000
.600000
.600000

.600000
.600000
.600000
.600000
.600000

.420000
.380000
.340000
.300000
.260000
.220000

OO OO0 OO

.180000
.140000
.100000
.600000E-01
.200000E-01

OO O OO

Everything looks fine, so let's end this session.

edit> q

Normal session.

[l e iR ol

OO o o O

.875000
.875000
.875000
.875000
.875000
.875000

.875000
.875000
.875000
.875000
.875000

OO OO OO0

OO O OO

For the reader's benefit, all of these TOAD files, including those created during this
session, are available from the Langley Mustang directory

~ntflib/toad_examples

A-12

.328624
.322091
.316705
.312327
.308820
.306035

.303791
.301837
.299793
.297028
.292267

Sample Session #2

We have four TOAD files, toadrk 1, toadrk2, toadrk3, and toadrk4, that need
to be merged into two files for use by the Program to Optimize Simulated Trajectories
(POST). Once this example is complete the resultant files can be converted to

POST table files by the TOAD Gateway.

The four files contain both actual and coefficient rocket thrust values. The first three
contain data for Mach less than one, and the fourth contains data for Mach greater
than or equal to one.

% toaded

TOAD File Editor

Release 1.0 October 1990

[No startup file)
Let's work with toadrk1 first.

edit> open toadrkl

edit> tab
wart # rocketl m aoa
1 1.26000 0.100000 -5.00000
2 1.77000 0.900000 -5.00000
3 1.33000 0.100000 -3.00000
4 1.80000 0.900000 -3.00000
5 2.00000 0.100000 0.
6 2.50000 0.900000 0.
7 2.25000 0.100000 2.00000
8 2.75000 0.900000 2.00000
9 1.92000 0.100000 4.00000
10 1.60000 0.900000 4.00000

10 wart subsets listed.

The variables and data values in this file are ordered in the fashion necessary for the
TOAD Gateway to convert it into a POST table. The variable names, however must
be changed to the corresponding POST variable names.

edit> rename m mach
edit> " aoa alpha

edit> tab

wart ¥ rocketl mach alpha
1 1.26000 0.100000 -5.00000
2 1.77000 0.900000 -5.00000
3 1.33000 0.100000 ~3.00000
4 1.80000 0.900000 -3.00000
5 2.00000 0.100000 0.
6 2.50000 0.900000 0.
7 2.25000 0.100000 2.00000
8 2.75000 0.900000 2.00000
9 1.92000 0.100000 4.00000
10 1.60000 0.900000 4.00000

10 wart subsets listed.
According to the notes from the researcher, the thrust coefficients in rocket1 need
to be scaled by .963 due to the conditions of the test site as compared to the actual
site.
edit> mult rocketl .963

10 data warts changed.

edit> tab
wart # rocketl mach alpha
1 1.21338 0.100000 ~-5.00000
2 1.70451 0.900000 ~5.00000
3 1.28079 0.100000 -3.00000
4 1.73340 0.900000 -3.00000
5 1.92600 0.100000 0.
6 2.40750 0.900000 0.
7 2.16675 0.100000 2.00000
8 2.64825 0.900000 2.00000
9 1.84896 0.100000 4.00000
10 1.54080 0.900000 4.00000

10 wart subsets listed.

This file is ready to be saved. We will use it later as our final table foundation for the
subsonic data.

edit> save toadnrl
This request will overwrite the original contents of

an existing file. Do you really want it performed ?

Note: This question appears only when toadnr1 already exists.

Now, let's look at toadrk2 and see what needs to be done toit.

edit> open toadrk2
edit> tab

These thrust coeficients are listed as rocket2=f(aoasq,m). aoasq, angle of attack

wart #

H O o do U bW N s

rocket?2

.500000
.620000
.930000
.860000
.710000
.00000
.26000
.38000
.29000
.16000

o OO oo

= e

10 wart subsets listed.

aoasq

-25.0000
-9.00000
0.
4.00000
16.0000
-25.0000
-9.00000
0.
4.00000
16.0000

CO OO O0COoOOOOO

m

.100000
.100000
.100000
.100000
.100000
.900000
.900000
.900000
.900000
.900000

squared, is not acceptable in POST, so we have to convert it to alpha. To do so, we
must first save off the sign of aoasq, as follows:

edit> create

edit> tab

wart #

w N =

=Y ® Jdoy s

asign

rocket2

.500000
.620000
.930000
.860000
.710000
.00000
.26000
.38000
.29000
.16000

S oo oo

o s s

10 wart subsets listed.

edit> sign 1 aoasq asign

edit> tab

10 data warts changed.

wart #

[a%)

rocket?2

0.500000
0.620000
0.930000

aoasq

-25.0000
-9.00000
0.
4.00000
16.0000
-25.0000
-9.00000
0.
4.00000
16.0000

aoasq

-25.0000
-9.00000
0.

CoOoOCCocOococoCcoo

.100000
.100000
.100000
.100000
.100000
.900000
.900000
.900000
.900000
.900000

m

0.100000
0.100000
0.100000

asign

(== NelNeNeNo Nel el el o)

asign

=1.00000
-1.00000
1.00000

edit>

edit>

edit>

edit>

edit>

0.860000
0.710000
.00000
.26000
.38000
.29000
.16000

PRV~ - BRI T, N
I I = I

10 wart subsets listed.

Now, we can change aoasq into angle of attack values.

abs aocasq
4 data warts changed.
sqrt aoasq
10 data warts changed.
tab
wart # rocket2

.500000
.620000
.930000
.860000
.710000
.00000
.26000
.38000
.29000
.16000

O oAU W
o OO OO

T e

10 wart subsets listed.

4
1
-2
-9

4
1

5

3.

w U N

N- o]

.00000
6.0000
5.0000
.00000

0.
.00000
6.0000

aoasq

.00000
00000
0.
.00000
.00000
.00000
.00000
0.
.00000
.00000

OO OO0 OO O

OO OO OO OO oo

.100000
.100000
.900000
.900000
.900000
.900000
.900000

m

.100000
.100000
.100000
.100000
.100000
.900000
.900000
.900000
.900000
.900000

!
[

Now, put the sign back on aoasq which is really now the absolute value of the angle

of attack.
sign aoasq asign aoasqg

10 data warts changed.

tab
wart # rocket?2
1 0.500000
2 0.620000
3 0.930000
4 0.860000
S 0.710000

-5
-3

2
4

aoasq

.00000
.00000

0.
.00000
.00000

OO O OO

.100000
.100000
.100000
.100000
.100000

-1
-1

.00000
.00000
.00000
.00000
.00000
.00000
.00000

asign

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

asign

.00000
.00000
.00000
.00000
.00000

edit>

edit>
edit>
edit>

edit> macro

macro>
macro>
macro>
macro>
macro>
edit>

W Jdon
[S SRS

10 wart subsets

del asign

.00000
.26000
.38000
.29000
.16000

listed.

-5.00000
-3.00000
0.
2.00000
4.00000

Let's put the right names on these variables:

rename aoasq alpha

" m mach

tab

wart # r
1 0
2 0
3 0
4 0
5 0
6 1
7 1
8 1
9 1
10 1

10 wart subsets

Our foundation table file, toadnr1, has the data listed as rocket1=f(mach,alpha),
not rocket1=f(alpha,mach), so we need to fix this file to match toadnr1's structure.
This might prove to be a common problem, so let's define a macro, fix_mach_alpha,

to fix it

ocket?2

.500000
.620000
.930000
.860000
.710000

.00000
.26000
.38000
.29000
.16000

listed.

£ix mach_alpha

exch alpha mach

tab

sort alpha
tab

endmacro
fix_mach_alpha

[exch alpha mach)

[tab]
wart # rocket?2
1 0.500000
2 0.620000
3 0.930000
4 0.860000

alpha

-5.00000
-3.00000
0.
2.00000
4.00000
-5.00000
-3.00000
0.
2.00000
4.00000

mach

.100000
.100000
.100000
.100000

S O OO

.900000
.900000
.900000
.900000
.900000

OO O OO

mach

.100000
.100000
.100000
.100000
.100000
.900000
.900000
.900000
.900000
.900000

(=« lNe oMo NeNe o N

alpha

-5.00000
-3.00000
0.
2.00000

.00000
.00000
.00000
.00000
.00000

5 0.710000 0.100000 4.00000
6 1.00000 0.900000 -5.00000
7 1.26000 0.900000 -3.00000
8 1.38000 0.900000 0.
9 1.2%000 0.900000 2.00000
10 1.16000 0.900000 4.00000

10 wart subsets listed.

[sort alpha]

[tab]

wart # rocket2 mach alpha

1 0.500000 0.100000 -5.00000
2 1.00000 0.900000 -5.00000
3 0.620000 0.100000 -3.00000
4 1.26000 0.900000 -3.00000
5 0.930000 0.100000 0.
6 1.38000 0.900000 0.
7 0.860000 0.100000 2.00000
8 1.29000 0.900000 2.00000
9 0.710000 0.100000 4.00000
10 1.16000 0.900000 4.00000

10 wart subsets listed.

This file is now acceptable, so let's save the changes and write rocket2 to a tadpole
for later use.

edit> save toadnr2

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

> Y
edit> write rocket2 tad_rk2

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

10 data warts written.

Note: These questions appear only when toadnr2 and tad_rk2 already exist.

The next file on the list is toadrk3.

edit> open toadrk3

edit> tab
wart # rocket3 m q
1 1800.00 0.100000 500.000
2 2100.00 0.900000 500.000

2 wart subsets listed.

File toadrk3 contains actual thrust values instead of thrust coefficients as toadrk 1
and toadrk2 did. rocket3 needs to be normalized by q in order to convert from
actual thrust values to thrust coefficients. This too might prove to be a common
problem, so let's define another macro, normalize, to fix it.

edit> macro normalize $actual Snormalizer
macro> div $actual Snormalizer

macro> tab

macro> del $normalizer

macro> tab

macro> endmacro

edit> normalize rocket3 q

[div rocket3 g]

2 data warts changed.

[tab]
wart # rocket3 m q
1 3.60000 0.100000 500.000
2 4.20000 0.900000 500.000

2 wart subsets listed.

[del q]
[tab]
wart # rocket3 m
1 3.60000 0.100000
2 4.20000 0.900000

2 wart subsets listed.
Let's fix the variable name:

edit> rename m mach

edit> tab

wart # rocket3 mach
1 3.60000 0.100000
2 4.20000 0.900000

2 wart subsets listed.
Since this data is not a function of alpha at all, it will be applied to all the coefficient

values regardless of alpha. It needs to be duplicated four times to match the length
of toadnr1 and tad_rk2. Notice the use of -1 to repeat the after command

edit> save toadnr3

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

>y
Note: This question appears only when toadnr3 already exists.

edit> after last toadnr3

edit> -1
[after last toadnr3]
edit> -1
[after last toadnr3]
edit> -1
[after last toadnr3]
edit> tab
wart # rocket3 mach
1 3.60000 0.100000
2 4.20000 0.900000
3 3.60000 0.100000
4 4.20000 0.900000
5 3.60000 0.100000
6 4.20000 0.900000
7 3.60000 0.100000
8 4.20000 0.900000
9 3.60000 0.100000
10 4.20000 0.900000

10 wart subsets listed.

This data is cycled just liked the two previous files, so we are tinished with this one.
Note we are using the same file name as earlier.

edit> save toadnr3
This request will overwrite the original contents of

an existing file. Do you really want it performed ?
> Y

A-20

. ONIGINAL PAGE
OF POOR QUALITY

edit> write rocket3 tad_rk3

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

>y
10 data warts written.
Note: These questions appear only when toadnr3 and tad_rk3 already exist.

We have completed all of the changes for the Mach < 1.0 data, so let's move on to
the Mach => 1.0 data which is in toadrk4.

edit> open toadrk4

edit> tab
wart # rocket4 aoa q m

1 375.000 ~-8.00000 500.000 1.00000
2 1000.00 -6.00000 500.000 1.00000
3 1500.00 0. 500.000 1.00000
4 750.000) 5.00000 500.000 1.00000
5 125.000 10.0000 500.000 1.00000
6 165.000 -8.00000 500.000 2.50000
7 905.000 -6.00000 500.000 2.50000
8 1885.00 0. 500.000 2.50000
9 1760.00 5.00000 500.000 2.50000
10 965.000 10.0000 500.000 2.50000

10 wart subsets listed.

These actual thrust values need to be normalized as the toadrk3 data was.
edit> normalize rocketd g

[div rocketd q]

10 data warts changed.

[tab]

wart # rocket4 aoa q m

1 0.750000 -8.00000 500.000 1.00000
2 2.00000 -6.00000 500.000 1.00000
3 3.00000 0. 500.000 1.00000
4 1.50000 5.00000 500.000 1.00000
5 0.250000 10.0000 500.000 1.00000
6 0.330000 -8.00000 500.000 2.50000
7 1.81000 -6.00000 500.000 2.50000
8 3.77000 0. 500.000 2.50000
9 3.52000 5.00000 500.000 2.50000

A-21

10 1.93000 10.0000 500.000 2.50000

10 wart subsets listed.

[del q]
[tab]
wart # rocket4 aoa m
1 0.750000 -8.00000 1.00000
2 2.00000 -6.00000 1.00000
3 3.00000 0. 1.00000
4 1.50000 5.00000 1.00000
5 0.250000 10.0000 1.00000
6 ¢.330000 -8.00000 2.50000
7 1.81000 -6.00000 2.50000
8 3.77000 0. 2.50000
9 3.52000 5.00000 2.50000
10 1.93000 10.0000 2.50000
10 wart subsets listed.
Let's fix some variable names.
edit> rename aoa alpha
edit> rename m mach
edit> tab
wart # rocket4 alpha mach
1 0.750000 ~8.00000 1.00000
2 2.00000 -6.00000 1.00000
3 3.00000 0. 1.00000
4 1.50000 5.00000 1.00000
5 0.250000 10.0000 1.00000
6 0.330000 -8.00000 2.50000
7 1.81000 -6.00000 2.50000
8 3.77000 0. 2.50000
9 3.52000 5.00000 2.50000
10 1.93000 10.0000 2.50000
10 wart subsets listed.
This data is a function of alpha and mach, not mach and alpha ...
edit> fix_mach_alpha
[exch alpha mach]
{ tab]
wart # rocket4 mach alpha
1 0.750000 1.00000 -8.00000

A-22

2 2.00000 1.00000 -6.00000
3 3.00000 1.00000 0.
4 1.50000 1.00000 5.00000
5 0.250000 1.00000 10.0000
6 0.330000 2.50000 -8.00000
7 1.81000 2.50000 ~-6.00000
8 3.77000 2.50000 0.
9 3.52000 2.50000 5.00000
10 1.93000 2.50000 10.0000

10 wart subsets listed.

[sort alpha]

[tab]

wart # rocket4 mach alpha

1 0.750000 1.00000 -8.00000
2 0.330000 2.50000 ~-8.00000
3 2.00000 1.00000 -6.00000
4 1.81000 2.50000 -6.00000
5 3.00000 1.00000 0.
6 3.77000 2.50000 0.
7 1.50000 1.00000 5.00000
8 3.52000 2.50000 5.00000
9 0.250000 1.00000 10.0000
10 1.93000 2.50000 10.0000

10 wart subsets listed.

edit> rename rocketd tvc2t
edit> tab
wart # tveclt mach alpha

1 0.750000 1.00000 -8.00000
2 0.330000 2.50000 -8.00000
3 2.00000 1.00000 -6.00000
4q 1.81000 2.50000 -6.00000
5 3.00000 1.00000 0.
6 3.77000 2.50000 0.
7 1.50000 1.00000 5.00000
8 3.52000 2.50000 5.00000
9 0.250000 1.00000 10.0000
10 1.93000 2.50000 10.0000

10 wart subsets listed.
We are finished with this data now.
edit> save toadtvc?

This request will overwrite the original contents of

an existing file. Do you really want it performed ?
>y

Note: This question appears only when toadtv2 already exists.

Remember we are using toadnri1 as our foundation file for our final fite for the
subsonic data. Now, let's build our final file from the ones we fixed earlier.

edit> open toadnrl

edit> tab
wart # rocketl mach alpha
1 1.21338 0.100000 -5.00000
2 1.70451 0.900000 -5.00000
3 1.28079 0.100000 -3.00000
4 1.73340 0.900000 ~3.00000
5 1.92600 0.100000 0.
6 2.40750 0.900000 0.
7 2.16675 0.100000 2.00000
8 2.64825 0.900000 2.00000
9 1.84896 0.100000 4.00000
10 1.54080 0.900000 4.00000

10 wart subsets listed.

According lo the researcher, the data from toadnr2 and toadnr3 are to be directly
added to rocket1, so let's create one more macro, sum_data, to do it for us.

edit> macro sum_data $rocket S$rocket_ file
macro> create S$rocket

macro> tab

macro> read $rocket S$rocket_file

macro> tab

macro> add rocketl S$rocket

macro> tab

macro> delete $rocket

macro> endmacro

edit> sum_data rocket2 tad_rk2

[create rocket2]

[tab]
wart # rocketl mach alpha rocket2
1 1.21338 0.100000 -5.00000 0.
2 1.70451 0.900000 -5.00000 0.
3 1.28079 0.100000 -3.00000 0.
4 1.73340 0.900000 -3.00000 0.
S 1.92600 0.100000 0. 0.
6 2.40750 0.900000 0. 0.
7 2.16675 0.100000 2.00000 0.
8 2.64825 0.900000 2.00000 0.

A-24

9 1.84896 0.100000
10 1.54080 0.900000

10 wart subsets listed.
[read rocket2 tad rk2]

10 data cells read.

[tab]}
wart # rocket1l mach

1 1.21338 0.100000
2 1.70451 0.900000
3 1.28079 0.100000
4 1.73340 0.900000
5 1.92600 0.100000
6 2.40750 0.900000
7 2.16675 0.100000
8 2.64825 0.900000
G 1.84896 0.100000
10 1.54080 0.900000

10 wart subsets listed.

[add rocketl rocket2]

10 data warts changed.

[tab]

wart # rocketl mach

1 1.71338 0.100000
2 2.70451 0.900000
3 1.90079 0.100000
4 2.99340 0.900000
5 2.85600 0.100000
6 3.78750 0.900000
7 3.02675 0.100000
8 3.93825 0.900000
9 2.55896 0.100000
10 2.70080 0.900000

10 wart subsets listed.

[delete rocket2]}

edit> sum data rocket3 tad rk3

[create rocket3]

4
4

oo RN

b NN

.00000
.00000

alpha

.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000

alpha

.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000

rocket?2

0.500000
1.00000
0.620000
1.26000
0.930000
1.38000
0.860000
1.29000
0.710000
1.16000

rocket?2

0.500000
1.00000
0.620000
1.26000
0.930000
1.38000
0.860000
1.29000
0.710000
1.16000

[tab]

wart # rocketl mach alpha rocket3
1 1.71338 0.100000 -5.00000 0.
2 2.70451 0.900000 -5.00000 0.
3 1.90079 0.100000 -3.00000 0.
4 2.99340 0.900000 -3.00000 0.
5 2.85600 0.100000 0. 0.
6 3.78750 0.3%00000 0. 0.
7 3.02675 0.100000 2.00000 0.
8 3.93825 0.900000 2.00000 0.
9 2.55896 0.100000 4.00000 0.
10 2.70080 0.900000 4.00000 0.

10 wart subsets listed.
{ read rocket3 tad_rk3]

10 data cells read.

[tab]
wart # rocketl mach alpha rocket3

1 1.71338 0.100000 -5.00000 3.60000
2 2.70451 0.900000 -5.00000 4.20000
3 1.90079 0.100000 ~-3.00000 3.60000
4 2.99340 0.900000 -3.00000 4.20000
5 2.85600 0.100000 0. 3.60000
6 3.78750 0.900000 0. 4.20000
7 3.02675 0.100000 2.00000 3.60000
8 3.93825 0.900000 2.00000 4.20000
9 2.5589%6 0.100000 4.,00000 3.60000
10 2.70080 0.900000 4.00000 4.20000

10 wart subsets listed.

{ add rocketl rocket3]

10 data warts changed.

[tab]

wart # rocketl mach alpha rocket3

1 5.31338 0.100000 -5.00000 3.60000
2 6.90451 0.900000 -5.00000 4.20000
3 5.50079 0.100000 ~3.00000 3.60000
4 7.19340 0.900000 -3.00000 4.20000
5 6.45600 0.100000 0. 3.60000
6 7.98750 0.900000 0. 4.20000
7 6.62675 0.100000 2.00000 3.60000

A-26

8 8.
9 6.
10 6.

10 wart subsets

13825
15896
90080

listed.

- [delete rocket3]

We have combined all of the subsonic data together, except for a scale factor that
the researcher provided. First, let's rename rocket1.

edit> rename rocketl tvclt

edit> tab
wart #
) 1 5
2 6
3 5
4 7
5 6
6 7
7 6
B8 8
9 6
10 6

10 wart subsets

edit> mult tvelt .264

tvclt

.31338
.90451
.50079
.19340
.45600
.98750
.62675
.13825
.15896
.90080

listed.

10 data warts changed.

edit> tab
wart #
1 1
2 1
3 1
4 1
5 1
6 2
7 1
8 2
] 1
10 1

10 wart subsets

tvclt

.40273
.82279
.45221
.89906
.70438
.10870
.74946
.14850
. 62597
.82181

listed.

0.
0.
0.

C OO OO O0CcCoocoocoO

OCoOOoOoCcooocoo

900000
100000
900000

mach

.100000
.900000
.100000
.900000
.100000
.900000
.100000
.900000
.100000
.900000

mach

.100000
.900000
.100000
.900000
.100000
.900000
.100000
.900000
.100000
.900000

A-27

2
4
4

oo NN

B NN

.00000
.00000
.00000

alpha

.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000

Now, let's apply the scale factor, do one last tabulation, and save the file.

alpha

.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000

4.20000
3.60000
4.20000

edit> save toadtvcl

This request will overwrite the original contents of
an existing file. Do you really want it performed ?

>y
Note: This question appears only when toadtvc1 already exists.
edit> q
Normal session.
%

For the reader’s benelfit, all of these TOAD files, including those created during this
session, are available from the Langley Mustang directory

~ntflib/toad_examples

A-28

Appendix B
The TOAD Format (summarized)

The Transferable Output ASCII Data (TOAD) format was developed by Computer Sciences
Corporation for NASA Langley Research Center as a uniform way to store and retrieve tabulated data.
A fuli discussion of the TOAD format is presented in NASA Contractor Report 178361. However,
most readers will find the following abbreviated description adequate for their purposes.

TOAD files are sequential-access, formatted, and use fixed-length records of 80 characters. This file
type makes them simple to edit, write to or read from magnetic media, or send across communications
networks. Unfortunately, these same characteristics make them large compared to their unformatted,
variable record-length counterparts. Therefore, we recommend that TOAD files be used only when
relatively small amounts of data are to be retained (less than 5000 pieces of data), or when any amount
of data must be transferred from one computer to another (usually different) computer via magnetic
media or a communications network.

Blocks of information within a TOAD file are called "warts.” Each wart has its own purpose, and may
use one or more records. For example, consider the abbreviated TOAD file below:

BEGIN

SKIP Predicted aerodynamic properties of a modified F~4D fighter

COUNT 9

LABEIMACH ALPHA 2Y/B CL-v CcD-v

CM-V CL-2 CD-2 CM-2

DATA -85000000E+00 .10000000E+01 .70800000E+00 . 97261000E+00 .15166000E+00
~.24139000E+00 .88951000E+00 .11640000E+00 —.24754000E+00

DATA -85000000E+00 .10000000E+01 .79200000E+00 . 89415000E+00 .11423000E+00
-.27911000E+00 .78920000E+00 .69700000E-01 ~.27105000E+00

DATA -85000000E+00 .10000000E+01 .87500000E+00 . 78330000E+00 .72870000E-01
—.29796000E+00 .65651000E+00 .19080000E-01 -.26920000E+00

END

Notice that the file begins with a BEGIN wart and ends with an END wart. The SKIP wart is used to

insert comments inside the file. The COUNT wart indicates that

there are 9 variables in this TOAD file.

The LABEL wart assigns a 15-character name with each of these variables. Each DATA wart contains
information gathered at some common event. For example, the second DATA wart indicates that at
Mach .85, 10 degrees angle of attack, and at 79.2% semispan the full vortex flow coefficients of lift,
drag and moment (C;, Cqand C,)) are .89415, .11423 and -.27911, respectively, while the zero

leading-edge suction coefficients of lift, drag and moment are .7892, .0697 and -.27105, respectively.

The FORTRAN 77 edit descriptors for each type of wart are:

Wart Type Write Format Read Format
SKIP ‘SKIP ’,A75 T6,A75
COUNT ‘COUNT’, I15 T6,I15
LABEL ‘LABEL’, (5A15) (T6,5A15)
DATA ‘DATA ', (5E15.8) (T6,5E15.8)

The following rules must always be observed when creating and using TOAD files:

1.

2.

Exactly one BEGIN wart must appear in the TOAD file, and it must be the very first record.
Exactly one END want must appear in the TOAD file, and it must be the very last record.
A COUNT wart must appear before any LABEL or DATA warts.

No wart may come between two records within another mutti-record wart.

SKIP warts may appear anywhere in the TOAD file, subject to condition 4.

Multiple DATA warts are expected. All DATA warts must contain the same amount of data
and use the same number of records.

There is no limit on the number of warts or records in a TOAD file.

NASA Report Documentation Page

PLIOF i Dt W pils 1 gra !
SRR R T

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No
NASA CR-187507
4. Title and Subtitle T 5. Report Date

February 1991
Transferable Qutput ASCII Data (TOAD) Editor

6. Performing Organization Code
Version 1.0 User's Guide

7. Author(s) T 8. Performing Organization Report No.

Bradford D. Bingel

Anne L. Shea 10. Work Unit No.
Alicia S. Hofler 505-59-10-03

9. Performing Organization Name and Address
11. Contract or Grant No.

Computer Sciences Corporation
Applied Technology Division NAS1-19038

Hampton, VA 23666-1379 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

Contractor Report

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Langley Research Center
Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: Dr. John E. Lamar

16. Abstract

The Transferable Output ASCII Data (TOAD) Editor is an interactive software tool
for manipulating the contents of TOAD files. The TOAD Editor is specifically
designed to work with tabular data. Selected subsets of data may be displayed to
the user's screen, sorted, exchanged, duplicated, removed, replaced, inserted, or
tranferred to and from external files. It also offers a number of useful features
including on-line help, macros, a command history, an "undo" option, variables,
and a full compliment of mathematical functions and conversion factors. Written
in ANSI FORTRAN 77 and completely self-contained, the TOAD Editor is very portable
and has already been installed on SUN, SGI/IRIS, and CONVEX hosts.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Computer Programs
Software Tools Unclassified - Unlimited
Data Management
Data Manipulation Subject Category 61
Data Storage

19. Security Classit. {of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price
Unclassified Unclassified 147 AQ7

NASA FORM 1628 OCT 86

