
NASA Contractor Report 187507

4,._ r i"

Transferable Output ASCII Data (TOAD) Editor
Version 1.0 User's Guide

Bradford D. Bingel, Anne L. Shea, and Alicia S. Hofler

Computer Sciences Corporation

Applied Technology Division

Hampton, VA 23666-1379

Contract NASl-19038

February 1991

National Aeronautics and
Space Administration

Langley Research C_nter

Hampton, Virginia 23665-5225

co

co
oO
t_
I

4"

Z

LLI
.J
an

tL

Z

)-

f_
0

cO

I

I

Z

c/)
m

U
C

:3

oE
¢-- 0
a..4_

uJ

AW
O0

O_

_Q
O.--_

O_q

b._O 0
_ ,t.J

Z _
_-0 U

0
0

0

,-4
wO

f_

https://ntrs.nasa.gov/search.jsp?R=19940024315 2020-06-16T15:18:47+00:00Z

1'

Preface

This document describes the Transferable Output ASCII Data (TOAD) Editor, production release 1.0.
It is intended to serve as a tutorial for new users and as a reference source for all experienced users.
All readers are urged to review the sample sessions in appendix A of this document. Readers not
familiar with the TOAD format should refer to appendix B or to NASA Contractor Report 178361.

Because of the ongoing development of this package, the current production release may offer
features in addition to those described in this document. When and if changes are made, every effort
will be made to preserve existing capabilities.

This software was developed by Computer Sciences Corporation's Applied Technology Division
under contract to the National Aeronautics and Space Administration's Langley Research Center, from
late 1989 through late 1990. CSC directly supports this product only at Langley Research Center.

Table of Contents

Section

Section

Section

Section 4

PAGE II

1 - Introduction .

General Description and Purpose .
Features
Limitations
Associated Products .

2 - Concepts.

TOAD Files
Commands vsl Directives
Startup File
Directive History
Directive Files.
Macros
Session File

Targeting and Object Lists.

3 - Directive Syntax.

Commands, Parameters, and Keywords
Parameter Type .
Simple Expressions
Aliases
Omitted Parameters
Quotation Marks
Assumed Commands
Continuations
Comments
Summary of Special Characters

- Interactive Use

Files
Execution

On-Line Help.
Environmentals
Symbols

define, redefine .
rensymbol, delsymbol

File Operations
open, save, close.
scan .
report, menu.

Targeting and Using Object Lists
selection criteria lists
wart ID lists

Tabulating
Raw Data (tabulate')
Statistical Profile (stats)

INTENTIONAt.LYBLANK
iii

3
3
3
4
5
5
6
6

9

9
9

10
10
10
11
11
12
12
14

17

17
17
18
18
24
24
25
25
26
27
28
28
29
32
35
35
37

PIIIII'CIK)#NG PAGE BLANK NOT FILII4ED

Table of Contents - concluded

The Undo Command .

Moving Data
Copying trom One Column to Another (copy) •

Sorting (sort).
Exchanging Data Between Columns (exchange)

Replacing Data
Changing a Variable's Name (rename) •

Erasing Data (clear)

Direct Replacement (assign)

Mathematical Operations
Basic Arithmetic (add, subtract, multiply, divide)

Utilities (abs, invert, sqrt, factorial, sign)
Powers and Roots (power, root)

Logarithms and Exponents (log, log10, exp, explO

Trigonometry (sin, cos, tan, arcsin, arccos, arctan) .
Hyperbolic Trigonometry (sinh, cosh, tanh, arcsinh, arccosh, arctanh)
Statistics (freq, sum, min, max, range, mean, var, sd, se)

Conversions (convert)

Adding and Deleting Data.
Creating a New Column (create)
Deleting an Existing Column (delete)

Removing Existing Warts (knockout)

Wart Editing . •
Adding Zero-Filled Warts (addwart)

Duplicating Existing Warts (dupwart)
Using the Wart Paste Buffer (copywart, cutwart, pastewart)

Using External Files
Single Column (write, read)

Multiple Columns (export, import) .
General File Insertion (before, after)

38
40

40

41
42

45

45
46

47

49

49
51

55

56

56

Section 5 - Directive Flies and Macros.

Directive Files

Macros • .
Creating and Executing Macros (macro, endmacro)
Renaming and Deleting Macros (renmacro, delmacro) •

Undoing Macros (undomacro).

Creating a Directive File from a Macro
Embedding Messages within Directive Files and Macros (echo)

Changing the Macro Character and Continuation Character (store, restore.

Section 6 - In Case of Problems.

57

58
60

61

61

63

64

68

68

69

69

72

73
76

85

87

87

89

89

95

95

101

102

107

111

Appendix A- Sample Sessions

Appendix B - The TOAD Format (Summarized)

SectiOnolIntroduct n

General Description and Purpose

The Transferable Output ASCII Data (TOAD) Editor is a software tool for manipulating the contents of
TOAD files. It offers many of the advantages of a spreadsheet program (mathematical operations,
row/column manipulations, cut/copy/paste, selective data extraction/replacement, macros) without
the initial purchase cost or the need to transfer the data files to a PC or Macintosh. The Editor also
offers many other features (such as statistical operators and unit conversion functions) designed for
manipulating scientific/engineering data which are not available from many spreadsheet packages.

Features

The most beneficial features of the TOAD Editor are:

Directive Driven - Rather than working through a long series of menus, the user enters
operational commands, which the Editor performs immediately.

Aliases - Most commands and keywords have multiple aliases and/or abbreviations. This
significantly reduces the number of keystrokes necessary to perform a particular operation.

On.Line Help - A complete description of each command is available through an on-line
help facility. Each description contains the command's purpose, its syntax, an explanation of
its keywords and/or arguments, and a listof aliases. Additional information (such as what
happens when an argument is omitted) is also provided.

General Undo - Any operation which changes the TOAD file can be "undone."

Directive Files - The user may create a long directive sequence within an external file, then
have it executed by providing the file's name to the Editor. Further, a directivefile may in turn
execute another directive file, greatly simplifying extremely long or repetitive tasks.

Macros. A repetitive sequence of directives may be grouped into a macro, then executed
by simply entering the macro's name. Although macros may be defined "live" during an
editing session, many users find it more convenient to define their macros in a "startup" file,
which is automatically read before each session.

Symbols - A symbol is a name (e.g., "pi") assigned a numeric value. When a symbol appears
where a number is expected, the symbol's numeric equivalent is automatically substituted.

Targeting - If desired, almost all directives may be restricted to work upon a select data
subset. This is especially useful when merging or extracting data.

Mathematical Operations - A variety of mathematical operations are provided for
advanced data manipulations. Included are the four basic arithmetic functions (addition,
subtraction, multiplication, and division) along with factorials, power and root functions,
logarithm and exponential functions, trigonometrics, hyperbolic trigonometrics, and various
statistical functions.

Conversion Functions - Many conversion lunctions are provided, including conversions
for angles (degrees and radians), temperatures (Celsius, Kelvin, Rankine, and Fahrenheit),
and various times, lengths, masses, volumes, velocities, pressures, and energy.

AutoSave - If the user attempts to end an editing session inwhich the tile was altered but
not saved, the Editor asks if it should be saved. As a result, it is almost impossible to "forget"

to save revisions.

Directive History - A limited history of the directives used during an editing session is
retained. This history may be reviewed at any time, and an individual directive may be
selected by index number for reexecution.

Session File - A complete history of the interactive session is recorded on a session tile.
This tile may be edited later and used as a directive lile.

Error Messages - All error messages are written in plain English. Without going to
extremes, every effort has been made to identify the problem as clearly as possible.

Portability - A critical factor in this product's design is portability. The Editor successfully
executes under CONVEX, IRIS, SUN, and VAX host environments.

Limitations

The TOAD Editor reads and writes entire data tiles, not file fragments. Consequently, there is a limit on
the volume of raw data which can be accommodated. The capacity of the Editor is 1,000 "columns" of
data and 10,000 raw data cells. However, these capacities may change as the Editor is installed on

various hosts.

Both limits are set once in a central part of the Editor and are easily modified. If and when a file
exceeds either limit, a clear error message is written.

Associated Products

A companion package, the _LO_JZ.C,_, allows the user to translate raw data files between TOAD
and other data formats, such as the Standard Interlace File (SIF), Program to Optimize Simulated
Trajectories (POST), and a variety of PC- and Macintosh-based spreadsheet programs. Both the
TOAD Editor and the TOAD Gateway are available and supported at NASA Langley Research Center.

2

Section 2oncepts

TOAD files

A _ contains tabular data stored in a specific format. It is convenient to think of 'labular" data
as a row-by-column table, similarto a spreadsheet. Each column of data has an associated 15-
character name, called a variable. For example, a TOAD file which contains the variables deltacp,
temp, x/c, 2y/b, alpha, and Mach presumably stores pressure and temperature data as a function of
chord location, span location, angle of attack, and Mach number.

Again using the spreadsheet analogy, a TOAD data wa_ is equivalent to a "row" of data. Because a
row of data may require more than one 80-character record within a TOAD file, the collection of records
associated with a single spreadsheet "row"is commonly called a "wart."

A L;3_file is the generic name given to a file which stores a subset of data from a TOAD file. Most
of the commends which work with external files assume the name tadpole if the file name is omitted.
Although the name may be somewhat misleading, a true tadpole file conforms to all TOAD standards.

A TOAD file becomes active when it has been opened by the Editor for processing. Only one TOAD
file may be active at any one time. All other TOAD files are _. An active file is not really a file at all
-- merely the Editors own representation of a file. As a result, changes made to the active file exist
only within the Editor and will not exist as a disc file until you perform a save operation. For example, if
you open file 'lest21" and delete some columns of data, only the Editor's version of the file is affected
-- the original disc copy is untouched.

Commands vs. Directives

The distinction between a command and a directive is often confusing. In actual practice, the terms
"command" and "directive" are often used interchangeably. Strictly defined, a command is a type of
instruction given to the Editor. For example, opening a TOAD file for editing is accomplished via the
open command. A _ is the actual instruction given to the Editor. Thus the directive

open test201

is but one example of how you might use the open command. Many more directives using the open
command are possible. This concept is fully discussed in Section 3, "Directive Syntax."

For lhe remainder of this document, the term "command" is used when referring to an element within
the Editor's vocabulary, and the term "directive" is used to describe the actual instruction the Editor
reads, interprets, and executes.

Startup File

A ,,_3EUD.JjJg.isused to submit a stream of directives to the Editor before the first edit> prompt
appears. The most common use of a startup file is to create the desired macros, symbols, and
environmental settings without entering them manually during each session. For example, a simple
startup file might contain the directives

disable session
set page 23
set tolerance 5%

define pl = 3.1415926
define • = 2.7182818

macro tab1
tabulate alpha
endmacro

deltacp 2y/b .95 x/c .O5

macro tab2
tabulate temp
endmacro

x/c .05 alpha 15

macro fix
convert alpha degrees2radlans
convert tamp ranklne2kelvin
endmacro

This example startup file turns off the session recording file, resets the page length to 23 lines, resets
the default tolerance to a relative 5 percent, defines the symbols pi and e, and creates three macros.
This example also illustratestwo useful and highly recommended techniques. First, notice that all
commands and keywords are spelled out in full, rather than abbreviated. Second, blank lines group

logical instruction sets. Both features significantly improve readability.

Using a startup file is optional. On UNIX systems the file must be called startup and it must exist in the
local directory when the Editor is executed. An alternate method is to establish a file link called
startup which points to the desired file. VAX/VMS requirements are the same except the file name or

global definition is startup.dat.

The directives read from the startup file do not appear in the directive history or in the

session file.

Directive History

Because it is often convenient to repeat previous directives, the Editor retains a limited history of
directives entered during the editing session in a directive history. UNIX users should recognize this
as the standard UNIX historymechanism and VAX/VMS users should recognize this as a command
recall buffer. Its contents may be displayed with the directive

history

Currently, 20 directives are retained (this may increase with future releases). I1fewer than 20 directives
have been entered prior to a history directive, only those directives are displayed. If more than 20
directives have been entered, only the last 20 are displayed.

To reexecute a previously entered directive, enter its associated index. For example, if the desired

directive appears inthe history listas

4

71. tabulate alpha deltacp 2y/b .95 x/c .05

thenit maybereexecutedbyentering

71

Notice that the directive image appears in brackets

[tabulate alpha deltacp 2y/b .95 x/c .05]

to confirm which directive was selected. An alternative method is to use a relative reference. For
example, entering

-1

requests that the most recent directive be repeated. Similarly, the directive

-4

asks that the fourth most recent directive be repeated.

Only directives which appear on a current history list may be referenced. Directives which "scroll off"
the log cannot be referenced and must be reentered.

Directive Files

Lengthy or complex editing sessions are often difficult to perform when entering all of the necessary
directives by hand. An alternate approach is to create a text tile containing the desired directives, in
the desired order, then have the Editorread it. Such a file is called a directive fliP,. Many users create
directive files when performing the same operations within a series of TOAD files. This significantly
reduces the researcher's workload while allowing the TOAD files Io be consistently edited.

Using a directive file interruptsthe Editor's normal interactivedialog. That is, after a directive file is
invoked the Editor accepts its instructionsfrom that directive file, not from your keyboard. You regain
control only after the entire directive file is read and processed. Of course, very long or very complex
directive sequences will require a commensurate amount of processing time, which may create a
noticeable delay.

A directive file may itself use another directive file which may in turn use another directive file, and so
on. There is no limit on the number of levels, nor any limit on the number of files per level, which can
be used within a directive file hierarchy. Repetitive calls to a directive file, even from within another
directive file, are allowed. However, a directive file cannot call itself; that is, directive file recursion is not
allowed.

For more information concerning directive files, please refer to Section 5, "Directive Files and Macros."

Macros

Creating a macro allows you to execute a sequence of directives whenever you enter that macro's

name. For example, imagine converting ten columns' worth of data from Fahrenheit to Kelvin by
entering the directive convtemp or creating five new columns of data by entering only newcols. Using

amacro is very similar to using a directive file -- once invoked, the Editor accepts its instructionsfrom
the macro, not your keyboard, and returnscontrol to you after the macro is completed. Also, a macro
may itselfuse another macro which may inturn use yet another macro, and so on. Macros and
directive files may be freely intermixed -- a macro may use a directivefile which may use a macro which

may use a directive file, and so on.

Macros offer one substantial advantage over directive files: arguments. Unlike a directive file, inwhich
all commands and associated parameters are known, a macro may use arguments to alter the
directives processed. Further, each argument may also be assigned a default value, permitting
omitted arguments when invokingthe macro. In effect, creating a macro actually creates a new,

customized command.

For more information concerning macros, please refer to Section 5, "Directive Files and Macros."

Session File

The _ retains all directives read and processed during the course of an editing session
(except those read from the startup file). This can be particularly useful when tryingto reconstruct a
directive sequence for the development of a directive file or macro. A session file also verifies that the
directive files or macros perform the intended sequence of directives.

Note

Tl_e Editor does not write warning or error messages to the session file.

A session file is always created. On UNIX systemsthe session file is called session and is created in
the local directory. You may reroute it to a different directory by creating a file link called session. The
file is similar under VAX/VMS except the name is session.dat.

Targeting and Object Lists

_._j3_ is a technique which allows you to restrict the actions of most directives to a specific subset
of the entire TOAD file. For example, perhaps you want to calculate pressure coefficients along a
wing's leading edge or tabulate fuel consumption at a particular mission milestone. You may target
only those data cells containing data along the leading edge or only those cells associated with the
mission milestone, then perform the desired operation. Targeting is also useful when extracting and
accepting raw data from external files. Depending on the target scheme used, a single cell, a partial
row, a partial column, an entire row, an entire column, or the whole active file may be moved to and from
an external file.

Targeting is accomplished through the use of an QJZLP_- An object list identifies the variables being
targeted, and, where necessary, their target range. For example, targeting a wing's leading edge
requires an object listwith, at a minimum, the name of the airfoilchord location variable and its value
associated with the leading edge. if other independent variables need to be controlled (such as angle

of attack) they too must be included inthe object list.

A full explanation of object lists will be presented later. For now,we'll only work with a few simple

examples. Suppose we have a TOAD file with the following variables:

deltacp
temp
x/c

2y/b
alpha

pressure
temperatu re

nondimensional chord location of the control point
nondimensional semispan location of the control point
angle of attack (in degrees)

where dependent variables deltacp and temp are functions of independent variables x/c, 2y/b, and
alpha. Further, there are multiple values of x/c within each value of 2y/b, and there are multiple values
of 2y/b within each value of alpha. Let's also assume that there are 10 chordwise control points alongeach spanwise station.

To tabulate pressure along a spanwise station (let's say 80% outboard of the wing root, or 2y/b =.8) weenter the directive

tabulate deltacp xlc 2y/b .8

which reads "tabulate all values of deltacp and x/c when 2y/b equals .8." If there was only one angle
of attack we'd see ten values, just as we expect. If, however, there are 5 angles of attack on the file,
we'd see 50 values (10 x 5). To avoid this, we should also specify controlling values for a_oha, such as

tabulate deltacp x/c 2y/b .8 alpha 10

which reads "tabulate all values of deltacp and x/c when 2y/b equals .8 and alpha is 10 degrees."

Using the same file, suppose we instead want to tabulate temperature and span location along lhe
leading edge (x/c =.05) at an angle of attack (alpha) of 15 degrees. The directive is

tabulate temp 2y/b x/c .05 alpha 15

If we want to see pressure at the tip (2y/b =.95) leading edge (x/c =.05) as a function of angle of attack
(alpha), we use the directive

tabulate deltacp alpha 2y/b .95 x/c .05

How do we know when we may use targeting and object lists? Let's look at the help text for commandtabulate"

TABULATE displays the targeted portion of the TOAD file.

syntax: Tabulate [object list]

object list
see the help text for command Target

If omitted, the default target list

is assumed.

aliases: tabul tab type typ ty print pri

It says that the tabulate command has no parameters and may contain an optional object list. Further,
when the object list is omitted, the default target list is used in its place. The _ target list serves
as a backup specificationwhenever a direct object list isn't provided. So far we haven't used a default
target list, only direct object lists. To illustrate how a default target list may be used, the previous
example,

tabulate deltacp alpha 2y/b .95 x/c .05

may also be entered as

target deltacp alpha 2y/b .95 x/c .05
tabulate

Why use two directives? Using target creates a default target listwhich will be used by all subsequent
directives when and it a direct object list is omitted. This is particularly useful when you are performing
a series of manipulations on the same data subset -- set the default target once, then let subsequent
directives assume that same data subset for their operations. For example, the directive sequence

target temp probe_id alpha 15 30
tabulate
convert temp ranklne2kelvln
tabulate

establishes a default target, tabulates the data subset, converts from Rankine to Kelvin those
temperatures associated with 15-30 degrees angle of attack, then retabulates the data subset.
Without a default target the same process would require the directives

tabulate temp probe_ld alpha 15 30
convert temp ranklne2kelvln alpha 15 30
tabulate temp probe_ld alpha 15 30

What happens when the two types of target lists are mixed? Consider the directive sequence

target deltacp 2y/b .85 .95 alpha
tabulate temp x/c .05 .15 alpha 15 20
tabulate

The direct object listwithin the first tabulate temporarily overrides the default object list. Therefore,
the first tabulate report contains the variables temp, x/c, and alpha. The second tabulate report,

using the default target list, contains the variables deltacp, 2y/b, and alpha.

vSee c t i oDirecti Syn ax

We've already used a few Editor directives inour previous examples but haven't gone into much detail
as to how they are constructed, what rules govern their use, and how they may be manipulated to suit
your individual needs. All readers who hope to use the Editor's full capabilities must have a complete
understanding of the principles presented here.

Commands, Parameters, and Keywords

An Editor directive begins with a command which may be followed by one or more parameters and
keywords. For example, the directive

sort Mach

uses the command sort and has the parameter Mach (this directive uses the data in Mach to control
sorting the file).

Each individual item is separated from its neighbors using a comma or one or more blanks. This same
directive could also be entered in any of the following forms:

sort,Mach
sort, Mach
sort ,Mach
sort , Mach
sort Mach

Keywords are used to indicate specific actions within directives. For example the directive

convert temp ranklne2kelvln

uses the command convert, the parameter temp, and the keyword rankine2kelvin (this directive
converts temperatures from a Rankine scale to a Kelvin scale).

Parameter Type

Most Editor commands accept a variety of parameter types. For example, the sqrt command, which
calculates square roots, can be in any of the following forms:

sqrt flowrate
sqrt maxarea
sqrt 12
sqrt 5*7

where flowrate might be a variable within the active TOAD file, maxarea a symbol, 12 a numeric value,
and 5*7 a simple numeric expression. Obviously the type of parameter used should be appropriate
for the command. For example, a negative value is inappropriate for a square root function and a
fractional value is improper for a factorial (n!) operation.

Simple Expressions

At times it is convenient to express a numeric value as a simple expression. For example, ".333333"
can be entered much faster, clearer, and more accurately as "1/3". Any of the four basic arithmetic
functions (+,-,*,/) may be used once within a simple expression. Thus the expressions

113
12.4.3
5.6+1.234
9*25.5

are all valid. Do not use parentheses (), brackets U,or braces {}.

Aliases

Aliases are alternative or abbreviated names for the same item. Commands and keywords generally
have a number of aliases. Variablesrarely, if ever, have aliases. For example, the directive

convert temp ranklne2kelvln

could also be entered as

con temp r2k

The command convert has been replaced with the alias con, and the keyword rankine2kelvin has
been replaced with the alias r2k. Notice that the variable name, temp, was not aliased. The on-line
help facility provides a listof aliases available for each command.

Omitted Parameters

At times you may wish to omit a parameter. For example, the directive

scan test report

scans the TOAD file test and writes the resulting information to file report, if you omit the reportfile

report, the directive becomes

scan test

inwhich case the Editordisplays the report to your screen. Similarly, if you omit the TOAD file test the

directive becomes

scan ,, report

inwhich case the Editor assumes the active TOAD lile. In fact, the directives

scan,,report
scan ,, report
scan, ,report
scan , , report

10

areallequivalent.Twoconsecutivecommas are the 9.ELy.way to indicate an omitted parameter or
keyword.

Quotation Marks

Suppose we have a TOAD file containing the variables

node

inner temp

outer temp

How would we tabulate the inner and outer temperatures as a function of the node ID? The directive

tabulate node Inner temp outer temp

asks to tabulate the variables node, inner, temp, outer, and temp, which isn't correct. The solution is
to use quotation marks to indicate embedded blanks within a single item. For example, the directive

tabulate node 'Inner temp' 'outer temp'
or

tabulate node "Inner temp outer temp"
or

tabulate node 'Inner temp' "outer temp"

asks to tabulate the variables node, inner temp, and outer temp, which is correct. However, the
directive

tabulate node 'Inner temp outer temp'
or

tabulate node "Inner temp' 'outer temp"

improperly mixes single and double quotation marks.

Assumed Commands

Sequences of the same command may be streamlined using the "assumed command" feature. For
example, the directives

define p1=3.14159
define e=2.71828
define c=2.99793E8

could also be written as

define
u

u

p1=3.14159
e=2.71828
c=2.99793E8

11

Continuations

some directives may be too long to tit within a single 80-character entry and must be continued on
another line. The continuation character is the ampersand (&). For example, the directive

target daltacp tamp x/c 2y/b .95 alpha 10

could also be entered as

target deltacp temp &
x/c 2y/b .95 alpha 10

or as

target &
deltacp tamp &
x/c &
2y/b .95 &
alpha 10

Terminating an entry with the continuation character allows you to provide the remainder of the
directive on subsequent entry lines. The Editor responds by replacing the regular edit> prompt
with the .. edit> prompt. Up to 800 characters (including any embedded blanks) may be entered

for a single directive, spread over as many entry lines as you wish.

The continuation feature is commonly used to arrange complex directives more clearly. Our previous

example directive

target deltacp tamp x/c 2ylb .95 alpha 10

creates a target object list containing the dependent variables de/tacp and temp, as controlled by the
independent variables x/c (allvalues), 2y/b (at 95% span), and a/pha (at 10 degrees angle of attack).

Using continuations, we might rewrite it as

target deltacp tamp &
x/c &
2y/b .95 &
alpha 10

which many users lind easier to read.

Comments

Any entry which begins with a pound sign (#) or exclamation point (!) is assumed to be a comment and
is not processed. This provides a way of includingnotes inside a startup file, directive file, macro, or
session file. For example, our previous example startup file

disable session
set page 23
set tolerance 5%

define pl = 3.1415926

12

define • = 2.7182818

macro tab1

tabulate alpha deltacp 2y/b .95 x/c .05
endmacro

macro tab2

tabulate temp x/c .05 alpha 15
endmacro

macro fix

convert alpha degrees2radlans
convert temp ranklne2kelvln
endmacro

might be clearer if we added some comments:

TOAD Editor startup file
#
turn off the session recorder
#

disable session
#
set the screen size and default tolerance
#

#
#
#

#
#
#

#

#

set page 23
set tolerance 5%

define the mathematical constants pi and e

define pi = 3.1415926
define • = 2.7182818

create two tabulation macros and one conversion macro

macro tab1
tabulate alpha deltacp 2y/b .95 x/c .05
endmacro

macro tab2

tabulate temp x/c .05 alpha 15
endmacro

macro fix

convert alpha degrees2radlans
convert temp rankine2kelvin
endmacro

#

end of startup file

All comments, except those within the startup file, are passed to the session file, allowing
explanations to be inserted during a long or complicated editing session.

13

Summary of Special Characters

The Editor reserves many characters for special purposes. They are:

or ! When either is the first character in a directive, the entire entry is assumed to be a
comment.

, A general separator. For example, commas separate arguments within a directive or
numeric values withina wart id list. Two consecutive commas indicate an omitted item.

[blank] Also a general separator. Like commas, blanks may also be used to separate items
within a list. Unlike commas, however, the number of consecutive blanks between
items is insignificant. When blanks and commas are intermixed, the commas take

precedence.

' A single quotation mark is commonly used to enclose a variable name which contains
an embedded blank. For example, the variable name

test panel

would normally be interpreted as two names, test and panel Using single quotes

'test panel'

preserves the embedded blank.

Double quotation marks can always substitutefor single quotation marks. For
example, the previous variable name testpanel could also be specified as

"test panel"

Double quotes can also be used to clarify names with an embedded single quote
used as an apostrophe. For example,

RPM'S

could be clarified as

"RPM's"

Finally,double quotes also indicate an assumed command. For example, the
directive sequence

define defl 1000
define def2 2000
define def3 3000

could also be written as

define defl 1000
" def2 2000
" def3 3000

14

& Thedefaultcontinuationcharacter.When the last character in a non-comment entry,
an ampersand is interpreted as a continuation mark and the next entry is appended.
For example, the directive

tabulate press temp port [1,20] model 34 run 1025

could be broken up into the sequence

tabulate press temp &
port [1,20] &
model 34 &
run 1025

The continuation character may be changed via the set command.

The default macro character, discussed in Section 5, "Directive Files and Macros." It
too may be changed via the set command.

15

16

Sect i %n 4Interactive se

This section introduces most of the Editor's commands. Organized as a tutorial, it begins with the
simpler ones and builds up to the more complex ones. If you are a new user and wish to learn all of the
Editor'sfeatures we urge you to skim this entire section and try out new commands as they pique your
curiosity. If you are an experienced user you may lind the detailed information and recommendations
useful.

Most of the examples in this section do not use aliases for commands or keywords. This is done to
improve clarity. In reality,aliases are frequently used and have no adverse effect upon the Editor's
performance or the TOAD files' contents. Likewise, the examples may not demonstrate the best way
of performing a particular manipulation; many were fabricated solely for the purpose of illustratinghow
a specific command might be used.

Finally, remember that the terminal "screen" is actually the standard output device you have assigned.
If you are working interactively the standard output device would indeed be your terminal screen. If
you redirect your output it will go to a tile rather than to the screen.

Files

The user is responsible for ensuring that any requested TOAD files are available to the Editor. This
normally requires that you have at least "read" permission. You will need "write" permission for those
TOAD files you plan to create or rewrite.

Execution

How the Editor is executed depends entirely upon the host operating system. Through the use of
procedures, global definitions, or shell scripts, most installations require only that you enter

toaded

to start execution. Regardless of the host operating system, the following welcome banner appears:

TOAD File Editor

Release 1.0 October 1990

The release number and date will change as new versions of the Editor are installed.

To stop execution, enter the directive

PIW_'EOING PAGE BLANK NOT FILMED
17

end

orany of its aliases,

stop
halt
exit
exl

quit
quI
q

On.Line Help

Help is readily available. At the edit> prompt enter

or, if you prefer,

help

and a list of all commands appears. If the list stopswithoutthe edit> prompt, you're probably at a
page break -- just press the return key to keep going. Or, if you'd rather cancel the list, enter q and

press the return key.

At the conclusion of this help list, or anytime you're at an edit> prompt, you can find out more by

entering the directive

h command

where command is the name of the command you want to know more about. For starters, you might

inquire about help itself by entering

h help

to verify that h is indeed an alias for help.

The help lacility was the very lirst module installed in the Editor and to this day it remains the best
source for quick, up-to-date information. You are urged to use the on-line help facility for most of your
needs and to refer to this document for those occasions when the help facility is inadequate.

En viro nmen tals

There are a number of items which, while not directly affecting the contents of any TOAD file, do
control aspects of the interactive dialog. Because they affect only the Editor's environment they are
called environmentais. The Editor initializes all environmentals to their default settings. You may
change any environmental via the set command. The general form is:

set environmental value

18

where environmental is the keyword identifying the environmental being changed and value is its
new value or state. Similarly,you may display any environmental's current setting via the show
command. Its general form is:

show environmental

where environmental is the keyword identifying the environmental being displayed. For on-line
assistance with either the set or show command, or to see a listof the aliases for any environmental
keyword, use the on-line help facility:

h set
h show

There are three types of environmentals: numeric, text, and toggle. Numeric environmentals contain
whole or fractional constants (e.g., the default tolerance). Text environmentals contain a single
character (e.g., the directive continuation character). Toggle environmentals are turned "on" or "off"
(e.g., the AutoSave protection toggle). Each group of environmentals is individually presented
below.

Two numeric environmentals are available: page length and the default tolerance. Page length is
the number of text lines displayed before a page break occurs. For example, without a page length, if
your screen had a capacity of 24 lines, and a tabulate directive created 50 lines, you'd watch the first
26 lines scroll right off the screen. Using the default page length of 20, the tabulation breaks every 20
lines, then waits for your signal. Pressing the return key continues the tabulation -- entering q and
then pressing the return key stops the tabulation (but not the Editor).

To change the page length, enter

set page n

where n is the number of lines your screen can handle. Zero, negative, or fractional page lengths are
not accepted. Batch users may prefer to remove the page size limit (and avoid unexpected prompts
to continue with a display) by using the directive

or

set page unlimited

set page nollmit

To display the current page length (whether you altered it or not), use the directive

show page

The default tolerance is used whenever an item within a targeting object list omits a tolerance
(more on this later). There are two types of tolerances: absolute and relative. An absolute tolerance is
an unvarying quantity. For example, the specification "10 plus or minus 5" creates the interval [5,15].
A relative tolerance varies according to its target value. For example, the specification "10 plus or
minus 5%" creates the markedly different interval [9.5,10.5]. Initially,the Editor establishes the default
tolerance to be relative, at 1%.

To declare a new absolute tolerance, enter the directive

set tolerance value

19

wherevalue is the new default tolerance. Zero or negative tolerances are not accepted. To declare a

new relative tolerance, the directive is

set tolerance value %

B_o_t_¢

The only difference between declaring an absolute tolerance and declaring a relative
tolerance is the inclusion of the percent sign (%).

To display the default tolerance and its type (whether you changed it or not), use the directive

show tolerance

Two text environmentals are available: the continuation character and the macro character. The
continuation character is used to mark the end ot an entry which continues on the next line. It is

initiallyset to an ampersand (&). For example, the entries

target deltacp &
x/c 2ylb .94

are interpreted as the single directive

target deltacp x/c 2y/b .94

because the continuation character (&) appears at the end of the first entry. You may change the
continuation character to any other character by entering

set contchar x

where x is the new continuation character. To restore the original continuation character, enter

set contchar &

or, more simply,

restore contchar

which assumes that you want to restore the previous continuation character.

The macro character is used to mark dynamic variables withina macro definition. It is initiallyset to a
dollar sign ($). A full discussion of using the macro character is presented in Section 5, "Directive Files
and Macros." For now, our concern is how it can be changed usingthe set command:

set macrochar x

where x is the new macro character. To restore the original macro character, enter

set macrochar $

or, more simply,

20

restore macrochar

whichassumesthatyouwantto restore the previous continuation character.

There are nine toggle environmentals: MacroEcho, OverWrite, AutoSave, EnlryEcho, ShoWartList,
InfoMess, Session, Expand, and History. In general, each may be turned on (enabled) by entering

set toggle on
or

set toggle yes
or

set toggle true
or

enable toggle

where toggle is the keyword identifying the toggle you want changed. Similarly, any may be turned
off (disabled) by entering

set toggle off
or

set toggle no
or

set toggle false
or

disable toggle

The current state of any toggle may be displayed by entering

show toggle

and the current states of all toggle environmentals may be displayed by entering

Show toggles
or

show Indicators
or

show states
or

show flags
or

show switches

Each toggle's purpose is discussed in the following paragraphs.

Toggle MacroEcho controls whether directives are echoed during the execution of a user-defined
macro. When enabled, each directive in the macro's script is displayed, in brackets, as it is performed
during the macro's execution. When disabled, no such information is provided. It is initially enabled.

Enabling the MacroEcho toggle automatically enables the OverWrite and AutoSave

21

toggles.

Toggle OverWrite controls whether you are prompted for a confirmation when you ask to overwrite

an existing external file. When enabled, the prompt

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

appears whenever a directive attempts to overwrite an existing file. Entering "yes" tells the Editor to

go ahead and overwrite the file. Entering "no" instructs it not to pedorm that directive. When the
OverWrite toggle is disabled, no such prompt appears and external files are overwritten without

warning. It is initially enabled.

The OverWrite toggle is automatically enabled when the MacroEcho toggle is

enabled.

Toggle AutoSave controls the built-in safety leature which keeps you lrom inadvertently stopping
the Editor without saving changes made to the active TOAD file. When enabled, the prompt

The active TOAD file's contents have not been saved.

Do you really want your last command performed ?

appears whenever you attempt to end an editing session in which you've altered the active TOAD
file's contents without first saving your changes to an external TOAD file. Entering '_/es" instructs the

Editor to go ahead and end the session. Entering "no" keeps the editing session active, giving you a
chance to save the changes. When the AutoSave toggle is disabled, no such prompt appears. It is

initially enabled.

The AutoSave toggle is automatically enabled when the MacroEcho toggle is

enabled.

Toggle EntryEcho controls whether or not directives are echoed as they are read. When enabled,

every directive accepted, whether lrom the keyboard or from a directive file, is echoed back to your

screen (or whatever you have assigned as the standard output device). This is above and beyond the
normal echoing provided by the host operating system. When the EntryEcho toggle is disabled, the

directives are not echoed. It is initially disabled.

HelDful Hints

When the EntryEcho toggle is enabled and you enter a directive interactively, the

operating system echoes the directive as you type it and the Editor echoes it after

you press the RETURN key, in effect echoing the directive twice. We suggest leaving

the EntryEcho toggle disabled during an interactive editing session.

The toggle is, however, particularly useful when using directive files. Under normal

22

circumstances, the Editor displays little if any progress information after you've started
executing the contents of a directive file. If, at the beginning of the directive file, you
enable the EntryEcho toggle, each directive is displayed as it is executed, providing a
live report of the Editor's progress. We highly recommend this practice, and offer the
following as a pattern for all of your directive files:

Enable entryecho
directive
directive

directive
Disable entryecho

Additional information regarding directive files can be found in Section 5, "Directive
Files and Macros."

Toggle ShoWartLIst controls the format of wart ID target list reports. When enabled, a full wart ID list
is displayed in response to a show target directive. When disabled, a full listmay or may not appear,
depending upon its size. A more detailed description of this toggle is presented with the target
command, described later inthis section. This toggle is initiallydisabled.

Toggle InfoMess controls whether or not inlormative messages are written after select operations.
For example, with the InfoMess toggle enabled, a tabulate command displays the requested data wart
subsets and then tells you how many were displayed. Similarly,mathematical commands, such as
divide, perform their operations and then tell you how many data warts were changed and how many
improper operations (e.g., dividing by zero or finding the square root of a negative value) were
attempted. When the InfoMess toggle is disabled, no such messages appear. This toggle is initially
enabled.

Toggle Session controls the "door" for the session file. When enabled, all directives interpreted are
written to the session file ("open door"). When disabled, no directives are routed to the session file
("closed door'). The Session toggle is initially enabled.

As an illustration,the directives

set page 23
set tolerance 5%
disable session
define pl = 3.1415926
define • = 2.7182818
macro tab1
tabulate alpha deltacp 2y/b .95 x/c .05
endmacro
enable session
macro tab2
tabulate temp x/c .05 alpha 15
endmacro

create the session f le

set page 23

23

set tolerance 5%
disable session
macro tab2
tabulate tamp x/c
endmacro

.05 alpha 15

Toggle Expand controls whether or not directives executed as a result of using a macro appear in
the session file. A full discussion of this toggle is presented in Section 5, "Directive Files and Macros."

It is initiallydisabled.

Toggle History is very similar to the Session toggle. When enabled, interpreted directives are
written to the directive history. When disabled, the directive history remains idle. In other words, if

you're entering a series of directives which you may later want to repeat via the directive history,the
History toggle should be enabled, if, on the other hand, you're entering a series of directives which
you'd rather not have displace the current contents of the directive history,the History toggle should
be disabled. Initially,the History toggle is enabled.

Symbols

There are times when you may wish to use a session variable or symbol to represent numerical data.
For example, accurate values for pi and e are troublesome if they must be entered whenever needed.
instead, you may create a symbol, which is automatically replaced with its numeric equivalent. For
example, to create a symbol for pi, enter

define pl 3.1415926
or

define pl = 3.1415926

Then, when the symbol pi appears where a number is expected, it is automatically converted. As
another example, the directives

define epsllon = .001
set tolerance epsilon

create the symbol epsilon and then use its value to set the default tolerance. Similarly, the directives

define angle 20
target 2y/b .95 alpha angle

create the symbol angle and then use its value to create a target object listof 2y/b=.95 and alpha=20.

To change the value of a symbol, use the redefine command. For example, the directive

redefine alpha 30

assigns a new value to the symbol alpha. Although redefine is designed to assign new values to
existing symbols, it also creates new symbols. For example, the directive

redefine mach .6

assigns the value .6 to the symbol mach. If mach already existed, it is reassigned. If roach did not
already exist, it is created.

24

Todisplayallexistingsymbols,enter

show symbols

Todisplaythevalueofanysymbol,usethedirective

show symbol symbol

where symbol is the name of the symbol to be displayed.

To rename an existing symbol, use the directive

rensymbol old_name newname

where old_name is the name of the symbol being renamed and new_name is its new name. Both
parameters are required -- the Editor cannot make any assumptions if either or both are omitted. In
addition, oldname must be an existing symbol; new_name cannot be an existing symbol, the name
of an active file variable, or a numeric image (e.g., "4").

To delete an existing symbol, use the directive

delsymbol symbol

where symbol is the name of the symbol to be deleted.

Warnincls

When used to set other variables (such as the default tolerance or target angle of
attack, as shown above), the symbol is converted to a numeric constant. Therefore,
setting the default tolerance to symbol epsilon actually sets it to the value .001, notto
the symbol epsilon. Subsequent changes to the symbol epsilon will not affect the
retained value for the default tolerance.

Youcannot create a symbol whose name duplicates one of the active file's variable
names. However, you can create a symbol before opening a TOAD file containing a
variable with the same name. This could create severe problems when using target
object lists. When this situationoccurs the Editor writes a warning to your screen but
does not remove the conflicting symbol definition. We strongly urge you to either
avoid this situation altogether or, at the very least, change the symbol's name or the
variable's name within the active TOAD file.

File Operations

A number of commands are available for manipulating entire files. The open command initiates a
TOAD file for editing. The save command writes the active file back to disc. The close command
aborts the editing session without retaining any changes. Commands scan, report, and menu
provide information about TOAD files. Each of these commands is individually presented.

You must open a TOAD file before any editing operations can be performed. To open a TOAD file,
use the directive

25

open file

where file is the name of the TOAD file being opened. If your TOAD file contains variable names
which are center- or right-justified, open automatically converts them to left-justified. If any of the file's
variable names are blank, duplicates of each other, match existing symbol names, or could be
mistaken for a numeric image, a brief warning message appears.

The open command creates an active TOAD file. As explained in Section 2, "Concepts," an active
TOAD file really isn't a file at all, merely the Editor's internal representation ol a file. Thus open creates
a _ of the TOAD within the Editor and it is this copy which is subsequently affected, not the original
disc file. For this reason, if changes made to the active TOAD file are to be retained you must
specifically request that it be written back to a disc file. To save the active TOAD file, enter the directive

save
or

save file

where fi/e is the name of the file being written. If the file name is omitted, the TOAD file originally
opened is assumed. If the named file does not exist, it is created. If the file does exist, the message

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

may appear, depending upon the state of the OverWrite protection toggle. Answering "yes" instructs
the Editor to overwrite the file. Entering "no" instructs it to ignore the previous save command.

HelDful Hints

Periodic saves are highly recommended during editing sessions. The associated
disc file is kept updated and a recent backup file is available incase you make a severe

change by mistake.

If you make such periodic backups to the same external file, the above message
about overwriting an existing file appears repeatedly. To disable the built-in safety
feature which issues this warning, use the directive

disable overwrite

For mere information concerning the external file overwrite protection, refer to the
discussion of the OverWrite toggle on page 21.

W_rnina

Once a TOAD file is rewritten, its original contents are lost and cannot be recovered. If
the original contents of a TOAD file are to be retained for future use, we strongly
recommend you first make a copy of the file, before executing the Editor.

Under certain circumstances, such as immediately after a catastrophic error, it may be advantageous to
abandon the current active file and start anew. To do this, enter the directive

26

close

Unlike save, the close command does not retain the changes made to the active file. It should _3J.V.be
used to abandon the current active file. If the file was altered during the session, the message

The active TOAD file's contents have not been saved.

Do you really want your last command performed ?

may appear, depending upon the state of the AutoSave protection toggle. Answering "yes" instructs
the Editor to go ahead and abandon the current active file. Entering "no" instructs it to ignore the
close command and retain the current active file.

Once a TOAD file has been opened, you may ask lor a descriptive report by entering

scan

which creates a repod in the form

This TOAD

math

x/c

• and

file contains

has a total of

6 variables:

cldes

2y/b

150 data warts.

planform

deltacp

This report indicates that the variable order withinthis TOAD file is mach, c/des, planform, x/c, 2y/b,
and deltacp, listed from left to right. Command scan can also be used on external TOAD files by
entering

scan tfi/e

where tfile is the name of the external TOAD file to be scanned. In addition, you may ask the resulting
report to be written to a file, rather than to your screen. The directive is

scan tfile rfile

where tfile is the name of the external TOAD file to be scanned and rfile is the name of the external
file inwhich to write the report. If you want to scan the active file, and write the report to an external file,
you must omit the TOAD file name, as illustrated inlhe directive

scan,,report

Notice that the omitted parameter is marked with two consecutive commas.

The scan command and the concept of the active file are closely related. For example, if you open a
TOAD file called 'lest21" and then enter the directives

scan
scan test21

two identical reports are displayed. However, if you then delete a column from the active file, then
reenter the same directives, two different reports are displayed. Why? Because only the active file
has been altered, not the corresponding disc file. If you subsequently save the active file and then

27

reenter the directives the reports would again match, although both would lack one of the TOAD file's
original variables.

In addition to scan, there are two other commands which provide similar information. The report
command displays the number of variables and the number of data warts withinthe active TOAD file,
but does not list the variable names. For example, the directive

report

creates the report

This TOAD file has

6 variables

150 DATA warts

It is useful when you do not wish to see a long listof variable names. Like scan, command report
allows you to send the report to an external file, rather than to your screen. For example,

report ffile

where ffile is the name of the external file in which to write the report. If omitted, the report is

displayed on your screen.

Command menu lists the variable names available within the active TOAD file, but does not display
the number of data warts. Its only form is

menu

which creates a report in the form

This TOAD file contains 6 variables:

mach cldes planform

x/c 2y/b deltacp

Targeting and Using Object Lists

There are two ways to target data subsets: directly and by default. A direct target is defined and used
whenever you use a directive with an explicit object list. A default target is defined using the target
command and is retained and used whenever a directive omits its object list.

The object list syntax, whether in a direct or default target definition, is the same. For example, in
order to display the values for pressure (deltacp) at an angle of attack of 20 degrees (alpha=20) and a
wing semispan location of 95% (2y/b=.95), we can enter

or

tabulate deltacp alpha 20 2y/b .95

target deltacp alpha 20 2y/b .95
tabulate

direct targeting

default targeting

There are two formats for object lists:selection criteria and wart ID lists. A _¢lection criteria ob!ect list

28

qualifiesa data wart only when its numeric contents meet some predefined guidelines. For example, a
data wart qualifies when its value for angle of attack falls between 10 and 30 degrees. A _L_I_UZ.0b._
listselects data warts solely on the basis of their positionwithin the TOAD file (e.g., the first six wads),
regardless of their numeric contents.

Each form provides unique advantages. The selection criteria format performs the intended targeting
even after data warts are sorted, removed, or inserted within the active tile. It is sometimes called a

dynamic target because it locates the qualifying data warts regardless of how many exist or where they
are positioned within the file. On the other hand, the wart ID list format is much easier to use,
assuming you already know the exact positions of the warts to be targeted. It is often called a static

target because it does not vary as the active file's contents are reorganized. Each format is individually
presented.

A _ object list can be broken down into its subordinate items:

[data specification] [data specification] . . .

Each data specification can be further broken down into:

variable [filter specification]

where variable is one of the available TOAD file variables. The filter specification can be further
broken down into:

minimum maximum
or

[minimum, n_imum]
or

[minimum, maximum)
or

(minimum, maximum]
or

(minimum, rr_imum)
or

target_value [/ tolerance [%1]

If the filter specification is omitted, the entire column of data corresponding to the named variable is
selected. For example, the object list

alpha

selects all values of variable alpha, which is expected since no filter was established.

There are two ways to establish a numeric range. Using a minimum and maximum value pair creates
the interval directly. For example, the object list

or

alpha 10 30

alpha [10,30]

creates the interval [10,30], read "all values of alpha greater than or equal to ten, and less than or
equal to thirty." Similarly, the object list

29

alpha [10,30)

createstheinterval[10,30),read"all values of alpha greater than or equal to ten, and less than thirty."

alpha (10,30]

creates the interval (10,30], read "all values of alpha greater than ten, and less than or equal to thirty."

alpha (10,30)

creates the interval (10,30), read =allvalues of alpha greater than ten and less than thirty."

Either the minimum or maximum value can be replaced with a star (*), which indicates "no limit." For

example, the filter specification

* 40

or

[* ,40]
or

(* ,40]

reads "all values less than or equal to forty." Similady,the filter specification

20 *

or

[20,*]
or

[20,*)

reads "all values greater than or equal to twenty." In addition, the filter specification

is allowed, but because it has the same effect as omitting the specification entirely, it is not

recommended. That is, the object list

alpha * * 2yfo * *

is equivalent to the object list

alpha 2y/b

Using a target value and optional tolerance offers more flexibility. In general, the selection range is
created as the target value, plus or minus the tolerance.

There are two very different types o! tolerances: absolute and relative. An absolute tolerance is an

unvarying quantity. For example, the filter specification

10/5

reads "ten plus or minus 5,"which creates the interval [5,15].

3O

Note

We strongly recommend using a space before and after the slash ("/") character when
specifying a target value / tolerance pair. Without any spaces, the filter specification

10/5

is interpreted as the simple numeric expression 'len divided by five," or the value 2,
creating a very different interval.

A relative tolerance varies according to its target value. For example, the filter specification

10 / 5%

reads "ten plus or minus five percent of ten," which creates the markedly different interval [9.5,10.5].
Initially, the Editor establishes the default tolerance to be relative, at 1%. However, you are free to
change both the tolerance value and its type using the set command, as previously described.

If the tolerance is omilted, the interval is defined as the target value plus or minus the default
tolerance. For example, the directives

set tol 5

target alpha 10

create a default target of alpha within the interval [5,15]. By comparison, the directives

set tol 5%
target alpha 10

create the default target of alpha within the interval [9.5,10.5]. Notice, however, that the directives

set tol 5
target alpha 10
set tol 5%

still results in an alpha interval of [5,15]. Why? Because the target command established the interval
[5,15] before the default tolerance was changed -- therefore changing the default tolerance had no
effect upon the established interval for alpha.

All types of filter specifications may be freely intermixed. For example, the object list

alpha 10 2y/b .75 .95 x/c deltacp

selects alpha at ten degrees, span locations 75% through 95%, and all values of x/c and de/tacp. In
use, the directives

target alpha 10 2y/b .75 .95 x/c deltacp
tabulate

add deltacp pzero
tabulate

set a default target list, tabulate 2y/b, x/c, and de/lacp which meet the targeting criteria, adds the value

31

ofsymbolpzero to deltacp within the targeted subset, and retabulates. As another example, the

object list

2y/b .85 x/c .05 alpha .20 * deltacp

selects span location 85%, chord location 5%, all values of alpha greater than or equal to -20 degrees,
and aHvalues of deltacp. In use, the directives

tabulate 2y/b .85 xlc .05 alpha -20 * deltacp
tabulate 2y/b .95 x/c .05 alpha -20 * deltacp

tabulate leading edge (chord location 5%) pressure as a function of angle of attack, at span locations

85% and 95%, respectively.

A ytaIL._.];_J_I_ can be broken down into its subordinate items:

warts m/x m/x

where warts is a wart ID listand nYx is either a wart ID list or a variable name. Each wart ID list has the

lorm

i[Tj[Bk]]
or

i[tj[bk]]

where i is the beginning wart index, j is the ending wart index, and k is the increment lactor. For

example,

13

identifies wart #13;

lt13

identities warts 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13; and

1t13b6

identifies warts 1, 7, and 13. Reversed listsmay also be created. For example,

13tlb6
or

13t I b-6

yields warts 13, 7, and 1, in that order.

The wart ID lists are prepared exactly as specified, even if duplicate or overlapping ID's result. For

example, the object list

lt7 7t10 8t12

creates the wart ID list 1,2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 8, 9, 10, 11, and 12. However, a negative wart ID

(e.g., "-5") or a wart ID exceeding the number of data warts in the active file is not accepted.

32

Note

In the'previous example the wart ID's 7, 8, 9, and 10 are specified twice. Does that
mean these warts will be used twice? No. A target object list only "qualifies" or
"disqualifies" each data wart. Thus, a data wart specified twice in an object list is
treated like a data wart specified only once -- it is considered "qualified."

When variable names are not used within a wart ID object list, all columns of data are targeted. If any
names are used, only the columns associated with those variables are targeted. Thus the object list

lt61b6

targets eleven data warts and all columns, while the object list

1t31b6 deltacp x/c 2y/b

targets six data warts and three columns.

Wart ID object listsare somewhat order-independent. That is, the object list

lt6 deltacp 31t36 x/c 61t66 2y/b

creates the exact same target scheme as lhe object list

lt6 31t36 61t66 deltacp x/c 2y/b
or

lt6 deltacp x/c 2y/b 31t36 61t66

However, among wart lists and among variable names order is significant, as the object list

lt6 31t36 61t66 deltacp x/¢ 2y/b

creates a different target scheme than either

lt6 31t36 61t66 2ytb x/¢ deltacp
or

61t66 31t36 lt6 2y/b x/¢ deltacp

When you open a new TOAD file for editing, the default target list is initially set to all, as if you entered
the directive

target all

This effectively qualifies all data contained on the active TOAD file for any subsequent operations. For
example, the directives

open test21
convert alpha r2d

perform the same function as the directives

open test21

33

convert alpha r2d all

or the directives

open taat21
target all
convert alpha r2d

To display the currant default target, use the directive

show target

An example of a selection criteria default target scheme is

Variable Interval Value Tol

deltacp all - -

x/c all - -

2y/b [.9000, .9800] - -

alpha - i0 1%

where all of variables deltacp and x/c qualify, 2y/b qualifies only over the interval [.9,.98], and alpha
qualifies when it equals 10 degrees, plus or minus 1%.

Wart ID list target schemes appear as

Wart ID list:

i, 2, 3, 4, 5, 6

Variables : all

where the first six warts are targeted, includingall variables. Another torm is

Wart ID list:

3, 4, 5, 6, 7

Variables :

deltacp x/c 2y/b

where the third through seventh warts are targeted, includingonly variables deltacp, x/c, and 2y/b. If
long series of warts are targeted the report may appear as

Wart ID list:

It145b6, 6t150b6

variables :

deltacp x/c 2y/b

34

which uses the abbreviated notation 1t145b6 and 6t150b6 rather than create the full list. You can

control this in either of two ways. First, enabling the ShoWartList toggle forces the full list to appear,

regardless of its length (obviously, this is not recommended for extremely long wart ID lists). Second,

you can use the keywords full or brief within the show target directive. For example,

show target full

asks for a full wart ID listing, such as

Wart ID list:

i, 2, 3, 4, 5, 6

Variables : all

regardless of how long a full listing might be. The directive

show target brief

asks for an abbreviated wart ID listing, such as

Wart ID list:

it145b6, 6t150b6

Variables :

deltacp x/c

regardless of how short a full listing might be.

2y/b

Note

Toggle ShoWartList and the keywords full and brief affect only how wart ID list target

schemes are displayed and have no effect upon how selection criteria target scheme

reports are displayed.

Tabulating

There are two commands which display the contents of the active TOAD file: tabulate and stats.

Command tabulate is used to display selected subsets of raw data. Command stats provides a

statistical profile of a selected variable. Each command is presented individually.

RPW Data

Command tabulate displays selected sets of raw data. Its form is

tabulate [object list]

where the optional object list selects the desired data subset. If omitted, the current default target list

is assumed.

35

The object list provides two types of information: the data subset selected and those variables to be
displayed. For example, using the example file toad1, the directive

tabulate 2y/b .9 .94 x/c deltacp

creates the report

wart # 2y/b x/c deltacp

133 0

134 0

135 0

136 0

137 0

138 0

139 0

140 0

141 0

142 0

143 0

144 0

900000 0.416667E-01 6.09007

900000 0.208333 3.02826

900000 0.375000 2.12340

900000 0.541667 1.60278

900000 0.708333 1.17190

900000 0.875000 0.711813

940000 0.416667E-01 7.38284

940000 0.208333 3.76906

940000 0.375000 2.71414

940000 0.541667 2.03536

940000 0.708333 1.50435

940000 0.875000 0.937932

which tabulates pressure (deltacp) across all airfoilchord locations(x/c) at a 90-94% (.90-.94) wing
semispan location (2y/b). This same report could also be generated using the directive

tabulate 133t144 2y/b x/c deltacp

Because of screen width limitations, only four columns of data can be displayed. If you ask to tabulate
more than four columns of data (directly or via the default target list)only the first four appear.

In the above example 2y/b and x/c appear to be independent variables and deltacp appears to be a
dependent variable. When possible, tabulate attempts to simply the resulting report by eliminating
those variables which you request to remain constant (usually independent variables). For example,
the directive

tabulate 2ylb .9 x/c deltacp

creates the slightly different report

wart # x/c deltacp

133 0

134 0

135 0

136 0

137 0

138 0

416667E-01 6.09007

208333 3.02826

375000 2.12340

541667 1.60278

708333 1.17190

875000 0.711813

Notice that, while the numbers are the same, the variable 2y/b doesn't appear in the report. Why?
The directive specifically requests that 2y/b remain at .9 -- tabulate therefore assumes the value for
2y/b is already known and there's no need to repeat it in the report.

36

Helpful Hint

Whenyouwantto display more than four columns of data, consider "windowing" the
active file. A simple windowing technique is illustrated in the following dialog (the bold
entries indicate user input)"

edit> open test

edit> scan

This TOAD file contains 6 variables:

coll co12 co13

co14 co15 co16

co17 co18

and has a total of 40 data warts.

edit> tabulate lt20 co11 co12 co13 co14

edit> tabulate It20 co15 co16 co17 co18

edit> tabulate 21t40 coll co12 co13 co14

edit> tabulate 21t40 co15 co16 co17 co18

which creates four "windows," each four columns wide and 20 rows long, displaying
the entire contents of the active TOAD file.

Statistical Profile

Command stats displays a statisticalprofile of the selected data set. Its form is

stats variable [object fist]

where variable is the name of the variable to be profiled, and the optional object list selects the
desired data subset. If the object list is omilted, the current default target list is assumed.

The report created by stats displays basic statistics, including

frequency count
sum

- range
minimum and maximum values
mean and unbiased variance

- biased standard deviation and standard error

For example, using the example file toad1, the directive

stats deltacp all

profiles all occurrences of deltacp and creates the report

Frequency Count: 150

Sum: 213. 588

Range : i0.2899

37

Minimum:

Maximum:

Mean:

Variance:

Standard Dev:

Standard Error:

0.292267

10.5822

1.42392

2.07422

1.44504

0.117987

(unbiased)

(biased)

(biased)

The directive

stats deltacp 2y/b .9

profiles deltacp only at a 90% (.9) wing semispan location (2y/b), which creates the report

Frequency Count: 6

Sum: 14.7282

Range: 5.37825

Minimum: 0.711813

Maximum: 6.09007

Mean: 2.45470

Variance: 3.17727

Standard Dev: 1.95262

Standard Error: 0.797154

(unbiased)

(biased)

(biased)

Command stats is particularly useful when determining which variables are constant and which are

not. For example, the directive

stats roach

creates the report

Frequency Count: 150

Sum: 90.0000

Range: 0.

Minimum: 0.600000

Maximum: 0.600000

Mean: 0.600000

Variance: 0.

Standard Dev: 0.

Standard Error: 0.

(unbiased)

(biased)

(biased)

The mean of .6 and range of zero indicate that variable roach is constant at .6 throughout this file.

The Undo Command

up to this point we've discussed commands which don't change the contents of an active TOAD file.
Beginning with the next subsection, Moving Data, we will be presenting commands which have the
potential of making substantial changes to the active file. But before we begin with these commands
you should be aware of undo.

The undo command allows you to restore the active file back to the state itwas in immediately before
the most recent directive which changed it. That is, undo removes the effects of the last directive
which changed the active tile. For example, if you open a TOAD tile, then add 100 to the contents of a

38

columnofdata,you'vechanged the active file. An undo would restore the active file's contents back
to what they were before the add operation.

The mechanics of an undo are simple. The Editor copies the active file to the undo buffer when it
receives a directive which looks like it would change the active file. Then it performs the directive. A
subsequent undo simply exchanges the contents of the active file and the undo buffer. A graphic
portrayal of this sequence is

active file copied to the undo buffer

I] active ,,ie _-1 =- [-_--

directive executed

the shading indicates a modification
as a result of the directive executed

active fi!e __

undo buffer

[._I _ undo buffer__......__

undo

activ ,,e Ir
simultaneous exchange

::::::: ado buffer __

We want to make four points clear. First,only a directive which chan0es the active file can be undone
(virtually none of the commands discussed so far change the active file). For example, suppose you
open a TOAD file, establish a new target (usingcommand target), add a constant to a column of data
(command add), tabulate the results (command tabulate), then use undo. The most recent command
used is tabulate, but the most recent command which changed the active file is add. Therefore the
undo command undoes the effect of add, not tabulate. (This makes intuitive sense when you
consider what it means to undo a tabulate or scan.)

Second, only the most recent operation which changed the active file can be undone. For example,
suppose you open a TOAD file, establish a new target, add a constant to a column of data, subtract a
constant from another column of data, tabulate the result, then use undo. Which operation is
undone? Both the add and subtract operations changed the active file, but the subtract operation is
the more recent and therefore it is undone.

Third, using two consecutive undo commands does NOT undo the previous two operations.
Because undo simply exchanges the contents of the active file and the undo buffer, the second
undo undoes the effects of the first undo. This has two ramifications: 1) undo does not correct a
mistake made many operations ago (again, only the most recent operation which changed the active
file can be undone); and 2) undo itself can be undone.

Fourth, only the active file is restored to its previous state. Environmentals, symbols, and macros are
not affected by undo. Further,changes made to the default target object listcannot be revoked via
the undo command.

39

Moving Data

coDvlno from one Column to Another

Command copy moves data from one column to another. Its form is

copy variable1 variable2 [object#st]

where variable1 identifies the source column, variable2 identifies the destination column, and the
optional object list selects the desired data subset. Both variables must exist within the active file and
each must be unique. If the object list is omitted, the current default target list is assumed.

To illustrate how copy may be u,_;ed,consider the following dialog:

edit> open test

edit> scan

This TOAD file contains 3 variables:

X

Z

Y

and has a total of 5 data warts.

edit> tabulate

wart # x Y

1 i01.000 201.000 301.000

2 102.000 202.000 302.000

3 103.000 203.000 303.000

4 104.000 204.000 304.000

5 105.000 205.000 305.000

edit> copy x y

edit> tabulate

wart # x Y

1 I01.000 i01.000 301.000

2 102.000 102.000 302.000

3 103.000 103.000 303.000

4 104.000 104.000 304.000

5 105.000 105.000 305.000

edit> copy z x 2t4

edit> tabulate

wart # x Y

1 i01.000 I01.000 301.000

2 302.000 102.000 302.000

3 303.000 103.000 303.000

4O

4 304.000 I04.000 304.000

5 105.000 105.000 305.000

Warninas

The original contents of the column selected to receive the data are overwritten.

It is your responsibilityto ensure that data from the source column is appropriate for
the destination column. Improper use of the copy command can create worthless or
misleading TOAD files.

Command sort performs either an ascending or descending sort of the selected data subset. Its
form is

sort variable order [object list]

where variable is the column of data on which the active file is sorted, order is "ascend" Ca") or
"descend" Cd") to indicate the type of sort, and the optional object list selects the desired data
subset. If order is omitted, an ascending sort is performed. If the object list is omitted, the current
default target list is assumed.

When a variable is sorted it is used as a guide to reorder the entire TOAD file or the selected data
subset. To illustrate this, usingthe example file toad1, consider the following dialog:

edit> open toad1

edit> target 2y/b

edit> tabulat,_

.86 .94 x/C deltacp

wart # 2y/b xlc deltacp

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

0.860000

0 860000

0 860000

0 860000

0 860000

0 860000

0 900000

0 900000

0 900000

0 900000

0.900000

0.900000

0.940000

0.940000

0.940000

0.940000

0.940000

0.940000

0.416667E-01

0.208333

0.375000

0.541667

0.708333

0.875OOO

0.416667E-01

0.208333

0.375000

0.541667

0.708333

0.875000

0.416667E-01

0.208333

0.375000

0.541667

0.708333

0.875000

5.30779

2.59059

1.82227

1.36944

0.998986

0.604424

6.09007

3.02826

2.]2340

1.60278

1.17190

0.711813

7.38284

3.76906

2.71414

2.03536

1.50435

0.937932

41

edit> sort x/c

edit> tabulate

wart # 2y/b x/c deltacp

127 0.860000 0.416667E-01 5.30779

128 0.900000 0.416667E-01 6.09007

129 0.940000 0.416667E-01 7.38284

130 0.860000 0.208333 2.59059

131 0.900000 0.208333 3.02826

132 0.940000 0.208333 3.76906

133 0.860000 0.375000 1.82227

134 0.900000 0.375000 2.12340

135 0.940000 0.375000 2.71414

136 0.860000 0.541667 1.36944

137 0.900000 0.541667 1.60278

138 0.940000 0.541667 2.03536

139 0.860000 0.708333 0.998986

140 0.900000 0.708333 1.17190

141 0.940000 0.708333 1.50435

142 0.860000 0.875000 0.604424

143 0.900000 0.875000 0.711813

144 0.940000 0.875000 0.937932

edit>

Notice that the associated values for 2y/b and deltacp are moved along with xlc as it is sorted. In
reality,entire data warts are moved according to how the guide variable is sorted, whether or not the
other variables have been targeted (sorting only the guide variable, without carrying along the
remainder of the data wart, would create a useless or misleading file). The target object list, therefore,
serves only to restrict the vertical (row-wise) scope of the data to be sorted, and has no effect on the
horizontal (column-wise) scope of the data.

Note

The sort command erases the default target listonly if it uses the wart ID list format.
Selection criteria target schemes are not affected by sort.

Exchanging Data Between Columns

Command exchange swaps columns of data. Its form is

exchange variable1 variable2 [objectlist]

where variable 1 and variable2 identifythe two columns of data to be exchanged and the optional
object list selects the desired data subset. Both variables must exist within the active file and each
must be unique. If the object list is omitted, the current default target list is assumed.

Variable names are exchanged only when the entire data set is targeted (object list a/I). Otherwise,
only the targeted data are exchanged and the vadable names remain unaltered. To illustrate this,
consider the following dialog:

42

edit> open test

edit> scan

This TOAD file

x

press

. and has a

edit> tabulate

contains 3 variables:

Y

total of 6 data warts.

wart # x y press

1 0.600000 0.250000 7.38284

2 0.600000 0.750000 3.76906

3 0.700000 0.250000 2.71414

4 0.700000 0.750000 2.03536

5 0.800000 0.250000 1.50435

6 0.800000 0.750000 0.937932

edit> exchange x y

edit> tabulate

wart # y x press

1 0.250000 0.600000 7.38284

2 0.750000 0.600000 3.76906

3 0.250000 0.700000 2.71414

4 0.750000 0.700000 2.03536

5 0.250000 0.800000 1.50435

6 0.750000 0.800000 0.937932

edit> exchange x y x .7

edit> tabulate

wart # y x press

1 0.250000 0.600000 7.38284

2 0.750000 0.600000 3.76906

3 0.700000 0.250000 2.71414

4 0.700000 0.750000 2.03536

5 0.250000 0.800000 1.50435

6 0.750000 0.800000 0.937932

Warninq

The second exchange directive in the previous dialog illustrates a situation in which
data for the two independent variables (xand y) are improperly exchanged. Because
the exchange command makes no assumptions regarding the active file's structure, it
is up to you to ensure that all exchanges are proper and suilable for the file being
edited. Note that the first exchange directive in the previous dialog isproper.

43

Commands exchange and sort are omen used together to alter the hierarchy of the file's

independent variables. For example, consider the following dialog:

edit> open test

edit> scan

This TOAD file contains 3 variables:

x Y

pre_s

and has a total of 6 data warts.

edit> tabulate

wart # x y press

1 0.600000 0

2 0.600000 0

3 0.700000 0

4 0.700000 0

5 0.800000 0

6 0.800000 0

250000 7.38284

750000 3.76906

250000 2.71414

750000 2.03536

250000 1.50435

750000 0.937932

edit> sort y

edit> tabulate

wart # x y press

1 0.600000 0.250000 7.38284

2 0.700000 0.250000 2.71414

3 0.800000 0.250000 1.50435

4 0.600000 0.750000 3.76906

5 0.700000 0.750000 2.93536

6 0.800000 0.750000 0.937932

edit> exchange x y

edit> tabulate

wart # y x press

1 0.250000

2 0.250000

3 0.250000

4 0.750000

5 0.750000

6 0.750000

600000 7.38284

700000 2.71414

800000 1.50435

600000 3.76906

700000 2.03536

800000 0.937932

edit>

Originally, variable x was the outermost independent, and variable y its subordinate, with press as the

dependent variable. AMer this sequence of directives, variable y is now the outermost independent,

and variable x its subordinate, a complete reversal!

44

In addition, the order of variables may be significant. For example, when the TOAD Gateway translates
TOAD files into POST (Program to Optimize Simulated Trajectories) files, it assumes the first variable
to be dependent and all remaining variables to be independent, with the outermost independent as
the last variable. In order to "condition" the above file for the Gateway's POST translator we need one
more operation:

edit> exchange y press

edit> tabulate

wart # press x y

1 7.38284 0.600000 0.250000

2 2.71414 0.700000 0.250000

3 1.50435 0.800000 0.250000

4 3.76906 0.600000 0.750000

5 2.03536 0.700000 0.750000

6 0.937932 0.800000 0.750000

Now the file is properly conditioned for translation into the POST format.

Replacing Data

Chan01na a Variable's NamP.

Command rename allows you to change a variable name within the active TOAD file. Its form is

rename old_name new_name

where old_name is the name of the existing variable being changed and new_name is its new name.
Both parameters are required -- the Editor cannot make any assumptions if either or both are omitted.
In addition, old_name must be an existing variable, and new_name cannot be an existing variable or
symbol name (commands scan and menu display a listof the active file's existingvariable names;
show symbols displays a listof the current symbols).

Using the example file toadl, the directive

rename deltacp pressure

changes the variable name deltacp to pressure, as illustratedin the following dialog:

edit> open toad1

edit>menu

This TOAD file contains 6 variables:

mach cldes

x/c 2y/b

planform

deltacp

edit> rename deltacp pressure

edit>menu

45

edit>

This TOAD file contains 6 variables:

mach cldes planform

x/c 2y/b pressure

Kam _ m

Command clear "erases" data cells (i.e., sets them to zero) without removing data rows or columns.

Its form is

clear variable [object list]

where variable is the name of the variable to be cleared and the optional object list selects the desired
data subset. If the object list is omitted, the current default target list is assumed

Usingthe example file toadl, the directive

clear deltacp 2y/b .94

substitutes zero for pressure data only at a 94% (°94) wing semispan location (2y/b), as illustratedin

the following dialog:

edit> open toadl

edit> target 2y/b

edit> tabulate

wart # 2y/b

[.90, .98] x/c deltacp

xlc

133 0.900000 0.416667E-01

134 0.900000 0.208333

135 0.900000 0.375000

136 0.900000 0.541667

137 0.900000 0.708333

138 0.900000 0.875000

139 0.940000 0.416667E-01

140 0.940000 0.208333

141 0.940000 0.375000

142 0.940000 0.541667

143 0.940000 0.708333

144 0.940000 0.875000

145 0.980000 0.416667E-01

146 0.980000 0.208333

147 0.980000 0.375000

148 0.980000 0.541667

149 0.980000 0.708333

150 0.980000 0.875000

deltacp

6.09007

3.02826

2.12340

1.60278

1.17190

0.711813

7.38284

3.76906

2.71414

2.03536

1.50435

0.937932

10.5822

5.61437

4.43053

3.78733

3.15396

2.12793

edit> clear deltacp 2y/b .94

edit> tabulate

46

wart # 2y/b x/c deltacp

133 0.900000

134 0.900000

135 0.900000

136 0.900000

137 0.900000

138 0.900000

139 0.940000

140 0.940000

141 0.940000

142 0.940000

143 0.940000

144 0.940000

145 0.980000

146 0.980000

147 0.980000

148 0.980000

149 0.980000

150 0.980000

edit>

0 416667E-01

0 208333

0 375000

0 541667

0 708333

0 875000

0 416667E-01

0.208333

0.375000

0.541667

0.708333

0.875000

0.416667E-01

0.208333

0.375000

0.541667

0.708333

0.875O00

6.09007

3.02826

2.12340

1.60278

1.17190

0.711813

0.

0.

0.

0.

0.

0.

10.5822

5.61437

4.43053

3.78733

3.15396

2.12793

Direct Replacement

Command assign allows you to set one or more raw data cells to a desired numericvalue. Its form is:

assign value [object list]

where value is the numeric value being assigned and the optional object list identifies the affected
raw data cells. If the object list is omitted, the current default target list is assumed. As an illustrationof
how assign may be used, consider the following dialog:

edit> open test

edit> scan

This

edit> tabulate

wart #

TOAD file

coll

co14

and has

coll

I01.0000

201.0000

301.0000

401.0000

501.0000

contains 4 variables:

co12

a total of 6 data warts.

co12

102.0000

202.0000

302.0000

402.0000

502.0000

co13

103.0000

203.0000

303.0010

403.0010

503.0000

co13

co14

104.0000

204.0000

304.0000

404.0000

504.0000

47

6 601.0000 602.0000 603.0000 604.0000

edit>

edit>

assign 991 1 co12

tabulate

wart # coll

1

2

3

4

5

6

edit>

edit>

I01.0000

201.0000

301.0000

401.0000

501.0000

601.0000

assign 992 3t4

tabulate

wart # coll

1

2

3

4

5

6

edit>

edit>

edit>

edit>

101.0000

201.0000

992.0000

992.0000

501.0000

601.0000

edit>

assign 993 5

tabulate

wart # coll

i01.0000

201.0000

992. 0000

992.0000

993.0000

601.0000

assign 994 co14

tabulate

wart # coll

i01.0000

201.0000

992.0000

992.0000

993.0000

601.0000

co12

991.0000

202.0000

302.0000

402.0000

502.0000

602.0000

co11 co12 co13

co12

991.0000

202.0000

992.0000

992.0000

502.0000

602.0000

co12

991.0000

202.0000

992.0000

992.0000

993.0000

602.0000

co12

991.0000

202.0000

992.0000

992.0000

993.0000

602.0000

co13

103.0000

203.0000

303.0000

403.0000

503.0000

603.0000

co13

103.0000

203.0000

992.0000

992.0000

503.0000

603.0000

co13

103 0000

203 0000

992 0000

992 0000

993 0000

603 0000

co13

103.0000

203.0000

992.0000

992.0000

993.0000

603.0000

co14

104.0000

204.0000

304.0000

404.0000

504.0000

604.0000

co14

104.0000

204.0000

304.0000

404.0000

504.0000

604.0000

co14

104.0000

204.0000

304.0000

404.0000

993.0000

604.0000

c014

994.0000

994.0000

994.0000

994.0000

994.0000

994.0000

48

Warninq

It is important to realize that the Editor altersdata as instructedand that Y.gJJare
responsible for judging the validity of any assignment. The trivial operations
performed in this example dialog are intended only to demonstrate how clear and
assign are used, not when such assignments are warranted.

Mathematical Operations

Basic Arithmetic

The four basic arithmetic functions are provided via the add, subtract, multiply, and divide
commands. Each has the form

command item1 item2 [item3] [objectlist]

where command is the command name, item I and item2 are the two operands used, item3 receives
the result of the operation, and the object list selects the desired data subset. Using command add
as an example, the directive

add x y z

reads "x plus y yields z" and can be expressed as

x+y=z

Item1 and item2 are variable names, symbols,or numbers. Item3 is either a variable name or a
symbol. H #em3 is omitted, the result of the operation is placed back into item1. For the add and
multiply commands, if item3 is omitted and item1 is a number or numeric expression, the result is
placed back into item2. If item3 is omitted and both item1 and item2 are numbers or numeric
expressions, the result is displayed on your screen. If the object list is omitted, the default target list is
assumed.

These commands can be used in a variety of ways. For a few examples, consider the following dialog

edit> open test

edit> scan

This TOAD file contains 3 variables:

x y

Z

and has a total of 4 data warts.

edit> tabulate

wart # x y

1 101.000 201.000

2 102.000 202.000

3 103.000 203.000

301.000

302.000

303.000

49

4 104.000

4 wart subsets listed.

edit> add x y z

4 data warts were changed.

edit> tabulate

wart # x

204.000

Y

304.000

1 i01.000 201.000 302.000

2 102.000 202.000 304.000

3 103.000 203.000 306.000

4 104.000 204.000 308.000

4 wart subsets listed.

edit> define ten I0

edit> mult x ten

4 data warts were changed.

edit> tabulate

Ywart # x

1 i010.00 201.000 302.000

2 1020.00 202.000 304.000

3 1030.00 203.000 306.000

4 1040.00 204.000 308.000

4 wart subsets listed.

edit> subtract 1000 z z 2t3

2 data warts were changed.

edit> tabulate

Ywart # x

1 I010.00 201.000 302.000

2 1020.00 202.000 696.000

3 1030.00 203.000 694.000

4 1040.00 204.000 308.000

4 wart subsets listed.

edit> define te-_p 0

edit> subtract I000 z temp 3

5O

edit>

edit>

show symbol temp

306

Notice inthe last subtract example that the object list was used to select which value of z was used to
calculate temp. Without this object list, four results from four subtraction operations would have been
generated, one per data wart, which would have overwhelmed a single symbol and triggered an error

message.

Four utilityfunctions are provided: abs, Invert, sqrt, factorial, and sign. The first four commands
have the form

command item1 [item2] [object/ist]

where command is the command name, item1 is the operand used, item2 receives the the result of

the operation, and the object fist selects the desired data subset. Using command abs as an
example, the directive

ab$ x y

reads '1he absolute value of x yields y" and can be expressed as

Ixl=y

Similarly, the inverse, sqrt, and factoria/commands perform the functions

1/x = y
(x)1/2 = y
x! = y

respectively.

Item1 is a variable name, symbol, or number. Item2 is either a variable name or a symbol. If item2 is
omitted, the result of the operation is placed back into item1. If item2 is omitted and item1 isa
number or numeric expression, the result is displayed on your screen. If the object/ist is omitted, the
default target list is assumed. In addition, the functional domains are:

abs unlimited
invert any nonzero value
sqrt any positive value
factorial positive integer less than 70

To illustrate how these commands may be used, consider the lollowing dialog:

edit> open test

edit> scan

51

This TOAD file contains 3 variables:

x Y

z

and has a total of 5 data warts.

edit> tabulate

wart # Y

1 ii.0000 21.0000 31.0000

2 12.0000 22.0000 32.0000

3 13.0000 23.0000 33.0000

4 14.0000 24.0000 34.0000

5 15.0000 25.0000 35.0000

5 wart subsets listed.

edit> mult x -I y 2t4

3 data warts were changed.

edit> tabulate

wart # x z

1 11.0000 21.0000 31.0000

2 12.0000 -12.0000 32.0000

3 13.0000 -13.0000 33.0000

4 14.0000 -14.0000 34.0000

5 15.0000 25.0000 35.0000

5 wart subsets listed.

edit> abs y

3 data warts were changed.

edit> tabulate

wart # x

1 ii.0000 21.0000 31.0000

2 12.0000 12.0000 32.0000

3 13.0000 13.0000 33.0000

4 14.0000 14.0000 34.0000

5 15.0000 25.0000 35.0000

5 wart subsets listed.

edit> invert z

52

5 data warts were changed.

edit> tabulate

wart # x

1 Ii.0000 21.0000

2 12.0000 12.0000

3 13.0000 13.0000

4 14.0000 14.0000

5 15.0000 25.0000

0.322581E-01

0.312500E-01

0.303030E-01

0.294118E-01

0.285714E-01

5 wart subsets listed.

edit> factorial x y It3

3 data warts were changed.

edit> tabulate

wart # x Y

1 ii.0000 0.399168E+08

2 12.0000 0.479002E+09

3 13.0000 0.622702E+10

4 14.0000 14.0000

5 15.0000 25.0000

0.322581E-01

0.312500E-01

0.303030E-01

0.294118E-01

0.285714E-01

5 wart subsets listed.

edit>

The sign command has the form

sign item1 item2 [item3] [object/ist]

where item1 is the magnitude used, item2 supplies the sign information, item3 receives the the
result of the operation, and the object list selects the desired data subset.

Because the sign operation may be new to many readers, a brief description is in order. The operation

sign(a1 ,a2)

is interpreted as "combine the magnitude of al and the sign of a2." Similarly, the directive

sign x y z

reads "combine the magnitude of x with the sign of y and store the result in z."

Item1 and item2 arevariable names, symbols, or numbers. Item3 is either a variable name or a
symbol. If item3 is omitted, the result of the operation is placed back into item1, tf item3 is omitted
and item1 is a number or numeric expression, the result is displayed on your screen. If the objectlist
is omitted, the default target list is assumed. In practice #eml is usually the numeric value 1.

53

The sign command is somewhat specialized and at times may be indispensable. For example,

suppose we are given an aircraft performance data tile which contains the square of the angle of

attack, both positive and negative values, which we must convert to just plain angle of attack. How can

we adjust the angle of attack while preserving its sign? Consider the following dialog:

edit> open test1

edit> tabulate press portid 1 2 alpha

wart # press portid alpha

i01 6.09007 1 -25.0000

102 7.38284 2 -25.0000

201 3.02826 1 -4.00000

202 3.76906 2 -4.00000

301 2.12340 1 4.00000

302 2.71414 2 4.00000

401 1.60278 1 25.0000

402 2.03536 2 25.0000

501 1.1"7190 1 100.000

502 1.50435 2 i00.000

601 0.711813 1 225.000

602 0.937932 2 225.000

edit> sign portid alpha

edit> tabulate press portid -2 2 alpha

wart # press portid alpha

I01 6.09007 -i -25.0000

102 7.38284 -2 -25.0000

201 3.02826 -i -4.00000

202 3.76906 -2 -4.00000

301 2.12340 1 4.00000

302 2.71414 2 4.00000

401 1.60278 1 25.0000

402 2.03536 2 25.0000

501 1.17190 1 100.000

502 1.50435 2 100.000

601 0.711813 1 225.000

602 0.937932 2 225.000

edit>

edit>

edit>

abs alpha

sqrt alpha

tabulate press portid -2 2 alpha

wart # press portid alpha

i01

102

201

202

301

302

6.09007 -i

7.38284 -2

3.02826 -i

3.76906 -2

2.12340 1

2.71414 2

5.00000

5.00000

2.00000

2.00000

2.00000

2.00000

54

401 1.60278
402 2.03536
501 1.17190
502 1.50435

601 0.711813

602 0.937932

edit> sign alpha portid

edit> abs portid

edit> tabulate press

1 5.00000

2 5.00000

1 I0.0000

2 i0.0000

1 15.0000

2 15.0000

portid 1 2 alpha

wart # press portid alpha

i01 6.09007 1 -5.00000

102 " .38284 2 -5.00000

201 _.02826 1 -2.00000

202 3.76906 2 -2.00000

301 2.12340 1 2.00000

302 2.71414 2 2.00000

401 1.60278 1 5.00000

402 2.03536 2 5.00000

501 1.17190 1 10.0000

502 1.50435 2 10.0000

601 0.711813 1 15.0000

602 0.937932 2 15.0000

Powers and Roots

Two functions are available: power and root. Each has the form

command item1 item2 [item3] [objectlist]

where command is the command name, item1 and item2 are the operands used, item3 receives the
the result of the operation, and the objectlist selects the desired data subset. Using command
power as an example, the directive

power x y z

reads "x raised to the yth power yields z" and can be expressed as

(x)Y = Z

Similarly, the root command performs the function

(x)l/y = z

Item1 and item2 are variable names, symbols, or numbers. Itern3 is either a variable name or a
symbol. If item3 is omitted, the result of the operation is placed back into iteml. If item3 is omitted
and item1 is a number or numeric expression, the result is displayed on your screen. If the objectlist
is omitted, the default target list is assumed. In addition, the general functional domains are:

55

power x: any nonzero value
y: unlimited

root x: any nonzero value
y: any nonzero value

There are further limitations. Roots of negative values are allowed only when the order (y) is an odd

integer. Fractional powers of negative values are allowed only when the order (y) is the inverse of an
odd integer. All other instances involving negative values are illegal.

Looarlthms and Exuonents

Four functions are provided: log, log 10, exp, and exp 10. Each has the form

command item1 [#em2] [objectlist]

where command is the command name, item1 is the operand used, item2 receives the the result of
the operation, and the object list selects the desired data subset. Using command log as an
example, the directive

log x y

reads '1he natural log of x yields y" and can be expressed as

In(x) = y

Similarly,the log 10, exp, and exp 10 commands perform the functions

Iog lO(X) = y

eX=y

10x = y

respectively.

Item1 is a variable name, symbol, or number. Item2 is either a variable name or a symbol. If item2 is
omitted, the result of the operation is placed back into item1. If item2 is omitted and item1 "_a
number or numeric expression, the result is displayed on your screen. If the objectlist is omitted, the
default target list is assumed. In addition, the functionaldomains are:

log any positive value
IoglO any positive value
exp unlimited
exp 10 unlimited

Zrlg_oJlam uzx

A full set of trigonometdc functions is provided: sin, cos, tan, and their inverses. Each has the form

command item1 [item2] [objectlist]

where command is the command name, item1 is the operand used, item2 receives the the result of
the operation, and the object list selects the desired data subset. Using command sin as an example,

56

thedirective

sin x y

reads'1he sine of x yields y" and can be expressed as

sin(x) = y

Similarly,the other commands perform the functions

cos(x) = y
tan(x) = y

respectively,

Item1 is a variable name, symbol, or number. Item2 is either a variable name or a symbol. If item2 is
omitted, the result of the operation is placed back into item1. If item2 is omitted and item1 isa
number or numeric expression, the result is displayed on your screen. If the objectlist is omitted, the
default target list is assumed. In addition, the functional domains are:

sin unlimited
cos unlimited
tan unlimited

All three of these commands assume the incoming angle (x) to be in radians. The mirrorcommands for

angles in degrees are: sind, cosd, and rand.

The inverse functions are called arc.sin,arcsind, arccos, arccosd, arctan, and arctand, corresponding
to the functions

sin-l(x) = y

cos-l(x) = y

tan-l(x) = y

respectively. Their functional domains are:

arc.sin [-1,1]
arcsind [-1,1]

arccos [-1,1]
arccosd [- 1,1]

arctan unlimited
arctand unlimited

HyDerbollc Trlaonometrv

A full set of hyperbolic trigonometric functions is also provided: sinh, cosh, tanh, and their
inverses. Each has the form

command item1 [item2] [objectlist]

57

wherecommand is the command name, item1 is the operand used, item2 receives the the result of
the operation, and the object list selects the desired data subset. Using command sinh as an
example, the directive

$1nh x y

reads "the hyperbolic sine of x yields y" and can be expressed as

sinh(x) = y

Similarly,the other commands pedorm the lunctions

cosh(x) = y
tanh(x) = y

respectively.

Item1 is a variable name, symbol, or number. Item2 is either a variable name or a symbol. If item2 is
omitted, the result of the operation is placed back into item1. If item2 is omitted and item1 isa
number or numeric expression, the result is displayed on your screen. If the objectlist is omitted, the
default target list is assumed. In addition, the functional domains are:

sinh unlimited
cosh unlimited
tanh unlimited

The inverse functions are called arcsinh, arccosh, and arctanh, corresponding to the functions

sinh-l(x) = y

cosh"l(x) = y

tanh"l(x) = y

respectively. Their functional domains are:

arcsinh unlimited
arccosh greater than or equal to 1
arctanh (-1,1)

The following descriptive statistics can be generated from the raw data:

and Descnct

frequency
sum
minimum
maximum

range
mean

variance

of raw data cells qualified by the target object list.
summation of the targeted values.
minimum value contained in the targeted set.
maximum value contained in the targeted set.
difference between the minimum and maximum values.

average value -- an unbiased estimate for the mean (1_).

an unbiased (n) estimate for the variance (02).

58

stdevlation

sterror

a biased (n-1) estimate for the standard deviation (c).

a biased (n-l) estimate for the standard error.

Most have the form

command variable [symbol] [object list]

_Nhere command is the command name, variable identifies the column supplying the raw data for the
operation, symbol is the symbol to receive the statistic, and the object list selects the desired data
subset. If the symbol is omitted, the result will appear on your screen. If the object list is omitted, the
default target list is assumed. Using command max as an example, the directive

max temp hottest

presumably searches all temperature data (temp) and puts the highest value in symbol hottest.
Similarly,the directives

variance temp m6 mach 6
variance temp m9 mach 9

presumably processes temperatures (temp) at Mach 6 and Mach 9 and puts the variance in symbols
m6 and m9, respectively.

The freq command has a different form:

freq [symbol] [object list]

where symbol is the symbol to receive the frequency count (always in integer) and the object list
selects the desired data subset. If the symbol is omitted, the result will appear on your screen. If the
objectlist is omitted, the default target list is assumed. For example, the directive

freq nwarts all

counts the number of data warts available from the active file. A more realistic example directive is

freq nhot temp [1000,*]

which presumably counts the number of temperature readings over 1000 degrees and puts the result
in symbol nhot.

The statistical commands are unique because they only place results in symbols -- a variable name
cannot receive the statistic. Why? Unlike the other mathematical commands, which generate a result
for each data cell or data pair processed, the statistical commands generate an aggregate result for all
data cells processed (i.e., what is the variance of a single raw data cell?). As an illustration,the directive

log temp temp2

is interpreted as each temperature generating another, logarithmic temperature. However, a similar
case for variance might look like

variance temp temp2 ?

How do we interpret this? It looks like the variance of each temperature reading is placed in another

59

datacolumn, but that doesn't make sense. A variance is a single value describing one attributeof a
collection of raw data, rather than of a singlepiece of raw data. Therefore it doesn't make sense for
variance to pair up an operand data column with a results data column. It does make sense to provide
some way of capturing the single quantity generated, and that's why symbols are used.

Another source of confusion is the notion of "biased" and "unbiased" estimators. An unbiased
estimator is not adjusted to compensate for small sample sets. For example, the sample set average
calculated using mean is unbiased because it is the sum of the raw data, divided by the number of raw
data cells used (n). The vadance is also an unbiased estimator. In contrast, the standard deviation and
standard error are biased estimators, meaning that both are adjusted (divided by (n- 1) rather than by
n) to compensate for small sample sets. Why compensate? An unbiased standard deviation tends to
underestimate the larger population's true standard deviation -- the smaller the sample set, the more
pronounced the error. Biasing the standard deviation and standard error eliminates much of this
discrepancy and significantly improves their reliability.

g.o.mLa.r.lJ.oJ

Command convert provides an assortment ol functions for converting units of measure. Its form is

convert item1 function item2 [objectlist]

where item I is the operand used, function is the desired conversion function, item2 receives the
the result of the conversion, and the objectlist selects the desired data subset. Using the conversion
function m2ft (meters to feet) as an example, the directive

convert x m2ft y

reads "converting x from meters to feet yields y" and can be expressed as

x* 3.280839895 = y

Item1 is a variable name, symbol, or number. Item,? is either a variable name or a symbol. If item2 is
omitted, the result of the operation is placed back into item1. If item2 is omitted and item1 is a
number or numeric expression, the result is displayed on your screen. If the object list is omitted, the
default target list is assumed.

Many conversion functions are available, including

degrees <---> radians
Celsius <---> Fahrenheit

Fahrenheit <---> Rankine
Rankine <---> Kelvin

Kelvin <---> Celsius
kilometers <---> miles

meters <---> feet
millimeters <---> inches
kilograms <---> pounds

liters <---> gallons
seconds <---> minutes
minutes <---> hours

mph <---> knots
mph <---> fps

60

BTU's <---> joules
Pascals <---> psi
Pascals <---> almospheres
Pascals <---> mmHg

A currentlistof the conversion functions is displayed when you enter the directive

help convert

Adding and Deleting Data

Creatlno a New Column

Command create establishes a new data column and a new variable within the active TOAD file. Its
form is

create variable [preset value]

where variable is the name of the variable being created and preset value is the numeric value to
which all new data cells are initialized. The new variable name must be unique among existing variable
and symbol names. If the optional preset value is omitted, all data cells are initialized to zero. For
example, the directive

create cl_ratlo 1

creates a new variable called cl_ratio and presets all values to 1. Using a spreadsheet analogy, a
create operation can be portrayed as

a b c d e f g a b c d e f g h

W

where h is the new column created.

Because creating a new variable increases the overall size of lhe active TOAD file, it's possible to
exceed either the variable capacity (number of columns) or the raw data capacity (number of data cells)
of the Editor. If the request would cause the capacity to be exceeded, the Editor writes the message

Unable to create this variable - Insufficient capacity.

Only n additional raw data can be accommodated

or all n data columns are already full.

61

and does not perform the create request. I1 the current capacity prevents you from effectively using

the Editor, we suggest you follow the instructions presented in Section 6, "In Case of Problems."

The create command is particularly useful when performing operations on variables whose original

values are to be retained. For example, suppose you had a column of temperature data, measured in

degrees Kelvin, which you want to retain and use to make another column of temperature data,

measured in degrees Celsius:

edit> open test

edit> scan

This TOAD file contains 2 variables

eta temp

and has a total of 9 data warts

edit> tabulate

wart # eta temp

1 0.I00000 1303.72

2 0.200000 1285.43

3 0.300000 1231.13

4 0.400000 1142.45

5 0.500000 1022.10

6 0.600000 873.736

7 0.700000 701.860

8 0.800000 511.696

9 0.900000 309.024

edit> rename temp kelvin

edit> create celsius

edit> scan

This TOAD file contains 3 variables

eta

celsius

kelvin

an_i has a total of 9 data warts

edit> tabulate

wa rt # eta kelvin celsius

i 0.100000 1303.72

2 0.200000 1285.43

3 0.300000 1231.13

4 0.400000 1142.45

5 0.500000 1022.10

6 0.600000 873.736

7 0.700000 701.860

0.

O.

O.

O.

O.

O.

O.

62

8 0.800000 511.696
9 0.900000 309.024

edit> convert kelvin

edit> tabulate

kelvin2celsius

wart # eta kelvin

I 0.I00000 1303.72

2 0.200000 1285.43

3 0.300000 1231.13

4 0.400000 1142.45

5 0.500000 1022.10

6 0.600000 873.736

7 0.700000 701.860

8 0.800000 511.696

9 0.900000 309.024

0 •

O.

celsius

celsius

1030.57

1012.28

957 977

869 302

748 953

600 586

428 710

238 546

35. 738

After changing the variable name from temp to kelvin, a new variable, celsius, is created. The
temperature data is then converted lrom the Kelvin scale to the Celsius scale.

There is an additional item worth mentioning. When variable celsius was created it automatically
qualified in the default target list a//. Had the default target list been anything other than a/I, the new
variable would not have been added, and the directive

tabulate eta kelvin celsius

would have been necessary.

Deletlna an Exlstlno Column

Command delete removes an existingvariable withinthe active TOAD file. Its form is

delete variable

where variable is the name of the existing variable being deleted.

The delete command removes the entire column of data associated with the named variable. For
example, the directive

delete alpha

removes the variable alpha, it's associated column of data, and any related entries in the default target
list. Using a spreadsheet analogy, a delete operation can be portrayed as

63

8 b c d e f g h

-r--i

a b d e f g h

where c is the column deleted.

Warnlnas

Deleting a variable used in the default target list removes that variable from the default

target list. This makes the default target list less selective, qualifying more warts than

intended. In general, a delete never constricts the target selection criteria.

Like all of the other commands which alter the active file, delete can be revoked via

the undo command. However, while undo restores the active file back to its previous

state it does not restore the default target list. Thus deleting a variable used in the

default target list followed immediately by an undo still changes the default target list.

Removina Exlstlno Warts

Command knockout removes selected data wads from the active TOAD file. Its form is

knockout [object list]

where the optional object list selects those data warts to be eliminated. If the object list is omitted, the

current default target list is assumed. For example, the directive

knockout 2y/b ,9

removes all data warts associated with a 90% (.9) span location (2y/b). Using a spreadsheet analogy, a

knockout operation can be portrayed as

a

b

d
8

i

a

i

' i I

where the shaded rows represent data warts to be eliminated from the active file. Remember that
delete removes columns of data -- knockout eliminates rows of data.

64

To further illustrate the knockout command, consider the following dialog:

edit> open test

edit> scan

This TOAD file contains 2 variables

eta temp

and has a total of 9 data warts

edit> tabulate

wart # eta temp

1 0.100000 1303.72

2 0.200000 1285.43

3 0.300000 1231.13

4 0.400000 1142.45

5 0.500000 1022.10

6 0.600000 873.736

7 0.700000 701.860

8 0.800000 511.696

9 0.900000 309.024

edit> knockout 3t6

edit> scan

This TOAD file contains 2 variables

eta temp

• and has a total of 5 data warts

edit> tabulate

wart # eta temp

1 0.i00000 1303.72

2 0.200000 1285.43

3 0.700000 701.860

4 0.800000 511.696

5 0.900000 309.024

edit>

If the default target list is used in a knockout directive, subsequent directives which also use the

default target list may trigger the message

No qualifying data

For example,

65

edit>

edit>

open test

scan

This TOAD file contains 2 variables

eta temp

and has a total of 9 data warts

edit> tabulate

wart # eta temp

I 0.i00000 1303.72

2 0.200000 1285.43

3 0.300000 1231.13

4 0.400000 1142.45

5 0.500000 1022.10

6 0.600000 873.736

7 0.700000 701.860

8 0.800000 511.696

9 0.900000 309.024

edit>

edit>

edit>

target eta

knockout

scan

.3 .6

This TOAD file contains 2 variables

eta temp

. and has a total of 5 data warts

edit> tabulate

No qualifying data

edit> tabulate all

wart # eta temp

1 0.100000 1303.72

2 0.200000 1285.43

3 0.700000 701.860

4 0.800000 511.696

5 0.900000 309.024

edit>

Why? By definition, all data meeting this criteria were eliminated by the knockout directive, usually
leaving none for subsequent operations. The solution is to either provide a direct object list or
redetine the default target list.

66

The knockout command removes those rows of data identified in the object list. This can sometimes
lead to the deletion of more data than intended. For example, again using our example file test,
consider the following dialog:

edit> open test

edit> scan

This TOAD file contains 2 variables

eta temp

and has a total of 9 data warts

edit> tabulate

wart # eta temp

1 0.I00000 1303.72

2 0.200000 1285.43

3 0.300000 1231.13

4 0.400000 1142.45

5 0.500000 1022.10

6 0.600000 873.736

7 0.700000 701.860

8 0.800000 511.696

9 0.900000 309.024

edit> knockout temp

The entire file cannot

edit> knockout temp * I000

edit> tabulate

be KO' d.

wart # eta temp

1 0.100000 1303.72

2 0.200000 1285.43

3 0.300000 1231.13

4 0.400000]142.45

5 0.500000 1022.10

The first knockout directive

knockout temp

qualifies the entire active file, since allvalues of variable temp are selected. This request is essentially
the same as the directive

knockout all

which would normally erase the entire contents of the active file. To avoid potentially catastrophic
results, this request is denied. We then enter

67

knockout temp ° 1000

eliminating all data warts containing temperatures less than or equal to 1000, our original intention.

Wart Editing

Sometimes the easiest way to edit a file is to work directly with the data warts. For example, "squaring

out" data often requires that data warts be inserted at specific locations. Likewise, it may be

convenient to use an aircraft's starboard wing's pressure data to create the port wing's pressure
distribution. All commands which allow you to directly manipulate entire data warts are called '_vart

editing" commands. Five such commands are currently available: addwart, dupwart, copywart,
cutwart, and pastewart (Macintosh and Sun workstation users may already be familiar with the

concept of copy, cut, and paste operations). Each is presented individually.

Addlna Zero-Filled Warts

Command addwart expands the active file by creating empty (zero-filled) data warts one or more

times. Its form is

addwart wart id [n]

where wad id identifies a location within the active file after which the new wart is inserted and n is an

integer counter. The wa___id must be a valid wart id (a positive integer less than or equal to the
number of current wads) or one of the keywords top, first, bottom, or last. Normally, the new warts are

inserted immediately after the specified wart. However, when the keyword top or first is used the new

warts are inserted before the first wart. The counter, n, must be a positive integer. If omitted, one new

wart is assumed. For example, the directive

addwart 5 2

creates and inserts two new zero-filled warts tollowing wart 5. Graphically portrayed, the operation

addwart 5 2

l ial2 a2
3 a3

4 i a45 a5
6 a6
7 a7
8 a8

looks like
b)-[-Cl] d!]
b2 [c2 l d21

b4_L c4[d4 J
b_5-Tc5] _5-]

b7 __C_/l d'/ J

2 a2_ b_2 c2 d2
3 a3 b3 c3 d3
4 _a4_ b4 __c_4 _d4_
5 a5 b5 c5 d5

6 0 0 0 0 I7 0 0 0 0
8 a6 b6 c6 d6
9 a7--b-7 - C7 d7

I0

68

where the vertical bar marks the new zero-filled warts added to the active file.

Because adclwart increases the overall size of the active TOAD file, it's possible to exceed the raw
data capacity of the Editor. If the request would cause the capacity to be exceeded, the Editor writes
the message

Unable to add n new warts - Insufficient capacity.

Only n additional warts can be accommodated.

and does not perform the addwart operation. If the current capacity prevents you from effectively
using the Editor, we suggest you follow the instructions presented in Section 6, "In Case of
Problems."

Duolicatlno Exlstlno Warts

Similar to addwart, command dupwart expands the active file by duplicating existing warts one or
more times. Its form is

dupwart wa__id [n]

where wart_id identifies which wart is duplicated and n is an integer counter. All duplicate warts are
inserted immediately after the original. The wart_id must be a valid wart id (a positive integer less than
or equal to the number of current warts) or one of the keywords top, first, bottom, or last. Normally, the
new warts are inserted immediately after the specified wart. However, when the keyword top or first is
used the new warts are inserted beforethe first wart. The counter, n, must be a positive integer. If
omitted, one duplicate wart is assumed. For example, the directive

dupwart 4

duplicates wart 4 and inserts it immediately after wart 4. A graphic portrayal of thisoperation is

1
2 a2__ b2
3 a3 b3
4 _a#___b4
5 a5 b5
6 a6 _b6
7 a7 b7
8

__c2 d2
c3 d3
c_4 d4
c5 d5
c6 d6
c7 d7

dupwart 4

1
2 a2 _b2 c2____d=2
3 a3 b3 c3 d3
4 a__4_b4 c4 d__4__
5 a4 b4 c4 d4
6 a5_ b.5__c-.5_ _45_
7 a6 b6 c6 d6
8
9

where the marked wart represents a duplicate of wart 4.

69

Because dupwart increases the overall size of the active TOAD file, it's possible to exceed the raw
data capacity of the Editor. I1the request would cause the capacity to be exceeded, the Editor writes
the message

Unable to add n new warts - Insufficient capacity.

Only n additional warts can be accommodated.

and does not perform the dupwart operation. II the current capacity prevents you from effectively
using the Editor, we suggest you follow the instructions presented in Section 6, "In Case of
Problems."

Usin_o the Wart Paste Buffer

More advanced wart editing commands are also available: copywart, cutwart, and pastewart. The
copywart and cutwart commands move one or more warts to the paste buffer for later use by the
pastewart command. Command copywart moves the warts to the paste buffer but leaves the original
active file undisturbed -- cutwart moves the warts to the paste buffer and removes them from the
active file. Both have the form

command [object list]

where command is the command and the optional object list selects the warts to be copied or cut. If

the object list is omitted, the defaufl target list is assumed.

Once one or more warts are moved to the paste buffer they may be inserted back into the active file via
the pastewart command. It has the form

pastewart wa__id

where wart_id identifies the insertion point within the active file. The wart_id must be a valid wart id (a
positive integer less than or equal to the number of current wads) or one of the keywords top, first,
bottom, or last. Normally, the warts contained on the paste buffer are inserted immediately after the
specified wart. However, when the keyword top or first is used the buffered warts are inserted before
the first wart.

To illustrate how copywart and pastewart are used together, consider the following directive

sequence:

7O

copywart 3t5

2 _a2 .b2 __c2 -d2_
3 a3 b3 C3 d3
4 a4 b4 ___c4 d4 I5 a5 b5 c5; d5
6 a6 b6 c6 d6
7 a7 b7-c71-d-7-
8

-a-3_3- c3 d31
a4 Lb4 I c4 j d4 j

[_a5_ b5 J_ c5_kd5 J

1
2 a_2 b2 c2. _.d2
3 a3 b3 c3 d3
4 _a4 _b4 __c4__ d4_
5 a5 b5 ¢5 d5
6 _.a6 b6+ c_6=+.d6
7 a7 b7 c7 d7
8

Note that the targeted warts are
retained in the active file.

pastewart 7

I
2 a_2 .b2 .c2 __d_2
3 a3 b3 c3 d3
4 _ a4_.=b4 _ p_4_.._d4_.
5 a5 b5 c5 d5
6 _..a6_ b6 . c6.. d6
7 a7 b7 ¢7 d7 A

8 a3 _b3 c3 ..d3 I _[
9 a4 b4 c4 d4 I10

11
l a.5[b5__[d_5_

Warts 3-5 are moved from the active file to the paste buffer, then pasted back following wart 7. Vertical

bars mark the affected portions of the file during each operation. Notice how copywart left the active
file undisturbed.

The cutwart and pastewart commands are used in a similar manner. As an illustration, consider the

following directive sequence:

cutwart 4t7

1 _a/_ _bl c// d_!
2 a2 b2 c2 d2
3 a3 _b3_ c.3 d3_

5 a5 b5 c5 d5

6 a_ b6 c6 d6 __
7 . _aT_ b_7. c_7_ d7
8 a8 b8 c8 d8

1 al bl cl dll

2 _- -b-2 --c2--d2
I

3 _a3 b3. c3_._d3
4 a8 b8 c8 d8

Note that the targeted warts are
removed from the active file.

pastewart top

1 _.a_4 b4 .._c4__ _d4
2 a5 b5 c5 d5
3 a6 b6 c_6__.d6
4 a7 b7 C7 d7
5 al bl cl dl
6 a-2---b-2-'--C2 d2-
7 a3 b_3__._C3. _ d3
8 a8 b8 c8 d8

a5 b5 _5 d5
a6 b6 c6 d6
a7 b7 c7 d7

71

Warts 4-7 are moved from the active file to the paste buffer, then pasted back at the top of the file.
Vertical bars mark the affected portions of the file during each operation. Notice that cutwart removed

the targeted warts from the active file.

Because pastewart increases the overall size ol the active TOAD file, it's possible to exceed the raw
data capacity of the Editor. If the request would cause the capacity to be exceeded, the Editor writes

the message

Unable to add n new warts - Insufficient capacity.

Only n additional warts can be accommodated.

and does not perlorm the pastewart operation. If the current capacity prevents you from effectively
using the Editor, we suggest you follow the instructions presented in Section 6, "In Case of
Problems."

The paste buffer is maintained by the Editor. Although you can't directly edit its contents you can
enter

show buller
or

show paste

which tells you how many warts and how many columns ol data the paste buffer contains.

Finally,the contents of the paste buffer are retained after a pastewart operation. Thus, you can move
some warts into the paste buffer and then repeatedly insert them using multiple pastewart operations.
In fact, the paste buffer is retained until you use another copywart or cutwart, replacing its contents.
The paste buffer is not, however, retained between editing sessions. If you attempt to use an empty
paste buffer (e.g., using a pastewart before a copywart or cutwart), the Editor writes the message

The paste buffer is empty.

The wart editing commands move entirewads o! data, not wart subsets. If you wish to
move only a few columns of data, consider using export and import, discussed in the
next subsection.

Warning

It is important to realize that the Editor moves warts as instructed, and that y..gJ.I,are
responsible for judging the validity of any wart editing operation. Careless use of the
wart editing commands may create a meaningless or misleading TOAD file.

Using External Files

It is often necessary to have access to external files from within an ongoing editing session. For
example, merging two or more TOAD files together requires that the Editor be able to read at least one
external file. Selectively extracting data requires an abilityto rewrite existingor create new external

files.

72

TheEditor offers six commands for exchanging data between the active TOAD file and external tiles.
Commands write and read are designed to access and create, respectively, single-column TOAD
tiles. Commands export and Import perform similar tunctions for multi-column TOAD tiles.
Commands before and after insert blocks of data warts at selected locations. All are individually

presented.

Command write extracts data from a selected column and places it into an external, single-column
TOAD file. Its form is

write variable [file] [objectlist]

where variable identifies the column from which to extract the data, file is the optional name of the
external file to be written, and the optional object fist selects which data warts are used. The variable
provided must already exist. If the external file name is omitted, file tadpole is assumed. If the external
file does not exist, it is created. If the tile does exist, the message

This request will overwrite the original contents of

an existing file. Do you really want it performed _

may appear, depending upon the state of the OverWrite protection toggle. Answering "yes" instructs
the Editor to overwrite the file. Entering "no" instructs it to ignore the previous write directive. If the
object list is omitted, the current default target list is assumed. For example, the directive

write temp nose eta .1 .5

extracts all temperature data (temp) for eta .1 through .5 and writes them to external file nose. The
directive

write deltacp

extracts all of the available pressure data (assuming the default target list is set to a/I) and writes it into
file tadpole.

The write command is normally used to create temporary files which are later accessed with the read
command. A full discussion of how the two work together is presented within the description for read,
presented next.

Command read places data from an external, single-column TOAD file in a selected column. Its form
is

read variable [file] [objectlist]

where variable identities the column to receive the data, file is the optional name of the external file to
be read, and the optional object list selects those data warts to receive the data. The variable name
provided must already exist -- the Editor does not create it. It the external file name is omitted, file
tadpole is assumed. If the object list is omitted, the current default target list is assumed. For
example, the directive

read temp hotcase eta .2 .7

reads TOAD file hotcase and places its contents in variable temp as the values of eta fall within the

73

interval[.2,.7].Thedirective

read press nose

reads the TOAD file nose and places its contents into variable press, as controlled by the default

target list.

Note

The read command replaces values within existing data cells -- it does not increase
the size of the active TOAD file. It you want to increase the file's size, use create,
before, after, addwart, dupwart, or pastewart.

Only single-column TOAD files are accepted. I1the tile provided contains more than one variable, the
file is rejected and an error message is written. Further, the number of values available from the
extemal file and the number of data cells to be filled must match exactly. If the external file contains
either too little or too much data lor the number of targeted data cells, an error message is written and
no data is transferred.

In practice, few single-column TOAD files exist outside of those created using the write command.
The read and write commands are often used together to transfer blocks of data between two
different TOAD files. As an illustration, suppose we monitored an experiment in which reentry vehicle
skin temperature (temp) and pressure (press) data were collected as a function of nondimensional
body station (eta). Unfortunately, the temperature data and the pressure data, although measured at
the same locations, were stored in two different TOAD tiles. The following dialog demonstrates how
the data can be merged into one file:

edit> open hot_press

edit> tabulate

wart # eta press

i 0.I00000 3.080525

2 0.200000 3.033725

3 0.300000 2.894747

4 0.400000 2.667813

5 0.500000 2.359819

6 0.600000 1.980124

7 0.700000 1.540263

8 0.800000 1.053602

9 0.900000 0.5349276

edit>

edit>

edit>

write press hold1

open hot_temp

tabulate

wart # eta temp

0.100000

0.200000

0.300C00

0.400000

1303.72

1285.43

1231.13

1142.45

74

5 0.500000 1022.10

6 0.600000 873.736

7 0.700000 701.860

8 0.800000 511.696

9 0.900000 309.024

edit>

edit>

edit>

save

open

scan

hot both

hot both

This TOAD file contains 2 variables

eta temp

and has a total of 9 data warts

edit> create press

edit>menu

This TOAD file contains 3

eta

press

variables

edit> tabulate

wart # eta temp

1 0.I00000 1303.72

2 0.200000 1285.43

3 0.300000 1231.13

4 0.400000 1142.45

5 0.500000 1022.10

6 0.600000 873.736

7 0.700000 701.860

8 0.800000 511.696

9 0.900000 309.024

edit> read press holdl

edit> tabulate

wart # eta temp

temp

press

press

1 0.i00000 1303.72 3.080525

2 0.200000 1285.43 3.033725

3 0.300000 1231.13 2.894747

4 0.400000 1142.45 2.667813

5 0.500000 1022.10 2.359819

6 0.600000 873.736 1.980124

7 0.700000 701.860 1.540263

8 0.800000 511.696 1.053602

9 0.900000 309.024 0.5349276

75

edit>

It is important to realize that the Editor merges data as instructed, and that .y..ggare
responsible for judging the validity of any merge operation. In this example both
temperature and pressure are measured at the same values for eta, and in the same
order. This ensures that the resulting file correctly matches eta, temp, and press. Had
the separate temperature and pressure files not been compatible, the same merge
operation would create a meaningless or misleading file.

MultlDle Columns

Command export extracts a selected data subset and places it into an external, single- or multi-
column TOAD file. Its form is

export [file] [object list]

where file is the optional name of the external file to be written and the optional object list selects the
desired data subset. If the external file name is omitted, file tadpole is assumed. If the external file
does not exist, it is created. If the file does exist, the message

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

may appear, depending upon the state of the OverWrite protection toggle. Answering "yes" instructs
the Editor to overwrite the file. Entering "no" instructs it to ignore the previous export directive. If the
object list is omitted, the current default target list is assumed. For example, the directive

export nose eta .1 .5 temp press

writes a TOAD filecalled nose containing three variables (eta, temp, and press) using data from those
warts inwhich the value of eta falls within the interval [.1.5].

To illustrate how export may be used to extract data, consider the following dialog:

edit> open toad1

edit> tabulate 2y/b .9 x/c deltacp

wart # x/c deltacp

133 0.416667E-01 6.09007

134 0.208333 3.02826

135 0.375000 2.12340

136 0.541667 1.60278

137 0.708333 1.17190

138 0.875000 0.711813

edit>

edit>

edit>

export tip_cp

open tip_cp

tabulate

2y/b .9 x/c deltacp

76

wart # 2y/b x/c deltacp

1 0.900000 0.416667E-01

2 0.900000 0.208333

3 0.900000 0.375000

4 0.900000 0.541667

5 0.900000 0.708333

6 0.900000 0.875000

6.09007

3.02826

2.12340

1.60278

1.17190

0.711813

edit> open toadl

edit> tabulate x/c .041666 2y/b deltacp

wart # 2y/b deltacp

1

7

13

19

25

31

37

43

49

55

61

67

73

79

85

91

97

103

109

115

121

127

133

139

145

0.200000E-01

0.600000E-01

0.i00000

0.140000

0.180O0O

0.220000

0.260000

0.300000

0.340000

O.38OO00

0.420000

0.460000

0.500000

0.540O00

O.58OO00

0.620000

0.660000

0 7O000O

0 740000

0 78O000

0 820000

0 860000

0 900000

0 940000

0 980000

1 05367

1 16457

1 29959

i 43850

1 57196

1 70156

1 82998

1 95902

2 09000

2 22420

2 36313

2 50851

2 66236

2 82717

3 00611

3 20335

3 42449

3 67719

3 97186

4 32299

4 75334

5.30779

6.09007

7.38284

10.5822

edit>

edit>

edit>

export le_cp

open le_cp

tabulate

x/c .041666 2y/b deltacp

wart # xlc 2y/b deltacp

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.200000E-01

0.600000E-01

0.I00000

0.140000

0.180000

0.220000

0.260000

1.05367

1.16457

1.29959

1.43850

1.57196

1.70156

1.82998

77

8 0.416667E-01 0.300000 1.95902

9 0.416667E-01 0.340000 2.09000

i0 0.416667E-01 0.380000 2.22420

II 0.416667E-01 0.420000 2.36313

12 0.416667E-01 0.460000 2.50851

13 0.416667E-01 0.500000 2.66236

14 0.416667E-01 0.540000 2.82717

15 0.416667E-01 0.580000 3.00611

16 0.416667E-01 0.620000 3.20335

17 0.416667E-01 0.660000 3.42449

18 0.416667E-01 0.700000 3.67719

19 0.416667E-01 0.740000 3.97186

20 0.416667E-01 0.780000 4.32299

21 0.416667E-01 0.820000 4.75334

22 0.416667E-01 0.860000 5.30779

23 0.416667E-01 0.900000 6.09007

24 0.416667E-01 0.940000 7.38284

25 0.416667E-01 0.980000 10.5822

edit>

The first export directive creates the file tip_cp containing pressure (deltacp) as a function of chord
location (x/c) at a 90% wing semispan (2y/b =.9), which is near the wing's outboard tip. The second
export directive creates another file, le_cp, containing pressure (deltacp) as a function of wing
semispan (2y/b) at a 1/24th chord location (x/c =.0416667), which is along the wing's leading edge.

These examples are simplified to illustrate how export is used. In practice, actual TOAD files and
target object lists tend to have more controlling independent variables and are much more complex.
By no means should you feel constrained in the use of export. If you can identify the data subset
using an object list, the Editor can extract the data and write the corresponding TOAD file.

Command Import replaces a selected data subset with data contained on an external, single- or
multi-column TOAD file. Its form is

Import [file] [objectlist]

where file is the optional name of the external file to be read and the optional objectlist targets the
receiving data cells. If the external file name is omitted, file tadpole is assumed. If the object list is
omitted, the current default target list is assumed. For example, the directive

Import tlp_cp 2y/b .98 x/c deltacp

reads a TOAD filecalled tip cp and places the incoming values into data cells belonging to variables
2y/b, x/c, and deltacp only when the original value for 2y/b is 98% (.98).

Note

The import command replaces values within existing data cells -- it does not increase
the size of the active TOAD file. If you want to increase the file's size, use create,
before, after, addwart, dupwart, or pastewart.

78

Single- or multi-column TOAD files are accepted. The number of variables contained on the external

file must match the number of variables in the target list. If the file contains either too few or too many
variables, the file is rejected and an error message is written. Further, the number of values available

from the external file and the number of data cells to be filled must match exactly. If the external file

contains either too little or too much data for the number of targeted data cells, the file is again rejected
and an error message is written.

To illustrate a few of the import command's many variations, consider the following dialog:

edit> op t ip_cp

edit> scan

This TOAD file contains 3 variables:

2y/b x/c

press

and has a total of 6 data warts

edit> tabulate

wart # 2y/b x/c press

1 0.980000 0.416667E-01 10.1589

2 0.980000 0.208333 5.38980

3 0.980000 0.375000 4.25331

4 0.980000 0.541667 3.63584

5 0.980000 0.708333 3.02780

6 0.980000 0.875000 2.04281

edit> op toadl

edit> scan

This TOAD file contains 6 variables:

mach cldes

x/c 2y/b

and has a total of 150 data warts

planform

deltacp

edit> target 2y/b .94 * x/c deltacp

edit> tabulate

wart # 2y/b x/c deltacp

139 0.940000 0.416667E-01 7.38284

140 0.940000 0.208333 3.76906

141 0.940000 0.375000 2.71414

142 0.940000 0.541667 2.03536

143 0.940000 0.708333 1.50435

144 0.940000 0.875000 0.937932

145 0.980000 0.416667E-01 10.5822

146 0.980000 0.208333 5.61437

79

147 0.980000 0.375000 4.43053

148 0.980000 0.541667 3.78733

149 0.980000 0.708333 3.15396

150 0.980000 0.875000 2.12793

edit> import tip_cp 2y/b .98 x/c deltacp

edit> tabulate

wart # 2y/b x/c deltacp

139 0.940000 0.416667E-01 7.38284

140 0.940000 0.208333 3.76906

141 0.940000 0.375000 2.71414

142 0.940000 0.541667 2.03536

143 0.940000 0.708333 1.50435

144 0.940000 0.875000 0.937932

145 0.980000 0.416667E-01 10.1589

146 0.980000 0.208333 5.38980

147 0.980000 0.375000 4.25331

148 0.980000 0.541667 3.63584

149 0.980000 0.708333 3.02780

150 0.980000 0.875000 2.04281

edit>

Notice that external tile tip_cp contains three variables and six data wads, exactly the size of the
import directive's object list. Also notice the values tor 2y/b and x/c within the external file tip_cp
exactly match those within the active file toad1. Finally, notice the values associated with variable
press from the external file are used to replace values tor deltacp. There is nothing special about the
variable names press or deltacp. Rather, the Editor merely substituted values from the external tile's
third variable for those values associated with the active tile's third variable in the object list. This can

be portrayed graphically as

2y/b -f x/c l Press t ExternalFile

2y/b ! x/c deltacp ' Object List

.... T- 12y/b x/c Active File

It doesnl really matter what the external lile's variable names are, as long as the number of variables it
contains matches the number of variables specitied in the object list. For example, the external file

80

wart # span chord press

1 0.980000 0.416667E-01 10.1589

2 0.980000 0.208333 5.38980

3 0.980000 0.375000 4.25331

4 0.980000 0.541667 3.63584

5 0.980000 0.708333 3.02780

6 0.980000 0.875000 2.04281

would still be imported as

[.......s.an....]......c°or I press l External File

x/c

I _.ac_1 Object List

f 2y/b t deltacp J ActiveFile

Suppose another external file contains the same data, only arranged differently:

wart # press chord span

i 10.1589 (.416667E-01 0.980000

2 5.38980 0.208333 0.980000

3 4.25331 0.375000 0.980000

4 3.63584 0.541667 0.980000

5 3.02780 0.708333 0.980000

6 2.04281 0.875000 0.980000

Can we still import itsdata?

The answer lies within the concept of targeting and object lists. We can't change how the external file
is structured, or how it is read, but we can control the receiving pattern of the active file's targeted data
cells. For example, consider the following dialog:

edit> op tip_press

edit> scan

This TOAD file contains 3 variables:

press chord

span

81

and has a total of 6 data warts

edit> tabulate

wart # press chord span

10.1589 0.416667E-01 0.980000

5.38980 0.208333 0.980000

4.25331 0.375000 0.980000

3.63584 0.541667 0.980000

3.02780 0.708333 0.980000

2.04281 0.875000 0.980000

edit> op toadl

edit> scan

This TOAD file contains 6 variables:

mach cldes

x/c 2y/b

and has a total of 150 data warts

edit> targ 2y/b .94 * x/c deltacp

edit> tabulate

wart # 2y/b x/c deltacp

139 0.940000 0.416667E-01 7.38284

140 0.940000 0.208333 3.76906

141 0.940000 0.375000 2.71414

142 0.940000 0.541667 2.03536

143 0.940000 0.708333 1.50435

144 0.940000 0.875000 0.937932

145 0.980000 0.416667E-01 10.5822

146 0.980000 0.208333 5.61437

147 0.980000 0.375000 4.43053

148 0.980000 0.541667 3.78733

149 0.980000 0.708333 3.15396

150 0.980000 0.875000 2.12793

edit> import tip_press deltacp x/c 2y/b .98

edit> tabulate

wart # 2y/b x/c deltacp

139

140

141

142

143

144

145

0 940000

0 940000

0 940000

0 940000

0 940000

0 940000

0 980000

0.416667E-01 7.38284

0.208333 3.76906

0.375000 2.71414

0.541667 2.03536

0.708333 1.50435

0.875000 0.937932

0.416667E-01 10.1589

planform

deltacp

82

146 0.980000 0.208333 5.38980

147 0.980000 0.375000 4.25331

148 0.980000 0.541667 3.63584

149 0.980000 0.708333 3.02780

150 0.980000 0.875000 2.04281

edit>

Notice that only the import directive's object listwas altered to accommodate what initiallyappeared to
be an incompatible external file structure. This last import operation can be graphically portrayed as

press-[k_ chord [span I

2y/b I x/c 1 - deltacp

External File

Object List

Active File

Therefore, the key to using the import directive's object list is to match variable positions between the
external and active file. The variable names within the import directive's object list serve only to
identify which columns receive the incoming data.

This flexibility can easily be misused.

edit> op tip_press
edit> scan

This

edit> tabulate

For example, consider the following dialog:

TOAD file contains 3 variables:

press chord

span

and has a total of 6 data warts

wart # press chord span

10.1589 0.416667E-01 0.980000

5.38980 0.208333 0.980000

4.25331 0.375000 0.980000

3.63584 0.541667 0.980000

3.02780 0.708333 0.980000

83

6 2.04281 0.875000 0.980000

edit> op toadl

edit> scan

This TOAD file contains 6 variables:

mach cldes

x/c 2y/b

planform

deltacp

. and has a total of 150 data warts

edit> targ 2y/b .94 * x/c deltacp

edit> tabulate

wart # 2y/b x/c deltacp

139 0.940000 0.416667E-01 7.38284

140 0.940000 0.208333 3.76906

141 0.940000 0.375000 2.71414

142 0.940000 0.541667 2.03536

143 0.940000 0.708333 1.50435

144 0.940000 0.875000 0.937932

145 0.980000 0.416667E-01 10.5822

146 0.980000 0.208333 5.61437

147 0.980000 0.375000 4.43053

148 0.980000 0.541667 3.78733

149 0.980000 0.708333 3.15396

150 0.980000 0.875000 2.12793

edit> import tip_press 2y/b .98 x/c deltacp

edit> tabulate

wart # 2y/b x/c deltacp

139 0.940000 0.416667E-01 7.38284

140 0.940000 0.208333 3.76906

141 0.940000 0.375000 2.71414

142 0.940000 0.541667 2.03536

143 0.940000 0.708333 1.50435

144 0.940000 0.875000 0.937932

145 10.1589 0.416667E-01 0.980000

146 5.38980 0.208333 0.980000

147 4.25331 0.375000 0.980000

148 3.63584 0.541667 0.980000

149 3.02780 0.708333 0.980000

150 2.04281 0.875000 0.980000

edit>

Because the import directive's object listdoesn'l properly align the external file's data with the active
file's columns, the external file's span data (span) and pressure data (press) end up in the active file's
columns for coefficient of pressure (deltacp) and span location (2y/b)o Such an operation is a clear

84

misuse of import.

Note

The export and import commands are designed for manipulating scattered warts or

wart subsets. If you are manipulating contiguous blocks of entire wads, copywart,
cutwart, and pastewart may be easier to use.

Warning

It is your responsibility to ensure that the incoming data from the external file is

appropriate for the targeted cells within the internal active file. Improper use of import
can create worthless or misleading TOAD files.

General File Insertion

Commands before and after insed the contents of a single- or multi-column TOAD before or after,
respectively, the specified data wad. Their forms are

and
before wart_id [file]

after wart_id [file]

where wart_id identifies where the new data is inserted and file is the optional name of the external

file to be read. If the external file name is omitted, file tadpole is assumed. For example, the directive

before 32 extra

inserts the contents of file extra between existing data warts 31 and 32. Similarly, the directive

after 32 extra

inseds the contents of file extra between existing data warts 32 and 33. In addition to a numeric wart
id, the keywords top, first, bottom, and last may also be used, as in the directives

or

before top extra after bottom extra

or

before first extra after last extra

which insert the contents ot file extra before the first data wart or afler the last, respectively.

Using a spreadsheet analogy, a before or after operation can be portrayed as

a

d [-0

g

abCde

85

where the shaded rows represent those data warts added to the active file.

Single- or multi-column TOAD files are accepted. The number of variables contained on the external
file must match the number of variables in the active file. If the file contains either too few or too many

variables, the file is rejected and an error message is written.

Because adding more data warts increases the overall size of the active TOAD file, it's possible to

exceed the raw data capacity (number of data cells) of the Editor. I1the request would cause the

capacity to be exceeded, the Editor writes the message

Unable to use this file - Insufficient capacity.

Only n additional raw data can be accommodated.

and does not perform the before or after request. If the current capacity prevents you from
effectively using the Editor, we suggest you follow the instructions presented in Section 6, "In Case of

Problems."

W_rnina

It is your responsibility to ensure that the incoming data from the external file is

appropriate for the targeted cells within the internal active file. For example, pressure
data should not be brought in and subsequently treated as temperature data.

Improper use of before or after can create worthless or misleading TOAD tiles.

86

Directive Files anSe tiO 5C nos

Directive Files

You may prefer to have the Editor read long or repetitive directive sequences from an external file,
rather than entering them interactively. Such a file is called a directive file and is executed via the
Include command:

Include file

where file is the name of the directive file to be executed. For example, suppose we have the disc file
group1 which contains the following directives:

open toad1
target deltacp
tabulate

x/c 2y/b [.94,.98] alpha [0,30]

It is invoked by entering

Include group1

whereupon the directives

open toad1
target deltacp
tabulate

x/c 2y/b [.94,.98] alpha [0,30]

are read and executed.

Under normal circumstances the editing session is controlled by your keyboard entries. However,
when a directive file is invoked it assumes control and returns it only after all of the directives within the
file have been processed. Very long or very complex directive files take a commensurate amount of
time to process, which may create a noticeable delay.

Helpful Hint

The EntryEcho toggle is particularly useful when using directive files. Under normal
circumstances, the Editor displays little if any progress information after you've started
executing the contents of a directive file. If, at the beginning of the directive file, you
enable the EntryEcho toggle, each directive is displayed as it is executed, providing a
live report of the Editor's progress. We highly recommend this practice and offer the
following as a pattern for all of your directive files:

Enable entryecho
directive
directive

87

directive
Disable entryecho

More than one directive file may be executed during a single editing session. For example, imagine
we have two directive tiles: findq and findcp. File findq contains the directives

and file

create dynamlcp
create spare
power freev 2 spare
muIt spare rho
divide spare 2 dynamlcp
delete spare

findcp contains the directives

create cp
create spare
subtract press statlcp spare
divide spare dynamicp cp
delete spare

Entering the directives

Include tindq
Include flndcp

executes the directive sequence

create dynamicp
create spare
power freev 2 spare
mult spare rho
divide spare 2 dynamlcp
delete spare
create cp
create spare
subtract press staticp spare
divide spare dynamlcp cp
delete spare

which creates dynamic pressure and pressure coefficient tables.

A directive file itself may call another directive file. For example, consider the directive file set200:

open run203
Include flndq
Include tlndcp
save
open run204
Include flndq
Include flndcp
save

88

open run205
Include flndq
Include flndcp
save

whichmakesthree calls to the directive files findq and findcp, already defined. Entering

Include set200

creates a directive sequence which opens three files, performing calculations for the dynamic
pressure and pressure coefficient tables in each. There is no limit on the number of levels within such
a directive file hierarchy, nor is there a limit on the number of directive files which may be called within
the same level. Repetitive calls to a single directive file, as illustrated above, are allowed. However, a
directive file cannot call itself; that is, directive file recursion is not allowed.

Macros

A macro is a sequence of directives which, taken collectively, is executed by name. For example,
suppose you have a series of wind tunnel results tiles in which the model's angle of attack must be
converted from degrees to radians and the temperature readings must be converted from degrees
Rankine to degrees Kelvin. You could consolidate the necessary directives as a macro called fix and
then have them executed by simply entering

fix

Why use a macro when you could use a directive file? There are two reasons. First, macros are
generally more convenient than directive files simply because fewer keystrokes are required.
Entering

fix

is easier and more convenient than entering

Include file

Second, macros have the ability to pass and use arguments. This allows the macro to customize its
directives according to the information you pass it. Unlike a directive file, which always executes the
same set of directives, a macro execution may be "adjusted" via passed arguments. A full description
of macro arguments will be presented on the next page.

Creatin_o and Executlna Macros

Macros are created using the macro and endmacro commands, as illustrated below:

edit> macro fix

macro> convert alpha

macro> convert temp

macro> endmacro

edit>

degrees2radians

rankine2kelvin

This dialog creates the macro fix, which converts all angle of attack values (alpha) from degrees into
radians (degrees2radians) and converts all temperatures (temp) from the Rankine scale to the Kelvin

89

scale(rankine2kelvin).Notice that after the macro directive the prompt becomes macro> and that
after endmacro it changes back to the original edit> prompt. All directives entered after a macro
directive and before an endmacro directive are considered to be that macro's "script." You must
complete the definition of a macro before beginning to detine another. That is, you are not permitted

to begin another macro definition at the macro> prompt.

Once macro fix is defined, the two conversion directives

convert alpha degrees2radlans
convert temp ranklne2kelvin

can be executed by simply entering

fix

W_rnincl

Macro names must not match Editor commands, or their aliases, unless you intend to

replace that command with one of your own. Also, macro names which match active
variable or symbol names have the potential for creating severe problems.

Macros may also be created to accept arguments. For example, the macro definition

macro halfsquare $a
divide $a 2
power $a 2
endmacro

creates the macro halfsquare, which divides a variable in half and then finds its square. This definition
also declares one variable, a, which appears as $a. The dollar sign pretix (called the "macro character'_
marks all occurrences of the argument a. Use of the macro character is optionalfor declaring a macro
variable but is mandatory when marking the variable within the macro script. Thus, the same macro
definition could also be written as

macro halfsquare a
divide $a 2
power Sa 2
endmacro

where the macro character is omitted from vadable a only when it is declared in the macro directive.

To repeat, use of the macro character in markinQ macro variables withinthe macro scriDt is mandatory.
To illustrate the significance of using the macro character, consider the macro definition

macro halfsquare a
divide a 2

power a 2
endmacro

Variable a is correctly declared on the first line. However, because the macro character is not used to
mark subsequent appearances, the parameter a in the divide and power directives is assumed to be
a variable name within the active TOAD file, not occurrences of the macro variable a.

9O

Whyuse macro arguments? Declaring and using macro arguments provide versatility not found in
directive files. For example, again using our example macro definition

macro halfsquare a
divide $a 2
power $a 2
endmacro

when we enter the directive

halfsquare alpha

the Editor substitutes and processes the directives

divide alpha 2
power alpha 2

Similarly, entering the directive

halfsquare 'yaw angle'

leads to the execution o! the directives

divide 'yaw angle' 2
power 'yaw angle' 2

Thus the argument "mimics" whatever is entered in ils position when the macro is invoked.

Multiple arguments are declared and used in a similar manner. For example, consider the macro
definition

macro flndrpm base delta final
create $final
add $base $delta $tinal
mult $final .918333
endmacro

which creates macro findrpm with lhree variables: base, delta, and final. Entering the directive

findrpm msid1021 msld1078 rpmloxpump

leads to the execution of the directives

create rpmloxpump
add msid1021 msld1078 rpmloxpump
mult rpmloxpump ,918333

Macro arguments may be omitted only if a suitable default value is available. For example, the macro
definition

macro flndrpm base=msid1021
create $final
add $base $delta $final

delta=msid1078 final=rpmloxpump

91

mult $flnal .918333
endmacro

declares the same macro arguments as before, with the addition of default values. Now, il variable
base is omitted, it takes on its default value, msid1021. Likewise, if macro variables delta or final are
omitted, the values msid1078 or rpm/oxpump are assumed, respectively. Thus the directive

findrpm

executes the directives

create rpmloxpump
add msid1021 msid1078 rpmloxpump
mult rpmloxpump .918333

When values are provided they override any defaults. For example, entering

findrpm msld1022

executes the directives

create rpmloxpump
add msld1022 msld1078 rpmloxpump
muir rpmloxpump .918333

Entering

flndrpm ,, msld1079

executes the directives

create rpmloxpump
add msld1021 msld1079 rpmloxpump
mult rpmloxpump .918333

And entering

flndrpm msid1056 msid1097 rpmh2pump

executes the directives

create rpmh2pump
add msld1056 msid1097 rpmh2pump
muir rpmh2pump .918333

Macro arguments pass any type of information, includingcommands and keywords. For example,
consider the macro definition

column1 file2 column2 command column3 object_listmacro merge file1
create $columnl
create $column2
create $column3
read $columnl Stile1 $object_llst

92

read $column2 $file2 $object_llst
$command $columnl $column2 $column3
endmacro

$object_list

Macro merge reads the contents of two extemal files into two new columns, then uses a mathematical
function to calculate the contents of a third new column, all subject to an object list. Entering

merge Ioxdata Ioxmass h2data h2mass add propmass 'time 1500 2500'

executes the directives

create Ioxmass
create h2mass
create propmass
read Ioxmass Ioxdata 'time 1500 2500'
read h2mass h2data 'time 1500 2500'
add Ioxmass h2mass propmass 'time 1500 2500'

which presumably reads liquid oxygen and hydrogen mass tables from the external files Ioxdata and
h2data, respectively, then sums the two columns to arrive at total propellant mass (propmass), all
between the event times 1500 and 2500. Although it's an unusual example, this macro does show
how file names, commands, and object lists can be transmitted to the macro via arguments. A more
realistic example is the macro definition

macro yanklep file1 file2
open $fllel
define leading edge=0
min x/c leading_edge
export $file2 deltacp x/c
delsymbol leading_edge
close
endmacro

leading_edge 2y/b

which can be used as

yanklep run203 lep203
yanklep run204 lep204
yanklep run205 lep205
yanklep run206 lep206

to isolate and extract leading edge pressure tables from a series of raw TOAD files.

HelDful Hint_

Our experience with defining and using macros with arguments suggests that, when
properly designed, a few macros can go a long way. We recommend that, until you
become proficient in their use, you limit their number, size, and complexity.

Our experience also suggests thai allowing omitted parameters is justified in only a
few situations -- the most common being when working with a series of files which
contain the same type of data with the same variable names. Using an improper
default value for an omitted parameter may create severe problems EbJ_L_

93

_. Ifyoudecideto allowomittedparameters,it isusuallybesttoplacethem
aftertherequiredparameters.Forexample,themacrodefinition

macro frame scene color=blue

may be invoked by

frame missile

whereas the definition

macro frame color=blue scene

leads to the directive

frame ,, missile

which adds confusion to an already difficultfeature.

General Notes

There's no need for you to deline all of your macros "live" from the keyboard. We
suggest putting all macro delinitions in the startup file. In fact, the startup file is
j_I.P,,J3dp_tobe the place to keep your macros and have them defined automatically
before every editing session.

How macro definitions are arranged within the startup file is a matter of personal style.
However, macro novices should be aware of two extreme schools: the "big bang"
approach and the 'lragment" approach. The big bang approach puts all of the macro
definitions directly into the startup lile (embedded comments are always helpful). This
method centralizes all macro definitions but may complicate later editing. The
fragment approach puts each macro in a separate file, each to be included as a
directive lile within the startup lile. This method makes the macro definitions more
modular but often grows into a large tile set. Again, it's a matter of personal style, so
there's no "right" or '_vrong" way to use your startup lile.

To display a list of all current macros, enter

show macros

which creates a report in the form

The defined macros are:

macro # I
macro #2

macro #n

To display the argument list and directive script associated with a particular macro, enter

94

show macro name

where name is the name of the macro to be displayed, which creates a report in the form

Macro : macro name

Parameters : parameter#1 = default value
parameter#2 = default value

Script :

directive
directive

parameter #n default value

directive

Renamlna and Deletin0 Macro_

To rename an existing macro, use the directive

renmacro old_name new_name

where old_name is the name of the macro being renamed and new_name is its new name. Both
parameters are required -- the Editor cannot make any assumptions if either or both are omitted. In
addition, old_name must be an existing macro, and new_name cannot be an existing macro.

To delete an existing macro, use the directive

delmacro name

where name is the name of the macro to be deleted.

Undolna Macros

The undomacro command allows you to restore the active file back to what it was immediately before
the most recent macro execution, whether that macro changed the file or not. As an illustration,
consider the following dialog:

edit> macro z

macro> add co11 I000

macro> mult col2 -I

macro> endmacro

edit> open testl

edit> tab

wart # coll

1 i01.000

co12 co13 co14

i02.000 i03.000 104.000

95

2 201.000 202.000 203.000 204.000

3 301.000 302.000 303.000 304.000

4 401.000 402.000 403.000 404.000

5 501.000 502.000 503.000 504.000

6 601.000 602.000 603.000 604.000

7 701.000 702.000 703.000 704.000

8 801.000 802.000 803.000 804.000

9 901.000 902.000 903.000 904.000

9 wart subsets listed

edit> z

[add coll 1000]

9 data warts changed.

[mult co12 -I]

9 data warts changed.

edit> tab

wart # coil co12

I Ii01

2 1201

3 1301

4 1401

5 1501

6 1601

7 1701

8 1801

9 1901

00 -102

00 -202

00 -302

00 -402

00 -502

00 -602

00 -702

00 -802

00 -902

.000

.000

.000

000

000

000

000

000

000

9 wart subsets listed.

edit> undomacro

The active fil_ has reverted back to

before the last macro was executed.

edit> tab

wart # coll co12

how

co13

103.000

203 000

303 000

403 000

503 000

603 000

703 000

803000

903.000

it was

co13

co14

104.000

204.000

304.000

404.000

504.000

604.000

704.000

804.000

904.000

col4

1 i01.000 102.000 103.000 104.000

2 201.000 202.000 203.000 204.000

3 301.000 302.000 303.000 304.000

4 401.000 402.000 403.000 404.000

5 501.000 502.000 503.000 504.000

6 601.000 602.000 603.000 604.000

7 701.000 702.000 703.000 704.000

96

8 801.000 802.000 803.000 804.000

9 901.000 902.000 903.000 904.000

9 wart subsets listed.

So far, so good. But suppose we entered undomacro by mistake - can we "undo" the undomacro

command? Yes, since undomacro is the most recent directive which changed the active file. This is

shown in the continuing dialog:

edit> undo

The active file has reverted back to how it was

before the last UndoMacro command.

edit> tab

wart # coll co12 co13 co14

i 1101.00 -i02.000 i03.000 i04.000

2 1201.00 -202.000 203.000 204.000

3 1301.00 -302.000 303.000 304.000

4 1401.00 -402.000 403.000 404.000

5 1501.00 -502.000 503.000 504.000

6 1601.00 -602.000 603.000 604.000

7 1701.00 -702.000 703.000 704.000

8 1801.00 -802.000 803.000 804.000

9 1901.00 -902.000 903.000 904.000

9 wart subsets listed.

Oops! Maybe we wanted to undo that macro after all - can we recover the file back to where it was just

after undomacro (or just before the last undo)? Sure, as shown below:

edit> undo

The active file has reverted back to how it was

before the last Undo command.

edit> tab

wart # coll co12 co13 co14

1 i01.000

2 201.000

3 301.000

4 401.000

5 501.000

6 601.000

7 701.000

8 801.000

9 901.000

102.000 103

202.000 203

302.000 303

402.000 403

5O2.000 5O3

602.000 603

702.000 703

802.000 803

902.000 903

000

000

000

000

000

000

000

000

000

104.000

204.000

304.000

404 000

504 000

604 000

704 000

804 000

904 000

9 wart subsets listed.

97

edit>

Notice that undomacro is itselfundone via undo, as opposed to another undomacro. Why? Consider
what it means to use two consecutive undomacro directives. The first undomacro revokes all
changes made by the previous macro execution, but what should the second undomacro do? We
can't revoke a macro previous to the one most recently executed, so we've already revoked the only
macro we can. Therefore the second undomacro again restores the active file to its state immediately
before the last macro execution. Because the first undomacro already did this, the second
undomacro merely duplicates the restoration and has no real effect upon the active file.

Commands undo and undomacro have some interesting and very handy interactions. Graphically

portrayed, a macro execution anti subsequent undomacro operation appear as

I active file

macro executed

active file copied to the undomacro buffer

---_ _ I-1 undomacrobuffer [I

active file -_

the shading indicates a modification
as a result of the macro executed

undomacro step 1: active file copied to the undo buffer

active file _ " _ undo buffer

step 2: undomacro buffer copied to the active file

activefile]iJ "4 I I undomacrobuffer I !

In other words, alter the active file is copied to the undo buffer, undomacro replaces the active file with
the undomacro buffer, provided that the undomacro buffer was initiallyfilled via a macro execution.

Unlike undo and the undo buffer, an undomacro does not exchange the active file and the
undomacro buffer. Thus it is possible to issue an undomacro long after other directives have made
substantial changes to the active file. This has the effect ol a "superundo" because it can revoke the
effects of a series of directives, compared to the undo command's ability to revoke only the most
recent directive. Some users deliberately create a null macro just for this purpose. As an illustration,
consider the following dialog (the echo command is discussed later in this section):

edit> disable macroecho

edit> macro backup

macro> echo

macro> echo Active file

macro> echo

macro> endmacro

edit> open testl

edit> backup

written to undomacro buffer.

Active file written to undomacro buffer.

98

edit> tab

wart # coll

1 i01.000

2 201.000

3 301.000

4 401.000

5 501.000

6 601.000

7 701.000

8 801.000

9 901.000

9 wart subsets listed.

edit> add 1000 co11

9 data warts changed.

edit> mult -i co12

9 data warts changed.

edit> assign 999 co13

edit> tab

co12

102.000

202.000

302.000

402.000

502.000

602.000

702.000

802.000

902.000

co13

103 000

203 000

303 000

403 000

503 000

603 000

703 000

803.000

903.000

co14

wart # coil co12 co13 co14

i ii01.00 -102.000

2 1201.00 -202.000

3 1301.00 -302.000

4 1401.00 -402.000

5 1501.00 -502.000

6 1601.00 -602.000

7 1701.00 -702.000

8 1801.00 -802.000

9 1901.00 -902.000

9 wart subsets listed.

edit> undomacro

The active file has reverted back to how

before the last macro was executed.

it

edit> tab

wart # coll

999.000

999.000

999.000

999.000

999.000

999.000

999.000

999.000

999.000

was

co13co12

104.000

204.000

304.000

404.000

504.000

604.000

704.000

8O4.00O

904.000

104.000

204.000

304.000

404.000

504.000

604.000

704.000

8O4.0O0

904.000

co14

1 i01.000 102.000 103.000 104.000

2 201.000 202.000 203.000 204.000

3 301.000 302.000 303.000 304.000

99

4 401.000 402.000 403.000 404.000

5 501.000 502.000 503.000 504.000

6 601.000 602.000 603.000 604.000

7 701.000 702.000 703.000 704.000

8 801.000 802.000 803.000 804.000

9 901.000 902.000 903.000 904.000

9 wart subsets listed.

edit> undo

The active file has reverted back to how it was

before the last UndoMacro command.

edit>

Notice that the second undomacro revokes the effects of the preceding three directives, which is
beyond the capabilities of a normal undo. The final undo revokes the effects of the undomacro
command. This dialog can be portrayed graphically as:

macro backup

endmacro

open test1

i_ackup

_-I activefile -]- I

add 1000 coll
mult-1 col2
assign 999 co!3

..... active file .

undomacro

active file copied to the undomacro buffer

I -' - undomacrobuffer-]]

the shading indicates the modifications as a result
of the add, mult, and assign directives executed

active file copied to the undo buffer

...._ = N undo-buffer

undomacro buffer copied to the active file

r-I aciivefi/e _ _ [_ undomacro buffer _-_

undo
simultaneous exchange

..... aciive-file _ :-- --_ [] undo-buffer--- [1

One last point. Once a past version of the active lile is in the undomacro buffer it can be recalled at any
time in the future. We could enter another series of directives (excluding macro executions) and again

100

use undomacro to restore the version of the active file saved by macro backup. Thus a nullmacro and
undomacro provide a simple means for intermediate file backups.

Creating a Directive File from a Macro

Macros generally offer more control (via undomacro) and more flexibility (via parameters) than a
directive file equivalent. However, there may be times when you wish to create a directive file from a
macro using specific parameters. As an example, suppose we've been determining turbopump rpm's
using the macro findrpm"

macro flndrpm base delta final
create $flnal
add $base $delta $final
mult $final .918333
endmacro

Further, suppose we've noticed that the base rpm and deltarpm are almost always measurement id's
msid1021 and msid1078, respectively, and that the final rpm goes into rpmloxpump. Instead of
continually entering

findrpm msld1021 msid1078 rpmloxpump

we would prefer to enter

Include Ioxrpm

In other words, we want to take a specific instance of a macro and turn it into a directive file.

The key is the session file. By default, directives executed within a macro are echoed to the terminal
screen but are not echoed to the session file. (Recall that lhe session file is intended to serve as a
step-by-step record of your entries, to the extent thai you could use the resulting session file as a
directive file to exactly duplicate the editing session. Echoing the call to the macro is proper. Echoing
each directive within the macro defeats the original purpose of the session file because, if used as a
directive file in a subsequent editing session, it would twice execute each directive within the macro.)
This can be changed by entering

enable expand

which enables the session file expansion toggle. To illustrate,consider the following UNIX dialog:

% toaded

O AD F i 1 e E d i t o r

Release 1.0 October 1990

101

[No startup file]

edit> macro findrpm base delta final

edit> create $final

edit> add $base $delta $final

edit> mult $final .918333

edit> endmacro

edit> enable expand

edit> findrpm msid1021 msid1078 rpmloxpump

edit> quit

Normal session.

% cat session

l

w TOAD Editor session file.

I

macro findrpm base delta final

create $final

add $base Sdelta Sfinal

mult Sfinal .918333

endmacro

enable expand

findrpm msidl021 msid1078 rpmloxpump

, Expanding macro findrpm.

I

I create rpmloxpump

I add msidl021 msid1078 rpmloxpump

_ult rpmloxpump .918333

! End macro expansion.

!

quit

Now all we have to do is edit the session file and copy the highlighted dire_ives to the file _x_m,
which would then be available as a directive file.

Embedding Messages within Directive Files and Macros

The echo command is similarto the UNIX shell command echo-- whatever text follows the command

is written to your terminal screen. Its form is

echo text

where text is the text stdng to be displayed. For example, the directive

echo LOX pump calculations finished . . • Begin H2 pump

displays the message

LOX pump calculations finished .
Begin H2 pump

102

The echo command is designed to be used within the startup file and directive files to provide some
measure of progress feedback. For example, consider the startup file

#
TOAD Editor startup file
#

echo Begin startup sequence...

environmental settings]

echo ...Environmentals set

[symbol definitions]

echo ...Symbols defined

macro definitions]

echo ...Macros defined
echo End startup sequence

Such a startup file would display the following messages at the beginning of each editing session:

Begin startup sequence...

...Environmentals set

...Symbols defined

...Macros defined

End startup sequence

Such messages can be highly customized within macros by virtue of the macros ability to perform
parameter substitution. Consider our previous example macro yanklep:

macro yanklep file1 file2
open $fllel
define leading_edge=0
min x/c leading_edge
export $file2 deltacp x/c
delsymbol leading_edge
close
endmacro

leading_edge 2y/b

This macro could be modified to include a few echo directives, such as

macro yanklep file1 file2
#
echo
echo Using raw data file
echo

echo Leading edge x/c
min x/c
#
open $filel
define leading_edge=0

Stile1 to create summary file $file2

location:

103

mln x/c leading_edge
export $flle2 deltacp x/c leading_edge 2y/b
delsymbol leading_edge
close
#
endmacro

Now macro yanklep provides some leedback when it's executed:

edit> yanklep run203 lep203

Using raw data file run203 to create

Leading edge x/c location:

.025

summary file lep203

edit>

Notice that, in the above macro example, parameter substitutionwas performed. If you would prefer
not to have this substitution pedorrned, either leave off the macro character prefix

echo Using raw data file file1 to create summary file file2

which creates the message

Using raw data file filel to create summary file file2

or surround the parameter with single or double quotation marks:

echo Using raw data file 'Stile1' to create summary file "$file2"

which creates the message

using raw data file Sfilel to create summazy file $file2

The echo command can also be used as a debugging tool when developing a new macro. For

example, again using the macro yanklep:

macro yanklep file1 file2
open $fllel
define leadlng_edge=O
min x/c leading_edge
export $file2 deltacp x/c leading_edge 2y/b
delsymbol leading_edge
close
endmacro

suppose we aren't sure that the macro parameters file1 and file2 are coming in correctly. We could
verify their values by adding the directives

echo file1: $fllel
echo llle2:$flle2

104

andcommentingouttheexport directive, as illustrated below:

macro yanklep file1 file2
echo 'file1: ' file1
echo 'file2: ' file2
open $fllel
define leading_edge=0
min x/c leading_edge
#export $flle2 deltacp x/c leading_edge 2y/b
delsymbol leading_edge
close
endmacro

When executed, this version of the macro only displays the values of ils two parameters. For example,
entering

yanklep run21 lep21

displays the messages

filel: run21

file2: lep21

which verifies that the desired file names were indeed brought in correctly. This technique is
particularly useful for tracing parameters passed down through many macro layers. As a more realistic
example, consider the following macro hierarchy:

macro wingstats span chord pressure lefile tefile tipfile
FrontBackCp $chord $pressure $1eflle Sterile
OutboardCp $span $pressure $tlpfile
endmacro

macro FrontBackCp xloc Cp lefile tefile
le $xloc $Cp $1efile
te $xloc $Cp Sterile
endmacro

macro le x scalar file
define xle = 0
mln $x xle
export $file $x xle $scalar
delsymbol xle
endmacro

macro te x scalar file
define xte = 0
max $x xte
export $flle $x xte $scalar
delsymbol xte
endmacro

macro OutboardCp y scalar file
define ytlp = 0

105

max $y ytlp
export $flle $y ytlp $scalar
delsymbol ytlp
endmacro

Byinstrumentingthemacroscripts(i.e., inserting diagnostic echo directives and commenting out the
active directives) we can trace all ol the parameters used. Instrumented versions of these macros

might be

echo
echo
echo
echo
echo
echo
echo

macro wingstats span chord pressure lefile teflle tipfile
* echo wlngstats incoming parameters:
* span: $span
* chord: $chord
* pressure: $pressure
* leflle: $1efile
* tefile: Sterile
* tipfile: $tipflle

echo calling FrontBackCp
FrontBackCp $chord $pressure $1efile Sterile

* echo
* echo calling OutboardCp

OutboardCp $span $pressure $tipflle
* echo
* echo macro wlngstats complete

endmacro

macro FrontBackCp xloc Cp leflle teflle
* echo entering FrontBackCp with parameters $xloc $Cp $1efile Sterile
* echo
* echo calling le

le $xloc $Cp $1eflle
* echo
* echo calling te

te $xloc $Cp Sterile
* echo
* echo macro FrontBackCp complete

endmacro

macro le x scalar file
* echo entering le with parameters $x $scalar Stile

define xle = 0
#mln $x xle
#export $flle $x xle $scalar
delsymbol xle

* echo macro le complete
endmacro

macro te x scalar file
echo entering te with parameters $x $scalar Stile
define xte = O
#max $x xte
#export $flle $x xte $scalar

106

delsymbol xte
* echo macro te complete

endmacro

macro OutboardCp y scalar file
* echo entering OutboardCp with parameters $y $scalar Stile

define ytip = 0
#max $y ytlp
#export $flle $y ytip $scalar
delsymbol ytip

* echo macro OutboardCp complete
endmacro

where the * marks the echo directives added during instrumentation. If we execute macro wingstats
by entering

wingstats 2y/b x/c deltacp run231e run23te run23tlp

the following messages are displayed:

wingstats incoming parameters:

span: 2y/b

chord: x/c

pressure: deltacp

lefile: run231e

tefile: run23te

tipfile: run23tip

calling FrontBackCp

entering FrontBackCp with parameters x/c deltacp run231e run23te

calling le

entering le with parameters x/c deltacp run231e

macro le complete

calling te

entering te with parameters x/c deltacp run23te

macro te complete

macro FrontBackCp complete

calling OutboardCp

entering OutboardCp with parameters 2y/b deltacp run23tip

macro OutboardCp complete

macro wingstats complete

which verifies that all macro parameters are passed as expected.

Changing the Macro Character and Continuation Character

Under normal conditions the macro character and continuation character remain as dollar sign ($) and

107

ampersand (&), respectively. However, there may be an occasion when changing either or both may
be more convenient. For example, if your TOAD file contains variables beginning with a dollar sign
and you plan to use macros, it's probably in your best interest to change the macro character to
something other than dollar sign.

The process of changing either control character is usually performed in three steps: save the current
setting for later restoration, change the setting, and restore the setting back to its original state. The
second step, change the setting, is accomplished via set and has already been covered under
subsection "Environmentals," beginning on page 15. The first and third steps are accomplished via
the store and restore commands, respectively. Their forms are

store environmental
restore environmental

where environmental is a keyword identifying the environmental to be stored or restored. Only two
environmentals are currently available: the macro character (keywords macrochar or mchar) and the
continuation character (keywords contchar or cchar). As an illustrationof how these commands are
used, consider the following dialog:

edit> show macrochar

The macro character is '$'

edit> store macrochar

edit> set macrochar @

edit> show macrochar

The macro character is '@'.

One previous macro character is available:

-i '$'

edit> restore macrochar

Macro character restored to '$'

edit> show macrochar

The macro character is '$'.

edit>

Conceptually, store writes the environmental's setting to a "stack" or LIFO (Last In, First Out) list, and
restore reads an environmental's setting from the stack. Additional store and restore directives write
and read additional entries inthe stack, as shown in the following dialog:

edit> show macrochar

The macro character is '$'

edit> store macrochar

edit> set macrochar @

108

edit> store macrochar

edit> set macrochar %

edit> store macrochar

edit> set macrochar -

edit> show macrochar

The macro character is '~'

3 previous macro characters are available:

-i '%'

-2 '@'
-3 '$'

edit> restore macrochar

Macro character restored to '%'

edit> show macrochar

The macro character is '%'

2 previous macro characters

-i '@'

-2 '$'

are availablg:

edit> -2

[restore macrochar]

Macro character restored to ,@,

edit> -I

[restore macrochar]

Macro character restored to ,$,

edit>

One particularly useful application of store and restore involves changing the macro character within a
single macro. For example, suppose we have a TOAD file which we know contains variables
beginning with a dollar sign. We want to write a macro which will be effective for this file yet we want
the macro to be useful for other TOAD files as well. How can this be accomplished?

The answer is to store, change, and restore the macro character within the macro itself. For example, if
the macro is supposed to add two columns together into a third, then multiply the result by 90%, we'd
normally write the macro as:

macro fix pl p2 p3
add $pl $p2 $p3
multiply $p3 .9
endmacro

109

However,becausetheTOADfilewe'reusingcontainsvariablesbeginningwithdollarsigns,thismacro
mayworkbutitwouldbeveryconfusingtodebugorreadinthesessionfile. Thesolutionistousea
differentmacrocharacteronlywithinthismacro.Analternatemacrodefinitionis

macro fix pl p2 p3
store macrochar
set macrochar @
add @pl @p2 @p3
multiply @p3 .9
restore macrochar
endmacro

which changes the macro character to "@" only for the duration of the macro. This revised macro
satisfies both of our requirements: it accommodates variable names beginning with a dollar sign yet is
useful for general TOAD files.

HeI.Dful Hint

The store and restore commands are intended for the advanced user who prefers a
highly customized editing environment. Because of the complexities involved, we do
not recommend changing either the macro character or the continuation character. In
general, variable names which begin with a dollar sign (the default macro character) or
end with an ampersand (the default continuation character) are best renamed.

110

Section 6
In Case of Problems ...

General

No software is above design and development errors. If you uncover an error, or notice some strange

behavior, please follow the steps described below. One minute of your time may save others hours or

even days of effort.

Langley Users - All Systems

If possible, assemble the following information:

1. Your host computer's manufacturer, model, operating system, and location.
2. The name of the active TOAD file.

3. A directive sequence which reproduces the error, or a description of the operations

performed immediately before the error occurred.

Then call Bradford Bingel at Computer Sciences Corporation, (804) 865-1725. Every attempt will be

made to correct the problem, when possible, within a few minutes.

Non.Langley Users - All Systems

Computer Sciences Corporation does not support the TOAD Editor outside of NASA Langley. All

questions and problems concerning lhis software should be directed to Dr. John E. Lamar, mail stop

361, (804) 864-2851.

All comments are aDDreciated and welcomed !!!

111

Appendix A

Sample Sessions

SamDle Session #1

The file toad1 contains genera/pressure data over the surface of an aircraft wing.
We want to familiarize ourselves with the file, then extract five subsets of data:

pressure as a function of chord location at three spanwise locations, and pressure as
a function of spanwise location along the wing's leading and trailing edges.

% toaded

O AD F i 1 e E d i t o r

Release 1.0 October 1990

[No

edit> open

edit> menu

This

startup file]

toadl

TOAD file contains 6 variables:

mach cldes planform

x/c 2y/b deltacp

Because we may have _ modify _ file, we_ make a copy, and wo_ from De copy.

edit> save toadlm

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

> y

Note: This question appears only when toadm I already exists.

edit> op toadlm

edit> show targ

The entire TOAD file.

A-I

edit> menu

This TOAD file contains 6 variables:

mach cldes planform

x/c 2y/b deltacp

We suspect that some of the variables in this TOAD file are not of interest in this
session, so we'll use the stats command to help identify them. Because variables
cldes and planform are constant and fulfill no useful purpose m this analysis, they
are removed. We also use stats to determine that variable roach is constant at. 6.

edit> star cldes

Frequency Count: 150

Sum: 150

Range: 0

Minimum: 1

Maximum: 1

Mean: 1

Variance: 0

Standard Dev: 0

Standard Error: 0

(unbiased)

(biased)

(biased)

edit> del cldes

edit> stat planform

Frequency Count: 150

Sum: 150

Range: 0

Minimum: 1

Maximum: 1

Mean: 1

Variance: 0

Standard Dev: 0

Standard Error: 0

(unbiased)

(biased)

(biased)

edit> del planform

edit> stat mach

Frequency Count: 150

Sum: 90

Range: 0

Minimum: 0.6

Maximum: 0.6

Mean: 0.6

Variance: 0

Standard Dev: 0

Standard Error: 0

(unbiased)

(biased)

(biased)

A-2

edit> scan

This TOAD file contains 4 variables:

mach x/c 2y/b

deltacp

and has a total of 150 data warts.

Looking at the first few data warts, we notice two things: the wing semispan location

(2y/b) should come before the airfoil chord location (x/c), and that the wing

semispan location is ordered numerically, from wing's inboard root to its outboard tip.

We want the data arranged differently, so we exchange 2y/b and x/¢ and perform a

descending sort on 2y/b.

edit> tab itl0

wart # mach x/c 2y/b deltacp

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

i0 0

600000 0.416667E-01 0.200000E-01

600000 0.208333 0.200000E-01

600000 0.375000 0.200000E-01

600000 0.541667 0.200000E-01

600000 0.708333 0.200000E-01

600000 0.875000 0.200000E-01

600000 0.416667E-01 0.600000E-01

600000 0.208333 0.600000E-01

600000 0.375000 0.600000E-01

600000 0.541667 0.600000E-01

1.05376

0.843582

0.737244

0.622884

0.479829

0.292267

1.16457

0.864949

0.748665

0.631585

i0 wart subsets listed.

edit> x

edit> -2

x/c 2y/b

[tab itlO

wart # mach 2y/b x/c deltacp

1 0.600000

2 0.600000

3 0.600000

4 0.600000

5 0.600000

6 0.600000

7 0.600000

8 0.600000

9 0.600000

10 0.600O0O

0.200000E-01

0.200000E-01

0.200000E-01

0.200000E-01

0.200000E-01

0.200000E-01

0.600000E-01

0.600000E-01

0.600000E-01

0.600000E-01

0.416667E-01

0.208333

0 375000

0 541667

0 708333

0 875000

0 416667E-01

0 208333

0 375000

0 541667

1.05376

0.843582

0.737244

0.622884

0.479829

0.292267

1.16457

0.864949

0.748665

0.631585

I0 wart subsets listed.

edit> sort 2y/b d

A-3

edit> -2
[tab Itl0]

wart # mach 2y/b x/c

1 0.600000 0.980000 0
2 0.600000 0.980000 0
3 0.600000 0.980000 0
4 0.600000 0.980000 0
5 0.600000 0.980000 0
6 0.600000 0.980000 0
7 0.600000 0.940000 0
8 0.600000 0.940000 0
9 0.600000 0.940000 0
10 0.600000 0.940000 0

416667E-01
208333
375000
541667
708333
875000
416667E-01
208333
375000
541667

I0 wart subsets listed.

The first few data warts also tell us that there are 6 chord locations at each wing

semispan location. To check the file's integrity, let's display the first data wart within

each block of 6 warts associated with each semispan location.

edit> tab It14566

wart # mach 2y/b x/c

[Return]

1 O.

7 0

13 0

19 0

25 0

31 0

37 0

43 0

49 0

55 0

61 0

67 0

73 0

79 0.

85 0.

91 0.

97 0.

103 0.

109 0.

115 0.

121 0.

127 0.

133 0.

139 0.

145 0.

600000

600000

600000

600000

600000

600000

600000

60OOOO

600000

600000

600000

600000

600000

600000

600000

600000

600000

600000

600000

600000

600000

600000

600000

600000

600000

0.980000

0 940000

0 900000

0 860000

0 820000

0 780000

0 740000

0 7OOO0O

0 660000

0 620000

0 580000

0 5400OO

0 500000

0 460000

0 420000

0.380000

0.340000

0.300000

0.260000

0.220000

0.180000

0.140000

0.i00000

0.600000E-01

0.200000E-0I

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

deltacp

10.5822

5.61437

4.43053

3.78733

3.15396

2.12793

7.38284

3.76906

2.71414

2.03536

deltacp

10.5822

7.38284

6 09007

5 30779

4 75334

4 32299

3 97186

3 67719

3 42449

3 20335

3 00611

2 82717

2 66236

2 50851

2 36313

2 22420

2 09000

1 95902

1.82997

1.70156

1.57196

1.43850

1.29960

1.16457

1.05376

A-4

25 wart subsets listed.

Good. Since there are 150 data warts in all, and 6 warts per semispan location, we

should see 25 semispan locations' worth of data. Let's try it again, only this time we'll
isolate the third wart within each block.

edit> " 3t147b6

wart # mach 2y/b x/c deltacp

[Return]

3

9

15

21

27

33

39

45

51

57

63

69

75

81

87

93

99

105

iii

117

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

0 600000

0 600000

0 600000

0 600000

0 600000

0 600000

0 600000

0.600000

0.600000

0.600000

0.600000

0.6000OO

0.600000

0.600000

0.980000

0.940000

0.900000

0.860000

0.820000

0.780000

0.740000

0.70O000

0 660000

0 620000

0 580000

0 5400O0

0 500000

0 460000

0 420000

0.380000

0.340000

O.300O0O

0.260000

0.220000

0.375000

0 375000

0 375000

0 375000

0 375000

0 375000

0 375000

0 375000

0 375000

0.375000

0.375000

0.375000

0.375000

0.375000

0.375000

0.375000

0.375000

0.375000

0.375000

0.375000

123 0.600000 0.180000 0.375000

129 0.600000 0.140000 0.375000

135 0.600000 0.I00000 0.375000

141 0.600000 0.600000E-01 0.375000

147 0.600000 0.200000E-01 0.375000

4.43053

2.71414

2.12340

1.82227

1.62033

1.47393

1.36207

1.27218

1.19711

1.13281

1.07686

1.02764

0.984011

0.945151

0.910150

0.879452

0.851804

0.827234

0.805593

0.786984

0.771897

0.761138

0.754821

0.748665

0.737244

25 wart subsets listed.

Good. Now let's set up a default target list and see if the same data is tabulated.

edit> show tol

The default tolerance is 1% (relative).

edit> targ mach 2y/b x/c .375 deltacp
edit> tab

wart # mach 2y/b deltacp

3 0.600000 0.980000 4.43053

9 0.600000 0.940000 2.71414

15 0.600000 0.900000 2.12340

A-5

[Return]

21

27

33

39

45

51

57

63

69

75

81

87

93

99

105

iii

117

0.600000

0.6000OO

0.6OO0OO

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

0 600000

0 600000

0 600000

0 600000

0 600000

0 600000

0.600000

0.600000

0.860000 1.82227

0.820000 1.62033

0.780000 1.47393

0.740000 1.36207

0.700000 1.27218

0.660000 1.19711

0.620000 1.13281

0.580000 1.07686

0.540000 1.02764

0.500000 0.984011

0.460000 0.945151

0.420000 0.910450

0.380000 0.879452

0.340000 0.851804

0.300000 0.827234

0.260000 0.805593

0.220000 0.786984

123 0.600000 0.180000 0.771897

129 0.600000 0.140000 0.761138

135 0.600000 0.100000 0.754821

141 0.600000 0.600000E-01 0.748665

147 0.600000 0.200000E-01 0.737244

25 wart subsets listed.

Great/ Recall our objective in this first sample session is m create a series of data

files: pressure (deltacp) as a function of aidoi/ chord location at three semispan

locations; and pressure as a function of semispan location along the wing's leading

and trailing edges. As a reminder, let's look at the first few data warts again. We know

we want to use the export command, but can,t remember its syntax, so we'll also use

the help facility.

edit> targ all

edit> tab It15

wart # mach 2y/b x/c deltacp

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

0.600000

0 600000

0 600000

0 600000

0 600000

0 600000

0 600000

0 600000

0 600000

0 6O0O00

0 600000

0 600000

0 600000

0.600000

0.600000

0.980000

0 980000

0 980000

0 980000

0 980000

0 980000

0 940000

0 940000

0 940000

0 940000

0.940000

0.940000

0.900000

0.900000

0.9O0000

0.416667E-01

0.208333

0.375000

0.541667

0.708333

0.875000

0.416667E-01

0.208333

0.375000

0.541667

0.708333

0.875000

0.416667E-01

0.208333

0.375000

10.5822

5.61437

4.43053

3.78733

3 15396

2 12793

7 38284

3 76906

2 71414

2 03536

1.50435

0.937932

6.09007

3.02826

2.12340

A-6

edit> h

15 wart subsets listed.

export

EXPORT

syntax:

writes a multi-column data fragment.

Export [file] [object list]

file the name of the file to be written. If

omitted, "tadpole" is assumed.

object list see the help text for command Target

If omitted, the default target list

is assumed.

info: Command Write is simpler for single-column data.

If you're moving entire warts, commands CopyWart

and CutWart may be simpler.

aliases : extract

Now that we have the export command's syntax, we'll create the first three files.

edit> export toad98 mach 2y/b .98 x/c deltacp

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

>y

Note." This question appears only when toad98 already exists.

4 variables, 6 warts written.

edit> " toad94 mach 2y/b .94 x/c deltacp

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

>y

Note: Th_ question appea_ on_ when toad94 already ex_.

4 variables, 6 warts written.

edit> " toad90 mach 2y/b .9 x/c deltacp

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

> y

Note: This question appears only when toadgO already exists.

4 variables, 6 warts written.

A-7

No problems them. We expected four variables and six data warts for each file, and

that's exactly what happened. Now for the last two files. How did we do that

hopscotch tabulation? Let's check the directive history and try to recreate #.

edit> hist

12 del planform

13 stat mach

14 scan

15 tab itl0

16 x x/c 2y/b

17 tab itl0

18 sort 2y/b d

19 tab Itl0

20 tab it145b6

21 " 3t147b6

22 show tol

23 targ mach 2y/b x/c .375

24 tab

25 targ all

26 tab it15

27 h export

28 export toad98 mach 2y/b

29 " toad94 mach 2y/b

30 " toad90 mach 2y/b

31 hist

deltacp

.98 x/c deltacp

.94 x/c deltacp

.9 x/c deltacp

edit> 20

[tab It145b6]

wart # mach 2y/b x/c

[Return]

1

7

13

19

25

31

37

43

49

55

61

67

73

79

85

91

97

103

109

115

0.600000

0.600000

0.600000

0 600000

0 600000

0 600000

0 600000

0 600000

0 600000

0.600000

0.600000

0.600000

0.600000

0.6000O0

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

0.980000

0.940000

0.900000

0.860000

0.820000

O.780000

0 740000

0 700000

0 660000

0 620000

0 580000

0 540000

0 500000

0 460000

0 420000

0.380000

0.340000

0.300000

0.260000

0.220000

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0 416667E-01

0.416667E-01

0.416667E-01

deltacp

10.5822

7.38284

6.09007

5.30779

4.75334

4.32299

3 97186

3 67719

3 42449

3 20335

3 00611

2 82717

2 66236

2 50851

2 36313

2 22420

2 09000

I 95902

1.82997

1.70156

A-8

121 0.600000 0.180000 0.416667E-01

127 0.600000 0.140000 0.416667E-01

133 0.600000 0.100000 0.416667E-01

139 0.600000 0.600000E-01 0.416667E-01

145 0.600000 0.200000E-01 0.416667E-01

1.57196

1.43850

1.29960

1.16457

1.05376

25 wart subsets listed.

Notice that the chord location (x/c) is constant at .041667, or 1/24th. These are
quarter-chord locations of panel control points, so we expected them to be l/6th
apart, beginning at 1/24th. Sure enough, 1/24th plus 1/6 is 5/24ths, or .208333,
and 1/24th plus 5/6ths is 21/24ths, or .875. We could specify the leading edge and
trailing edge as the numeric values 1/24 and 21/24, respectively, but it is easier to
create and use two symbols (le and t e) for this purpose.

edit> define le

edit> " te 0

edit> min x/c le

edit> max x/c te

edit> sho sym

The defined symbols are:

le

te

= 0.04166667

= 0.875

edit> export toadle mach 2y/b x/c le deltacp

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

> y

Note: This question appears only when toadle already exists.

4 variables, 25 warts written.

edit> export toadte mach 2y/b x/c te deltacp

This request will overwrite the original

an existing file. Do you really want it

contents of

performed ?
> y

Note: This question appears only when toadte already exists.

4 variables, 25 warts written.

Again, the number of variables and data warts written matches what we expect. After
making sure we're editing the right file, let's save it, then open and tabulate the new
files we've just created.

edit> show file

Active file: toadlm

A-9

edit> save

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

>y

edit> open toad98

edit> tab

wart # mach 2y/b x/c

1

2

3

4

5

6

0 600000

0 600000

0 600000

0 600000

0 600000

0 600000

deltacp

6 wart subsets listed.

edit> op

edit> tab

toad94

wart # mach

0.980000 0.416667E-01 10.5822

0.980000 0.208333 5.61437

0.980000 0.375000 4.43053

0.980000 0.541667 3.78733

0.980000 0.708333 3.15396

0.980000 0.875000 2.12793

2y/b x/c

1 0.600000 0.940000 0.416667E-01

2 0.600000 0.940000 0.208333

3 0.600000 0.940000 0.375000

4 0.600000 0.940000 0.541667

5 0.600000 0.940000 0.708333

6 0.600000 0.940000 0.875000

6 wart subsets listed.

edit> open toad90

edit> tab

2y/b x/cwart # mach

1 0.600000 0.900000 0.416667E-01

2 0.600000 0.900000 0.208333

3 0.600000 0.900000 0.375000

4 0.600000 0.900000 0.541667

5 0.600000 0.900000 0.708333

6 0.600000 0.900000 0.875000

6 wart subsets listed.

deltacp

7.38284

3.76906

2.71414

2.03536

1.50435

0.937932

deltacp

6.09007

3.02826

2.12340

1.60278

1.17190

0.711813

A-IO

edit> open toadle

edit> tab

[Return]

wart # mach

5

6

7

8

9

i0

Ii

12

13

14

15

16

17

18

19

20

0 600000

0 600000

0 600000

0 600000

0 600000

0 600000

0 600000

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

0.600000

2y/b

0.980000

0.940000

0.900000

0.860000

0.820000

0.780000

0.740000

0.700000

0.660000

0.620000

0.580000

0.540OOO

0.500000

0.460000

0.420000

0.380000

0.340000

0.300000

0.260000

0.220000

21 0.600000 0.180000

22 0.600000 0.140000

23 0.600000 0.100000

24 0.600000 0.600000E-01

25 0.600000 0.200000E-01

25 wart subsets listed.

toadte

wart # mach

edit> open

edit> tab

2y/b

x/c

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

0.416667E-01

xlc

deltacp

10.5822

7.38284

6.09007

5.30779

4 75334

4 32299

3 97186

3 67719

3 42449

3 20335

3 00611

2.82717

2.66236

2.50851

2.36313

2.22420

2.09000

1.95902

1.82997

1.70156

1.57196

1.43850

1.29960

1.16457

1.05376

deltacp

1 0.600000 0.980000 0.875000 2.12793

2 0.600000 0.940000 0.875000 0.937932

3 0.600000 0.900000 0.875000 0.711813

4 0.600000 0.860000 0.875000 0.604424

5 0.600000 0.820000 0.875000 0.537458

6 0.600000 0.780000 0.875000 0.490354

7 0.600000 0.740000 0.875000 0.454841

8 0.600000 0.700000 0.875000 0.426885

9 0.600000 0.660000 0.875000 0.404250

10 0.600000 0.620000 0.875000 0.385577

ii 0.600000 0.580000 0.875000 0.369983

12 0.600000 0.540000 0.875000 0.356865

13 0.600000 0.500000 0.875000 0.345797

14 0.600000 0.460000 0.875000 0.336463

A-11

[Return]

15 0.600000

16 0.600000

17 0.600000

18 0.600000

19 0.600000

20 0.600000

420000

380000

340000

300000

260000

220000

21 0.600000 0.180000

22 0.600000 0.140000

23 0.600000 0.I00000

24 0.600000 0.600000E-01

25 0.600000 0.200000E-01

25 wart subsets listed.

Everything looks fine, so let's end this session.

edit> q

Normal session.

0.875000

0.875000

0.875000

0.875000

0.875000

0.8750OO

0.875000

0.875000

0.875000

0.875000

0.875000

0.328624

0.322091

0.316705

0.312327

0.308820

0.306035

0.303791

0.301837

0.299793

0.297028

0.292267

For the readers benefit, aft of these TOAD files, including those created during this

session, are available from the Langley Mustang directory

~ntflib/toad_examples

A-12

SamDle Session #2

We have four TOAD files, toadrk 1, toadrk2, toadrk3, and toadrk4, that need

to be merged into two files for use by the Program to Optimize Simulated Trajectories

(POST). Once this example is complete the resultant files can be converted to

POST table files by the TOAD Gateway.

The four files contain both actual and coefficient rocket thrust values. The first three

contain data for Mach less than one, and the fourth contains data for Mach greater
than or equal to one.

% toaded

TOAD File Editor

Release 1.0 October 1990

[No startup file]

Let's work with toadrkl firsL

edit> open toadrkl

edit> tab

wart # rocketl m aoa

1 1.26000

2 1.77000

3 1.33000

4 1.80000

5 2.00000

6 2.50000

7 2.25000

8 2.75000

9 1.92000

i0 1.60000

0 100000

0 900000

0 i00000

0 900000

0 100000

0 900000

0 1OOO0O

0.900000

O.1O000O

0.900000

-5.00000

-5.00000

-3.00000

-3.00000

0.

0.

2.00000

2.00000

4.00000

4.00000

i0 wart subsets listed.

The variables and data values in this file are ordered in the fashion necessary for the

TOAD Gateway to convert it into a POSTtable. The variable names, however, must

be changed to the corresponding POST variable names.

edit> rename m mach

edit> " aoa alpha

A-13

edit> tab

wart # rocketl mach alpha

i 1.26000 0.I00000 -5.00000

2 1.77000 0.900000 -5.00000

3 1.33000 0.100000 -3.00000

4 1.80000 0.900000 -3.00000

5 2.00000 0.100000 O.

6 2.50000 0.900000 O.

7 2.25000 0.100000 2.00000

8 2.75000 0.900000 2.00000

9 1.92000 0.100000 4.00000

I0 1.60000 0.900000 4.00000

i0 wart subsets listed.

According to the notes from the researcher, the thrust coefficients in rocket1 need
to be scaled by .963 due to the conditions of the test site as compared to the actual
site.

edit> mult rocketl .963

i0 data warts changed.

edit> tab

wart # rocketl mach alpha

1 1.21338 0.100000 -5.00000

2 1.70451 0.900000 -5.00000

3 1.28079 0.I00000 -3.00000

4 1.73340 0.900000 -3.00000

5 1.92600 0.I00000 0.

6 2.40750 0.900000 0.

7 2.16675 0.100000 2.00000

8 2.64825 0.900000 2.00000

9 1.84896 0.i00000 4.00000

I0 1.54080 0.900000 4.00000

I0 wart subsets listed.

This file is ready to be saved. We will use it later as our final table foundation for the
subsonic data.

edit> save toadnrl

>y

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

Note: This question appears only when toadnrl already exists.

A-14

Now, let's look at toadrk2 and see what needs to be done to it.

edit> open toadrk2

edit> tab

wart # rocket2 aoasq m

1 0.500000 -25.0000 0.I00000

2 0.620000 -9.00000 0.i00000

3 0.930000 0. 0.100000

4 0.860000 4.00000 0.i00000

5 0.710000 16.0000 0.100000

6 1.00000 -25.0000 0.900000

7 1.26000 -9.00000 0.900000

8 1.38000 O. 0.900000

9 1.29000 4.00000 0.900000

i0 1.16000 16.0000 0.900000

i0 wart subsets listed.

These thrust coeficients are listed as rocket2=f(aoasq, m). aoasq, angle of attack

squared, is not acceptable in POST, so we have to convert it to alpha. To do so, we
must first save off the sign of aoasq, as follows:

edit> create asign

edit> tab

wart # rocket2 aoasq m asign

1 0.500000 -25.0000 0.i00000

2 0.620000 -9.00000 0.I00000

3 0.930000 O. 0.100000

4 0.860000 4.00000 0.100000

5 0.710000 16.0000 0.I00000

6 1.00000 -25.0000 0.900000

7 1.26000 -9.00000 0.900000

8 1.38000 O. 0.900000

9 1.29000 4.00000 0.900000

]0 1.16000 16.0000 0.900000

0

0

0

0

0

0

0

0

O.

O.

i0 wart subsets listed.

edit> sign 1 aoasq asign

I0 data warts changed.

edit> tab

wart # rocket2 aoasq m asign

1 0.500000 -25.0000 O.LO0000 -i.00000

2 0.620000 -9.00000 0.i00000 -I.00000

3 0.930000 O. 0.100000 1.00000

A-15

4 0.860000 4.00000 0.i00000 1.00000

5 0.710000 16.0000 0.I00000 1.00000

6 1.00000 -25.0000 0.900000 -1.00000

7 1.26000 -9.00000 0.900000 -1.00000

8 1.38000 O. 0.900000 1.00000

9 1.29000 4.00000 0.900000 1.00000

i0 1.16000 16.0000 0.900000 1.00000

i0 wart subsets listed.

Now, we can change aoasq into angle of attack values.

edit> abs aoasq

4 data warts changed.

edit> sqrt aoasq

10 data warts changed.

edit> tab

wart # rocket2 aoasq m asign

1 0.500000 5.00000

2 0.620000 3.00000

3 0.930000 O.

4 0.860000 2.00000

5 0.710000 4.00000

6 1.00000 5.00000

7 1.26000 3.00000

8 1.38000 O.

9 1.29000 2.00000

i0 1.16000 4.00000

0 100000

0 i00000

0 i00000

0 i00000

0 100000

0 900000

0.900000

O.900000

0.900000

0.900000

-i.00000

-I.00000

1.00000

1.00000

1.00000

-i.00000

-1.00000

1.00000

1.00000

1.00000

I0 wart subsets listed.

Now, put the sign back on aoasq which is really now the absolute value of the angle

of attack.

edit> sign aoasq asign aoasq

10 data warts changed.

edit> tab

wart # rocket2 aoasq m asign

1 0.500000 -5.00000 0.I00000 -i.00000

2 0.620000 -3.00000 0.I00000 -i.00000

3 0.930000 O. 0.I00000 1.00000

4 0.860000 2.00000 0.I00000 1.00000

5 0.710000 4.00000 0.i00000 1.00000

A-16

6 1.00000 -5.00000 0.900000 -i.00000

7 1.26000 -3.00000 0.900000 -i.00000

8 1.38000 O. 0.900000 1.00000

9 1.29000 2.00000 0.900000 1.00000

10 1.16000 4.00000 0.900000 1.00000

10 wart subsets listed.

edit> del asign

Let's put the fight names on these variables:

edit> rename aoasq

edit> " m mach

edit> tab

alpha

wart # rocket 2 alpha mach

1 0.500000 -5.00000 0.100000

2 0.620000 -3.00000 0.i00000

3 0.930000 O. 0.i00000

4 0.860000 2.00000 0.i00000

5 0.710000 4.00000 0.100000

6 1.00000 -5.00000 0.900000

7 1.26000 -3.00000 0.900000

8 1.38000 0. 0.900000

9 1.29000 2.00000 0.900000

i0 1.16000 4.00000 0.900000

I0 wart subsets listed.

Our foundation table file, toadnrl, has the data listed as rocketl=f(mach, alpha),

not rocketl=f(alpha, mach), so we need to fix this file to match toadnr1's structure.

This might prove to be a common problem, so let's define a macro, fix_mach_alpha,
to fix it.

edit> macro fix_mach_alpha

macro> exch alpha mach

macro> tab

macro> sort alpha

macro> tab

macro> endmacro

edit> f ix_ma ch_alpha

[exch alpha mach]

[tab]

wart # rocket2 mach alpha

1 0.500000 0.100000 -5.00000

2 0.620000 0.100000 -3.00000

3 0.930000 0.100000 0.

4 0.860000 0.100000 2.00000

A-17

5 0.710000 0.i00000 4.00000

6 1.00000 0.900000 -5.00000

7 1.26000 0.900000 -3.00000

8 1.38000 0.900000 0.

9 1.29000 0.900000 2.00000

10 1.16000 0.900000 4.00000

i0 wart subsets listed.

[sort alpha]

[tab]

wart # rocket2 mach alpha

1 0.500000

2 1.00000

3 0.620000

4 1.26000

5 0.930000

6 1.38000

7 0.860000

8 1.29000

9 0.710000

I0 1.16000

0.i00000

0.900000

0.i00000

0 900000

0 100000

0 900000

0 100000

0 900000

0 i00000

0 900000

-5.O0000

-5.00000

-3.00000

-3.00000

0.

0.

2.00000

2.0O00O

4.00000

4.00000

i0 wart subsets listed.

This file is now acceptable, so let's save the changes and write rocket2 to a tadpole

for later use.

edit> save toadnr2

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

>y

edit> write rocket2 tad_rk2

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

> y

i0 data warts written.

Note: These quest_ns appear on_ when toadnr2 and tad_rk2 already exit.

A-18

edit>

edit>

open

tab

Thene_fileon He _t_toadrk3

toadrk3

wart # rocket3 m q

1 1800.00 0.100000 500.000

2 2100.00 0.900000 500.000

2 wart subsets listed.

File toadrk3 contains actual thrust values instead of thrust coefficients as toadrk 1
and toadrk2 did. rocket3 needs to be normalized by q in order to convert from
actual thrust values to thrust coefficients. This too might prove to be a common
problem, so let's define another macro, normalize, to fix it.

edit> macro

macro> div

macro> tab

macro> del $normalizer

macro> tab

macro> endmacro

edit> normalize rocket3 q

normalize $actual $normalizer

$actual $normalizer

[div rocket3 q]

2 data warts changed.

[tab]

edit>

wart # rocket3 m q

1 3.60000 0.100000 5_0.000

2 4.20000 0.900000 5(0.000

2 wart subsets listed.

[del q]

[tab]

wart # rocket3 m

1 3.60000 0.100000

2 4.20000 0.900000

2 wart subsets listed.

Let_ fix the variab_ name."

rename m mach

A-19

edit> tab

wart # rocket3 mach

1 3.60000 0.i00000

2 4.20000 0.900000

2 wart subsets listed.

Since this data is not a function of alpha at all, it will be applied to all the coefficient

values regardless of alpha. It needs to be duplicated four times to match the length
of toadnrl and tad_rk2. Notice the use of -I to repeat the after command

edit> save

> y

toadnr3

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

Note: This question appears only when toadnr3 already exists.

edit> after last toadnr3

edit> -i

[after last toadnr3]

edit> -I

[after last toadnr3]

edit> -I

[after last toadnr3]

edit> tab

wart # rocket3 mach

1 3.60000 0.i00000

2 4.20000 0.900000

3 3.60000 0.I00000

4 4.20000 0.900000

5 3.60000 0.100000

6 4.20000 0.900000

7 3.60000 0.I00000

8 4.20000 0.900000

9 3.60000 0.]00000

i0 4.20000 0.900000

i0 wart subsets listed.

This data is cycled just liked the two previous files, so we are finished with this one.

Note we are using the same file name as earlier.

edit> save toadnr3

> y

This request will overwrite the original contents of

an existing file. Do you really want it performed ?

A-20

edit> write rocket3 tad rk3

> y

This request will

an existing file.

overwrite the original

Do you really want it

contents of

performed ?

O_GINAL PAGE II

i0 data warts written.

Note: These questions appear only when toadnr3 and tacl_rk3 already exist.

We have completed all of the changes for the Mach < 1.0 data, so let's move on to
the Mach => 1.0data which is in toadrk4.

edit> open toadrk4

edit> tab

wart # rocket4 aoa q

1 375.000 -8.00000

2 i000.00 -6.00000

3 1500.00 0.

4 750.000 5.00000

5 125.000 10.0000

6 165.000 -8.00000

7 905.000 -6.00000

8 1885.00 0.

9 1760.00 5.00000

10 965.000 10.0000

500 000

500 000

50O 000

500 000

500 000

500 000

500.000

500.000

500.000

500.000

I0 wart subsets listed.

These actual thrust values need tobe normalized as the toadrk3 data was.

edit> normalize rocket4 q

[div rocket4 q]

i0 data warts changed.

[tab]

wart # rocket4 aoa q

1 0.750000

2 2.00000

3 3.00000

4 1.50000

5 0.250000

6 0.330000

7 1.81000

8 3.77000

9 3.52000

-8.00000 500.000

-6.00000 500.000

0. 5OO.OOO

5.00000 500.000

10.0000 500.000

-8.00000 500.000

-6.00000 500.000

0. 500.000

5.00000 500.000

m

1.00000

1.00000

1.00000

1.00000

1.00000

2.50000

2.50000

2.50000

2.50000

2.50000

m

1.00000

1.00000

1.00000

1.00000

1.00000

2.50OO0

2.50000

2.500OO

2.5000O

A-21

edit>

edit>

edit>

edit>

I0 1.93000 10.0000 500.000 2.50000

I0 wart subsets listed.

[del q]

[tab]

wart # rocket4 aoa

1 0.750000 -8.00000

2 2.00000 -6.00000

3 3.00000 O.

4 1.50000 5.00000

5 0.250000 i0.0000

6 C.330000 -8.00000

7 1.81000 -6.00000

8 3.77000 O.

9 3.52000 5.00000

i0 1.93000 10.0000

I0 wart subsets listed.

Let's fix some variable names.

rename aoa alpha

rename m mach

tab

m

wart # rocket4 alpha mach

I 0.750000 -8.00000

2 2.00000 -6.00000

3 3.00000 O.

4 1.50000 5.00000

5 0.250000 10.0000

6 0.330000 -8.00000

7 1.81000 -6.00000

8 3.77000 O.

9 3.52000 5.00000

10 1.93000 10.0000

i0 wart subsets listed.

This data is a function of alpha and mach, not mach and alpha...

f ix_ma ch_a ipha

[exch alpha mach]

[tab]

mach

1.00000

wart # rocket4

1 0.750000

1 00000

1 00000

1 00000

1 00000

1 00000

2 50000

2.50000

2.50000

2.50000

2.50000

1.00000

1.00000

1.00000

1.00000

1.00000

2.50000

2.50000

2.50000

2.50000

2.50000

alpha

-8.00000

A-22

2 2.00000 1.00000 -6.00000

3 3.00000 1.00000 0.

4 1.50000 1.00000 5.00000

5 0.250000 1.00000 10.0000

6 0.330000 2.50000 -8.00000

7 1.81000 2.50000 -6.00000

8 3.77000 2.50000 0.

9 3.52000 2.50000 5.00000

i0 1.93000 2.50000 10.0000

10 wart subsets listed.

[sort alpha]

[tab]

wart # rocket4 mach alpha

1 0.750000 1.00000 -8.00000

2 0.330000 2.50000 -8.00000

3 2.00000].00000 -6.00000

4 1.81000 2.50000 -6.00000

5 3.00000 1.00000 0.

6 3.77000 2.50000 0.

7 1.50000 1.00000 5.00000

8 3.52000 2.50000 5.00000

9 0.250000 1.00000 10.0000

I0 1.93000 2.50000 10.0000

i0 wart subsets listed.

edit> rename rocket4 tvc2t

edit> tab

wart # tvc2t mach alpha

1 0.750000 1.00000 -8.00000

2 0.330000 2.50000 -8.00000

3 2.00000 1.00000 -6.00000

4 1.81000 2.50000 -6.00000

5 3.00000 1.00000 0.

6 3.77000 2.50000 0.

7 1.50000 1.00000 5.00000

8 3.52000 2.50000 5.00000

9 0.250000 1.00000 10.0000

i0 1.93000 2.50000 i0.0000

I0 wart subsets listed.

We a_ finished with _da_ no_

the original

edit> save toadtvc2

This request will overwrite contents of

A-23

Y

an existing file. Do you really want it performed ?

Note: This question appears only when toadtv2 already exists.

Remember we are using toadnrl as our foundation file for our final file for the

subsonic data. Now, let's build our final file from the ones we fixed earlier.

edit> open toadnrl

edit> tab

wart # rocketl mach alpha

1 i.

2 i.

3 1

4 1

5 1

6 2

7 2

8 2

9 1

I0 1

21338 0.i00000 -5.00000

70451 0.900000 -5.00000

28079 0.100000 -3.00000

73340 0.900000 -3.00000

92600 0.100000 0.

40750 0.900000 0.

16675 0.100000 2.00000

64825 0.900000 2.00000

84896 0.100000 4.00000

54080 0.900000 4.00000

i0 wart subsets listed.

According to the researcher, the data from toadnr2 and toadnr3 are to be directly
added to rocket 1. so let's create one more macro, sum_data, to do it for us.

edit> macro sum_data $rocket $rocket_file

macro> create $rocket

macro> tab

macro> read $rocket $rocket_file

macro> tab

macro> add rocketl $rocket

macro> tab

macro> delete $rocket

macro> endmacro

edit> sum data rocket2 tad rk2

[create rocket2]

[tab]

wart # rocket I math

1 1.21338 0.I00000

2 1.70451 0.900000

3 1.28079 0.I00000

4 1.73340 0.900000

5 1.92600 0.I00000

6 2.40750 0.900000

7 2.16675 0.100000

8 2.64825 0.900000

alpha

-5.00000

-5.00000

-3.00000

-3.00000

0.

0.

2.00000

2.00000

rocket2

0.

0
0

0

0

0

0

0

A-24

9 1.84896 0.i00000 4.00000

I0 1.54080 0.900000 4.00000

i0 wart subsets listed.

[read rocket2 tad rk2]

10 data cells read.

[tab]

wart # rocketl

1

2

3

4

5

6

7

8

9

]0

1.21338

1 70451

1 28079

1 73340

1 92600

2 40750

2 16675

2.64825

1.84896

1.54080

10 wart subsets listed.

[add rocketl rocket2]

10 data warts changed.

[tab]

wart # rocketl

mach

0.100000

0.900000

0.I00000

0.900000

0.i00000

0.900000

0.i00000

0.900000

0.100000

0.900000

mach

alpha

-5.00000

-5.00000

-3.OOOOO

-3.00000

O.

O.

2.00000

2.00000

4.00000

4.00000

alpha

0 .

O.

rocket2

0.500000

1.00000

0.620000

1.26000

0.930000

1.38000

0.860000

1.29000

0.710000

1.16000

rocket2

1 1.71338 0.i00000 -5.00000 0.500000

2 2.70451 0.900000 -5.00000 1.00000

3 1.90079 0.100000 -3.00000 0.620000

4 2.99340 0.900000 -3.00000 1.26000

5 2.85600 0.100000 O. 0.930000

6 3.78750 0.900000 O. 1.38000

7 3.02675 0.100000 2.00000 0.860000

8 3.93825 0.900000 2.00000 1.29000

9 2.55896 0.I00000 4.00000 0.710000

i0 2.70080 0.900000 4.00000 1.16000

i0 wart subsets listed.

[delete rocket2]

edit> sum data rocket3 tad rk3

[create rocket3]

A'25

[tab]

wart # rocketl

1

2

3

4

5

6

7

8

9

i0

1 71338

2 70451

1 90079

2 99340

2 85600

3 78750

3 02675

3 93825

2 55896

2 70080

I0 wart subsets listed.

[read rocket3 tad rk3]

I0 data cells read.

[tab]

wart # rocketl

1

2

3

4

5

6

7

8

9

i0

3

3

3

2

2

1 71338

2 70451

I 90079

2 99340

2 85600

78750

02675

93825

55896

70080

i0 wart subsets listed.

[add rocketl rocket3]

i0 data warts changed.

[tab]

wart # rocketl

mach

0 i00000

0 900000

0 1OO0O0

0 900000

0 i00000

0 900000

0 i00000

0 900000

0 100000

0 900000

mach

0 i00000

0 900000

0 1000O0

0 900000

0 i00000

0 900000

0 i00000

0 900000

0 i00000

0 900000

mach

alpha

-5.00000

-5.00000

-3.00000

-3.00000

O.

O.

2.00000

2.00000

4.00000

4.00OO0

alpha

-5.00000

-5.00000

-3.00000

-3.00000

O.

O.

2.00000

2.00000

4.00OO0

4.00000

alpha

rocket3

rocket3

3 60000

4 20000

3 60000

4 20000

3 60000

4 20000

3 60000

4.20000

3.60000

4.20000

rocket3

A-26

1 5.31338 0.I00000 -5.00000 3.60000

2 6.90451 0.900000 -5.00000 4.20000

3 5.50079 0.100000 -3.00000 3.60000

4 7.19340 0.900000 -3.00000 4.20000

5 6.45600 0.100000 O. 3.60000

6 7.98750 0.900000 0. 4.20000

7 6.62675 0.100000 2.00000 3.60000

8 8.13825 0.900000 2.00000 4.20000
9 6.15896 0.I00000 4.00000 3.60000
10 6.90080 0.900000 4.00000 4.20000

10 wart subsets listed.

[delete rocket3]

We have combined all of the subsonic data together, except for a scale factor that

the researcher provided. First, let's rename rocket I.

edit> rename rocketl tvclt

edit> tab

wart # tvclt mach alpha

1 5.31338 0.100000 -5.00000

2 6.90451 0.900000 -5.00000

3 5.50079 0.100000 -3.00000

4 7.19340 0.900000 -3.00000

5 6.45600 0.I00000 O.

6 7.98750 0.900000 0.

7 6.62675 0.100000 2.00000

8 8.13825 0.900000 2.00000

9 6.15896 0.100000 4.00000

i0 6.90080 0.900000 4.00000

10 wart subsets listed.

Now, let's apply the scale factor, do one last tabulation, and save the file.

edit> mult tvclt .264

10 data warts changed.

edit> tab

wart # tvclt mach alpha

1 1.40273

2 1.82279

3 1.45221

4 1.89906

5 1.70438

6 2.10870

7 1.74946

8 2.14850

9 1.62597

i0 1.82181

0.i00000

0.900000

0.i00000

0.900000

0.i00000

0.900000

0.1O00O0

0.900000

0.100000

0.900000

-5.OO00O

-5.00000

-3.00000

-3.00000

O.

O.

2.00000

2.00000

4.00000

4.OO00O

i0 wart subsets listed.

A-27

edit>

> y

edit>

save toadtvcl

This request will overwrite the original

an existing file. Do you really want it

contents of

performed ?

Note: Th_ quest_n appea_ on_ when toadtvcl al_ady exits.

q

Normal session.

For the reader's benefit, all of these TOAD files, including those created during this
session, are available from the Langley Mustang directory

~ntflib/toad_examples

A-28

Appendi.x B
The TOAD Format (summar=zed)

The Transferable Output ASCII Data (TOAD) format was developed by Computer Sciences
Corporation for NASA Langley Research Center as a uniform way to store and retrieve tabulated data.
A full discussion of the TOAD format is presented in NASA Contractor Report 178361. However,
most readers will find the following abbreviated description adequate for their purposes.

TOAD files are sequential-access, formatted, and use fixed-length records of 80 characters. This file
type makes them simple to edit, write to or read from magnetic media, or send across communications
networks. Unfortunately, these same characteristics make them large compared to their unformatted,
variable record-length counterparts. Therefore, we recommend that TOAD files be used only when
relatively small amounts of data are to be retained (less than 5000 pieces of data), or when any amount
of data must be transferred from one computer to another (usually different) computer via magnetic
media or a communications network.

Blocks of information within a TOAD file are called "warts." Each wart has its own purpose, and may
use one or more records. For example, consider the abbreviated TOAD file below:

BEGIN

SKIP Predicted aerodynamic properties of a modified F-4D fighter
COUNT 9

LABELMACH ALPHA 2Y/B CL-V

CM-V CL-Z CD-Z CM-Z

DATA .85000000E+00 •10000000E+01 .70800000E+00 .97261000E+00

-. 24139000E+00 •88951000E+00 .ii 640000E+00 -. 24754000E+00

DATA .85000000E+00 .I0000000E+01 .79200000E+00 .89415000E+00

-. 27911000E+00 .78920000E+00 .69700000E-01 -. 27105000E+00

DATA .85000000E+00 •10000000E+01 .87500000E+00 .78330000E+00

-.29796000E+00 .65651000E+00 .19080000E-01 -.26920000E+00
END

CD-V

.15166000E+00

.11423000E+00

.72870000E-01

Notice that the file begins with a BEGIN wart and ends with an END wart. The SKIP wart is used to
insert comments inside the file. The COUNT wart indicates lhat there are 9 variables in this TOAD file.
The LABEL wart assigns a 15-character name with each of these variables. Each DATA wart contains
information gathered at some common event. For example, the second DATA wart indicates that at
Mach .85, 10 degrees angle of attack, and at 79.2% semispan lhe full vortex flow coefficients of lift,
drag and moment (CI, Cdand Cm) are .89415, .11423 and -.27911, respectively, while the zero

leading-edge suction coefficients of lift, drag and moment are .7892, .0697 and -.27105, respectively.

The FORTRAN 77 edit descriptors for each type of wart are:

 mLEo_rmat

SKIP 'SKIP ' ,A75 T6,A75

COUNT 'COUNT', I15 T6, I15

LABEL 'LABEL', (5A15) (T6, 5A15)

DATA 'DATA ', (5E15.8) (T6, 5E15.8)

B-I

The following rules must always be observed when creating and using TOAD files:

1. Exactly one BEGIN wart must appear in the TOAD file, and it must be the very firstrecord.

2. Exactly one END wart must appear in the TOAD file, and it must be the very last record.

3. A COUNT wart must appear before any LABEL or DATAwarts.

4. No wart may come between two records within another multi-record wart.

5. SKIP warts may appear anywhere in the TOAD file, subject to condition 4.

6. Multiple DATAwarts are expected. All DATAwarts must contain the same amount of data
and use the same number of records.

7. There is no limiton the number of warts or records in a TOAD tile.

B-2

Report Documentation Page
_'& IlK _r_,tl _l,#_; Y.), Ill ' ,4',!

1. Report No.

NASA CR-187507

4. Title and Subtitle

2. Government Accession No.

Transferable Output ASCII Data (TOAD) Editor

Version 1.0 User's Guide

7. Author(s)

Bradford D. Binge]
Anne L. Shea
Alicia S. Hofler

9. Performing Organization Name and Address

Computer Sciences Corporation
Applied Technology Division
Hampton, VA 23666-_379

12. Sponsoring Agency Name and Address

Hational Aeronautics and
Langley Research Center
Hampton, VA 23665-5225

Space Administration

3. Recipient's Catalog No

5. Report Date

February 1991

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-59-10-03

11. Contract or Grant No.

NAS1- 19038
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring/_gency Code

15. Supplementary Notes

Langley Technical Monitor: Dr. John E. Lamar

16. Abstract

The Transferable Output ASCll Data (TOAD) Editor is an interactive software tool

for manipulating the contents of TOAD files. The TOAD Editor is specifically
designed to work with tabular data. Selected subsets of data may be displayed to
the user's screen, sorted, exchanged, duplicated, removed, replaced, inserted, or
tranferred to and from external files. It also offers a number of useful features
including on-line help, macros, a command history, an "undo" option, variables,
and a full compliment of mathematical functions and conversion factors. Written
in ANSI FORTRAN 77 and completely self-contained, the TOAD Editor is very portable
and has already been installed on SUN, SGI/IRIS, and CONVEX hosts.

17. Key Words ISuggested by Author(s)l

Computer Programs
Software Tools
Data Management
Data Manipulation
Data Storage

19. S_uriW ClassiC. (of this re_rt)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

Subject Category 61

_. SecuriW Cla_ff. (of this page)

Unclassified
21. No. of pages

147

22. Price

A07

NASA FORM 1628 OCT 86

