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ABSTRACT

In 1987 a NASA panel recommended the creation of the Mission to Planet Earth. This
mission was intended to apply to remote sensing experience of the space community to earth
remote sensing to enhance the understanding of the climatalogical processes of our planet and to
determine if, and to what extent, the hydrological cycle of Earth is being affected by human
activity. One of the systems required for the mission was a wide scanning, high gain reflector

antenna system for use in radiometric remote sensing from geostationary orbit.

This work describes research conducted at Virginia Tech into techniques for beam
scanning offset Cassegrain reflector antennas by subreflector translation and rotation.
Background material relevant to beam scanning antenna systems and offset Cassegrain reflector
antenna system is presented. A test case is developed based on the background material. The
test case is beam scanned using two geometrical optics methods of determining the optimum
subreflector position for the desired scanned beam direction. Physical optics far-field results are
given for the beam scanned systems. The test case system is found to be capable of beam
scanning over a range of 35 half-power beamwidths while maintaining a 90% beam efficiency or

50 half-power beamwidths while maintaining less than 1 dB of gain loss during scanaing.
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Chapter 1
INTRODUCTION

1.1 Overview

In 1987 a committee of the National Aeronautics and Space Administration chaired by
Sally Ride proposed the Mission to Planet Earth [1]. The concept of this long-term experiment
is to draw upon the space community’s vast experience with remote sensing from unmanned
inter-planetary probes to assess better the changing climate of Earth [1). High resolution remote
sensing is crucial to the success of this project [2]. It would be advantageous to place these
remote sensing packages in geostationary orbits to allow real-time tracking of developing micro-
scale weather systems such as convective cells and to decrease scene revisit time below what can
be achieved with a reasonable constellation of low earth orbit platforms. Unlike infrared and
visual light imaging, high resolution microwave radiometry has previously been performed from
only low-earth orbits because very large antennas are required at geostationary orbit for good
resolution. Additionally, a radiometric system must be able to repoint accurately its beam
reasonably quickly to achieve the required tracking performance and scanning speed to minimize
revisit time. This beam repointing speed requirement presents a further complication because
the large antennas which are required generally cannot be slewed fast enough without disturbing
both the antenna structure and its shared spacecraft bus. From 1987 through 1993 the Satellite
Communications Group at Virginia Tech worked with the Antenna and Microwave Research

Branch at NASA Langley Research Center to develop reflector antenna systems which achieve
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high gains, and therefore narrow beam widths. while being capable of wide angle beam scanning

without main reflector motion.

1.2 Project Motivation

The original science objectives of the Mission to Planet Earth required a 100-meter class
reflector antenna capable of operating with high beam efficiencies over a frequency range of 10
to 60 GHz to achieve the necessary resolution [2]. Revisions to the intended geophysical science
applications of the radiometric experiment [3] and studies of the size/complexity characteristics
of large space antennas [4] have since reduced the antenna size requirement to a 25 meter
diameter projected aperture. This antenna size will produce a resolution of 20 km at the sub-
satellite point at 18 GHz and still allow the spacecraft system to be launched by a single STS

mission [4].

As mentioned above, beam scanning a reflector antenna of this size by main reflector
slewing is impractical due to mechanical considerations. To avoid main reflector mechanical
motion, beam scanning must be achieved by a combination of feed and/or sub-optic motions.
Purely electrical beam scanning for a high gain, multi-band, wide scanning reflector antenna has
been ruled out because of the immensely complex feed array which would be needed [5]. Also,
scanning schemes which use feed motion are not feasible because even a single feed per band
radiometer is quite heavy and extremely gain sensitive and so should not be moved. Because of
these restrictions, the antenna must be capable of wide angle beamn scanning by sub-optics
motion. The simplest reflector antenna configurations which are capable of beam scanning by
sub-optics motion are the dual reflector Cassegrain and Gregorian systems. From geometrical
optics reflector antenna theory, comparable performing Cassegrain and Gregorian systems can be

synthesized. Cassegrain reflector antenna systems are more compact than an equivalent
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Gregorian system because the subreflector is located between the nain reflector and the focal
point in a Cassegrain system but beyond the focal point in a Gregorian system. For this reason,
this work focuses on Cassegrain reflector antenna systems. The need for an offset main reflector
is the final geometry restriction imposed by the mission requirements. This requirement is
generated by the high beam efficiency (90%) needed for accurate radiometric measurements [3].
The desired characteristics of this wide scanning, high gain reflector system are shown in Table

1.2-1.

Krichevsky and DiFonzo [6] developed a method for designing offset Cassegrain reflector
antenna systems for use on multi-beam communications satellites. Unfortunately, as shown in
Section 3.3, their configuration scans by feed motion and does not place any limits on reflector
size. In 1990, Peter Foldes proposed the Type 6 reflector antenna as a compromise system to
meet these requirements (7). This reflector antenna beam scans by tilting its small subreflector.
Analysis of this system at Virginia Tech using the GRASP7 reflector antenna physical optics
package suggested that its scan range would become extremely limited at higher operating
frequencies as shown in Section 3.4. Virginia Tech began research into the scanning properties
and optimum scanning of offset Cassegrain reflector antennas in cooperation with the Antenna
and Microwave Research Branch at NASA Langley Research Center. This thesis presents the

results of that research.
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Table 1.2-1. Required characteristics of a wide scanning. high gain. geostationary
radiometric reflector antenna system

Operating frequency 20 - 60 GHz
Maximum half-power beam width (HPBW) 0.04°
Beam efficiency (BE) > 90%

+7

Scan range

suboptic motion or

Scanning mechanism
simple array feed

Aperture efficiency (¢,,) >70%
Main reflector diameter (Dy,) <25 m.
2
Areal efficiency % as high as possible
Dy” + Dg
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(1]

(2

(3]

(4]

[5]

(6]

(7]
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Chapter 2
REFLECTOR ANTENNA SYSTEM GEOMETRY

The electrical properties of reflector antenna systems depend primarily on the ratio of
the focal length of the reflector to its diameter. This quantity, F/D, determines the level of edge
taper due to geometrical effects, the required directivity of the feed antenna, and, for offset
systems, the cross-polarization level. Further, of particular interest to this study of scan
behavior, the scanning performance of reflector antenna systems degrades as F/D decreases for a
given aperture size. F/D cannot be decreased to much less than unity because then the surface
area of the reflector increases at a much greater rate than the projected aperture area. Since the
feed must be placed at the focal point and supported by a boom, the constraints on the
minimum F/D value require a deep structure which increases the mechanical complexity and
weight. The mechanical depth of a reflector antenna system can be reduced by using a
secondary reflector to form an image of the feed at the focal point of the main reflector
paraboloidal surface. In addition, the use of folded optics allows the feed to be located in a

more convenient position.

The two classical types of dual reflector antenna systems are the Gregorian system and
the Cassegrain system. In a Gregorian reflector antenna system, an ellipsoidal subreflector is
mounted farther from the main reflector surface than the focal point of the main reflector
paraboloid. Although this method allows a longer electrical focal length for a given main

reflector paraboloid, the system is still quite deep since the subreflector must be mounted
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beyond the focal point. The focal length, and therefore F/D of the main reflector surface. of this
type of system is still limited by the requirement of mounting the subreflector beyond the focal
point. The Cassegrain reflector antenna system, which is the system of interest here, consists of
a hyperboloidal subreflector mounted between the main reflector surface and the focal point of
the main reflector paraboloid. In this system, the length of the reflector antenna system is
reduced compared to the Gregorian system since the subreflector is mounted closer to the main
reflector surface. This difference allows the main reflector surface of a Cassegrain rt:ﬂector

antenna system to have a higher F/D value but still allows the antenna to be built with a

relatively short support structure for the subreflector.

This chapter explains how the Cassegrain reflector antenna system evolves from the
prime-focus paraboloidal reflector antenna system. The concept of the equivalent prime-focus
paraboloid is introduced for the Cassegrain reflector antenna system. A method for determining
the geometry of an offset Cassegrain reflector antenna system which has an axi-symmetric

equivalent paraboloid is given. Finally, the test case which will be studied is specified.

2.1 The Prime-Focus Paraboloid Reflector Antenna System

The prime-focus paraboloid reflector antenna system consists of a paraboloidal main
reflector and a feed located at the focal point of the main reflector. The equation that defines

the main reflector surface, as shown in Figure 2.1-1, is

2 2
iTy, (2.1-1)

ZM =
where
Fy = focal length of the paraboloid.

The focal point of the paraboloid is located on the z-axis and the vertex of the paraboloid is

located at the origin. In general, the physical reflector is a section of the parent paraboloid and
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Main reflector (M)

Aperture plane (A)

&
Vv

y Focal point (Fpy) z

Figure 2.1-1. Prime-focus paraboloidal reflector antenna system geometry.
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can be either axi-symmetric or offset. In the case that the physical reflector is offset. the feed is
located at the focal point on the z-axis but is tilted to evenly illuminate the physical reflector.
A paraboloidal main reflector is used because a spherical wave leaving a point source located at
the focal point will be transformed into a planar wavefront exiting the aperture of the antenna.
This requirement is equivalent, in a geometrical optics (GO) sense, to the requirement that all
rays traced from the feed point exit the aperture of the antenna system perpendicular to the
aperture plane after reflection from the paraboloidal surface [1]. The correct main rn;ﬂector
shape is verified by substituting the incident and reflected ray unit vectors, T, and T, at the

main reflector and the unit normal of the surface, i)y, into Snell’s law.

For the prime-focus reflector antenna system shown in Figure 2.1-1, a ray from the feed
point, {0, 0, Fy }, to any point on the reflector surface, {xM, YMr ZM }, is
Fp={xm% yu¥ (y-Fy) %) (2.1-2)

Since the length of this ray is

It = \/"M2 +ym’ 4+ (zm-Fp)? (2.1-3)

the unit vector of a ray from the feed point to any point on the reflector surface is

P2 = (Vo + 0+ Caa-Fyg? ) { e iy (ong- Fip) 5 ! (2.1-4)
The unit vector of a ray exiting the aperture in the z-direction is

f,={0,0,1). (2.1-5)

The required surface shape can be verified by substituting (2.1-4) and (2.1-5) into Snell’s

law. Snell’s law, expressed in vector notation, is

T =r,- 2(T, iy IOy (2.1-6)
where

flyy = the inward unit normal of the main reflector paraboloid at the point of reflection.

An inward normal vector at the paraboloidal main reflector surface is
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~ -OxXp o O¥m o ‘%MA}

For the paraboloidal surface given by (2.1-1)

'Q"ZM = T;:AA (2.1-8¢)

'agzM = 2_{% (2.1-8¢)

_‘?5_:4. -1 (2.1-8¢)
50

fy = { T il a}. (2.1-9)
Since the length of this normal vector is

. JXM2 + yM2 + 4FM2

|yl = 7Ty , (2.1-10)
the unit vector normal to the paraboloidal surface is

i = (Vo + o + 4Fy? ) {- xuRe - yud 2Py} (2.1-11)

Substituting the incident ray unit vector (2.1-4), the reflected ray unit vector (2.1-5), and the
inward normal unit vector at the point of reflection (2.1-11) into Snell’s law (2.1-6) and

expressing the result as equations for each of the x, y, z components gives:

XM 9(7 .5 — XM
= -2 . 2.1-12
0 = - = (Ty-fim) = T ( a)
xm” +ym° + (2m—Fum) XM~ +yMm° +4Fy
0= —— M — = 2(F,-iim) M (2.1-12b)
\/"M +ym” + (2m—Fpm) \/)(}‘,12+3r’,\42-+-41-‘M2
Fy- N 2F
1= (Fa-2m) = = 2(T,-fiy M _ (2.1-12¢)
\/XM2+YM2+(ZM_FM)2 \/XM2+yM2+4FM2
where
~ -~ I : : I : 2 )1
(rz-nM)z( xM2+yM2+(zM_FM)2 XM2+yM2+4FM2)

[ xm? = ym? + 2Py (e~ Fap) | (2.1-13)
Equation (2.1-12) is simplified by manipulating the radical in the denominator of the T, terms

into the form of the fiy, terms. Expanding the radical in T, and substituting (2.1-1) for z) into
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(2.1-12) leads to

2 2 .
\/ : 2 Fy)’= 2hyg (I ) (2.1-14)
XM +)’M +(ZM° M) = XM +)M + 4FM M -

2
: L ' ' ;2. 2 2 .
= AM \/IGFMIXM2+16 Fu? o+ xnyp 4 Fyy )" 21115)

2, 2 4, 9. 2.2
=3;1~—M\/16FM2"1\12+ 16 Fa"yng™ + xp™ + 237 vy

- 8FyPxy? - 8FyPya? + vyt + 16Fy'  (2.1-16)

1 2, 2 2, 2 49,2, 2
=WJ8FM XM +8FM yM +XM +.2er )M

+ ymt + 16Fy? (2.1-17)

= ‘ﬁ. \/(xM2 +yu® + 4Fy? )’ (2.1-18)
which is the form of the radical in the fi terms of (2.1-12). Substituting (2.1-18) into (2.1-12)

and (2.1-13) gives

4Fpxy PN - XM
0= 3 -2(7;-q) (2.1-19a)
XM2+.YM +4FM2 ! \/xM2+-vM2+4FM2
4F -
0=—— MM ____ »(55) M ' (2.1-19b)
M+ ymt+4Fy \/xM2+yM2+4FM2
4Fy\ (Fpg- 2F
1= — Ml M M) - 2(F ) ——= M (2.1-19¢)
XM +.YM +4FM \/xM2+yM2+4FM2
where
(Fy-Rpy)=4F %"= y® + 2Fy (- Py (2.1-20)
L M ( 2 2 2 2 2 2 )
Xp +)’M +4FM XM +yM +4FM
Defining
¢ = xp + vy + 4F)? (2.1-21)

and using ¢ in (2.1-19) with (2.1-20), yields the following equations that correspond to the

Cartesian component equations of (2.1-12)
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AF 8F . -
0= -—’”’:‘—"M + 7M “xp? - yag? + 2Py (o Fan) | xu (2.1-22a)
4F 8F A N
0= __bg.ZM. + -?iM - xMZ - yM2 + 2FM (ZM-FP\J)] yM (21-32&)
; F
1= Mgﬂ Fm) 8<2M [ xu? - v + 2Fp(zm-Fap) | 2P (2.1-22a)

Substituting (2.1-1) into the bracketed term common to (2.1-22a), (2.1-22b), and (2.1-22c) gives

[’ xMz'yM2+2 Fy (ZM‘FM)] = [- XM2 - yM2 + 2F\yzpm-2 FMz] (2.1-23)
= L[2x® - 2ng? + x? + vad® - 4P (2.1-24)
= %[xM2 + yM'2 + 4FM'2] = _2(: (2.1-25)

The satisfaction of the x and y components of (2.1-12) by the paraboloidal main reflector shape

is verified by substituting (2.1-25) back into (2.1-22)

0= AFmxm AP X (2.1-26a)
4 ¢
Ll VE VL) VE4 Y (2.1-26b)
¢ ¢
_ 2
1= 4FM(’<M Fm) SF(M : (2.1-26¢)

The satisfaction of the z component of (2.1-12), shown in (2.1-26c), is verified by substituting

(2.1-1) into (2.1-26¢). This substitution and simplification gives

4F 4Fy [ xm® + yu°
1= CM (zm+Fpm) = CM(M4FMM + Fy (2.1-27)
2 2 2
APm xm” tym 4P ) (2.1-28)
¢ AFy ¢

The equalities of (2.1-26a), (2.1-26b), and (2.1-28), derived by enforcing Snell’s law at the
reflector surface, prove that the paraboloid focuses the rays from a point source feed at the focal
point to infinity as a prime-focus reflector antenna system. Although this method of GO
raytracing can be used for synthesis, it is desirable to have a simpler synthesis method that does

not require taking derivatives at the surface.

Reflector Antenna System Geometry » 12



2.2 The Levi-Civita Theorem

The proper reflector surface shape for a prime-focus antenna system can also be
determined by imposing an equal path length constraint on each ray traced from a feed point at
the focus to the reflector surface and leaving the reflector antenna system in a direction
perpendicular to the aperture plane. The Levi-Civita theorem [1] states that, for a set of rays
which exit a single reflector antenna system mutually parallel and strike a reference plane, the
following two conditions are equivalent:

(1) The path length of every ray from the source to the reference plane must be equal.

(2)  Snell’s law is satisfied at the reflector surface.
Since the rays in a focused prime-focus reflector system exit the system mutually parallel,
p
present a planar phase front in the aperture, and undergo a single reflection in the antenna

system, this theorem can be used to determine the proper shape for its reflector surface [1).

The reflector shape of a prime-focus paraboloidal reflector antenna system can now be
found by determining the path lengths for rays traced from the feed point to the aperture after
reflection from the reflector surface. The reflector is assumed to have a feed point at z = F on
the z-axis and to have a parent surface which passes through the coordinate system origin as
shown in Figure 2.1.1. As in Section 2.1, where the shape was verified by enforcing Snell’s law
at the reflector surface, the desired direction of propagation is along the z-axis. Unlike in
Section 2.1, the correct reflector shape will be found directly rather than verified. The length of
any ray from any point on the reflector surface to the aperture plane is

lﬁ,l:zA-zM (2.2-1)
where

z5 = the location of a point in the aperture plane along the z-axis

Reflector Antenna System Geometry 13



{ xmr Ymr Iy} =2 point on the reflector surface.

As shown in Figure 2.1-1, the distance from the point feed at the focus, {0, 0, Fy;}. to any point

on the reflector surface is

[Ral= Vo + 0’ + ae-Fao” - (2.2

To satisfy condition (1) of the Levi-Civita theorem

IRy |+ |Rol=2a - 2m + / xu® + ¥0a® + (am-Fw)? =L, (2.2-3)
where
L, = the constant path length for all rays.

Rewriting (2.2-3) and squaring both sides

Voo + v+ Gu-Fa)? = Ly-zp + o (2.2-4)

xm? + ym? + (em-Fm)? = (L - 24 + 2% (2.2-5)
After expanding the squared terms, (2.2-5) results in

xpZ + Ym2 + 2l - 2Pz + Fyl = LP2 -2Lzp + 2Lz + 2,2 - 22, 25y + 2)42(2.2-6)
Evaluating (2.2-5) at the coordinate origin (0, 0, 0) gives

L, =z + Fy- (2.2-7)
Substituting this expression for the constant Lp into (2.2-6) gives

xM2 +yM2 + zMz- 2F gz + FM2 = zA2 + 2Fyz4 + FMz- 2zA2- 2Fpqzp + 222 +

2Fpqzy + zAz -2z + zM2. (2.2-8)
After simplification, (2.2-8) becomes
2 2
Xxmo+ Yy
M4 MM = 7. (2.2-9)

This is the equation for a paraboloid as given by (2.1-1). This establishes the paraboloid as the
proper shape for the reflector of a prime-focus reflector antenna system and shows that this
shape can be developed from either Snell’s law or the equal path length constraint. The
simplicity of the equal path length condition compared to the verification using Snell’s law
presented in Section 2.1 is striking and is of great value. It suggests that the equal path length
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should be used when examining the more complex dual reflector antenna systemn.

2.3 The Canonical Cassegrain Reflector Antenna System

The canonical Cassegrain reflector antenna system consists of a paraboloidal main
reflector surface, a hyperboloidal subreflector surface mounted with one of its focal points
coinciding with the focal point of the main reflector surface shape, and a feed located at the
second focal point of the hyperboloidal subreflector. The equation which defines the paraboloid
of revolution that forms the main reflector surface, as shown in Figure 2.3-1, is given by (2.1-1).

The general second order equation which defines the subreflector surface, as shown in Figure 2.3-

1, is

Axs® + Bxgys + Cys? + Dxg + Eys + F = Gag® + Hzg + Ixgzg + Jygzg (2.3-1)
where

A = 4(p%- a?) F =62 40®(xp? + yp,2 + 0?)

B=88y G = 4(a?- §?)

C=4(y*-a?) H = -4(60+ 2072,

D=4(60+202xm) I=-836

E=4(70+202yn) J =875

o= \/(xﬂ'xf2)2 + (yne' er)2 + (2n 'Zrz)2

B = (xep-xqy) Y = (Ye-¥n) b= (213-2)

b= x,7 4y % + 252 X0’ - ¥p? - 2% - o,
fl, f2 = the two focal points of the hyperboloid,
e = the eccentricity of the hyperboloid.
The details of the derivation of this equation have been omitted due to their length. In the

Cassegrain reflector antenna system, the hyperboloidal subreflector surface is used because the
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Figure 2.3-1. Cassegrain reflector antenna system geometry.
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focal points of the hyperboloid are conjugate points. That is, an image of the feed placed at the
second focal point of the hyperboloid is formed at the first focal point of the hyperboloid which
is located at the focal point of the paraboloidal main reflector surface. The subreflector surface
is chosen to be on the branch of the hyperboloid which is closer to the focal point of the main
reflector. As with the prime-focus paraboloidal reflector antenna system, in general, the
Cassegrain reflector antenna system can be either axi-symmetric or offset. In either case, the

physical main reflector and subreflector are sections of the surface of the parent paraboloid and

hyperboloid, respectively.

The imaging property of the hyperboloidal subreflector can be simply shown through
the use of an extension of the Levi-Civita theorem discussed in Section 2.2, Xianzhong [3] has
extended the Levi-Civita theorem to include arbitrary focused dual reflector antenna systems.
Xianzhong starts by assuming a set of rays which emanate from a point source at the focal point
and reflect through the dual reflector system shown in Figure 2.3-2 [3]. The rays exit the
aperture mutually parallel and strike a perpendicular reference plane. Xianzhong considers three
restrictions on the set of rays:

(1)  The path length of every ray from the source to the reference plane must be equal.
(2)  Snell’s law is satisfied at the main reflector surface.

(3)  Snell’s law is satisfied at the subreflector surface.
If the rays satisfy any two of these conditions, then the remaining restriction is satisfied
automatically [3]. The proof uses an arbitrary dual reflector system including an aperture plane,

A, a main reflector, M, and a subreflector, S. The equations for these surfaces then are (3]

25 = Zg(Xs ¥s) (2.3-2)
Iy = zM(xM, YM) (2.3-3)
2y =2, (where z, > [zM]m“). (2.3-4)

where x, y, and z are the coordinates of the intersection of the ray with the surface indicated by

Reflector Antenna System Geometry 17



Aperture plane (A)

\

{Xas Yar 2a}

\

Main reflector (M)

(x> Ym> ZM}

Subreflector (S)

Figure 2.3-2. General doubly reflected ray geometry as used by Xianzhong [3].
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the subscript and z, is the z-coordinate of the intersection of the ray with the aperture plane.
The z-axis is taken to be normal to the reference plane and the rays which strike the plane are
parallel to the z-axis [3). The unit vectors 3, Ty, and T, are the unit vectors of one of the rays
which is reflected through the system as indicated in Figure 2.3-2 (3]. If Snell's law is enforced

at the subreflector and main reflector, then

(%) (cosa - cosf, ) (2.3-5a)

Oxg )~ (coss, - cosa, )
Ozg (cosa, - cosf v) ‘
(ays) (cosp, - cosa,) (2.3-5b)

at the subreflector and

Ozy cosf, '
(axM) (1- cosp, ) (2.3-6a)
Ozy cosﬂ
(ﬁyM> (1- cosa,) (2.3-6b)

at the main reflector [3]. The constant path length through the system, L, is

_ 2 2 2 ' - .

Lp = \/xs +ys® +25° + \/(xM-xS)Q + (yM-yS)Z + (zM—zS)z + (2a72M) - (2.3-7)
Xianzhong solves the system by taking the partial derivatives of (2.3-7) considering

either x)y and yy or Xg and yg to be the independent variables in the system. If the main

reflector parameters, X)\ and yg, are considered independent, then

(52 ) = (32 s - oo (ot - o (2]

() s - o) o ) (2]

+ [cosﬂx - (1- cosBy) (3;:: )J (2.3-8a)
()= (3 o - e, oy ()]

+ (;’yL;) [(comy - cosfl) - (casB, - cosa,) (3’7:)}
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+ [cosﬁy - (1 - cosB,) (g;—l:\ll)] (2.3-8b)

If the subreflector parameters, xg and yg, are considered independent, then

(gésg) - [(cosax - cosf, ) - (cosf, - cosa‘)(azs )]
(3);’;4) [COSﬂ COSBz) (g)z(_i:)]
( %ix';i ) [cosﬂ - costt) (g;_x )] ('..’-.3-9a)

+ (%’;ﬁs’l) [cOSﬂx - (1 - cosf,) (%)]

°’|

ByM BZM 9
+ (Tyg) [cosﬂy - (1 - cosB,) (ﬁ_y-;,; . (2.3-9b)
If the Snell’s law requirements, (2.3-5) and (2.3-6), are satisfied and substituted into (2.3-9),
then
oL
=== 2.3-
(3xs) 0 (2.3-10a)
oL
—Pl=09¢ 2.3-10b
(52) (23100

so the minimum path length constraint of Fermat’s principle is satisfied and the first restriction
that Xianzhong considers is proven [3]. Alternately, substituting (2.3-5) and (2.3-6) into (2.3-8)

gives

(fll) =0 (2.3-11a)
3xM

0Ly =0 (2.3-11b
V) A A1)

The other possible combinations of imposed and automatically satisfied restrictions are also

considered by Xianzhong and are stated to be correct [3].

This extension of the Levi-Civita theorem makes the analysis or synthesis of the

geometry of the canonical Cassegrain reflector antenna system significantly simpler. The Levi-
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Civita theorem and the analysis of Section 2. or the analysis of Section 2.1 show that Snell's
Law is satisfied at the reflector surface for any ray in the focused prime-focus paraboloidal

reflector antenna system. Because the main reflector surface in a canonical Cassegrain reflector

front centered on its first focus when illuminated by a point source at its second focus, the
results of the preceding analysis of the prime-focus paraboloidal reflector an.cnna system can be
used to assure the satisfaction of conditjon (2) of the Xianzhong extension of the Levi-Civita

theorem for dual reflector antenna systems.

Condition (1) of this extension can be shown to be satisfied for the hyperboloidal
subreflector because the defining characteristic of the hyperbola is that the difference in the
distances from any point on the hyperbola to the foci is constant. A distinction is made
between the path length of a ray in the prime focus system, Lpp[., and the path length of a ray
in the Cassegrain system, chus., through (2.3-15). For the hyperbola shown in Figure 2.3-1 the
defining characteristic can be written as

dp - dy, = 22 (2.3-12)
where

dgy, dg, = the distances from fl and f2 to a point on the subreflector,

fl, £2 = the focal points of the hyperboloid,

2a = the distance between the foci of the hyperbola,

e = the eccentricity of the hyperbola.
From (2.2.3)

[Ry|+|R,|= Lopr, (2.3-13)

where

the feed point.
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A hyperboloidal subreflector located in the reflector system with one focus at the focus of the
main reflector paraboloid and the other focus at the desired feed point will reduce the length of
any ray reflected from the hyperboloidal surface by the distance dpy, the distance between the
point on the subreflector and focal point fl, and increase the length of any ray reflected from the
hyperboloidal surface by the distance dp,, the distance between the point on the subreflector and
focal point f2, as shown in Figure 2.3-1. Therefore, the length of any ray which reflects through
the antenna system is -

IRy |+ | Ryl + dpz - diy = Lpcass. = Lppr. + 28 (2.3-14)
Since the analysis of Section 2.2 shows that Lppf.’ the path length of any ray in the prime-focus
reflector antenna system, is constant, (2.3-14) shows that Lo .. is constant from the definition
of the hyperbola. Thus, condition (1) of the Xianzhong extension of the Levi-Civita theorem is
satisfied. Condition (3) is also now known to be satisfied since all of the other conditions have
been shown to be satisfied. Avoiding direct application of Snell’s law at the subreflector surface
through the use of this theorem is advantageous it is more difficult than the calculation of the

total path length.

2.4 The Equivalent Paraboloid

The equivalent paraboloid of a dual reflector antenna system is a mathematically
constructed prime-focus paraboloidal reflector antenna which produces the same aperture field
distribution as the dual reflector antenna system. The equivalent paraboloid has been found to
be an accurate predictor of the electromagnetic performance of the modeled dual reflector
antenna system but with the advantage of requiring far less computational effort [4]. Rusch et
al. [4] developed a general definition of the equivalent paraboloid for offset Cassegrain and

Gregorian dual reflector antenna systems with arbitrary aperture shape. The development
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presented here will concentrate on the case of the canonical Cassegrain reflector antenna system,
The notation of Rusch et al. [4] will be used through the end of this chapter to maintain

consistency with the referenced article.

Figure 2.4-1 shows the geometry and definition of variables which Rusch et al. [4] use in
the derivation of the general equation of the equivalent paraboloid of a Cassegrain reflector
system. Rusch et al. [4] use four Cartesian coordinate systems: {xp. Ypr 2, } and {x y,, z,}
which have their origin at the focal point of the main reflector surface and {xp ¥p 27} and {xg,
Ya zg)} which have their origin at the second focal point of the subreflector surface. Each
coordinate system also has an associated spherical coordinate system. The main reflector surface

is paraboloidal and the subreflector surface is hyperboloidal. The main reflector surface is given

by
_ _2F .
= TF cosd, (241
where

F = the focal length of the paraboloidal main reflector surface.
The subreflector is defined by

Pr- ps = % (2.4-2)
where

2¢ = the interfocal distance of the hyperboloid,

e = the eccentricity of the hyperboloid.

The formulas

_ cle? . 1)
Pt e(ecosfy - 1) (2.4-3)

(] -

8 _le-10] 81 .
Lan? = m [tan?‘ y (24-4)
derived from (2.4-2), and the identity
m-f, 6, |1

tan 5= = tan,—z- (2.4-5)
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Figure 2.4-1. Geometry definition of the general Cassegrain reflector antenna for the
Rusch et al. development of the equivalent paraboleid [4].

Reflector Antenna System Geometry



are useful in determining the geometrical optics aperture field due to a point source located at
the second focus of the hyperboloidal subreflector.

Rusch et al. [4] now find the aperture field at a point A due to a spherical wave

emanating from the feed point. The magnitude of this field at a point in the aperture is given

by
Ex = E(8 ¢1) pp | (2.4-6)
A= 2% %) ooy (=
where

E(8;, ¢;) = the field pattern of the feed expressed in the spherical feed coordinate system.

Rusch et al. [4] develop the ,—,fpi amplitude term as a function of f; and &¢ using the formulas
P

cos0p = cosf, cos 3 - sin 6, cos ¢, sin 3 (2.4-7)
sind, = £l sing, (2.4-8)
S
pgcosdy - 2¢
cosf, = ! Pf (2.4-9)

and the identities
sinf cosdg = sin b cos ¢y cosar + cos ¢ sin (2.4-10)
cosfy = -sin b; cos ¢ sina + cos b; cosa. (2.4-11)

After substitution, they show that

P 2¢(1-ecosp . .
lep:TlF[l - ( epr )+sm0f cos @y sin(a + B)- cosf cos(a + ﬂ)] (2.4-12)
Since the angle  has not been used yet, it can be chosen arbitrarily. Rusch et al. [4] set a so

that the zr-axis is aligned with the axis of the equivalent paraboloid. This selection causes (2.4-

12) to reduce to

Ps _ 1+ cosb; .
PiPp — 2Feq (2.4-13)
where
2
e -1
F_=F I ' (2.4-14)

€a (e2+l)-2ecosﬂ'
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So (2.4-6) now has the form

E, = E(by ¢0) (2.4-15)

Peq

which is the aperture field distribution of a prime-focus paraboloidal reflector antenna system

with a focal length of F.. Finally, (2.4-12) can be solved to determine the required feed tilt

angle, a:
2 .
P L DE LY. (2.4-16)
(e2 + 1)- 2ecos 3
2
cosa=(e + l)cosﬂ-2e. (2.4-17)
(e2 + l)- 2ecos

These equations can be combined to form

(ez- l)sinﬂ )
— 2.4-18
tan « (e2+l)cosﬂ-2e ( )

or

tan % = ee'f' 11 tan g (2.4-19)

Either (2.4-18) or (2.4-19) can be used to find the required feed tilt for an equivalent paraboloid

of focal length Feq which will model the Cassegrain reflector antenna systern.

Rusch et al. [4] caution that this model is based on geometrical optics principles applied
to a focused reflector antenna system. Although defocusing and diffraction effects are ignored,
the equivalent paraboloid should provide a reasonably accurate prediction of the near-boresight
aperture and radiated fields of the focused dual reflector system it models. In order to minimize
these effects, Rusch et al. [4] recommend that the equivalent paraboloid model not be applied to
systems which have a subreflector smaller than approximately 10 wavelengths or an edge

illumination taper of less than 10 dB on the subreflector.

To demonstrate the accuracy of the equivalent paraboloid as a model of a focused dual
reflector system which satisfies the restrictions of (2.4-14) and (2.4-16) through (2.4-19), Rusch
et al. [4] considered the system shown in Figure 2.4-2. The far-field electromagnetic
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Figure 2.4-2. Geometry definition of a Cassegrain reflector antenna system with a

circular aperture as used by Rusch et al. [4).
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characteristics of this system and its equivalent paraboloid were calculated using physical
optics/surface integration. The characteristics of this system are shown in Table 2.4-1. Figure
2.4-3 [4] shows the principal and 45" plane far-field radiation patterns for the Cassegrain system
and its equivalent paraboloid. The equivalent paraboloid has a gain about 0.5 dB greater than
the Cassegrain system but otherwise predicts the co-polarized antenna pattern of the Cassegrain
system fairly accurately down to as low as 30 dB below the peak. The accuracy of the cross-
polarization level prediction by the equivalent paraboloid is not discussed by Rusch et ;l. [4].
Rusch et al. [4) attribute the differences between the co-polarized patterns of the systems and

the cross-polarized component of the Cassegrain system to diffraction effects and spillover at the

subreflector surface.

Because the equivalent paraboloid of a dual reflector antenna system is derived under
the assumption of a focused system, the equivalent paraboloid is a poor predictor of scan
performance. Figure 2.4-4 [4] shows how the accuracy of the performance of the Cassegrain

system predicted from the equivalent paraboloid degrades with beam scanning.

25 The Minimum Cross-Polarization/Spillover Condition for Offsct Dual Reflector Antenna
Systems

The second reflector surface in a dual reflector antenna affords the antenna designer
additional degrees of freedom in the synthesis of the antenna system. This can be of value
during antenna synthesis to improve the performance of the antenna system. For instance,
because the main reflector and subreflector can be shaped in a dual reflector system, the designer
can develop antenna systems ranging from a spherical main reflector with a phase correcting
subreflector for wide-scanning to gain-optimized systems where the subreflector and main
reflector are shaped to give a desired aperture distribution. The equivalent paraboloid concept
suggests a fundamental configuration selection possibility. If the equivalent paraboloid for a
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Table 2.4-1. Reflector geometry used by Rusch et al. [4] to verify the accuracy of the equivalent
paraboloid far-field pattern predictions.

Main reflector focal length (F) 62.5

Main reflector diameter (D) 100 A

Main reflector offset height (d,) 75 A

Feed tilt angle (a) 26.64°

Subreflector axis tilt angle (3) 9°

Subreflector eccentricity (e) 1.996

Subreflector interfocal distance (2¢) 20412

Equivalent paraboloid focal length (Feq) 179.13 A

Feed type circularly symmetric

cos? with 10 dB edge
illumination
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Figure 2.4-3. Equivalent paraboloid physical optics far-field pattern analysis results for
the Rusch et al. system of Table 2.4-1. Principal and 45° plane pattern cuts
for the Cassegrain reflector antenna system and its equivalent
paraboloid [4].
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dual reflector antenna system with a circular aperture is axi-symmetric, the cross polarized field
component radiated by the antenna due to geometrical offset effects and the antenna efficiency

reduction to spillover effects will be simultaneously minimized [4].

Rusch et al. [4] developed a technique based on the equivalent paraboloid concept for
simultaneously minimizing feed power spillover and the cross-polarized field component. Figure
2.4-2 [4) shows the geometry used in this development. The most significant change from the
geometry used in the development of the equivalent paraboloid is the introduction of Degr the
diameter of the equivalent paraboloid, and d"eq’ the offset distance of the equivalent paraboloid.
Because the development of the equivalenvt paraboloid, as presented above, is intended to be
valid for any ray which reflects from the feed point through the dual reflector system, the
equivalent paraboloid is shown to exist but its dimensions are not determined. Specializing this

development to dual reflector systems which have circular apertures, allowed Rusch et al. [4] to

show that D = D, and also find d_ , the offset height of the equivalent paraboloid.
eq

Rusch et al. [4]) use (2.4-4) , in the y = 0 plane, to write

tan (9, : a) = ':_;_ lll tan(a éﬁ)]-l. (2.5-1)

By expanding the tangent terms and using (2.4-19), they showed that

6, e2 +1-2ecosf #\1 9e . .
tan 5 = Y (tani) eI sin 8. (2.5-2)

Rusch et al. [4] used clockwise angles as negative and use 8, and 6] to represent the angle
e eq

q

between the upper and lower equivalent paraboloid edges and the z-axis. These conditions

lead to:
By 9
D,, = 2F,, (tan — - tan 2‘") (2.5-3)
by 6
d°eq = Feq(t.an —;9- + tan %) (2.5-4)
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Substituting (2.4-14) and (2.5-2) into (2.5-3) and (2.5-4) gives

4 0
= | u_ 96
Deq_2F(tan 3 - tan -,2—)_D (2.5-5)
and
2esin 8 .
d, =(d,-2F 2.5-6
%eq (° e2+l-2ecosﬂ) ( )

where 0] and 8, are the angles between the lower and upper edges of the physical paraboloid of

the Cassegrain system and the z-axis as shown in Figure 2.4-2 [4), Setting d, = 0 allows the
eq

solution of (2.5-6) for the required g for an axi-symmetric equivalent paraboloid:

6 2e si .
tan o = 250/ (2.5-7)
e +1-2ecosf

where the angle 6., as shown in Figure 2.4-2 [4], is the angle between the center of the aperture
projected onto the main reflector surface and the -z-axis. In general, radiated cross-polarized
fields can be minimized by aligning the feed along the axis of the equivalent paraboloid [4]. The
Rusch condition, (2.5-7), forces the axis of the equivalent paraboloid to align with the angular
center of the subreflector. This alignment will simultaneously minimize the radiated cross-
polarized field component and the spillover [4] and will give the offset Cassegrain reflector
antenna system unscanned characteristics similar to those of the axi-symmetric prime-focus

paraboloidal reflector antenna system.
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Chapter 3
BEAM SCANNING IN CASSEGRAIN REFLECTOR ANTENNA SYSTEMS

The radiation characteristics of a Cassegrain reflector antenna system are degraded
when its main beam is scanned away from the focused boresight direction. The gain of the
antenna and the symmetry of the pattern are reduced while the beamwidth and the sidelobe
levels are increased. The factors which lead to this degradation must be minimized to achieve
good performance during even moderate beam scanning. This chapter identifies the major
factors which contribute to the degradation of antenna performance during beam scanning and
presents two previous methods of beam scanning for the offset Cassegrain reflector antenna
system. This material offers insight into the beam scanning properties of the offset Cassegrain
reflector antenna system and facilitates the development of the simplified error functionals in

Chapter 5.

3.1  Principles of Beam Scanning

Beam scanning in any antenna system requires a tilted aperture phase surface [1). This
phase taper can be achieved either mechanically by moving the antenna feed system or
electrically by imposing a phase taper with an array feed. This work is intended to determine
the optimal mechanical motions for beam scanning in an offset Cassegrain reflector antenna

system.

To create an asymmetric phase distribution across the aperture of a reflector antenna,
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the antenna system feed phase center must be moved laterally away from the unscanned feed
point. In the offset Cassegrain reflector antenna system this movement can be achieved either
by physically moving the feed or by repositioning the subreflector to create a virtual feed
movement. While any asymmetric aperture phase taper is sufficient for beam scanning, the

formation of a clean scanned beam requires that two sources of beam degradation be minimized;

these are discussed in the remainder of this section.

3.1.1 Nlumination Error Effects

Aperture illumination amplitude error is a major source of antenna performance
degradation during beam scanning. In an offset Cassegrain reflector antenna system, the
significant source of illumination amplitude error during beam scanning is misalignment of the
illumination pattern with the main reflector caused by the lateral feed translation. A small
amount of illumination error is also introduced during beam scanning by edge illumination taper
changes resulting from axial feed translation. Illumination misaligment, illustrated in Figure
3.1.1-1, can be significant in subreflector scanned offset Cassegrain reflector antenna systems
because the required subreflector tilt repoints the central ray from the feed away from the center

of the main reflector.

The effects of the illumination misalignment error can be estimated for an offset
Cassegrain reflector antenna system by inducing feed mispointing in the equivalent paraboloid
since feed mispointing does not induce defocusing. In order to estimate the effects of
illumination misalignment on the far-field pattern on a Cassegrain reflector antenna, uv-plane
patterns were generated for its equivalent paraboloid using the TICRA GRASPT7 numerical
electromagnetics code using physical optics surface integration analysis. As will be discussed in
Chapter 4, the equivalent paraboloid of the test case is axi-symmetric and has a diameter, D,
of 10.63 meters and a focal length, F,;, of 42.48 meters. Viewed from the feed, the equivalent

BumSunninginCa-eyﬁchﬂectothmSysumu 36



Main reflector physical aperture Illumination pattern amplitude contours

AR,q

Figure 3.1.1-1. lllumination misalignment in the equivalent paraboloid.
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paraboloid subtends a half-angle of 2 159°. For this analysis the reflector was fed by standard
Gaussian feed patterns with reflector edge illuminations of -5, -10, -15, -20, and -25 dB. The
edge illumination specified for the study of illumination misalignment does not include the
spherical spreading loss edge taper, but this effect is less than 0.04 dB. Scan induced
illumination misalignment was simulated by pointing the center of the illumination away from
the center of the reflector in steps of 0.2 reflector radii, Ry, up to a maximum of 2R,,. The

maximum illumination misalignment of 2R, was chosen because it causes the feed pattern to

just miss the reflector surface.

The actual gain of an aperture antenna, G, is given by

dr A 47 A .
G= A2 £ = €ap :{2 (3.1.1-1)

where A is the area of the projection of the main reflector into the aperture plane, and A is the
wavelength of operation. The effective aperture area, A, = 6,pA, where €, is the aperture

efficiency of the antenna. Aperture efficiency can be factored as:

€ap = EspEill = EspCamp o (3.1.1-2)

where ¢, is the spillover efficiency of the reflector antenna system, & is the illumination

P

efficiency of the reflector antenna, €, is the illumination amplitude efficiency of the reflector

antenna, and €4 is the illumination phase efficiency of the reflector antenna. Spillover efficiency

/ / P,(r,0) dA

— A
€ap = - (3.1.1-3)

is defined by

where P;(r,8) is the power density incident on the reflector aperture and P, is the total power
from the reflector feed antenna. lllumination amplitude efficiency is defined by (2]

[/A/ P,(r,6) dA]zl

e~ / / (P,(r,0) |2 dA

A

(3.1.1-4)
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[llumination phase efficiency, €4 is given by

. 2
/ / P,(r,8)ei® dA
£y = o ' - (3.1.1-5)
// Pi(r,o)e’d’l’dA amp

aperture

where P;(r,8) eI® is the complex power density incident on the reflector aperture and Eamp IS the
illumination amplitude efficiency found from (3.1.1-4). The illumination amplitude efficiency
term is included in illumination phase efficiency to remove the effects of aperture power

illumination so that the phase error efficiency is 100% for a focused system.

The far-field radiation patterns of the equivalent paraboloid with illumination
misalignment were calculated using GRASPT7 physical optics/surface integration at 20 GHz.
Figure 3.1.1-2 shows the gain, G, of the equivalent paraboloid as a function of normalized
illumination misalignment distance, AR,, for five edge illumination values. The gain loss
caused by illumination misalignment can be separated into two loss components corresponding
to decreased spillover efficiency and decreased illumination efficiency. As shown by Figure 3.1.1-
3, most of the gain loss caused by illumination misalignment consists of spillover loss.
Expressed in decibels, the decrease in spillover efficiency relative to the properly aligned case
varies from about 13 to 36 dB at an normalized illumination misalignment distance of 2. The
remaining gain loss, 3 to 9 dB at an normalized illumination misalignment distance of 2, is
comprised of decreased illumination amplitude efficiency as shown in Figure 3.1.1-4.
INMumination phase efficiency is 100% for this case since the system is focused. The overall
aperture efficiency, Eap? is shown in Figure 3.1.1-5 as a function of normalized illumination

misalignment distance, AR,;; this is found from the data in Figure 3.1.1-3 using (3.1.1-1).

Figure 3.1.1-6 shows the sidelobe level, SLL, as a function of normalized illumination

misalignment distance, AR,,, for the five edge illumination values. Although the plots are not
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smooth, the relative sidelobe level increases monotonically with increasing illumination
misalignment. The roughness in the curves is caused by the consecutive blending of the

increasing near-in sidelobes with the main lobe. Figure 3.1.1-7 shows the peak cross-polarization

level,
XPOL = Gcr(o’¢)mlx - G(9’¢)max' (3'1'1'6)

as a function of normalized illumination misalignment distance, AR,,, for the five edge

illumination values. Beam efficiency, defined as

2.5(03dB) 2
/ P(6,4) sind df d¢
BE= —=0_¢=0 (3.1.1-7)
t

where 8,45 is angle from the main beam gain peak to the the half-power point of the pattern,
P(8,¢) is the powe-r pattern of the antenna, and P, is the power transmitted by the feed, is
shown in Figure 3.1.1-8 for several edge illumination values. In order to achieve the required
90% beam efficiency, the edge illumination must be lower than -12 dB for a system with no

illumination misalignment and still lower if illumination misalignment exists.

3.1.2 Phase Error Effects

The second source of antenna performance degradation during beam scanning is
aperture phase error resulting from distortion of the aperture constant phase surface. The effects
of aperture phase errors, or aberrations, on antenna performance have been extensively studied
by Born and Wolf in connection with optical lens design [3). Born and Wolf (1] represent
aperture phase errors with cylindrical Zernike polynomials of p and ¢ to define a constant phase
surface above the aperture. For small aberrations, the first five terms of the aberration series
are sufficient to describe the constant phase surface [1). These terms, called the Siedel

aberrations, are
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AL(p,¢) = apcosd + Bp® + vptcoso + 6p2coso + ept (3.1.2-1)
and are known, respectively, as distortion, curvature of field, astigmatism, coma, and spherical
aberration [1). The constant aperture phase surface produced by each these aberration terms is
shown in Figure 3.1.2-1 [1). The effects of these aberrations on antenna patterns are usually
obtained by the simplification of the Zernike polynomial to a one-dimensional polynomial by
setting ¢ equal to either 0 or 12r_ [1). With this simplification, the Siedel aberration series
becomes _

AL(p) = ap + (B + 7)p* + 60 + €5 (3.1.2:2)

in the ¢ = 0 plane.

The linear phase error term, «p, does not degrade the antenna pattern but rather steers
the beam away from the unscanned boresight direction [1]. The amount of beam scanning
caused by this aberration is

9, = sin'l(ﬁ;’\—;) (3.1.2:3)
where Dy is the diameter of the antenna aperture and X is the wavelength at the frequency of
operation [l]. This is the desired constant aperture phase surface which should be attained
during beam scanning while minimizing the other aberration terms and illumination errors. A
secondary pattern effect which is associated with this aberration term is a small change in the
size of the projected aperture. For a symmetric aperture which is perpendicular to the
unscanned beam, this change is a reduction of the projected aperture diameter which is

proportional to cosf.

The quadratic phase error term, B+ 7) p?, has no beam scanning effect since it
represents a symmetric aperture phase taper. This aberration will, however, lead to an increase
in the overall sidelobe level and pattern null-filling [1]. The exact effects of quadratic phase

error can be determined by an analysis presented by Silver [4). This analysis gives the far-field
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Figure 3.1.2-1. The constant phase surfaces of the Siedel aberration termns [1].
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radiation pattern of the aperture from

1
gw) = § _/ (o) ol 8 g (3.1.2:4)
i

where u = (W—D/\M) sinf and f(p) is assumed to be an even function which represents the
amplitude distribution across the aperture [1]. For small quadratic phase aberrations, the far-
field power pattern is
Dy? .

P(u) = =4 {g7(w) + £ [8,"(w)*} (3.1.2-5)
where g (u) is the far-field radiation pattern with no aberration and g "(u) is the second
derivative of the aberration free far-field radiation pattern [1]. The effects of the quadratic
phase error term on the pattern of an aperture with a uniform amplitude are shown in Figure
3.1.2-2 for 8 = 0, %. and 1;— [1). As B increases, the pattern continues to deteriorate with the

main lobe eventually bifurcating but symmetry is maintained about the 8 = 0 axis [1].

The cubic phase error term, 6p3, introduces additional beam scanning since it represents
an asymmetric aperture phase taper and also raises the peak sidelobe level {1]. Using Silver’s
method to find the effects of the cubic phase error term on the far-field power pattern results in

Dy’ .

P(u) ~ -g‘—{go(u) + 6g,~())? (3.1.2-6)
where g (u) is the far-field radiation pattern with no aberration and g, "(u) is the third
derivative of the aberration free far-field radiation pattern [1]. The effects of the cubic phase
error term on the pattern of an aperture with a uniform amplitude are shown in Figure 3.1.2-3
for y =0, %, and % (1]. The cubic phase error term causes the main beam of the aperture to be
steered farther away from the unscanned boresight direction, ¢ = 0, as v increases. Also, the

sidelobes increase on the side of the main beam away from 6 = 0 while the sidelobes on the side

of the main beam toward & = 0 decrease.

Like the quadratic phase error term, the quartic phase error term, ep!, has no beam
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scanning effect since it represents a symmetric aperture phase taper. Also, like the quadratic
phase error term, the quartic aberration will increase the overall sidelobe level and fill in the
pattern nulls although the pattern degrades less than for a quadratic phase error of the same
peak value [1]. Using Silver’s analysis, as for the quadratic and cubic phase error terms, the far-
field power pattern of the quartic phase error term is

P(u) =~ DTM?{goz(u) + EZ[go(“’(u)]?} (3.1.2-7)
where g (u) is the far-field radiation pattern with no aberration and go(”(u) is the .fourth
derivative of the aberration free far-field radiation pattern [1]. The effects of the quartic phase
error term on the pattern of an aperture with a uniform amplitude are shown in Figure 3.1.2-4
for ¢ = 0, -}, and % [1]. As expected from the similarities between (3.1.2-7) and (3.1.2-5), Figure
3.1.2-4 is much the same as Figure 3.1.2-2 except with a smaller pattern degradation for a given

peak aberration [1].

The boresight gain loss for quadratic, cubic, and quartic phase errors is shown in Figure
3.1.2-5 [1). With the exception of the cubic phase error, the effect of an aberration with a given
peak phase error decreases with increasing order. The effect of cubic phase error is greater
because the beam peak is scanned away from boresight by the resulting asymmetric phase
distribution. This relationship between aberration order and pattern degradation for a given
peak phase error can be explained by noting that for a given peak phase error, the total error
decreases with increasing aberration order as shown in Figure 3.1.2-6. In addition to gain loss,
as shown for each of the non-linear phase error terms, aberrations of quadratic or higher order
also cause an increase in peak sidelobe level and can cause the filling of pattern nulls (1. Of the
Siedel aberrations, cubic phase errors exhibit the greatest pattern degradation for a given peak

phase error [1].
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3.2 Beam Scanning Effects of Equivalent Paraboloid Offset

As discussed in Sections 2.4, a Cassegrain reflector system can be represented with
reasonable accuracy by an equivalent paraboloid, which may or may not be offset, for offset
Cassegrain systems. Because this equivalence is developed using geometrical optics it is only
valid for focused systems. For a scanning offset Cassegrain reflector antenna system this means
that unscanned performance, especially cross-polarization level, can be improved by using the
Rusch condition discussed in Section 2.5. The additional concern for scanning offset Cassegrain
reflector antenna systems is that scan performance might be degraded by the use of a reflector

system geometry which has an axi-symmetric equivalent paraboloid.

Parameters of offset Cassegrain reflector antenna systems with three equivalent
paraboloid offsets are summarized in Table 3.2-1. These systems were studied to determine the
effect of equivalent paraboloid offset on the scanning characteristics of offset Cassegrain reflector
antennas. The three systems were synthesized using the main reflector of the test case which
will be discussed in Chapter 4. The feed point was allowed to vary to create systems with either
an axi-symmetric equivalent paraboloid or an equivalent paraboloid which was Jjust fully offset
above or below the axis of symmetry. The scanning performance of these systems was
determined by using GRASP7 analysis with geometrical optics/geometrical theory of diffraction
at the subreflector and physical optics/surface integration at the main reflector. The geometries

of these three systems with their equivalent paraboloids are shown in Figure 3.2-1.

3.2.1 Feed Motion Scanning

The study of the effect of equivalent paraboloid offset on offset Cassegrain reflector
antenna scanning characteristics was first performed using feed motion to scan the systems.

During this trial, the feed of each system was translated in three dimensions to achieve the
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Table 3.2.-1. Characteristics of three offset Cassegrain reflector antenna system using the same
main reflector but with three different equivalent paraboloids.

Main reflector diameter (Dy)

Main reflector offset height (H,)

Main reflector focal length (Fy)
Subreflector interfocal distance (2c)
Subreflector eccentricity (e)

Equivalent paraboloid focal length (F)
Equivalent paraboloid offset height (H,.o)
Feed point (xq ¥q 2g)

Feed pattern

Frequency of analysis

Beam Scanning in Cassegrain Reflector Antenna Systems

10.63 meters

7.795 meters

13.5 meters

6.9 meters

1.919

42.5 meters

0 and £ 5 meters

near (-0.442,0.0,6.614)

-15 dB subreflector
edge illumination

Gaussian pattern

20 GHz
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Figure 3.2-1. Offset Cassegrain reflector systems and their equivalent paraboloids.
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lowest possible aperture phase error as defined by the transmit mode raytracing error functional
which will be described in Section 5.2. The transmit mode raytracing error functional was used
to position the feed to allow the same error functional to be used for both feed and subreflector
motion scanning. The systems were fed by a feed pattern which produced a -15 dB edge
illumination for the analysis. The feed pattern was held fixed at the optimal unscanned

pointing for each system to simplify the synthesis and analysis.

The gain, G, of the three systems is shown in Figure 3.2.1-1. As for the unscanned case,
the gain of a scanned offset Cassegrain reflector antenna is essentially unchanged by equivalent
paraboloid offset. Spillover efficiency, ¢, shown in Figure 3.2.1-2, is also relatively unchanged
by equivalent paraboloid offset. The sidelobe level of the three systems could not be calculated
because phase errors caused null filling at relatively low scan angles. The only significant effect
of equivalent paraboloid offset on the scan performance of offset Cassegrain reflector antenna
systems is in cross-polarization level. The cross-polarization levels, XPOL, of the three systems
are shown in Figure 3.2.1-3. The system with the axi-symmetric equivalent paraboloid both
reaches the lowest cross-polarization level and generally performs the best although the systems
with offset equivalent paraboloids each exhibit a lower cross-polarized component over a small
portion of the scan region. This effect is caused by the change in illumination due to the

required scanning motion.

3.2.2 Subreflector Motion Scanning

The study of the effect of equivalent paraboloid offset distance on the scanning
characteristics of offset Cassegrain reflector antennas was also performed using subreflector
translation and rotation to scan the three systems of Table 3.2-1. The subreflector position was
determined to minimize the aperture phase error as defined by the transmit mode raytracing
error functional which will be discussed in Section 5.2 as in the feed motion scanning study.
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Also, the feed illumination was again geometrically defined to produce a -15 dB edge

illumination and was fixed to the optimum unscanned feed pattern pointing.

Figure 3.2.2-1 shows the gain, G, of the three systems as a function of scan angle in the
plane of offset, 8,. Again, the gain variation caused by equivalent paraboloid offset is small
although the difference in scanned gain is greater than for the feed scanned case. The spillover
efficiency, ¢,p, of the three systems is shown in Figure 3.2.2-2 and, like gain, is relatively
insensitive to equivalent paraboloid offset. Sidelobe level, SLL, could be found for the
subreflector scanned case and is also nearly unaffected by equivalent paraboloid offset as shown
in Figure 3.2.2-3. As for the feed scanned case, cross-polarization level, XPOL, is the only
pattern characteristic which was found to be strongly affected by equivalent paraboloid offset.
Figure 3.2.2-4 shows that the cross-polarized component is minimized in the system with an axi-
symmetric equivalent paraboloid but can be lower in certain regions of the scan range for either

system which has an offset equivalent paraboloid.

3.3 Beam Scanning the Offset Casscgrain Antenna by Feed Displacement

The conventional method of mechanical beam scanning with the offset Cassegrain
reflector antenna system is lateral feed displacement [5]. Lateral feed displacement is in
common use to form multiple spot beams using a single prime focus paraboloidal reflector
antenna for satellite-to-ground applications [6-8]. Increasing geostationary satellite antenna
performance requirements prompted INTELSAT to commission a study by Krichevsky and
DiFonzo at COMSAT of beam scanning offset Cassegrain reflector antennas by optimal feed
displacement [9]). This study developed a method to determine the optimal feed location for any
desired main beam direction. Krichevsky and DiFonzo give results for beam scanning in the

same offset Cassegrain reflector antenna system using lateral feed displacement so that the
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Figure 3.2.2-2. Subreflector scanned spillover efficiency (e,p) as a function of scan angle in the
plane of offset (8,) for three offset Cassegrain systems with three different equivalent
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increased performance of their optimum feed position scanning method can be shown [3].

The Krichevsky and DiFonzo study of optimal beam scanning used the reflector system
geometry shown in Figure 3.3-1 [5]. This system consists of a paraboloidal main reflector with a
focal point at F,, a hyperboloidal subreflector with focal points at F; and F,, and a point source
feed located at F, when the system is unscanned [5]. The coordinate system is constructed such
that F, lies at the origin and the unscanned aperture plane is perpendicular to the z-axis [5).
The subreflector rim is defined by the intersection of a cone with its vertex at F, and the
hyperboloidal surface on which the subreflector lies [5]. The angle between the axis of the cone
which defines the subreflector edge and the +z-axis is 8, and the half-angle of the cone is 6, [5].
Main reflector size is determined by the area illuminated by the ray bundles which are reflected
from the subreflector for all beam directions after the optimal feed positions are found [5]. This
method of sizing the main reflector is much less stringent because it assures that no spillover will
occur at the main reflector. Krichevsky and DiFonzo defined the plane of lateral feed
displacement as the plane which contains F, and is perpendicular to the axis of the cone which

defines the subreflector edge [5].

Krichevsky and DiFonzo determined the optimum feed position for a given beam
direction by finding the intersection of the locus of feed positions which produce the desired
beam direction with the locus of feed positions which yield the minimum aperture phase error
[5]. For simplicity, in the analysis presented here, that of Krichevsky and DiFonzo [5], the
antenna system is assumed to be cylindrical and only rays which lie in the xy-plane are

considered. The complete derivation of the optimurn feed position is available in Krichevsky [9].

The locus of feed positions which produce the desired beam direction is found by tracing
rays transmitted from a point source feed at Q(0, Yor Zg) as shown in Figure 3.3-1 [5]. The total

optical path length of a ray which satisfies the conditions imposed by geometrical optics at the
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Figure 3.3-1. Antenna system geometry for the Optimum Feed Position Scanning of Krichevsky
and DiFonzo [5)].
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main and subreflectors and strikes the subreflector at P1(0. ¥,. z;), the main reflector at P,(0,

¥2s Z9), and the aperture plane at P3(0, y3, z3) is given by

3
L= )L (3.3-1)
i=1
where
L= ;- v + (3 - )2 (3.3.2)

fori =1,2, 0r3[5]. The total optical path lengths and points of intersection with the aperture
plane of the upper and lower rays in the system are given by L, and L, and (¥Yu 2,) and (y}, z))
as shown in Figure 3.3-2 [5]. From these parameters, the beam direction can be approximated
by

L Iy (3.3-3)

(2 2= ——yu_ Vi

for small scan angles and feed displacements (5).

Krichevsky and DiFonzo next present the series expansions of the total optical path

length and transmitted ray/aperture plane intersection:

v m
L=LO 3" Y e yokgymk (3.3-4)
m=0 k=0
and
(0) v m K N
y=y Z Z Tm.k Yo 20"‘- (3'3‘5)
m=0 k=0

where L) and y(o) are equal to L and y when the point source feed is at the unscanned feed
point F, [5]. The value of v in the series expansions is the order of the desired approximation:
a) first order approximation: % <1
b) second order approximation: (%)2 <1
where R is the displacement of the point source feed from the unscanned feed point F, and Fyis
half the interfocal length of the parent hyperboloid of the subreflector [5]. By substituting (3.3-

4) and (3.3-5) into (3.3-3), Krichevsky and DiFonzo find the series expansion for the locus of

feed positions which produce a constant beam direction:
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Figure 3.3-2. Krichevsky and DiFonzo [5] definition of beam scan angle.
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v m
— . k
a= Z Z Am.k Yo Zg
m=0 k=0
where A | is a series of coefficients which are defined in terms of the geometrical parameters of

m-k (3.3-6)

the offset Cassegrain reflector antenna system [5]. The coefficients, Am.k’ and their derivation
are presented in Krichevsky and DiFonzo [5] and Krichevsky [9]. The constant beam direction
feed locus can be found from (3.3-6) by solving for y, in terms of Zg, a, and the coefficients,

A

m,k’

Figure 3.3-3 shows several constant beam direction feed position loci for the offset
Cassegrain reflector antenna system summarized by Table 3.3-1 [5]. The first-order, linear
approximation to (3.3-6) for each constant beam direction feed locus is shown in Figure 3.3-3 by
a dashed line which is labeled with the angular beam displacement caused [5). The second-order
approximation to (3.3-6) is shown by a solid line which crosses the corresponding first-order
approximation [5]. Figure 3.3-4 shows the beam pointing error as a function of the beam
direction predicted by the constant beam direction loci shown in Figure 3.3-3 [5]. The beam
directions used to determine the accuracy of the constant beam direction feed loci were
calculated using a computer based pattern analysis code [5]. The second-order approximation is,
as expected, more accurate with a maximum beam pointing direction error of less than 0.05°

compared to a maximum error of about 1.1° for the first-order approximation [5).

Krichevsky and DiFonzo [5] calculated the optimum feed position locus by dividing the
subreflector and tracing n rays from the unscanned feed point to the subreflector with the same
angular separation between the rays. This, in effect, divides the antenna for which the optimum

feed position locus is being determined into n-1 srall antennas [5]. The substitutions,

é
O2m = (3.3-7)
and
02
ol,m.n =1 (2m - 1) + 91 - 0‘)’ (3.3-8)
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Figure 3.3-3. First and second order approximations to the Constant Beam Direction Locus of
Krichevsky and DiFonzo [5) for the system of Table 3.3-1.
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Table 3.3-1. Characteristics of the Krichevsky and DiFonzo [5] offset Cassegrain reflector
antenna system used for Optimum Feed Position Scanning.

Main reflector focal length (Fy) 100
Subreflector focal length (Fy) 40\
Subreflector interfocal distance (2¢) 20
Feed angle subtended by subreflector 34.38°
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Figure 3.3-4. Beam pointing error given by physical optics analysis for the Constant Beam
Direction locus of the system of Table 3.3-1 [5).
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where m is the ray number from 1 to n. allow the use of the constant beam direction solution
method to find the beam direction for each of the subdivisions [5). The difference between the
scan beam directions of the subdivisions can be minimized by using the constraint
G(yo 25) =nli-rgo {% il (am,n - 0)2} (3:3-9)
m=
where a is the overall beam direction since the beam direction for each of the subdivisions is

@y [5].  Since the solution must also lie on one of the constant beam direction loci, the

complete error function is
Kyg 29, pt) = G(ygs 25) + ;z[yo - (g, , Am,k)] (3.3-10)
where s is a Lagrangian multiplier [5]. After trigonometric and algebraic simplification of
(3.3-9), Krichevsky and DiFonzo found the following closed form solution for the optimum feed
position:
v m
Lux Yok 2™k = ¢ (3.3-11)
m=] k=0
where Ik is a series of coefficients which are defined in terms of the geometrical parameters of
the offset Cassegrain reflector antenna system [5]. The coefficients, I, x» and their derivation
are presented in Krichevsky and DiFonzo [5] and Krichevsky [9]. As for the constant beam

direction feed loci, v corresponds to the order of the desired approximation: either 1 for a first-

order, linear approximation or 2 for a second-order approximation (5).

The locus of optimum feed positions and the second-order approximation to the
constant beam direction loci for the system of Table 3.3-1 are shown in Figure 3.3-5 [5]. The
dotted line in Figure 3.3-5 represents the possible feed positions for lateral feed displacement
while the dashed and solid lines represent the first- and second-order approximations to the
optimum feed position locus (5]. The optimum feed position for each beam direction can be
found at the intersection of the second-order approximation of the appropriate constant beamn

direction loci and the second-order approximation of the optimum feed position locus [5]. The
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Figure 3.3-5. Optimum Feed Position loci and Constant Beam Direction loci of Krichevsky and
DiFonzo (5] for the system of Table 3.3-1.
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required motion for optimum feed positioning beam scanning requires both a lateral and a

longitudinal feed displacement.

Krichevsky and DiFonzo [5] used physical optics to find the far-field patterns of the
optimum feed position movement scanned system of Table 3.3-1. The reflector system was
analyzed for a Potter horn feed with a radius of 2.3\ at the optimum feed position for each
beam direction [5). The feed was repointed at each optimum feed position to align the axis of
the feed with the angular center of the subreflector to minimize spillover [5]. Also, as mentioned
above, the main reflector surface size was determined by allowing no spillover at the main
reflector [5]. Figure 3.3-6 shows several scanned beams for the offset Cassegrain reflector
antenna system with the feed for each beam located at the optimum feed position [5]. Figure
3.3-7 shows several scanned beams from the offset Cassegrain reflector antenna system fed by a
3.1X Potter horn which was displaced laterally [5]. In both cases, the pattern of the offset
Cassegrain reflector antenna system tends to deteriorate less rapidly during downward beam
scanning, but the optimum feed position scanned system shows less overall pattern deterioration.
Note that the aperture is partly blocked by the subreflector for beams which are scanned more

than about 5.8° below the unscanned boresight [5].

3.4 Beam Scanning the Offset Casscgrain Reflector Antenna by Subreflector Tilt - The
Foldes Type 6 System

A reflector antenna systern was proposed by Peter Foldes for use in the NASA Mission
to Planet Earth radiometer design.  This system, referred to as the Type 6 system, is
summarized by Figure 3.4-1 and Table 3.4-1. The Type G system was designed to scan by
subreflector tilt. For simplicity, the scanned systems were synthesized by tilting the subreflector
to an angle and then finding the resulting beam scan from the physical optics analysis result.
This also assured that the performance of the Type 6 system was maximized. Unfortunately,
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Figure 3.3-6. Scanned beams of the system of Table 3.3-1 produced by the second order

Optimum Feed Position scanning of Krichevsky and DiFonzo [5).
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Figure 3.4-1. Plane of offset view of the Type G reflector antenna system geometry of
Foldes [10].
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Table 3.4-1. Characteristics of the Type 6 reflector antenna system of Foldes [10].

Main reflector focal length (Fpm)
Main reflector diameter (Dy)
Main reflector offset height (H,)
Subreflector eccentricity (e)
Subreflector interfocal distance (2¢)
Subreflector axis tilt angle (8)

Subreflector diameter (Dg)
D 2

Areal efficiency, (F_TT)
S

M
Feed tilt angle (a)

Intended scan range
Frequency of analysis

Feed pattern used for analysis

BumSannin;inCA-egnichﬂectorAntmmSyum

35 meters
25 meters
17.5 meters
2.81

14.5 meters
0

3.56 meters

98%

17
+0.5
10, 20, and 40 GH:z

-15 dB Gaussian edge
taper



this method for determining beam scanning parameters is not applicable to more sophisticated
system because the multiple degrees of freedom would require excessive time to analyze as

briefly discussed in Chapter 5.

The feed pattern was not specified by Peter Foldes and so was chosen to produce a -15
dB edge taper based on the beam efficiency results shown in Section 3.1. The scan performance
results shown here were calculated using the TICRA GRASP7 reflector antenna code. The
system was analyzed using geometrical optics/geometrical theory of diffraction at the
subreflector and physical optics surface integration at the main reflector. For purposes of later

comparison, the Foldes Type 6 system was analyzed at 10, 20, and 40 GHz.

Figure 3.4-2 shows the gain, G, of the Foldes Type 6 reflector antenna system as a
function of frequency and scan angle in the plane of offset, 8,. The system displays the expected
6 dB increase in gain for each octave increase in operating frequency. The significant increase in
scan induced gain loss with increasing frequency indicates that the main source of error in the
Foldes Type 6 reflector antenna system is aperture phase error. This conclusion is supported by
the relative flatness of the curves for spillover efficiency, €, shown in Figure 3.4-3. As expected
the spillover efficiency is essentially frequency independent with the slight variation being due to
the increase electrical size of the system causing less diffraction effects. The illumination
amplitude efficiency, €, shown in Figure 3.4-4 as a function of scan angle in the plane of
offset, 8, was estimated for the Foldes Type 6 system by using the results presented in Section
3.1.1 because the presence of both amplitude and phase taper in the aperture field of a scanned
reflector antenna prevent determining the amplitude efficiency factor independently. The
illumination amplitude efficiency is essentially frequency independent and its small range
supports the conclusion that the main source of scan loss in the Type 6 system is phase error.

The illumination phase efficiency, €4, of the Foldes Type 6 reflector antenna system is shown in
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Figure 3.4-2. Gain (G) as a function of scan angle in the plane of offset (6,) for the Type 6
reflector antenna system of F oldes.
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Figure 3.4-3. Spillover efficiency () as a function of scan angle in the plane of offset (6,) for
the Type 6 reflector antenna system of Foldes.
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Figure 3.4-4. Illumination amplitude efficiency (en“p) as a function of scan angle in the plane
of offset (8,) for the Type 6 reflector antenna system of Foldes.
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Figure 3.4-5 as a function of frequency and scan angle in the plane of offset, 6. Although the
illumination phase efficiency of the Type 6 system is fairly high at 10 GHz, at 20 and 40 GHz
phase errors are clearly the dominant scan loss mechanism. Like the illumination amplitude
efficiency, the illumination phase efficiency should be considered a diagnostic tool rather than an
exact measurement because the illumination amplitude efficiency estimate was used in the
calculation of the illumination phase efficiency. The overall aperture efficiency, €,y of the Type

6 system is shown in Figure 3.4-6.

Figure 3.4-7 shows the sidelobe level, SLL, for the Foldes Type 6 reflector antenna
system as a function of frequency and scan angle in the plane of offset, 6. The sidelobe level
should increase monotonically but blending of the increasing sidelobes with the main lobe and
null filling cause the observed roughness in the curve. Figure 3.4-8 shows the cross-polarization
level, XPOL, for the Type 6 system. The generally low cross-polarization level is caused by the
long effective focal length, 101.5 meters, of the system. The offset of the equivalent paraboloid
can be observed in the monotonic decrease in relative cross-polarization level with increasing
negative beam scan. The beam efficiency, BE, of the Foldes Type 6 reflector antenna system is
shown in Figure 3.4-9. As with the illumination phase efficiency, the beam efficiency is a strong
function of frequency. Since the limit of the scan range is 90% beam efficiency, the scan range

of the Type 6 system is about 1.5 at 10 GHz, 0.8° at 20 GHz, and 0.6° at 40 GHz.
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(6,) for the Type 6 reflector antenna system of Foldes.
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Figure 3.4-8. Cross-polarization level (XPOL) as a function of scan angle in the plane of offset
(6,) for the Type 6 reflector antenna system of Foldes.
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Chapter 4
TEST CASE GEOMETRY SELECTION

The selection of a test case geometry for this study is motivated by the antenna
performance characteristics required by the Mission to Planet Earth. A NASA microwaves
radiometric earth observation science steering panel met twice in 1990 to determine the mission
parameters which would allow the project to make a significant contribution to the knowledge of
climatic and meteorological phenomena [1). The requirements recommended by the panel are
summarized in Table 1.2-1. The frequency and beamwidth restrictions require an aperture
efficiency of 70% since a Virginia Tech study of the issues presented by large space antenna
structures found that an antenna of up to 25 meters diameter can be launched by a single

Shuttle Transportation System (STS) mission 1, 2].

As mentioned in Chapter 1, the necessity of sharing a geostationary platform with other
experiments requires that the antenna be capable of beam scanning by sub-optics motion to
avoid disturbing other experiments. The aperture efficiency required by the desired beamwidth
and frequency of operation effectively eliminates conventional spherical reflector antenna systems
from consideration despite their degradation-free scan performance. The Cassegrain reflector
antenna was selected since it is the simplest and most compact reflector configuration that
allows beam scanning by subreflector motion. The high beam efficiency requirement indicates
that an offset antenna configuration would be desirable to eliminate aperture blockage by the

subreflector /feed assembly.
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The test case main reflector has a diameter of D= 10.63 meters, a focal length of
Fp = 13.5 meters, and an offset distance of H, =7.795 meters. These dimensions were chosen to
allow possible verification of the synthesis procedure using a NASA Langley Antenna and
Microwave Research Branch test article [3]. The configuration and dimensions of the test article
are shown in Figure 4-1. This test article is a 42.52% scale model of the proposed 25 meter

radiometric earth observation reflector antenna.

Since the results given in Section 3.2 show that the scan characteristics of Cassegrain
reflector antenna systems are insensitive to equivalent paraboloid offset, the test case geometry
was chosen to have an axi-symmetric equivalent paraboloid. This geometry selection should
minimize the overall cross-polarization experienced by the system across the scan range. The

Rusch condition for this system can be found using (2.5-7) with a center angle, 6, of 32.207":

32.207 2esinf
t : = . 4-1
) et +1-2ecosf t4-1)

The eccentricity of the subreflector hyperboloid was chosen to be 1.919 to approximate the

relative subreflector size of the 25 meter diameter Foldes Type G reflector antenna system which
was originally proposed. This results in a subreflector diameter of about 1.4 meters for the test
case. The subreflector area used in the synthesis and the GRASP7 physical optics analysis is the
illuminated portion of the parent hyperboloid during unscanned conditions as determined by

geometrical optics ray tracing.

The tilt angle, 3, of the line between the hyperboloid foci can now be found to be 8 =
3.676° from (2.6-1). The interfocal length of the hyperboloid was chosen to be 6.900 meters to
place the feed point near the the subreflector/feed boom. These selections lead to a feed point
located at {0.44?., 0.000, 6.614} meters. The feed tilt angle, a, which will align the feed
boresight with the angular center of the subreflector and the axis of the equivalent paraboloid

can now be found using (2.4-19):
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a_etl 8 )
tany = —7 Lan(,z). (4-2)
Solving (4-2) with these selections of e and 3 gives a = 11.640°. The test case is fed with an x-
polarized feed. The feed pattern is defined independent of frequency to produce a 15 dB edge

taper on the subreflector. This edge taper was chosen based on the beam efficiency results of

Section 2.1.1. The geometry of the test case is given by Figure 4-2 and Table 4-1.

The unscanned far-field pattern of the test case was evaluated using the TICRA
GRASP7 reflector analysis code. The evaluation was performed by geometrical theory of
diffraction analysis at the subreflector and physical optics/surface integration at the main
reflector. The gain pattern, G(u,v), of the unscanned test case system is shown in Figure 4.3
over a rectangular uv-grid of =+0.57" The cross-polarization pattern, XPOLu,v), of the
unscanned test case system is shown in Figure 4.4. The far-field pattern characteristics of the

unscanned test case are sumnrmarized in Table 4.2.
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Figure 4-2. Plane of offset view of the final test case configuration.
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Table 4-1. Characteristics of the final test case geometry.

Main reflector diameter (Dy,)
Main reflector focal length (Fpy)
Main reflector offset height (H,)
Subreflector axis tilt angle (3)
Subreflector eccentricity (e)
Subreflector interfocal length (2c)

Subreflector diameter (Dg)

D 2
Areal efficiency _'TM'_Z
Dy® + Dg

Subreflector scanning motions

Feed point (f)

Feed tilt angle (a)

Feed pattern

Frequency of operation

Test Case Geometry Selection

10.63 meters
13.5 meters
7.795 meters
3.676°

1.919

6.9 meters

1.4 meters
98.3%

X, ¥, and z translations
« and S rotations

{-0.442, 0.000, 6.614}
meters from the main
reflector vertex

11.64°

Gaussian pattern with
15 dB edge taper at
7.157

20, 40, and 80 GHz

100



0.010 ——

o° T ————
- \28 +® T e
s N - T T
0008 - . e
. \ — T -
- [N T T T T
L AT e T
0.006 - ° g - TemEE=TaL
/ : )
L e -,
// /e‘/‘j—__:\m.\. N -

0.004 |- : S

0

0.002

.

0.000

sing sin

-0.002

V=

-0.004

-0.006

NS

\QQ £
Q9 .
Lt

i A

oSh oy ast,

i

g

A

-0.006

-0.002 0.002

U= cos@ sinf

Figure 4-3. Gain pattern (Giuvy) of the unscanned test case systein at 20 (:Hz.

Test Case Geometry Sclection

101



0.010 =

> o A /n 0 1 ‘ F.o >
- ,\0 H / v .
S : o — N < \
P g - . . T
| — / '09 o : , ‘,“/_\\ {
0.008 - j\,// . \;’ ¢
L / S
0.006 - ' e C oS
; - 09// b :
- P Ny / - \/g
o s '/_\ v \ E
0.004 | P ST
. . - AT ° AR 3
D@ % T S L
S oo02f ° -~ 7 T AEsy
v \_,/\_/'\\ ~ ‘\//‘\‘ “/7 "/_\, -
o [~
c 0.000 q
| /-\//'\/ ~ "’\v/ '/-\\ Y 6,)/ P2
0002 F - 7Y~ T A
> 00021 - e DU S
i | N, .\ - ) ! /::
VN L E
-0'004 B .‘: \' ‘l\\ \:&:0 \\l ) - I'e
T\( . \\ S A v R~
i . NS % N

P N N TR L

0008 " o \\@- R o R

RN ! ’, R Al 1
- t (\ RS TR Kr,;v/:{ﬁ —

- .|
s by i

-0.010 -0.006 -0.002 0.002 0.006 0.010

u = cos¢ sind

Figure 4-4. Cross-polarization pattern { XPOL( u,v)) of the unscanned test case
systern at 20 GHaz.

Test Case Geometry Sclection 102



Table 4-2. Far-field pattern characteristics of the unscanned test case systeny.

Frequency, GHz

Far-field pattern characteristic 20 40 80 Units
Gain, G 65.67 7172 77.78 dBi
Sidelobe level, SLL -29.00 -29.32 -29.45 dB
Cross-polarization level, XPOL -67.33 -73.40 -74.70 dB
Beam efficiency, BE 93.28 93.44 93.63 %
Aperture efficiency, €ap 74.44 74.95 75.63 %
Spillover effiency, Esp 94.74 94.85 94.98 %
lllumination amplitude effiency, Eamp 78.57 79.02 79.63 %
Half-power beamwidth, HPBW 0.092 0.046 0.023 °
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Chapter 5

SIMPLIFIED ERROR FUNCTIONALS FOR GEOMETRICAL
OPTICS SYNTHESIS

As discussed previously, the test case developed in Chapter 4 beam scans by subreflector
motion. While the primary goal of this effort is the maximization of beam efficiency during
beam scanning, analysis of the pattern of the antenna to determine beam efficiency is
impractical for use as an error functional in determining the optimal position of the subreflector
during beam scanning. The physical optics analysis required to determine the far-field pattern
of a Cassegrain reflector antenna system of this size requires approximately 6 minutes using a 50
MHz 80486 computer. An error functional of this complexity would result in an optimization
which would require over one month of computer time for a single scan direction. It is highly
desirable then to create a simple, computationally efficient estimate of the antenna’s

performance.

The desire that the error functional be easy to evaluate requires that the error functional
be defined as a geometrical optics process with a minimal number of mathematical operations.
Two error functionals, the correcting subreflector surface fitting error functional and the
transmit mode raytracing error functional, were investigated. Both of these error functionals
involve a minimum of mathematical evaluation; each requires only a single summation and is
tolerant of a much coarser analysis grid than is physical optics analysis. Each error functional
was tested by using it to determine the optimum subreflector position for several scanned beam
directions. Each case was then analyzed using the geometrical theory of diffraction at the
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subreflector and physical optics/surface integration at the main reflector using the TICRA

GRASP7 reflector antenna analysis package.

5.1 The Correcting Subreflector Surface Fitting Error Functional

The correcting subreflector surface fitting error functional determines the optimum
position for the unscanned subreflector by fitting the repositioned unscanned subreflector to a
correcting subreflector for the desired scan direction. Because the optimization is based on
fitting the available subreflector to a fully illuminated correcting subreflector, this error
functional should be expected to emphasize the minimization of illumination amplitude errors at
the expense of illumination phase errors. A simpler version of this error functional was proposed
by Kitsuregawa (1] for beam scanning by subreflector motion in reflector antenna systems where

the main reflector and feed cannot be moved. The fitting error used by Kitsuregawa is given by

N
6 = ; (5% - S;)'ﬁSi]z, (5.1-1)

where S’ is the i th point on the repositioned unscanned subreflector, S; is the i th point on the
correcting subreflector for the desired direction of scan, and Rg; is the unit normal of the
: th

correcting subreflector at the i == point [1]. While Kitsuregawa [1] uses this error functional in a

system of least squares equations, it can also be used as an error estimate for optimization.

5.1.1 Analytic Development of the Correcting Subreflector

The test case reflector antenna systermn discussed in Chapter 4 is described by grids of
points which define the parent surface of the main and subreflectors. These grids are found by
using geometrical optics raytracing in the test case geometry. As discussed in Section 2.3,
Snell’s law is satisfied at the main reflector and the total path length of the rays from the

aperture plane through the system to the feed point is held constant to find the subreflector
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points. This procedure, developed by Werntz [2]. is also used in the correcting subreflector

surface fitting error function to find the phase error correcting subreflector for the scanned

system.

Figure 5.1.1-1 shows the geometry used to determine the subreflector points. The rays
used to define the system form a 25 x 25 grid in the aperture plane which circumscribes the
projected aperture of the antenna system. A ray incident on the main reflector from the
aperture plane has a unit vector

F) = {-sind, cos¢, X, -sind sing,_ ¥, cosé, 7}, (5.1.1-1)
where 6, is the scan angle from the z-axis and &, is the scan angle from the x-axis toward the y-

axis as shown in Figure 5.1.1-2,

The length of a ray from the aperture plane to the main reflector is
[Ry| = cosh, (z, + tan(-0,) cosg, xp + tan(-6,)sind, yp; + zy), (5.1.1-2)
where z, is the z-coordinate of the intersection of the aperture plane and the z-axis and

{xM, M ZM} is a point on the main reflector.

The unit vector of a ray reflected from the main reflector is found by satisfying Snell’s
law at the main reflector. This gives

2 = ?] - 2(?1 'ﬁM)ﬁM’ (5.1.]-3)

where 01’ is the unit normal at the main reflector point given by (2.1-1 1)

-~ y -1 - - -~
“M=(\/"M2+YM2+4F2) {-xm%, -ym ¥, 2F g}, (5.1.1-4)
where F is the focal length of the main reflector paraboloid. Five intermediate results are next

calculated to simplify the equations for the subreflector point. These are

T -2(? -1 )rT
l. = Alx A] AM AMx‘ 5.1.1-5
! l'lz'.z(l'l'nM)an ( )
I = Tyy - AT, -y, , (5.1.1-6)
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R+ R + [Ra[ = 1,

Figure 5.1.1-1. Correcting subreflector synthesis geometry.
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Figure 5.1.1-2. Definition of scan angles.
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2
= L (5.1.1-7)
I-1,

I, = LP-IR1|,and (5.1.1-8)

Iy = 2[14,/1+l,"’+l32 + Li(xp- Xg) + Ia(ym- yf)]

where Ly is the desired path length through the system and {xr, Yo 2g) is the feed point. The

subreflector point, {xs, ¥s» Zs }, can now be found by

_ 1,2+ Igzpg - (xp- xpm)% - (g - ym)? + 2pg’ - 2 ' ‘ )

25 = : . : (5.1.1-9a)
S 15 + "')ZM - ZZf

xg = I (25 - 2m) + Xm0 (5.1.1-9b)
ys = l3(zs- 2m) + ¥Ym- (5.1.1-9¢)

The length of the ray from the subreflector point to the feed point is

|Rs|= \/(xs - x)? + (ys - ¥9)* + (25 - 2 (5.1.1-10)
so the unit vector of the ray from the subreflector point to the feed point is

f.= [Y2s¢ YsA 2~ 25 o

B (TR TRl TR gt (&11-10)

The subreflector unit normal can now be found by taking the difference hetween T, and Tj.

This results in
Ta, - Ty )X + -r + (T3 - T3, )2
 (Fax - Fau)X +(Tay - T3, )7 + (T, - Faa) (5.1.1-12)

) \/GSx'r2x)2+(r3y'r2y)z (T3 "zz)2

The set of subreflector points and normals generated by this procedure is either saved to a data
file in the case of test case synthesis or used in the error functional as the correcting subreflector

during optimization.

5.1.2 Correcting Subreflector Surface Fitting Optimization Implementation - CSSFTI

The correcting subreflector surface fitting error functional is a slight extension of the
error functional of Kitsuregawa [1] given by (5.1-1). For the optimization, the error function is

expanded to a double summation over the grid of points of the subreflector but is otherwise
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unchanged. This results in

M N |
=, > [(S'i.i - SiJ)'ﬁSiJJZv (5.1.2-1)

=1 =1
where S'i.j is the i th point on the repositioned test case subreflector, SiJ is the i,j th point on
the correcting subreflector found using the methed on Section 5.1.1, and ﬁSi,j is the normal of
the correcting subreflector. This error functional is then used to estimate the pattern error
caused by the current position of the test case subreflector. To achieve this, the error functional

is used in the two-stage optimization process which has the function blocks shown in Figure

5.1.2-1. The FORTRAN source code which implements this process is listed in Appendix |.

The inner loop is a five-dimensional Powell’s method optimization [3] which positions
the test case subreflector to best fit the correcting subreflector. The test case subreflector can be
translated in the x-, y-, and z-directions and rotated about its center grid point in a- and B-tilts
as shown in Figure 5.1.2-2. The position of a translated and rotated test case subreflector point
is given by

Xgr = X, + Xz _+ cosa, (x§ - X3, ) + sina, sinﬂr(y§ - ¥3,) + sinag cosg, (z§ - z§r), (5.1.2-2a)
Ys' = Yo + ¥5, + cosB, (y5 - yg,) - sing, (25 - 25 ), and (5.1.2-2b)

=2 + 25, + sina, (x§ - xgr) + cosa, sinﬂr(y§ - ygr) + cosa, cosﬂr(z§ - z§r) (5.1.2-2¢)

where { Xgi Ygn zs,} is the repositioned test case subreflector point, {3 Y z§} is the test case
subreflector point, {x§r, Y3 z§r} is the point about which the rotations occur, and { Xer Yoo zt}
is the vector of translations. The outer optimization loop is a Golden Section optimization
process [4] which varies the path length through the antenna system (o allow the calculation of a
family of correcting subreflectors. This step is necessary because the curvature of the correcting

subreflector is greater for higher total path lengths.
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Figure 5.1.2-1. Correcting subreflector surface fitting error functional optimization algorithm
structure.
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Figure 5.1.2-2. Definition of subreflector tilt angles.
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5.1.3 Predicted Subreflector Motions

The optimum subreflector positions were determined using the correcting subreflector

surface fitting error functional for three scan paths: a scan from 6, = -1.0° to 8, = 1.0° for
¢, = 0", a scan from ¢, = 0" to ¢, = 180° for 6, = 0.5°, and a scan from ¢, = 0°to ¢, = 180° for
9 = 1.0, These scan paths represent 39 individual scan directions with a average

o

computational time of nearly 45 minutes per direction or a total time of just over 29 hours. An
earlier version of the optimization which used five linear optimization routines instead of the

Powell’s method inner optimization loop was noted to be substantially slower.

The constant ¢ scan path from 8, = -1.0" to 6, = 1.0° was approximated by 21 discrete
scan directions at 0.1° intervals. The subreflector motion for this scan path consists of only x-
and z-translations and a-rotation since the main beam is being scanned in the plane of offset.
The x-, y-, and z-translations required for this scan path are shown in Figure 5.1.3-1 as a
function of scan angle in the plane of offset. The maximum translation for this scan path is
a.boﬁt 0.25 meter at either limit of scan. The a- and B-rotations required for this scan path are
shown in Figure 5.1.3-2 as a function of scan angle in the plane of offset. The maximum
rotation required for this scan path is less than 1"

The constant @ scan paths at 0, = 0.5 and 8, = 1.0° were each approximated by 11
discrete scan directions from ¢, = 0"to ¢, = 180° at 18 intervals. The x-, y-, and z-translations
required for these scan paths are shown in Figure 5.1.3-3. The required total translations for
these scan paths are nearly constant at approximately 0.11 meter for 6, = 0.5 and 0.25 meter
for 8, = 1.0°. The a- and B-rotations required for these scan paths are shown in Figure 5.1.3-4.

As for the case of scanning in the plane of offset, the maximum required rotation is slightly less

than 1°.
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Figure 5.1.3-1. Optimum subreflector x-, y-, and z-translations (X¢» ¥es 2,) for the test case
system as determined using the correcting subreflector error functional as a function of scan
angle in the plane of offset (8,).
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Figure 5.1.3-2. Optimum subreflector a- and B-rotations (o, B,) for the test case system as
determined using the correcting subreflector error functional as a function of scan angle in the
plane of offset (6,).
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Figure 5.1.3-3. Optimum subreflector X-, ¥-, and z-translations (X¢s ¥¢» 2,) for the test case
system as determined using the correcting subreflector error functional as a function of ¢ scan
angle (¢,) for 8, = 0.5 and 6, =1.0.
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Figure 5.1.3-4. Optimum subreflector a- and A-rotations (o, B;) for the test case system as
determined using the correcting subreflector error functional as a function of ¢ scan angle (¢,)
for 8, = 0.5  and 6, =10
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9.1.4 Computational Results using TICRA GRASP? Physical Optics Analysis

The performance of the correcting subreflector surface fitting error functional was
evaluated by performing physical optics analysis to find the far-field radiation pattern
characteristics of the scanned test case geometries at 20, 40, and 80 GHz. These frequencies
were chosen to allow comparison with the results for the Foldes Type 6 reflector antenna system
discussed in Section 3.4. Also, the two octave frequency range assists in the determination of

the reasons for pattern degradation during beam scanning.

The selection of geometrical theory of diffraction analysis at the subreflector and
physical optics/surface integration analysis at the main reflector was mandated by the excessive
time required for physical optics/physical optics analysis. At 20 GHz a dual physical optics
analysis requires approximately 2 hours to complete on a 50 MHz 80486 computer.
Furthermore, the time required for a PO/PO analysis increases roughly as the cube of the
frequency. A further reduction in computing time was realized by limiting the output far-field
pattern to an area on the uv-plane which contained a constant number of sidelobes with respect
to frequency. This reduction in the output pattern area allowed the number of integration
points in the main reflector surface integration to remnain constant rather than quadrupling with

each octave increase in frequency.

Figure 5.1.4-1 shows the gain, G, of the test case reflector antenna system as a function
of scan angle in the plane of offset, 8,. As expected, the unscanned gain increases 6 dB for each
octave increase in frequency indicating no loss of efficiency with increasing frequency. However,
the scan loss varies greatly with frequency indicating phase error across the aperture. The
sidelobe level, SLL, of the test case is shown in Figure 5.1.4-2 as a function of scan angle in the
plane of offset, 6, The sudden changes in sidelobe level at the higher frequencies are caused by

sidelobes blending with the main lobe and indicate that significant phase errors are occurring.
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Figure 5.1.4-1. Gain (G) of the test case system as a function of scan angle in the plane of offset
(8,) for optimized scanning using the correcting subreflector surface fitting error functional.
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The cross-polarization level, XPOL, of the test case, shown in Figure 5.1.4-3, is below -50 dB at
all three frequencies. The beam efficiency, BE, of the test case is shown in Figure 5.1.4-4. Since
the 90% beam efficiency point is taken to be the limit of scan, the test case has a scan range of

0.86" at 20 GHz, 0.42" at 40 GHz, and 0.22" at 80 GHz.

The aperture efficiency, €,;p of the test case system is shown in Figure 5.1.4-5. Figure
5.1.4-6 shows the spillover efficiency, €55 of the scanned test case system. The feed mispointing
results of Section 3.1.1 were used with the aperture efficiency and spillover efficiencies to
approximate the illumination amplitude and phase efficiencies, €,,p and £, of the test case
system. These results, shown in Figure 5.1.4-7 and 5.1.4-8, suggest that most of the scan

induced pattern degradation is caused almost exclusively by phase error as expected.

Figures 5.1.4-9 through 5.1.4-16 summarize the analysis results for the constant 8 scan

paths. In general, these results show that the worst pattern degradation occurs for scan in the

¢, = 90 region.

5.2 The Transmit Mode Raytracing Error Functional

The transmit mode raytracing error functional determines the optimum position for the
subreflector by minimizing the cross-product of the rays exiting the system with a unit vector in
the desired scanned beam direction. This is equivalent to minimizing the variation in the path
lengths of the rays transmitted through the system using the repositioned subreflector [5). The

transmit mode raytracing error functional is defined

M N '
am= O 2| Fuigxol (5.2-1)

i=1 j=1

where ?”J is the unit vector of the i, th ray in the system and Tp is a unit vector in the desired

scanned main beam direction. Unlike the correcting subreflector surface fitting error functional
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Figure 5.1.4-3. Cross-polarization level (XPOL) of the test case system as a function of scan
angle in the plane of offset (8,) for optimized scanning using the correcting subreflector surface
fitting error functional.
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Figure 5.1.4-4. Beam efficiency (BE) of the test case system as a function of scan angle in the
plane of offset (8,) for optimized scanning using the correcting subreflector surface fitting error

functional.
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Figure 5.1.4-5. Aperture efficiency (Ew) of the test case system as a function of scan angle in
the plane of offset (8,) for optimized scanning using the correcting subreflector surface fitting

error functional,
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Figure 5.1.4-6. Spillover efficiency (€4p) of the test case system as a function of scan angle in
the plane of offset (6,) for optimized scanning using the correcting subreflector surface fitting
error functional.
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scan angle in the plane of offset (6,) for optimized scanning using the correcting subreflector
surface fitting error functional.
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error functional.
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which emphasizes illumination amplitude error, this error functional evaluates only illumination

phase error to provide an estimate of scanned pattern degradation.

5.2.1 Transmit Mode Raytracing Optimization Implementation - TMRT]

Optimization of the subreflector motions for scanned beams is much the same for the
transmit mode raytracing error functional as for the correcting subreflector surface fitting error
functional. The single major difference between the optimization procedures is the elimination
of the outer path length optimization loop required by the correcting subreflector surface fitting
error functional. The general scheme for optimization using the transmit mode raytracing error
functional is shown in Figure 5.2.1-1. First, the subreflector is positioned using (5.1.2-2a)
through (5.1.2-2c) and a geometrical optics ray is traced through the system from the feed to the
main reflector. Next, a ray is traced from the feed point to each of the grid points on the

repositioned subreflector. The unit vector of this ray is

- _ X‘-'xSlA Yf'ySJA Zr'ZSIA .
r3—{ |R3| X, |R3| ¥y, |R3| z}. (5.2.1-1)

where

—_ 2 s 2 2 v ‘
|Ry| = \/(xs, -x)? + (g - ¥0)? + (zg - 292, (5.2.1-2)
Snell’s law is then used with this unit vector and the unit normal of the subreflector to find the

unit vector of the ray from the subreflector to the main reflector, T,.

Unlike in the optimization using the Correction Subreflector Surface Fitting error
functional, the main reflector is analytically defined for the transmit mode raytracing error
functional. This allows an exact solution for the intersection of the ray from the subreflector
with the parent paraboloid of the main reflector. The length of the ray from the subreflector to

the main reflector, |R;} can be found by using the quadratic formula

vb?-4ac-b
|R,|= T‘“ (5.2.1-3)
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with

= Ty’ + 1y, (5.2.1-4a)
b = 2F2xxsl + 2?2ny' - 4?21F (5-?.1‘4b)
c= x5+ yg? - 4z F. (5.2.1-4c)

The intersection of the ray and the parent paraboloid of the main reflector is then

M= { xg + Fpy|Ro| vg + Ty | Rof 20 + Py Ry } (5.2.1-5)
The unit normal of the parent paraboloid of the main reflector, fiy; can now be found from
(2.1-11). Using this unit normal with the unit vector T, in Snell's law gives the unit vector of
the ray which is reflected from the main reflector, ;. This unit vector is calculated for each ray

which is traced through the system.

The other necessary component of the transmit mode raytracing error functional is the
unit vector of a ray exiting the system in the desired scan direction, fp- This unit vector is
given by the negative of (5.1.1-1), the unit vector of a ray entering the system from the desired
scan direction. After T, is found for each of the rays in the system, the error is found from
(5.2-1).  This error is used in the Powell’s method optimization which repositions the

subreflector.

5.2.2 Predicted Subreflector Motions

The optimum subreflector positions were determined for the test case with the transmit
mode raytracing error functional as with the correcting subreflector surface fitting error
functional for three scan paths: a scan from 6, =-1.0"to 8, = 1.0° for ¢, = 0", a scan from ¢, =
0" to ¢, = 180° for 6, = 0.5°, and a scan from ¢, = 0" to ¢, = 180" for 6, = 1.0°. A significant
decrease in the computational effort required was noted with a time of slightly less than 7
minutes per scan direction and a total time of 4 hours 29 minutes for all 39 scan directions.

This is over a six-fold reduction in the optimization time required.
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The required x-, y-, and 2-translations for the scan path in the plane of offset are shown
in Figure 5.2.2-1 as a function of scan angle in the plane of offset. The a- and J-rotations
required for the scan path are shown in Figure 5.2.2-2 as a function of scan angle in the plane of
offset. The scan motions produced by the transmit mode raytracing error functional are larger
because the subreflector is not constrained to be located along the central ray reflected from the
main reflector as in the correcting subreflector surface fitting optimization. The x-. y-. and z-
translations and a- and B-rotations required for the constant § scan paths at 6, = 0.5° and

g, = 1.0° are shown in Figures 5.2.2-3 and 5.2.2-4.

5.2.3 Computational Results using TICRA GRASP7 Physical Optics Analysis

The scanned test case systems created using the transmit mode raytracing error
functional were analyzed as discussed in Section 5.1.4. Figure 5.2.3-1 shows the gain, G, of the
scanned test case system as a function of scan angle in the plane of offset, 8,. The gain increases
approximately 6 dB for each octave frequency increase as with the correcting subreflector surface
fitting error functional, but, the loss during scan at each frequency is essentially independent of
frequency for the transmit mode raytracing error functional. This difference indicates that the
scan loss is probably not being caused by illumination phase error. The iow overall sidelobe
levels, SLL, shown in Figure 5.2.3-2 confirm this indication. Figure 5.2.3-3 shows the cross-
polarization level, XPOL, as a function of scan angle in the plane of offset, 8. Figure 5.2.3-4
shows the beam efficiency, BE, of the test case system when optimized for beam scanning using
the transmit mode raytracing error functional. The beam efficiency produced with this
optimization approach is comparable with that using the correcting subreflector surface fitting
error functional of Section 5.1 at 20 GHz and inuch higher at the higher frequencies across the
scan path. The scan range as defined by a minimum beamm efficiency of 90% is 0.72° at 20 GHz,

0.82° at 40 GHz, and 0.80° at 80 GHz. This is a scan range of 35 half-power beamwidths at 80
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Figure 5.2.2-1. Optimum subreflector X-y y-, and z-translations (xy) ¥y, 2,) for the test case
system as determined using the transmit mode raytracing error functional as a function of scan
angle in the plane of offset (8,).
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Figure 5.2.2-2. Optimum subreflector a- and S-rotations (c,, B,) for the test case system as
determined using the transmit mode raytracing error functional as a function of scan angle in
the plane of offset (6,).
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Figure 5.2.3-2. Sidelobe level (SLL) of the test case system as a function of scan angle in the
plane of offset (8,) for optimized scanning using the transmit mode raytracing error functional.
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Figure 5.2.3-5. Aperture efficiency (eap) of the test case system as a function of scan angle in
the plane of offset (8,) for optimized scanning using the transmit mode raytracing error
functional.
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The aperture efficiency, £,,, of the scanned test case system is shown in Figure 5.2.3-5
as a function of scan angle in the plane of offset, §,. The spillover effiency, €, given by
GRASP7, is shown in Figure 5.2.3-6. As before, the results of Section 3.1.1 were used to
generate approximate illumination amplitude and phase efficiencies, €,,,, and ¢, for the
system. These efficiencies are shown in Figures 5.2.3-7 and 5.2.3-8. As expected, the scan loss
in the test case systems synthesized using the transmit mode raytracing error functional is

dominated by spillover and illumination amplitude losses.

Figures 5.2.3-9 through 5.2.3-16 summarize the analysis results for the constant 8 scan
paths. These results show that the worst pattern degradation occurs for scan to positive 8,
angles in the ¢, = 0° region for the transmit mode raytracing error functional. This behavior is

caused by the extreme motions selected by the error functional in this region as shown in

Figures 5.2.2-1 through 5.2.2-3.
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Figure 5.2.3-6. Spillover efficiency (£5p,) of the test case system as a function of scan angle in
the plane of offset (8,) for optimized scanning using the transmit mode raytracing error
functional.
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Chapter 6
SUMMARY

6.1 Conclusions

The goal of this work was to develop a high gain, wide scanning reflector antenna
system for use in a geostationary, microwave radiometric system for the Mission to Planet
Earth. The design constraints imposed by the radiometric requirements of this mission are
summarized in Table 1.1. Beam efficiency, given by (3.1.1-7), is the far-field pattern
characteristic that is of greatest concern during beamn scanning. The beam efficiency must be as
high as possible for this mission because radiometry measures thermal noise. This means that
the ratio of desirable noise, the scene which is being observed, to undesirable noise, the rest of
the universe, must be as large as possible. Also, beam efficiency should be constant with
frequency because the radiometric measurements must be performed on several frequency bands

simultaneously.

The canonical offset Cassegrain reflector antenna configuration was chosen to
complement the more complex structures being designed by Werntz [1} with the tri-reflector
configurations, by Shen [2] using the spherical inain reflector configurations, and by
Takamizawa 3] using shaped-reflector configurations. The test case, suminarized by Figure 4.2
and Table 4.1, was chosen to fit a 42.52% scale test article developed at NASA Langley
Research Center to allow possible experitnental verification of the resulting beam scanning

system. This is the simplest system which is capable of scanning by subreflector motion only
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and has an areal efficiency of greater than 98%. The test case achieves an unscanned aperture

effiency of nearly 75% using a single feed rather than an array feed system for simplicity.

Two geometrical optics based error functionals were used to generate the optimum
scanning motions of the subreflector. The first of these, the transmit mode raytracing error
functional of Section 5.2, minimizes the far-field pattern degradation by minimizing the
mispointing between the rays exiting the system and a ray in the desired scan direction. The
test case system has a 90% beam efficiency scan range of 8 HPBW for Dy, = 709\, 18 HPBW
for Dy = 1417, and 35 HPBW for Dy = 2835\ when optimized using this error functional.
Optimization of the test case system with the transmit mode raytracing error functional for a
single scan direction requires just less than 7 minutes using a 50 MHz 80486 micro-computer. It
is believed that this is the first application of an error functional of this type to the optimization

of subreflector induced beam scanning in a dual reflector system.

The correcting subreflector surface fitting error functional of Section 5.1, after
Kitsvuregawa {4], was the second error functional used to find the optimum scanning motions of
the subreflector. This error functional minimizes the far-field pattern degradation by fitting the
unscanned subreflector to a phase correcting subreflector synthesized for the scan direction and a
given path length through the system. Optimization of the test case system using this error
functional was over six times slower at nearly 45 minutes per scan direction. This difference in
optimization speed can be attributed to the additional optimization loop required to vary the
path length. The 90% beam efficiency scan range of the test case when optimized using the
correcting subreflector surface fitting error functional was found to be 9 HPBW for Dy, = 7092

and 1417X and 10 HPBW for Dy = 2835,

The Foldes Type 6 reflector antenna system, discussed in Section 3.4, is the other

subreflector scanned, high gain reflector systemn which was investigated. Althought the Type 6

Summary 164



system beam scans by subreflector tilt only it was found to be capable of a 90% beam efficiency
scan range of 19 HPBW for Dy = 8334, 21 HPBW for Dy = 1667X, and 31 HPBW for Dy =
3333A. This scan performance is significantly greater than the scan perforimance of the test case
when optimized by either of the error functionals at the two smaller electrical aperture
diameters. Because the Type 6 system has a higher subreflector eccentricity, one concern raised
by its larger scan range is that the scan range of an offset ('assegrain reflector antenna may be
highly affected by subreflector eccentricity. The transmit mode raytracing error functional does
have a scan range which is comparable with that of the Type 6 system at the largest electrical
aperture size. Also, the lower phase error observed for the transmit mode raytracing error
functional promises better scan performance with increasing aperture size than for the Type 6
system. The scan characteristics of these three wide scanning reflector antenna system are

summarized in Table 6.1-1.

The optimization approach presented in Chapter 5 should be applicable to any dual
reflector antenna system. In general, the transmit mode raytracing error functional should be
used to optiinize systems with electrically large apertures. Also, the transmit mode raytracing
error functional is more suitable for radiometric systems because the beam efficiency of the
resulting scanned system is more constant as a function of frequency. The correcting
subreflector surface fitting error functional is better suited to smaller aperture antennas. The
transition between the applicable ranges of these two error functionals as implemented here
occurs for systems of Dy from 800 to 1000A. The correcting subreflector surface fitting error
functional is better suited for use in the optimization of systemns using array feeds to compensate
for aperture phase error because this error functional primarily maximizes illumination

amplitude and spillover efficiency.

Other than the original geostationary radiometric mission, two possible uses for
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Table 6.1-1. Scan characteristics of three high gain,
(—-—- indicates unavailable information or incomp

wide scanning reflector antenna systems.

lete information would be provided)

6, | 4, | System G SLL | XPOL| BE € Eq X, z, a,
(deg)|(deg) (dBi) | (dB) | (dB) | (%) @ @& | (m) | (m) | (deg)
0.0 0| Type 6 | 79.27 | -29.47 .44.5 | 94.61 | 77.08 | 96.21 | - | - 0.00
TMR | 77.78 | -29.45| -74.7 93.63 | 75.63 | 94.98 | 0.00 0.00 | 0.00
CSSF | 77.78 | -20.43| -74.7 93.63 | 75.63 | 94.98 | 0.00 0.00 | 0.00
0.5 0| Type 6 | 76.26 | -—-—- 42.0 | 77.76 | 39.12 | 95.87 } ------ | = -1.82
TMR | 76.90 | -22.65| -55.3 37.04 | 61.76 | 90.37 | 0.12 0.06 | -3.59
CSSF | 71.32 | - -57.3 | 39.85 | 17.09 [ 95.35 -0.08 |-0.09 | -0.42
0.5| 45| Type6
TMR | 76.99 | -22.69| -40.8 87.93 | 63.06 | 91.42
CSSF | 71.89 | ------- -42.0 | 12.54 | 19.51 | 94.55
0.5] 90| Type6
TMR | 77.05 | -23.04| -37.8 89.80 | 63.93 | 92.40
CSSF | 71.58 § -—-—--- -39.1 6.12 | 18.14 | 93.71
05 | 135 Type 6 | - | == | oo | ) T
TMR | 77.02 | -23.29 -41.2 89.91 | 63.49 | 92.54
CSSF | 71.66 | ------- 41.4 | 17.78 | 18.48 | 93.76
0.5 | 180| Type 6 | 77.18 | - 48.1 | 82.72 | 47.86 | 94.28 | - | 1.79
TMR | 76.99 | -23.66 | -55.1 89.78 | 63.05 | 92.45 | -0.07 -0.04 | 2.85
CSSF | 71.63 | - 572 | 35.15 | 18.35 | 94.21 0.09 | 0.08 | 0.41
1.0 0| Type 6 | 69.67 | ------- -38.7 | 37.31 g.51 | 92.75 | ------ —————- 3.69
TMR | 73.78 | -18.13| -49.8 59.91 | 30.11 | 69.93 | 0.33 0.18 | -8.47
CSSF | 67.33 | - | -51.2 19.10 | 6.82 | 95.14 | -0.16 -0.19 | -0.85
1.0| 45| Type6
TMR | 74.77 | -13.54| -34.8 68.96 | 37.86 | 79.04
CSSF | 67.87 | ---—---- -35.9 0.89 | 7.72 | 93.30
1.0| 90| Type 6
TMR | 75.81 | -24.11| -32. 79.87 | 48.05 | 87.96
CSSF | 66.62 | ------- -32. 0.20 | 5.79 | 89.74
1.0 | 135| Type 6
TMR | 75.98 | - .35.3 | 77.83 | 49.97 | 88.95
CSSF | 67.86 | ------- -35.4 4.82 | 7.70 | 90.42
1.0 | 180 Type 6 | 74.28 | - 53.7 | 63.48 | 24.19 | 90.99 | - R 3.53
TMR | 75.97 | -20.05| -49.8 79.68 | 49.85 | 88.98 | -0.10 -0.07 | 5.18
CSSF | 67.78 | - -50.3 595 | 7.56 | 92.47 | 0.19 0.16 | 0.82
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subreflector induced beam scanning are tracking of geostationary satellites by large earth station
antennas and reduction of the actuator demands imposed by over-zenith tracking in elevation
over azimuth pedestals. A typical large earth station antenna in the 100 class has a half power
beam width of about 0.06° at C-band. These earth stations must track geostationary satellites
because most geostationary satellites have diurnal angular motions of greater than 0.06°. An
antenna system capable of beam scanning over the lirnited tracking range required for this use
would allow the use of smaller actuators for tracking by displacing the much smaller subreflector
instead of the entire antenna. Over-zenith tracking in elevation over azimuth pedestals currently
requires very rapid azimuth slew when the target passes through the zenith. A system capable
of beam scanning by subreflector motion could reduce the maximum azimuth slew rate by using
subreflector induced bearn scanning to hold the beam on target near the zenith. This would
allow the azimuth slew to occur more gradually during the time the target is near, rather than

at, the zenith.

The characteristics of five scanning antenna configurations of increasing complexity are
summarized in Table 6.1-2. The prime-focus paraboloid with scanning achieved by lateral or
optimal feed movement is included for comparison purposes [1]. The Type 1 system is the test
case system described here and is scanned by optimal subreflector positioning as determined
with the transmit niode raytracing error functional. The Type 2 system is the Cassegrain II tri-
reflector systemn of \Werntz [1]. The spherical systein is the two subreflector and one caustic
mirror with feed tilt system of Shen [2). As shown, the scan range of reflector antenna systems
generally increases with increasing complexity. On the whole. the Type 1 systern described here
provides good overall scan range while remaining fairly simple. Also, the Type 1 system’s areal
and aperture efficiencies are significantly higher than those of the other two systems investigated

here a Virginia Tech.
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Table 6.1-2. Characteristics of five wide scanning reflect

or antenna systems

Parameter Prime-focus Parab. Type | Type 2 | Spherical
Feed movement (LaPean)| (Werntz) (Shen)
lateral Optimal

Main reflector diameter (Dy), A | === 700 2835 480  |1200 x 1000

F/D, 1.000 1.000 0.515 0.519 0.260

D 2
Areal efficiency 3 M 3 1.0000 1.0000 0.9817 0.8818 0.9218
Dy + - + Dg,,
Translational degrees of freedom 1 2 3 0 0
feed: 1

Rotational degrees of freedom 1 l 2 2 mirror: 2

Gain (G), dBi 77.78 62.44 63

Aperture efficiency (€,5), % 75.63 77.13 50

1 dB gain loss scan range, HPBW 8 34x0 50 30x60 82
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6.2 Future Work

Future efforts to improve the scanning capabilities of offset canonical Cassegrain
reflector antennas should focus on the following four main areas.

¢ Improving the transmit mode raytracing error functional.

The basic form of the transmit mode raytracing error functional could be expanded to
include illumination error effects as well as phase error effects.  While this would
necessarily cause the optimization to be performed for a given frequency of operation,
many antenna systems, especially for civil communications. operate over only a narrow
band of frequencies.

e Improving the correcting subreflector surface fitting error functional.
The implementation of the error functional could be extended to allow the grid of points
to be of variable size. This improvement would allow a portion of the actual
subreflector to be fitted to the correcting subreflector. This will possibly allow a closer
fit as the compound curved surface move relative to each other.  One potential
complication to this scheme is that the illuminated portion of the actual subreflector
may shrink below the region where geometrical optics techniques apply.

e Investigating the possibility of using a simple array feed system to extend the scan range.
A simple array feed could be used to reduce the aperture phase error. If the system was
not limited by a low spillover or illumination amplitude efficiency this could
significantly increase the scan range.  As entioned in Section 6.1, the correcting
subreflector surface fitting error functional seems well suited for subreflector motion
optimization for an array fed system because this error functional primarily optimizes
the illumination amplitude and spillover efficiencies. Bailey [5] and Smith [6] have

investigated the possibility of using array feed systems to improve the illumination
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phase efficiency of reflector antenna systems.

e Investigating the effects of the geometry of Cassegrain reflector antenna systems on scan
range. The results of Section 3.2 indicate that the offset height of the equivalent
paraboloid of an offset Cassegrain reflector antenna has little effect on its beam scanning
behavior. However, the effects of main reflector focal length, subreflector eccentricity,
and other parameters were not investigated due to the pre-existing geometry
requirements. The potential importance of this line of investigation is hinted at by the

scan range of the Foldes Type 6 system when scanned by subreflector tilt only.
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Appendix 1

Program listing of the Correcting Subreflector Surface Fitting error functional

optimization software

Appendix 1

172



LA SRS R R ey Yy 2 2 R R R I

Correcting Subreflector Surface Fitting Optimization Code

*

*

*

* James W. LaPean, Jr. 11/18/93
*

*

*****i*t**i***it****************************i**itt****i*ii*i***i**iiiit

PROGRAM CSSF
IMPLICIT NONE

REAL*8 SRFMD(4),SRFM(25,25,6),SRFA(25,25,6),SCND(6),SCAN(Z),FOC,
Cc FEED(3),X(4),SC(2),XP(4),PI,SRFS(25,25,6),SFOC(2,3)
INTEGER*2 ICN,I,J,T,P,TINC,PINC

CHARACTER*12 SUBFILE

COMMON /REFL/ SRFMD, SRFA,FOC, FEED,SC, SRFM, SRFS
PI=3.14158265358979323846D0

* Program inputs read from input file

OPEN(3,FILE='KSFT1.INP’,STATUS='0LD’)

READ(3, *) SRFMD(1) ,SRFMD(2) ,SRFMD(3),SRFMD (4)

READ (3, *) FOC,FEED(1) ,FEED(2) ,FEED(3)
READ(3,*)SCND(1),SCND(2),SCND(3),SCND(4),TINC,PINC
READ(3,*) X (1) ,X(4)

READ (3, %) ICN

READ(J,’ (A12)’)SUBFILE

X(3)=0.D0

X(2)=0.D0

* Nominal subreflector data entry

OPEN (4,FILE=SUBFILE, STATUS='0OLD’)

READ(4, ' (6F12.7)‘)SFOC(1,1),SFOC(1,2),SFoc(1,3),
C SFOC(2,1),8FO0C(2,2),SFon(2,3)

DO 1 I=1,25

DO 1 J=1,25

1 READ(4, ' (6F12.7)’)SRFA(I,J,1) ,SRFA(I,J,2),SRFA(T =~ ),
c SRFA(I,J,4),SRFA(I,J,5),SRFA = .,
CLOSE(4)

* Main reflector array setup
CALL MNREF

* Perform scan optimized fitting for scan combinations
WRITE(*,’'(//,A1)*)" '
SCAN(2)=SCND(2)
P=1
2 SCAN(1)=SCND (1)
T=1
3 WRITE(*,’ (A25,D8.3,.7,D8.3)")"’ Calculating for Theta = /,SCAN(1),
c ' Phi = ’,SCAN(2)
SC(1)=SCAN(1)
SC(2)=SCAN(2)
XP(1)=X(1)
XP(2)=X(2)
XP(3)=X(3)
XP(4)=X(4)
CALL PATHOPT (ICN,XP, SFOC)
ICN=ICN+1
SCAN (1) =SCAN(1)+SCND(3)
T=T+1
IF (T.LE.TINC) GOTO 3
SCAN (2)=SCAN(2)+SCND (4)
P=P+1
IF (P.LE.PINC) GOTO 2
STOP
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END

i***t.tii**ii**it**i**iﬁ*****t***ii**i**ii*tt******iitt**ﬁ***ti'i*t**ﬁ**

L]
* Main reflector array filling subroutine

*

t*t******ﬁ***********it*****ﬁ***i*iiii*****t*****i*it******i*ii****i*iiﬁ

SUBROUTINE MNREF
IMPLICIT NONE
REAL*8 SRFH(25,25,6),SRFMD(4),DEN,F,SRFA(ZS,ZS,G),FEED(3),SC(2),
c SRFS (25,25,6)
INTEGER#*2 I,J
COMMON /REFL/ SRFMD,SRFA,F,FEED,SC, SRFM, SRFS
DO 1 I=1,25
DO 1 J=1,25
SRFH(I,J,Z)-(SRFMD(z)-SRFMD(I))*FLOAT(I—l)/24.DO+SRFMD(1)
SRFH(I,J,J)-(SRFMD(4)-SRFMD(3))*FLOAT(J-I)/24.D0+SRFMD(3)
SRFH(I,J,1)-2.50-1*(SRFM(I,J,2)**2.Do+SRFM(I,J,3)**2.00)/F
DEN=SQRT ( (SRFM(I,J,2)/(2.DO*F))**2.D0
c +(SRFM(I,J,3)/(2.DO*F))#*2.D0+1.D0)
SRFM(I,J,4)=1.D0/DEN
SRFM(I,J,5)=-SRFM(I,J,2)/(2.DO*F*DEN)
1 SRFM(I,J,6)==SRFM(I,J,3)/(2.DO*F*DEN)
RETURN
STOP
END

**t*t**tiii*******i*it*tti**iit**t**********i**it*****tiiti**it*iit*ﬁtt*

*
* Path length optimization subroutine

*
tt*ti******i*ﬁ*ﬁ*iiti***ti****ﬁiiii*t*****i*******ﬁ*t**********t*i***i**

SUBROUTINE PATHOPT (ICN, X, SFOC)
IMPLICIT NONE
REAL*8 SRFM(25,25,6),SRFS(25,25,6),FEED(B),SCAN(Z),PI,FOC,PATH,
c SRFA(25,25,6),TRANS(6),R,C,TOL,X(4),EPS,F(2),SRFMD(4),
c SFoC(2,3),XI(5,5),DSCAN(2)
INTEGER*2 ICN,I,J,N,ITER
COMMON /REFL/ SRFMD,SRFA,FOC,FEED,SCAN,SRFH,SRFS
PI=3.14159265358979323846D0
R=0.61803399D0
C=1.D0-R
TOL=1.D-10
+ optimization initialization
SCAN (1)=SCAN (1) *PI/1.8D2
SCAN (2)=SCAN(2) *P1/1.8D2
X(3)=(X(4)+X(1))/2.D0
X(2)=R*X(3)+C*X (1)
PATH=X(2)
CALL RAYTRC(PATH)
Do I=1,5
TRANS (1)=0.D0
po J=1,5
IF(I.EQ.J) THEN
XI(I,J)=1.DO
ELSE
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XI(I,J)=0.Du
ENDIF
ENDDO
ENDDO
N=5
CALL POWELL(TRANS,XI,N,TOL,ITER,EPS)
F(1)=EPS
PATH=X(3)
CALL RAYTRC (PATH)
DO I=1,5
TRANS (I)=0.D0
DO J=1,5
IF(I.EQ.J) THEN
XI(I,J)=1.DO
ELSE
XI(I,J)=0.D0O
ENDIF
ENDDO
ENDDO
N=5
CALL POWELL(TRANS,XI,N,TOL,ITER,EPS)
F(2)=EPS
* Optimization loop
2 IF (ABS(X(4)-X(1)).GT.TOL*(ABS(X(Z))+ABS(X(3)))) THEN
IF (F(2).LT.F(1)) THEN
X(1)=X(2)
X(2)=X(3)
X(3)=R*X(2)+C*X(4)
F(1)=F(2)
PATH=X(3)
CALL RAYTRC (PATH)
DO I=1,5
TRANS (I)=0.D0
DO J=1,5
IF(I.EQ.J) THEN
XI(I,J)=1.DoO
ELSE
XI(I,J)=0.D0
ENDIF
ENDDO
ENDDO
N=5
CALL POWELL(TRANS,XI,N,TOL,ITER,EPS)
F(2)=EPS
ELSE
X(4)=X(3)
X(3)=X(2)
X(2)=R*X(3)+C*X(1)
F(2)=F(1)
PATH=X (2)
CALL RAYTRC (PATH)
DO I=1,5
TRANS(I)=0.DO
DO J=1,5
IF(I.EQ.J) THEN
XI(I,J)=1.D0
ELSE
XI(I,J)=0.DO
ENDIF
ENDDO
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N=5
CALL POWELL(TRANS,XI, N, TOL, ITER, EPS)
F(1)=EPS
ENDIF
GOTO 2
ENDIF
* output of optimum subreflector translation and rotation and sys. info
DSCAN(1)=SCAN(1) x1,8D2/P1
DSCAN (2)=SCAN(2) *1.8D2/PI
CALL OUT(FEED,TRANS,DSCAN,ICN,SFOC,PATH,EPS)
RETURN
STOP
END

itt**iﬁ*******t*t****ii***********itt**********ii********i*t****itti*tt*
*
* Correcting subreflector generation subroutine

]
tii**i*t**ﬁ**t***********t*******i************i**i************i******tti

SUBROUTINE RAYTRC(PATH)
IMPLICIT NONE
REAL*8 SRFH(25,25,6),SRFS(25,25,6),FEED(3),SCAN(Z),R1(3),R2(3),
c RDOTN,PATH,A,B,C,K,RBL,RB(3),RlL,PROD,DEN,SRFMD(4),FOC,
c SRFA(25,25,6)
INTEGER*2 I,J
COMMON /REFL/ SRFMD,SRFA,FOC,FEED, SCAN, SRFM, SRFS
+ FIND COMPONENTS OF RAYS INCTDENT ON MAIN REFLECTOR
R1(1)=-COS (SCAN(1))
R1(2)=-SIN(SCAN(1))*COS(SCAN(2))
R1(3)=-SIN(SCAN(1))*SIN(SCAN(2))
po 3 I=1,25
po 3 J=1,25
FIND COMPONENTS OF RAY REFLECTED FROM MAIN REFLECTOR
RDOTN=R1(2)*SRFM(I,J,5)+R1(3)*SRFM(I,J,6)+R1(1)*SRFM(I,J,4)
R2(1)=R1(1)-2.*RDOTN*SRFM(I,J,4)
R2(2)=R1(2)-2.*RDOTN*SRFM(I,J,5)
R2(3)=R1(3)-2.*RDOTN*SRFM(1,J,6)
FIND LENGTH OF INCIDENT RAY BETWEEN MAIN REFLECTOR AND A.P.
R1L=COS(SCAN(1))*(1.DZ+TAN(-SCAN(1))*COS(SCAN(Z))*SRFH(I,J,2)+
c TAN(-SCAN(l))*SIN(SCAN(Z))*SRFM(I,J,3)-SRFH(I,J,I))
FIND SUBREFLECTOR POINTS BY SETTING TOTAL PATH LENGTH
A=(R1(2)-2.DO*RDOTN*SRFM(I,J,5))/
c (R1(1)~2.DO*RDOTN*SRFM(I,J,4))
C=R1(3)-2.DO*RDOTN*SRFM(I,J,6)
B=C#*SQRT (1+A*#2.D0) /SQRT (1-C**2.D0)
K=PATH-R1L
PROD=2.D0*(K*SQRT(1+A**2.DO+B**2.DO)+A*(SRFM(I,J,2)-FEED(2))+
B* (SRFM(I,J,3)-FEED(3)))
SRFS(I,J,1)=(K#**2 DO+SRFM(I,J, 1) *PROD
- (FEED(2) -SRFM(I,J,2))**2.D0
-(FEED(J)-SRFH(I,J,3))**2.DO+SRFM(I,J,1)**2.DO
-FEED(I)**2.D0)/(PROD+2.D0*SRFM(I,J,1)-2.DO*FEED(1))
SRFS(I,J,2)=A*(SRFS(I,J,1)-SRFM(I,J,1))+SRFH(I,J,2)
SRFS(I,J,B)-B*(SRFS(I,J,1)-SRFM(I,J,1))+SRFM(I,J,3)
+ FIND SUBREFLECTOR NORMAL
R3L=SQRT ( (SRFS(I,J,1) -FEED(1))**2.D0
c +(SRFS(I,J,2)-FEED(2))**2.D0+

»

»

»

[$]
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c (SRFS(I,J,3)~FEED(3))**2.DO0)
R3(1)=(FEED(1)-SRFS(I,J,1))/R3L
R3(2)=(FEED(2)~SRFS(I,J,2))/R3L
R3(3)=(FEED(3)-SRFS(I,J,3))/R3L
SRFS(I,J,4)=R3(1)-R2(1)

SRFS(I,J,5)=R3(2)-R2(2)
SRFS(I,J,6)=R3(3)-R2(3)
DEN=SQRT (SRFS(I,J,4) **2.D0+SRFS(I,J,5) **2.D0+SRFS(I,J, 6)**2.D0)
SRFS(I,J,4)=SRFS(I,J,4)/DEN
SRFS(I,J,5)=SRFS(I,J,5)/DEN
3 SRFS(I,J,6)=SRFS(I,J,6)/DEN
RETURN
STOP
END

********i*********i**i**********i*************ﬁ***********************i*
*
* Powell’s Method Optimization

*
*ii********iiit*********tt*****t***i**i***********t*******i**i******tt**

SUBROUTINE POWELL(P,XI,N,FTOL,ITER,FRET)
IMPLICIT NONE
REAL*8 P(S),XI(5,5),PT(5),PTT(5),XIT(5),FTOL, FPTT, FRET, FP, T, DEL,
[} FUNC
INTEGER*2 I,J,ITER,N,IBIG,ITMAX
ITMAX=200
FRET=FUNC(P)
DO J=1,N
PT(J)=P(J)
END DO
ITER=0
1 ITER=ITER+1
FP=FRET
IBIG=0
DEL=0.DO
DO I=1,N
DO J=1,N
XIT(J)=XI(J,I)
END DO
FPTT=FRET
CALL LINMIN(P,XIT,FRET)
IF (ABS(FPTT—FRET).GT.DEL) THEN
DEL=ABS (FPTT-FRET)
IBIG=1
END IF
END DO
IF (2.DO*DABS (FP~FRET) .LE.FTOL* (DABS (FP) +DABS (FRET) )) RETURN
IF (ITER.EQ.ITMAX) PAUSE ’Powell exceeding maximum iteration’
DO J=1,N
PTT(J)=2.DO*P(J) -PT(J)
XIT(J)=P(J)-PT(J)
PT(J)=P(J)
END DO
FPTT=FUNC(PTT)
IF (FPTT.GE.FP) GOTO 1
T=2.DO*(FP-Z.DO*FRET+FPTT)*(FP-FRET-DEL)**Z.DO-DEL*(FP-FPTT)**Z.DO
IF (T.GT.0.) GOTO 1
CALL LINMIN(P,XIT,FRET)
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po J=1,N
XI(J,IBIG)=XIT(J)

END DO
GOTO 1
END

SUBROUTINE LINMIN(P,XI,FRET)
IMPLICIT NONE
EXTERNAL F1DIM
REAL*8 P(S),XI(S),AX,XX,FRET,TOL,PCOM(SO),XICOM(SO),BX,FA,FX,FB,
c XMIN, BRENT
INTEGER*2 J,NCOM
COMMON /F1COM/ PCOM,XICOM,NCOM
TOL=1.D-10
NCOM=5
po J=1,5
PCOM(J)=P(J)
XICOM(J)=XI(J)
END DO
AX=0.
XX=1.
CALL MNBRAK (AX,XX,BX,FA,FX, FB,F1DIM)
FRET=BRENT (AX, XX, BX, F1DIM, TOL, XMIN)
po J=1,5
XI(J)=XMIN*XI(J)
P(J)=P (J) +XI(J)
END DO
RETURN
END

REAL*8 FUNCTION F1DIM(X)
IMPLICIT NONE
REAL#*8 PCOM(50) ,XICOM(50),XT(50),X,FUNC
INTEGER*2 NCOM,J
COMMON /F1COM/ PCOM, XICOM,NCOM
po J=1,NCOM
XT (J) =PCOM (J) +X*XICOM(J)
END DO
F1DIM=FUNC (XT)
RETURN
END

SUBROUTINE MNBRAK(AX,BX,CX,FA,FB,FC,FUNC)
IMPLICIT NONE
REAL*8 AX,BX,CX,FA,FB,FC,DUM,GLIMIT,GOLD,TINY,R,Q,U,ULIM,FU,
C FUNC
GOLD=1.618034D0
GLIMIT=100.D0
TINY=1.D-20
FA=FUNC (AX)
FB=FUNC (BX)
IF(FB.GT.FA) THEN
DUM=AX
AX=BX
BX=DUM
DUM=FB
FB=FA
FA=DUM
END IF
CX=BX+GOLD* (BX-AX)
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FC=FUNC (CX)
1 IF (FB.GT.FC) THEN

R=(BX-AX) * (FB-FC)
Q=(BX~-CX) * (FB~FA)

U=BX—((BX-CX)*Q-(BX-AX)*R)/(2.*SIGN(MAX(ABS(Q—R),TINY),Q-R))

ULIM=BX+GLIMIT* (CX-BX)
IF ((BX-U)*(U-CX).GT.0.) THEN
FU=FUNC (U)
IF (FU.LT.FC) THEN
AX=BX
FA=FB
BX=U
FB=FU
RETURN
ELSE IF (FU.GT.FB) THEN
CX=U
FC=FU
RETURN
END IF
U=CX+GOLD* (CX-BX)
FU=FUNC (U)
ELSE IF ((CX-U)*(U-ULIM).GT.0.) THEN
U=ULIM
FU=FUNC (U)
ELSE
U=CX+GOLD* (CX-BX)
FU=FUNC (U)
END IF
AX=BX
BX=CX
CX=U
FA=FB
FB=FC
FC=FU
GOTO 1

END IF
RETURN
END

REAL*8 FUNCTION BRENT(AX,BX,CX,F,TOL,XMIN)
IMPLICIT NONE

REAL*8 AX,BX,CX,F,TOL,XMIN,CGOLD,ZE

c

TOLI,TOLZ,R,Q,ETEMP,P,D,U,FU

INTEGER*2 ITER, ITMAX
ITMAX=100
CGOLD=.3819660D0
ZEPS=1.0D-10

A=MIN (AX, CX)

B=MAX (AX, CX)

V=

BX

W=V

X=V

E=0.

FX=F (X)

FV=FX

FW=FX

DO ITER=1, ITMAX
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TOL1=TOL*ABS (X) +ZEPS
TOL2=2. *TOL1

PS,A,B,V,W,X,E,FX,FV,FW,XH,
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IF (ABS(X-XM).LE.(TOL2-.5%(B-A))) GOTO 3
IF (ABS(E).GT.TOLI) THEN
R= (X-W) * (FX-FV)
Q= (X~V) * (FX~FW)
P-(X-V)*Q-(X-W)*R
Q=2.*(Q-R)
IF (Q.GT.0) P=-P
Q=ABS (Q)
ETEMP=E
E=D
IF (ABS(P) .GE.ABS (.5*Q*ETEMP) .OR.P.LE.Q* (A-X) .OR.
& P.GE.Q*(B-X)) GOTO 1
D=P/Q
U=X+D
IF(U-A.LT.TOLZ.OR.B-U.LT.TOLZ) D=SIGN(TOL1, XM~-X)
GOTO 2
END IF
1l IF (X.GE.am; THEN
E=A-X
ELSE
E=B-X
END IF
D=CGOLD*E
2 IF(ABS (D) .GE.TOL1) THEN
U=X+D
ELSE
U=X+SIGN(TOL1,D)
END IF
FU=F (U)
IF (FU.LE.FX) THEN
IF (U.GE.X) THEN
A=X
ELSE
B=X
END IF
V=W
FV=FW
W=X
FW=FX
X=U
FX=FU
ELSE
IF (U.LT.X) THEN
A=U
ELSE
B=U
END IF
IF (FU.LE.FW.OR.W.EQ.X) THEN
V=W
FV=FW
W=U
FW=FU
ELSE IF (FU.LE.FV.OR.V.EQ.X.OR.V.EQ.W) THEN
V=U
FV=FU
END IF
END IF
END DO
PAUSE ’Brent exceed maximum iterations.’
3 XMIN=X
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BRENT=FX
RETURN
END

(A2 2 2222222222222 22222222222 2222222 22222222222 PSR SR RES RSS2 22 2
*
* Powell’s Method Optimization Error Function

*
LAA A AR AL AR SRl R R SRR 22222 RRT R R R B R R R R R R R R PR

REAL*8 FUNCTION FUNC (TRANS)
IMPLICIT NONE
REAL*8 SRFA(25,25,6),SRFAT(25,25,6),TRANS(5) ,RMSERR, SRFS(25,25,6),
o SRFMD (4) , FOC,FEED(3) ,SC(2),SRFM(25, 25, 6)
INTEGER*2 I,J
COMMON /REFL/ SRFMD,SRFA,FOC,FEED, SC, SRFM, SRFS
CALL POSIT (SRFAT, TRANS)
RMSERR=0. DO
DO 1 I=1,25
DO 1 J=1,25
RMSERR=RMSERR+ ( ( (SRFAT(I,J,1)-SRFS(I,J,1))*SRFS(I,J,4))*%2.D0

c +((SRFAT(I,J,2)-SRFS(I,J,2))*SRFS(I,J,5))**2.D0

c +((SRFAT(I,J,3)-SRFS(I,J,3))*SRFS(I,J,6))**2.D0)
1 CONTINUE

FUNC=DSQRT (RMSERR)

RETURN

STOP

END

LA R R 2 R e R R R Y Y R S R R R I
*

* Type 1 Concept Subreflector Positioning Code

*

LA AL R A 2R 2R R R R R R R Ry R R AR R R

SUBROUTINE POSIT(SRFAT, TRANS)
IMPLICIT NONE
REAL*8 SRFA(25,25,6),SRFAT(25,25,6),TRANS(5), SRFMD(4) , FOC, FEED(3),
c SCAN(2),T(5),SRFM(25,25,6),SRFS(25,25,6)
INTEGER*2 I,J
COMMON /REFL/ SRFMD, SRFA,FOC, FEED, SCAN, SRFM, SRFS
T(1)=TRANS (3)
T(2)=TRANS (4)
T(3)=TRANS (5)
T(4)=TRANS (1)
T(5) =TRANS (2)
DO 1 I=1,25
DO 1 J=1,25
SRFAT(I,J,1)=T(1)+SRFA(13,13,1)-
SIN(T(4))*(SRFA(I,J,2)~-SRFA(13,13,2))+
COS(T(4))*SIN(T(S5))*(SRFA(I,J,3)~-SRFA(13,13,3))+
COS(T(4))*COS(T(S5))*(SRFA(I,J,1)-SRFA(13,13,1))
SRFAT(1,J,2)=T(2)+SRFA(13,13,2)+
COS(T(4))*(SRFA(I,J,2)-SRFA(13,13,2))+
SIN(T(4))*SIN(T(5))*(SRFA(I,J,3)~SRFA(13,13,3))+
SIN(T(4))*COS(T(5))*(SRFA(I,J,1)~SRFA(13,13,1))
SRFAT(I,J,3)=T(3)+SRFA(13,13,3)+
c COS(T(5))*(SRFA(I,J,3)-SRFA(13,13,3))-

0o

nnon
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SIN(T(5))*(SRFA(I,J,1)-SRFA(13,13,1")
SRFAT(I,J,4)=-SII(T(4))*SRFA(I,J,5)+
COS(T(4))*SIN(T(5))*SRFA(I,J,6)+
COS(T(4))*COS(T(5)) *SRFA(I,J,4)
SRFAT(I,J,5)=COS(T(4))*SRFA(I,J,5)+
SIN(T(4))*SIN(T(S5))*SRFA(I,J,6)+
SIN(T(4))*COS(T(S5))*SRFA(I,J,4)
SRFAT(I,J,6)=COS(T(5))*SRFA(I,J,6)~
SIN(T(5))*SRFA(I,J,4)

0 00 o0 o

RETURN
STOP
END

*tt*****t*ii****t****i*t**t******t**i**t*t**ii*********ﬁ**i***t**t****tt
*
* Type 1 Concept Output Code

*
P I Y Y Y2 2 a2 R 2 R 2 222 232 222 22 22 A2 R R A2 A A3 A Rt A0 d sy

SUBROUTINE OUT (FEED, TRANS,SCAN, ICN,SFOC, PATH, RMSERR)
IMPLICIT NONE

REAL*8 FEED(3),TRANS(S5),SCAN(2),SRFAT(25,25,6),PI,PATH,RMSERR,
c SFOC(2,3),GCOEF(10),U,V

INTEGER*2 ICN,K(3)

CHARACTER*12 OUTFILE

PI=3.14159265358979323846D0
U=SIN(SCAN(1)*PI/1.8D2)*COS(SCAN(2)*PI/1.8D2)
V=SIN(SCAN(1)*P1/1.8D2)*SIN(SCAN(2)*PI/1.8D2)
K(1)=48+ICN/100

K(2)=48+(ICN-(K(1)-48)*100) /10
K(3)=48+ICN-(K(1)~-48)*100~-(K(2)~-48)*10

CALL POSITF(SFOC, TRANS,GCOEF)

CALL POSIT (SRFAT,TRANS)

OUTFILE='KSFT1XXX.MOV'

OUTFILE(6:6)=CHAR(K(1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

OPEN(4,FILE=OUTFILE, STATUS=’UNKNOWN")

WRITE(4,’ (A10,2F12.7)’)'SCANNED TO ’,SCAN(1),SCAN(2)
WRITE(4,’(5F15.10) /) TRANS(4) ,TRANS(5) ,TRANS(3) ,TRANS(1) ,TRANS(2)
WRITE(4,’(2F15.10)’)PATH, RMSERR

ENDFILE(4)

CLOSE(4)

* 20 GHz GRASP7 Input File

OUTFILE=’'KSFT1XXX.INP’

OUTFILE(6:6)=CHAR(K(1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

OPEN(4,FILE=OUTFILE, STATUS=/UNKNOWN"’)
WRITE(4,’ (A30) /) #anddx GRASP77 INPUT FILE ##%#&a/
WRITE(4,’(A10,2F12.7)’)'SCANNED TO ’,SCAN(1),SCAN(2)
WRITE(4,’(F12.7,412)’)1.5D-2,2,1,0,0
WRITE(4,’ (A31) ‘) ’** MAIN REFLECTOR INPUT DATA #%’/
WRITE(4,’(3F12.7)’)0.,0.,0.

WRITE(4,’ (3F12.7)’)1.,0.,0.

WRITE(4,’ (3F12.7)')0.,1.,0.
WRITE(4,’(I2,2F12.7)’)1,7.795,0.
WRITE(4,’(312)’)4,0,0

WRITE(4,’ (4F12.7)’)0.,0.,0.,13.5
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WRITE(4,’ (2F12.7)’)~.215,5.315
WRITE (4, (A30)’)’#**% SU" REFLECTOR INPUT DATA #**/

WRITE(4,’ (3F12.7)’)0.,0.,0.

WRITE(4,’ (3F12.7)’)1.,0.,0.

WRITE(4,’(3F12.7)7)0.,1.,0.

WRITE(4,’(I2,2F12.7)’)1, (SRFAT(25,13,2)+SRFAT(1,13,2))/2.D0,
c (SRFAT(13,25,3) +SRFAT(13,1,3))/2.D0
WRITE(4,’(2I2)’)3,0

WRITE(4,’ (5F14.7) ') GCOEF (1) ,GCOEF(2) ,GCOEF(3) ,GCOEF (4) ,GCOEF(5)
WRITE(4,’ (5F14.7) ' )GCOEF (6) ,GCOEF(7),GCOEF(8) ,GCOEF (9) ,GCOEF(10)
WRITE(4,’ (5F12.7,I5)/)0.,0.,0.,0.,0.,1

WRITE (4,‘ (2F12.7) ‘) (SRFAT(25,13,2)-SRFAT(1,13,2))/2.DO,

c (SRFAT(13,25,3)-SRFAT(13,1,3))/2.D0
WRITE(4,’ (A21)’)’** FEED INPUT DATA ##’

WRITE(4,' (3F12.7) ')FEED(2),FEED(3),FEED(1)

WRITE(4,’ (3F12.7)').964483694,0.,~.264142395

WRITE(4,’ (3F12.7)’)0.,1.,0.

WRITE(4,'(I2)’)1

WRITE(4,’ (6F12.7)/)0.,0.,0.,0.,0.,0.
WRITE(4,’(F12.7,12)7)0.,1

WRITE(4,’ (4F12.7,312)’)0.,0.,1.,90.,0,0,3

WRITE(4,'(I2)’)6

WRITE(4,’ (5F12.7,I3)’)-15.,-15.,7.1574,0.,0.,1

WRITE(4,’ (A40)’)’*% MAIN REFLECTOR FIELD SPECIFICATION #**/
WRITE(4,’(I2)")1

WRITE(4,’ (3F12.7)7)7.795,0.,10.

WRITE(4,’ (3F12.7)/)1.,0.,0.

WRITE(4,’(3F12.7)7)0.,1.,0.
WRITE(4,’(216,F12.7,2I3)’)60,144,0.,0,0
WRITE(4,'(3I3)7)0,-1,1

WRITE(4,’ (F12.7)’)10.

WRITE(4,’(2F12.7)')U,V

WRITE(4,’(2I3)’)0,1

WRITE(4,’(2I3)’)3,1

WRITE(4,’ (4F12.7,216)’)-1.D-2,-1.D-2,1.D-2,1.D-2,25,25
WRITE(4,’(416)7)3,1

OUTFILE=’KSFT1XXX.P1’

OUTFILE(6:6)=CHAR(K(1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

WRITE(4,’ (Al12)’)OUTFILE

WRITE (4, (A39)’)’#* SUB REFLECTOR FIELD SPECIFICATION #%/
WRITE(4,’(I2)’)0

WRITE(4,’ (A30)’) /%% FEED FIELD SPECIFICATION #%’
WRITE(4,’(I2)7)0

ENDFILE (4)

CLOSE(4)

OUTFILE=‘KSFUVXXX.INP’

OUTFILE(6:6)=CHAR(K (1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

OPEN (4, FILE=OUTFILE, STATUS=’UNKNOWN' )

WRITE(4,’ (A25)’)’UVPROC CONTROL INPUT FILE’
OUTFILE='KSFT1XXX.P1’

OUTFILE(6:6)=CHAR(K(1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

WRITE(4,’ (Al12)’)OUTFILE

WRITE(4,’(6I2)’)1,1,1,1,0,0

WRITE(4,’(2I2)’)1,1
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WRITE(4,’(%2-, ,9,i,v,0,1,0
WRITE(4,' (Al12)’)’ TEMP.P2’

WRITE(4,’ (I2)’)3

WRITE(4,’(2I4)’)101,101

WRITE(4,’(712)’)0,0,1,1,0,0,0

WRITE(4,’(4I2)’)3,0,2,0

WRITE(4,’(F5.1)7)3.

WRITE(4,’(F5.1)’)10.

WRITE(4,’(5I2)’)1,0,0,1,1

WRITE(4,’(F7.4)’)0.1213

ENDFILE(4)

CLOSE(4)

* 40 GHz GRASP7 Input File

OUTFILE=’KSFT1XXX.INP’

OUTFILE(6:6)=CHAR(K(1)+1)

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

OPEN (4, FILE=OUTFILE, STATUS='UNKNOWN")

WRITE(4,’ (A30)’)/%%%x%x GRASP77 INPUT FILE #hkkun’
WRITE(4,‘(A10,2F12.7) ') 'SCANNED TO *,SCAN(1) ,SCAN(2)
WRITE(4,’ (F12.7,412)’)7.5D-3,2,1,0,0

WRITE(4,’(A31)’) %% MAIN REFLECTOR INPUT DATA #%/
WRITE(4,’ (3F12.7)7)0.,0.,0.

WRITE(4,’(3F12.7)’)1.,0.,0.

WRITE(4,’(3F12.7)’)0.,1.,0.
WRITE(4,’(I2,2F12.7)’)1,7.795,0.

WRITE(4,’(3I2)’)4,0,0

WRITE(4,'(4F12.7)’)0.,0.,0.,13.5
WRITE(4,’(2F12.7)’)5.315,5.315

WRITE (4, (A30)’)’*% SUB NEFLECTOR INPUT DATA ##*’
WRITE(4,’(3F12.7)’)0.,0.,0.

WRITE(4,’ (3F12.7)’)1.,0.,0.

WRITE(4,’(3F12.7)7)0.,1.,0.

WRITE(4,’(I2,2F12.7)’)1, (SRFAT(25,13,2)+SRFAT(1,13,2))/2.D0,
c (SRFAT(13,25,3)+SRFAT(13,1,3))/2.D0
WRITE(4,’(2I2)’)3,0

WRITE(4,’ (5F14.7)’)GCOEF(1),GCOEF(2) ,GCOEF (3) ,GCOEF (4) ,GCOEF (S5)
WRITE(4,'(5F14.7)‘)GCOEF(G),GCOBF(7),GCOEF(B),GCOEF(9),GCOEP(10)
WRITE(4,’(S5F12.7,15)’)0.,0.,0.,0.,0.,1
WRITE(4,’(2F12.7) ) (SRFAT(25,13,2)-SRFAT(1,13,2))/2.D0,
(o4 (SRFAT(13,25,3)-SRFAT(13,1,3))/2.D0
WRITE(4,’ (A21)’)’*%* FEED INPUT DATA *#‘’
WRITE(4,’(3F12.7)’)FEED(2) ,FEED(3),FEED(1)
WRITE(4,’(3F12.7)').964483694,0.,-.264142395
WRITE(4,’(3F12.7)’)0.,1.,0.

WRITE(4,’(I2)’)1

WRITE(4,’ (6F12.7)’)0.,0.,0.,0.,0.,0.
WRITE(4,’(F12.7,12)’)0.,1
HRITE(4,’(4F12.7,312)’)0.,0.,1.,90.,0,0,3
WRITE(4,’(I2)’)6
WRITE(4,’(SF12.7,13)’)-15.,-15.,7.1574,0.,0.,1

WRITE(4,’ (A40)’)’** MAIN REFLECTOR FIELD SPECIFICATION %%/
WRITE(4,’(12)’)1

WRITE(4,'’(3F12.7)’)7.795,0.,10.
WRITE(4,’(3F12.7)’)1.,0.,0.

WRITE(4,’(3F12.7)’)0.,1.,0.

WRITE(4,’ (216,F12.7,21I3)')60,144,0.,0,0
WRITE(4,’(31I3)’)0,-1,1

WRITE(4,’ (F12.7)’)10.

WRITE(4,’ (2F12.7)’)U,V
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WRITE(4,’(213)')O,1
WRITE(4,’(2I3)’)3,1
WRITE(4,’(4F12.7,216)/)-5.D-3,-5.D-3,5.D-3,5.D-3, 25, 25
WRITE(4,’(4IG)’)3,1
OUTFILE='KSFT1XXX.P1'
OUTFILE(6:6)=CHAR(K(1)+1)
OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))
WRITE(4, ' (A12)’)0OUTFILE
WRITE(4,’(A39)’) %% SUB REFLECTOR FIELD SPECIFICATION %%/
WRITE(4,’(I2)’)0
WRITE (4, (A30)’)’*% FEED FIELD SPECIFICATION ##~/
WRITE(4,’(I2)’)0
ENDFILE(4)
CLOSE(4)
OUTFILE='KSFUVXXX.INP’
OUTFILE(G:6)=CHAR(K(1)+1)
OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))
OPEN(4,FILE=OUTFILE,STATUS=’UNKNOWN')
WRITE(4,’(A25)’)’UVPROC CONTROL INPUT FILE’
OUTFILE=’KSFT1XXX.P1’
OUTFILE(6:6)=CHAR(K(1)+1)
OUTFILE(7:7)=CHAR(K(2))
OUTFIL£(8:8)=CHAR(K(3))
WRITE(4,’(A12)’)OUTFILE
WRITE(4,’(6I2)’)1,1,1,1,0,0
WRITE(4,’(2I2)’)1,1
WRITE(4,’(6I2)/)0,1,0,0,1,0
WRITE(4,’ (Al12)’)’ TEMP.P2’
WRITE(4,’(I2)’)3
WRITE(4,'(214)’)101,101
WRITE(4,‘(7I2)’)0,0,1,1,0,0,0
WRITE(4,’(412)7)3,0,2,0
WRITE(4,’ (F5.1))3.
WRITE(4,’(FS.1)’)10.
WRITE (4, (512)’)1,0,0,1,1
WRITE(4,’(F7.4)’)0.0606
ENDFILE(4)
CLOSE(4)

* 80 GHz GRASP7 Input File
OUTFILE=’'KSFT1XXX.INP’
OUTFILE(G:6)=CHAR(K(1)+2)
OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))
OPEN(4,FILE*OUTFILE,STATUS='UNKNOWN’)
WRITE(4,’(A30)')'***** GRASP77 INPUT FILE *w#un’
WRITE (4, (A10,2F12.7) ) 'SCANNED TO ’ ,SCAN(1) ,SCAN(2)
WRITE(4,’(F12.7,412))3.75D-3,2,1,0,0
WRITE(4,’(A31)’)’** MAIN REFLECTOR INPUT DATA **/
WRITE(4,’(3F12.7))0.,0.,0.
WRITE(4,’(3F12.7)’)1.,0.,0.
WRITE(4,’(3F12.7)’)0.,1.,0.
WRITE(4,’(I2,2F12.7)’)1,7.795,0.
HRITE(4,'(312)')4,0,0
WRITE(4,’ (4F12.7))0.,0.,0.,13.5
WRITE(4,‘(2F12.7))5.315,5.315
WRITE(4,'(A30)’)’** SUB REFLECTOR INPUT DATA #w’
WRITE(4,’(3F12.7)7)0.,0.,0.
WRITE(4,’(3F12.7)’)1.,0.,0.
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WRITE(4,’ (3F12.7)7)0.,1.,0.
WRITE (4.’ (I2,2F12.7)')1, (SRFAT(25,13,2) +SRFAT(1,13,2))/2.D0,
c (SRFAT(13,25,3) +SRFAT(13,1,3))/2.D0
WRITE(4,’(212)7)3,0

WRITE (4’ (5F14.7))GCOEF (1) ,GCOEF (2) ,GCOEF(3) ,GCOEF (4) ,GCOEF (5)
WRITE(4, ' (5F14.7) ‘) GCOEF (6) ,GCOEF (7) ,GCOEF(8) ,GCOEF (9) , GCOEF (10)
WRITE(4, ' (5F12.7,15)’)0.,0.,0.,0.,0.,1

WRITE (4, (2F12.7) ) (SRFAT(25,13,2)-SRFAT(1,13,2))/2.DO,
c (SRFAT(13,25,3) -SRFAT(13,1,3))/2.D0
WRITE(4,’ (A21)’) ‘#* FEED INPUT DATA *#*’

WRITE(4,’ (3F12.7) ') FEED(Z) ,FEED(3),FEED(1)

WRITE(4, ' (3F12.7) ') .964483694,0.,-.264142395

WRITE(4,’ (3F12.7)7)0.,1.,0.

WRITE(4,’(I2)’)1

WRITE (4, (6F12.7)’)0.,0.,0.,0.,0.,0.

WRITE(4,’ (F12.7,I2)’)0.,1

WRITE(4,’ (4F12.7,312)’)0.,0.,1.,90.,0,0,3

WRITE(4,'(I2))6

WRITE(4,’ (5F12.7,13)’)-15.,-15.,7.1574,0.,0.,1
WRITE(4,’ (R40) /) /%% MAIN REFLECTOR FIELD SPECIFICATION **’
WRITE(4,’(I2)")1

WRITE(4,’(3F12.7)7)7.795,0.,10.
WRITE(4,’(3F12.7)’)1.,0.,0.

WRITE(4,’(3F12.7)7)0.,1.,0.

WRITE(4,’ (216,F12.7,213)7)60,144,0.,0,0

WRITE(4,’ (313)7)0,-1,1

WRITE(4,’ (F12.7)‘)10.

WRITE(4,’ (2F12.7)/)U,V

WRITE(4,’ (213)°)0,1

WRITE(4,’ (2I3)7)3,1

WRITE(4,’ (4F12.7,216)')-2.5D-3,-2.5D-3,2.5D-3,2.5D~3,25,25
WRITE(4,’ (416)7)3,1

OUTFILE=’KSFT1XXX.P1’

OUTFILE(6:6)=CHAR(K(1)+2)

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

WRITE(4,’ (A12) ’)OUTFILE

WRITE(4,’ (A39)’)’/** SUB REFLECTOR FIELD SPECIFICATION #*#‘
WRITE(4,’(I2)’)0

WRITE (4, (A30)’)’** FEED FIELD SPECIFICATION **’
WRITE(4,’(I2)’)0

ENDFILE(4)

CLOSE(4)

OUTFILE=’KSFUVXXX.INP’

OUTFILE(6:6)=CHAR(K(1)+2)

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

OPEN (4, FILE=OUTFILE, STATUS='UNKNOWN’ )
WRITE(4,’ (A25) ‘) ‘UVPROC CONTROL INPUT FILE’
OUTFILE=’KSFT1XXX.P1’

OUTFILE(6:6)=CHAR(K(1)+2)

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

WRITE(é (Al2)‘)OUTFILE

WRITE(4,  (6I2)’)1,1,1,1,0,0

WRITE(4,’(212)°)1,1

WRITE(4,’(612)’)0,1,0,0,1,0

WRITE(4,’ (A7)’) 'TEMP.P2’

WRITE(4,’(12)7)3

WRITE(4,’(214))101,101
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WRITE(4,’(7I2)‘)0,0,1,1
WRITE(4,’(412)7)3,0,2,0
WRITE(4,’ (F5.1)7)3.
WRITE(4,’(F5.1) ‘) 10.
WRITE(4,(5I2)/)1,0,0,1,1
WRITE(4,’ (F7.4)7)0.0303
ENDFILE(4)

CLOSE(4)

RETURN

STOP

END

IO’OIO

*ii*************************i*******t**t**k*******t*t*******i**t****iitt

*
* Type 1 Concept Subreflector Focal Point Positioning Code
*

***************ii*******t*******t**********t*********ﬁt**********it**t*i

SUBROUTINE POSITF(SFOC, TRANS,GCOEF)
IMPLICIT NONE
REAL*8 SRFA(25,25,6),SFOC(2,3),TRANS(5) ,SRFMD(4),FOC, FEED(3),

c SCAN(2),T(5),GCOEF(10),SFOCT(2,3),ALPHA, BETA, GAMMA,

c DELTA, C, SRFM(25,25,6) ,SRFS (25, 25, 6)

INTEGER*2 I

COMMON /REFL/ SRFMD, SRFA,FOC, FEED, SCAN, SRFM, SRFS

T(1)=TRANS (3)

T(2) =TRANS (4)

T (3)=TRANS (5)

T(4)=TRANS (1)

T(5)=TRANS (2)

DO 1 I=1,2

SFOCT(I,1)=T(1)+SRFA(13,13,1)-
SIN(T(4))*(SFOC(I,2)-SRFA(13,13,2))+
COS(T(4))*SIN(T(5))*(SFOC(I,3)-SRFA(13,13,3))+
COS(T(4))*COS(T(5))*(SFOC(I,1)-SRFA(13,13,1))
SFOCT(I,2)=T(2)+SRFA(13,13,2)+
COS(T(4))*(SFOC(I,2)-SRFA(13,13,2))+
SIN(T(4))*SIN(T(5))*(SFOC(I,3)~-SRFA(13,13,3))+
SIN(T(4))*COS(T(5))*(SFOC(I,1)-SRFA(13,13,1))

1 SFOCT(I,3)=T(3)+SRFA(13,13,3)+
COS(T(5))*(SFOC(I,3)-SRFA(13,13,3))-
SIN(T(5))*(SFOC(I,1)-SRFA(13,13,1))

C=DSQRT ( (SRFA(13,13,1)-SFOC(2,1))**2.D0+

(SRFA(13,13,2)-SFOC(2,2) ) **2.D0+
(SRFA(13,13,3)-SFOC(2,3))*%2.D0) -

DSQRT ( (SRFA(13,13,1)-SFOC(1,1))**2.D0+
(SRFA(13,13,2)-SFOC(1,2))**2.D0+
(SRFA(13,13,3)-SFOC(1,3))**2.D0)

BETA=SFOCT(2,2) -SFOCT (1, 2)

GAMMA=SFOCT (2, 3) -SFOCT(1, 3)

DELTA=SFOCT(2,1) -SFOCT(1, 1)

ALPHA=SFOCT (1, 1) #%2.DO+SFOCT(1,2) **2.D0+SFOCT(1,3) #*2.D0-

c SFOCT(2,1) **2.D0-SFOCT (2,2) #*2.D0-SFOCT (2,3) #*2. D0~

c C**2.DO

GCOEF (1) =4.DO* (BETA**2.D0-C**2.D0)

GCOEF (2) =8.DO*BETA*GAMMA

GCOEF (3) =4.DO*(GAMMA*#2.D0-C*#2.D0)

GCOEF (4) =4.DO* (ALPHA*BETA+2.D0*C*#%2.DO*SFOCT (2, 2))
GCOEF (5) =4.DO* (ALPHA*GAMMA+2.DO#C*#2 . DO*SFOCT (2, 3) )

n o000 oo

noonan 0
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GCOEF (6) =ALPHA%#%2.D0-4.DO*C#*#%2.D0* (SFOCT(2,1)**2.D0+
c SFOCT (2,2) **2.D0+SFOCT (2,3) #+2.D0)

GCOEF(7) =4.DO* (C#**2.DO-DELTA**2.DO0)

GCOEF (8) =-4.DO* (ALPHA*DELTA+2.D0*C**2.DO*SFOCT(2,1))
GCOEF(9) =-8.DO*BETA*DELTA

GCOEF (10) =~8 . DO*GAMMA *DELTA

RETURN

STOP

END
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Appendix 2

Program listing of the Transmit Mode Raytracing error functional optimization

software
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*tii*iit*t*itt**tt**i*t*t********titi*tt***t*****ti**iiii*iitﬁttii*iiitt

Transmit Mode Raytracing Optimization Code

*
*
*
* James W. LaPean, Jr. 11/18/93
*
*

*t*********i**ﬁ****************ii***********ﬁ*******ii*****i*ii*ﬁ*itii*

PROGRAM TMRT1
IMPLICIT NONE
REAL*8 SRFMD(4),SRFA(25,25,6),SCND(G),SCAN(2),FOC,RMSERR,TRANS(S),
C FEED(J),SC(Z),PI,XI(5,5),TOL,SFOC(Z,J)
INTEGER*2 ICN,I,J,T,P,TINC,PINC,N,ITER
CHARACTER#*12 SUBFILE
COMMON /REFL/ SRFMD, SRFA, FOC,FEED,SC
PI=3.14159265358979323846D0
TOL=1.D-10
* Program inputs read from input file
OPEN(B,FILE-’TMRTI.INP',STATUS-'OLD')
READ(3,*)SRFHD(1),SRFMD(Z),SRFMD(3),SRFHD(4)
READ(3,*)FOC,FEED(1),FEED(2),FEED(3)
READ(3,*)SCND(1),SCND(2),SCND(S),SCND(4),TIHC,PINC
READ(3,*) ICN
READ(3,’ (Al12) /) SUBFILE
* Nominal subreflector data entry
OPEN (4, FILE=SUBFILE, STATUS=‘0OLD’)
READ(4,’ (6F12.7) ’)SFoc(1,1),SFOC(1,2),SFOC(1,13),
c SFOC(2,1),SFOC(2,2),SF0C(2,3)
DO 1 I=1,25
DO 1 J=1,25
1 READ (4, ' (6F12.7) ‘)SRFA(I,J,1),SRFA(I,J,2),SRFA(I,J,3),
c SRFA(I,J,4),SRFA(1,J,5),SRFA(I,J,6)
CLOSE(4)
* Perform scan optimized fitting for scan combinations
WRITE(*,'(//.,A1)")" '

SCAN (2) =SCND(2)
P=1
2 SCAN (1) =SCND(1)
T=1
3 WRITE(*, ' (A25,D8.3,A7,D8.3) ) Calculating for Theta = ’,SCAN(1),
c ¢ Phi = ’,SCAN(2)

SC(1)=SCAN(1) *PI/1.8D2
SC(2)=SCAN(2) *PI/1.8D2
Do I=1,5
TRANS (I)=0.d0
DO J=1,5
IF (I.EQ.J) THEN
XI(I,J)=1.D0
ELSE
XI(I,J)=0.DO
ENDIF
ENDDO
ENDDO
N=5
CALL POWELL (TRANS,XI,N,TOL, ITER, RUSERR)
CALL OUT (FEED, TRANS, SCAN, ICN, SFOC)
ICN=ICN+1
SCAN (1) =SCAN(1) +SCND(3)
T=T+1
IF (T.LE.TINC) GOTO 3
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SCAN(2)=SCAN(2)+SCND(4)
P=p+1

IF (P.LE.PINC) GOTO 2
STOP

END

*i********t**i********i***********t**t********************ii**t*i**ii**i

*
* Powell’s Method Optimization

*
**ﬁi***i********************************************************i*******

SUBROUTINE POWELL(P,XI,N,FTOL, ITER, FRET)
IMPLICIT NONE
REAL#*8 P(S),XI(S,S),PT(S),PTT(S),XIT(S),FTOL,FPTT,FRET,FP,T,DEL,
c FUNC
INTEGER*2 I,J,ITER,N,IBIG,ITMAX
ITMAX=200
FRET=FUNC (P)
DO J=1,N
PT(J)=P(J)
END DO
ITER=0
1 ITER=ITER+1
FP=FRET
IBIG=0
DEL=0.D0
DO I=1,N
DO J=1,N
XIT(J)=XI(J,I)
END DO
FPTT=FRET
CALL LINMIN(P,XIT,FRET)
IF (ABS(FPTT-FRET).GT.DEL) THEN
DEL=ABS (FPTT-FRET)

IBIG=I
END IF
END DO
IF (2.DO*DABS(FP-FRET).LE.FTOL*(DABS(FP)+DABS(FRET, -"URN
IF (ITER.EQ.ITMAX) PAUSE ‘Powell exceeding maximum .teration’
DO J=1,N

PTT(J)=2.DO*P(J) -PT(J)
XIT(J)=P(J)-PT(J)
PT(J)=P(J)
END DO
FPTT=FUNC (PTT)
IF (FPTT.GE.FP) GOTO 1
T-2.DO*(FP—2.DO*FR£T+FPTT;'(FP-FRET-DEL)**Z.DO-DEL*(FP-FPTT)**2.00
IF (T.GT.0.) GOTO 1
CALL LINMIN(P,XIT, FRET)
DO J=1,N
XI(J,IBIG)=XIT(J)
END DO
GOTO 1
END

SUBROUTINE LINMIN (P, XI, FRET)

IMPLICIT NONE
EXTERNAL F1DIM
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REAL*8 P(S),XI(S),AA,AX,FRET,TOL,PCOM(SO),XICOH(SO),BX,FA,FX,FB,
(o XMIN, BRENT
INTEGER*2 J,NCOM
COMMON /F1COM/ PCOM,XICOM,NCOM
TOL=1.D-10
NCOM=5
po J=1,5
PCOM(J) =P (J)
XICOM(J)=XI(J)
END DO
AX=0.
XX=1.
CALL MNBRAK(AX,XX,BX,FA,FX,FB,F1DIM)
FRET=BRENT (AX, XX, BX, F1DIM, TOL, XMIN)
Do J=1,5
XI(J)=XMIN*XI(J)
P(J)=P(J)+XI(J}
END DO
RETURN
END

REAL#*8 FUNCTION F1DIM(X)
IMPLICIT NONE
REAL*8 PCOM(50) ,XICOM(50),XT(50),X,FUNC
INTEGER*2 NCOM,J
COMMON /F1COM/ PCOM, XICOM, NCOM
DO J=1,NCOM
XT (J)=PCOM(J) +X*XICOM(J)
END DO
F1DIM=FUNC (XT)
RETURN
END

SUBROUTINE MNBRAK (AX,BX,CX,FA,FB, FC, FUNC)

IMPLICIT NONE

REAL*8 AX,BX,CX,FA,FB,FC,DUH,GLIMIT,GOLD,TINY,R,Q,U,ULIM,FU,
c FUNC

GOLD=1.618034D0O

GLIMIT=100.D0O

TINY=1.D-20

FA=FUNC (AX)
FB=FUNC (BX)
IF (FB.GT.FA) THEN
DUM=AX
AX=BX
BX=DUM
DUM=FB
FB=FA
FA=DUM
END IF
CX=BX+GOLD* (BX-AX)
FC=FUNC (CX)
1 IF (FB.GT.FC) THEN

R=(BX-AX) * (FB-FC)

Q= (BX-CX) * (FB-FA)
U-BX-((BX-CX)*Q-(BX-AX)*R)/(2.*SIGN(HAX(ABS(Q-R),TINY):Q'R))
ULIM=BX+GLIMIT* (CX~BX)

IF ((BX-U)*(U-CX).GT.0.) THEN
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FU-FULC ,
IF (FU.LT.FC; THEN
AX=BX
FA=FB
BX=U
FB=FU
RETURN
ELSE IF (FU.GT.FB) THEN
CX=U
FC=FU
RETURN
END IF
U=CX+GOLD* (CX~BX)
FU=FUNC (U)
ELSE IF ((CX-U)*(U-ULIM).GT.0.) THEN
U=ULIM
FU=FUNC (U)
ELSE
U=CX+GOLD* (CX-BX)
FU=FUNC (U)
END IF
AX=BX
BX=CX
CX=U
FA=FB
FB=FC
FC=FU
GOTO 1
END IF
RETURN
END

REAL*8 FUNCTION BRENT(AX,BX,CX,F,TOL,XMIN)
IMPLICIT NONE
REAL*8 AX,BX,CX,F,TOL, XMIN, CGOLD, 2EPS,A,B,V,W,X, E, FX, FV, FW, XM,
c TOL1,TOL2,R,Q, ETEMP,P,D,U, FU
INTEGER*2 ITER, ITMAX
ITMAX=100
CGOLD=.3819660D0
ZEPS=1.0D-10
A=MIN (AX, CX)
B=MAX (AX, CX)
V=BX
W=V
X=V
E=0.
FX=F (X)
FV=FX
FW=FX
DO ITER=1, ITMAX
XM=0.5% (A+B)
TOL1=TOL*ABS (X) +ZEPS
TOL2=2.*TOL1
IF (ABS(X-XM).LE.(TOL2-.5%(B-A))) GOTO 3
IF (ABS(E).GT.TOL1l) THEN
R=(X-W) * (FX-FV)
Q=(X-V) * (FX-FW)
P=(X~-V) *Q- (X-W) *R
Q=2.*(Q-R)
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IF (Q.GT.0) P=-P
Q=ABS (Q)
ETEMP=E
E=D
IF (ABS (P) .GE.ABS (.5*Q*ETEMP) .OR.P.LE.Q*(A-X) .OR.
P.GE.Q* (B-X)) GOTO 1
D=P/Q
U=X+D
IF(U-A.LT.TOL2.OR.B-U.LT.TOL2) D=SIGN(TOL1,XM-X)
GOTO 2
END IF
IF (X.GE.XM) THEN
E=A-X
ELSE
E=B-X
END IF
D=CGOLD*E
1F (ABS (D) .GE.TOL1) THEN
U=X+D
ELSE
U=X+SIGN(TOL1,D)
END IF
FU=F (U)
IF (FU.LE.FX) THEN
IF (U.GE.X) THEN
A=X
ELSE
B=X
END IF
V=W
FV=FW
W=X
FW=FX
X=U
FX=FU
ELSE
IF (U.LT.X) THEN
A=U
ELSE
B=U
END IF
IF (FU.LE.FW.OR.W.EQ.X) THEN
V=W
FV=FW
W=U
FW=FU
ELSE IF (FU.LE.FV.OR.V.EQ.X.OR.V.EQ.W) THEN
V=U
FV=FU
END IF
END IF

END DO

PAUSE ‘Brent exceed maximum iterations.’
3 XMIN=X

BRENT=FX

RETURN

END

it***iﬁti'***i*ii*t*ti**t**t*****iiii**ﬁ*t***tﬁi**t**ﬁtiﬁ*tit**i*i*titiii
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*
* Powell’s Method Error Functional

*
RARR AR A AR AR R AN A A E AR AR AR AR AR R AR ARk kR ARk Ak ke kA kb kR b

REAL*8 FUNCTION FUNC(TRANS)

IMPLICIT NONE

REAL*8 SRFAT(25,25,6),TRANS(5),RMSERR
CALL POSIT(SRFAT, TRANS)

CALL XMTTRC (SRFAT,RMSERR)

FUNC=RMSERR

RETURN

STOP

END

LA 2R 2R R Ry Xy T Il I I T II T
*

* Type 1 Concept Subreflector Positioning Code

*

LAAAS R AR SRRl Al R R R R Y Y Y 2223222232 I

SUBROUTINE POSIT(SRFAT, TRANS)
IMPLICIT NONE
REAL*8 SRFA(25,25,6),SRFAT(25,25,6),TRANS(5),SRFMD(4),FOC, FEED(3),
c SCAN(2),T(5)
INTEGER*2 I,J
COMMON /REFL/ SRFMD, SRFA,FOC, FEED, SCAN
T(1)=TRANS(3)
T(2) =TRANS (4)
T{3)=TRANS (5)
T(4)=TRANS (1)
T(5)=TRANS (2)
DO 1 I=1,25
DO 1 J=1,25
SRFAT(I,J,1)=T(1)+SRFA(13,13,1)-
SIN(T(4))*(SRFA(I,J,2)-SRFA(13,13,2))+
COS(T(4))*SIN(T(S))*(SRFA(I,J,3)-SRFA(13,13,3))+
COS(T(4))*COS(T(5))*(SRFA(I,J,1)~-SRFA(13,13,1))
SRFAT(1,J,2)=T(2)+SRFA(13,13,2)+
COS(T(4))*(SRFA(I,J,2)=-SRFA(13,13,2))+
SIN(T(4))*SIN(T(S5))*(SRFA(I,J,3)-SRFA(13,13,3))+
SIN(T(4))*COS(T(5))*(SRFA(I,J,1)~SRFA(13,13,1))
SRFAT(I,J,3)=T(3)+SRFA(13,13,3)+
COS(T(5))*(SRFA(I,J,3)=-SRFA(13,13,3))-
SIN(T(S5))*(SRFA(I,J,1)-SRFA(13,13,1))
SRFAT(I,J,4)=-SIN(T(4))*SRFA(I,J,5)+
COS(T(4))*SIN(T(S))*SRFA(I,J,6)+
COS(T(4))*COS(T(5))*SRFA(I,J,4)
SRFAT(I,J,5)=COS(T(4))*SRFA(I,J,5)+
SIN(T(4))*SIN(T(5))*SRFA(I,J,6)+
SIN(T(4))*COS(T(S))*SRFA(I,J,4)
SRFAT(I,J,6)=COS(T(5))*SRFA(I,J,6)-
SIN(T(S))*SRFA(I,J,4)

nnon

nnao

0 00 00 00

RETURN
STOP
END

LA R R e I 222 I T I T T T I ™
*
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* Type 1 Concept Transmit Mode Raytracing Error Functional

*
tii*ti******t**********ﬁ*****i***i*****t**'t****itt*tt*t***i*i*iti*i*ﬁt**

SUBROUTINE XMTTRC (SRFAT, RMSERR)
IMPLICIT NONE
REAL#*8 SRFM(6),SRFAT(25,25,6),FEED(3),R1(6),R2(6),R3(6),SCAN(2),
c RDOTN, A, B, C, FOC,R2L, PI, RMSERR, SRFMD(4) , L, ANGLE(25,25),
c DEN,RA(3) ,SRFA(25,25,6)
INTEGER*2 I,J,MISS(25,25),K
COMMON /REFL/ SRFMD, SRFA,FOC,FEED, SCAN
PI=3.14159265358979323846D0
* FIND IDEAL COMPONENTS OF REFLECTED RAY FROM MAIN REF. TO APERTURE PLANE
RA(1)=COS (SCAN(1))
RA(2)=SIN(SCAN(1))*COS(SCAN(2))
RA(3)=SIN(SCAN(1))*SIN(SCAN(2))
DO 1 I=1,25
DO 1 J=1,25
MISS(I,J)=1
* FIND RAY AND RAY COMPONENTS FROM FEED TO SUBREFLECTOR
R3(1)=SRFAT(I,J,1)-FEED(1)
R3(2)=SRFAT(I,J,2)-FEED(2)
R3 (3)=SRFAT(I,J,3)-FEED(3)
L=DSQRT (R3 (1) **2.DO0+R3 (2) #*2.DO+R3 (3) **2.D0)
R3(4)=R3(1)/L
R3(5)=R3(2) /L
R3(6)=R3(3)/L
* FIND COMPONENTS OF RAY REFLECTED FROM SUBREFLECTOR
RDOTN=R3 (4) *SRFAT(I,J,4)+R3 (5) *SRFAT(I,J,5)+R3 (6) *SRFAT(I,J,6)
R2(4)=R3(4)-2.*RDOTN*SRFAT(I,J,4)
R2(5)=R3(5)-2.*RDOTN*SRFAT(I,J,5)
R2(6)=R3(6)-2.*RDOTN*SRFAT(I,J,6)
+ FIND INTERSECTION OF RAY FROM SUBREFLECTOR WITH MAIN REFLECTOR
A=R2(5) **2.DO+R2 (6) **2.DO0
B=2.DO*R2(5) *SRFAT(I,J,2)+2.DO%R2(6) *SRFAT(I,J,3)
c -4.DO*R2 (4) *FOC
C=SRFAT(I,J,2) **2.DO+SRFAT(I,J,3)**2.D0-4.DO*SRFAT(I,J, 1) *FOC

R2L=(DSQRT (B#*2.D0~4.DO*A*C) -B) / (2.DO*A)
SRFM(1)=SRFAT(I,J,1)+R2(4)*R2L
SRFM(2)=SRFAT(I,J,2)+R2(5) *R2L
SRFM(3)=SRFAT(I,J,3)+R2(6)*R2L

* FIND NORMAL OF MAIN REFLECTOR AT RAY INTERSECTION POINT
DEN=DSQRT ( (SRFM(2) / (2.DO*FOC) ) **2.D0+

c (SRFM(3)/(2.DO*FOC) ) **2.D0+1.D0)

SRFM(4)=1.DO/DEN
SRFM(5)=-SRFM(2) / (2.DO*FOC*DEN)
SRFM(6)=-SRFM(3) / (2.DO*FOC*DEN)

* INDICATE A MISS IF RAY HITS AN UNUSED PART OF THE PARABOLA
IF (SRFM(2).GE.SRFMD(1)-(SRFMD(2)-SRFMD(1))/1.D2) THEN

IF (SRFM(2).LE.SRFMD(2)+(SRFMD(2)~SRFMD(1))/1.D2) THEN
IF (SRFM(3).GE.SRFMD(3)-(SRFMD(4)-SRFMD(3))/1.D2) THEN
IF (SRFM(3).LE.SRFMD(4)+(SRFMD(4)-SRFMD(3))/1.D2) THEN
MISS(I,J)=0
ENDIF
ENDIF
ENDIF
ENDIF

* FIND COMPONENTS OF RAY REFLECTED FROM MAIN REFLECTOR

RDOTN=R2 (4) *SRFM(4) +R2 (5) *SRFM(5) +R2 (6) *SRFM (6)
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R1(4)=R2(4)-2.*RDOTN*SRFM(4)
R1(5)=R2(5)-2.*RDOTN*SRFM(5)
R1(6)=R2(6)-2.*RDOTN*SRFM(6)
* FIND CROSS PRODUCT OF ACTUAL AND IDEAL REFLECTED RAYS TO THE APERTURE

1 ANGLE(I,J)=(R1(5)*RA(3)-RA(2)*R1(6))**2.D0+
c (R1(4)*RA(3)-RA(1)*R1(6))**2.D0+
c (R1(4)*RA(2)-RA(1)*R1(5))**2.D0
* ERROR ANALYSIS
K=0
RMSERR=0.DO0
DO 2 I=1,25

DO 2 J=1,25
RMSERR=RMSERR+ANGLE(I,J)
2 K=K+MISS(I,J)
RMSERR=DSQRT (RMSERR)
RETURN
STOP
END

LAAAS RS RAR Sl Ly Y 32 22223222231
*

* Type 1 Concept Output Code

*

LA A2 a2t R R Y R Y Y 22222223222 I s r s I I I

SUBROUTINE OUT (FEED, TRANS, SCAN, ICN, SFOC)

IMPLICIT NONE

REAL*8 FEED(3),TRANS(S5),SCAN(2),SRFAT(25,25,6),PI,
c SFOC(2,3),GCOEF(10),U,V

INTEGER*2 ICN,K(3)

CHARACTER#*12 OUTFILE

PI=3.14159265358979323846D0
U=SIN(SCAN(1)*PI/1.8D2)*COS(SCAN(2)*PI/1.8D2)
V=SIN(SCAN(1)*PI/1.8D2)*SIN(SCAN(2)*PI/1.8D2)
K(1)=48+ICN/100

K(2)=48+(ICN-(K(1)-48)*100)/10
K(3)=48+ICN-(K(1)-48)*100-(K(2)-48)*10

CALL POSITF (SFOC, TRANS, GCOEF)

CALL POSIT(SRFAT, TRANS)

OUTFILE='TMRT1XXX.MOV’

OUTFILE(6:6)=CHAR(K (1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

OPEN (4, FILE=OUTFILE, STATUS='UNKNOWN')
WRITE(4,’(A10,2F12.7) ') SCANNED TO ’,SCAN(1),SCAN.2,
WRITE(4,’(5F15.10)’)TRANS(4) ,TRANS(5),TRANS (3),TRANS(1),TRANS (2)
ENDFILE(4)

CLOSE(4)

* 20 GHz GRASP? Input File

OUTFILE='TMRT1XXX.INP’

OUTFILE(6:6)=CHAR(K(1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

OPEN (4, FILE=OUTFILE, STATUS='UNKNOWN" )
WRITE(4,’ (A30) ') '#*%x%*k* GRASP77 INPUT FILE *#k#n’s
WRITE(4,’ (A10,2F12.7)’)’SCANNED TO *,SCAN(1),SCAN(2)
WRITE(4,‘(F12.7,412)')1.5D-2,2,1,0,0
WRITE(4, " (A31)’)‘** MAIN REFLECTOR INPUT DATA #%*°’
WRITE(4,’ (3F12.7))0.,0.,0.
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WRITE(4,’ (3F12.7)/)1.,0.,0.
WRITE(4,’ (3F12.7))0.,1.,0.

WRITE(4,’ (I2,2F12.7)’)1,7.795,0.

WRITE(4,’ (3I2)’)4,0,0

WRITE(4,’ (4F12.7)7)0.,0.,0.,13.5

WRITE(4,’ (2F12.7)’)5.315,5.315

WRITE(4,’ (A30)’)/#* SUB REFLECTOR INPUT DATA #/

WRITE(4,’ (3F12.7))0.,0.,0.

WRITE(4,’(3F12.7)’)1.,0.,0.

WRITE(4,’ (3F12.7)’)0.,1.,0.

WRITE(4,’(I2,2F12.7)’)1, (SRFAT(25,13,2)+SRFAT(1,13,2))/2.D0,
c (SRFAT(13,25,3) +SRFAT(13,1,3))/2.D0
WRITE(4,’(212)’)3,0

WRITE(4,’ (5F14.7)’)GCOEF (1) ,GCOEF(2),GCOEF(3) ,GCOEF (4) ,GCOEF(5)
WRITE(4,’ (SF14.7) ’)GCOEF(6) ,GCOEF (7) ,GCOEF(8) ,GCOEF (9) ,GCOEF (10)
WRITE(4,’(5F12.7,15)’)0.,0.,0.,0.,0.,1

WRITE(4,’ (2F12.7)*) (SRFAT(25,13,2)-SRFAT(1,13,2))/2.D0,

c (SRFAT(13,25,3) -SRFAT(13,1,3))/2.D0
WRITE(4,’ (A21)’) ‘%% FEED INPUT DATA #*’

WRITE(4,’ (3F12.7) ')FEED(2) ,FEED(3),FEED(1)

WRITE(4,’ (3F12.7)).964483694,0.,-.264142395

WRITE(4,’ (3F12.7)’)0.,1.,0.

WRITE(4,’(I2)’)1

WRITE(4,’(6F12.7)7)0.,0.,0.,0.,0.,0.

WRITE(4,’ (F12.7,12)7)0.,1

WRITE(4,’ (4F12.7,312)7)0.,0.,1.,90.,0,0,3
WRITE(4,’(I2)’)6

WRITE(4,’ (5F12.7,13)’)-15.,-15.,7.1574,0.,0.,1

WRITE(4,’ (A40)’) ‘%% MAIN REFLECTOR FIELD SPECIFICATION #w’
WRITE(4,’ (I2)’)1 :
WRITE(4,’ (3F12.7)’)7.795,0.,10.

WRITE(4,’ (3F12.7)/)1.,0.,0.

WRITE(4,’ (3F12.7)7)0.,1.,0.

WRITE(4,’ (216,F12.7,2I3)’)60,144,0.,0,0
WRITE(4,’(3I3)7)0,-1,1

WRITE(4,’(F12.7)’)10.

WRITE(4,’ (2F12.7)’)U,V

WRITE(4,’ (213)’)0,1

WRITE(4,’(2I3)’)3,1

WRITE(4,’ (4F12.7,216)/)-1.D-2,-1.D-2,1.D-2,1.D-2,25,25
WRITE(4,’ (416)7)3,1

OUTFILE=’TMRT1XXX.P1’

OUTFILE(6:6)=CHAR(K(1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

WRITE(4,’ (Al2)’)OUTFILE

WRITE(4,’ (A39)’)’** SUB REFLECTOR FIELD SPECIFICATION ##’
WRITE(4,’(I2)’)0

WRITE(4,’ (A30)’)’** FEED FIELD SPECIFICATION ##’

WRITE(4,’ (I2)°)0

ENDFILE(4)

CLOSE(4)

OUTFILE=’TMRUVXXX.INP’

OUTFILE(6:6)=CHAR(K(1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

OPEN (4, FILE=OUTFILE, STATUS=’UNKNOWN‘ )

WRITE(4,’ (A25)’) UVPROC CONTROL INPUT FILE’
OUTFILE=’TMRT1XXX.P1’

OUTFILE(6:6)=CHAR(K(1))

Appendix 2

198



OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))

WRITE(4,’ (Al12) ’)OUTFILE

WRITE(4,’(6I2)’)1,1,1,1,0,0

WRITE(4,(2I2)’)1,1

WRITE(4,’(612)’)0,1,0,0,1,0

WRITE(4,’ (A7)’) 'TEMP.P2/

WRITE(4,’(I2)’)3

WRITE(4,'(214)7)101,101

WRITE(4,’(712)’)0,0,1,1,0,0,0

WRITE(4,’(412)7)3,0,2,0

WRITE(4,’(F5.1))3.

WRITE(4,' (F5.1))10.

WRITE(4,'(5I2)’)1,0,0,1,1

WRITE(4,’(F7.4)’)0.1213

ENDFILE(4)

CLOSE (4)

* 40 GHz GRASP7 Input File

OUTFILE='TMRT1XXX.INP’

OUTFILE(6:6)=CHAR(K(1)+1)

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))
0PEN(4,FILE=OUTFILE,STATUS=’UNKNOWN')
WRITE(4,’ (A30) ') ‘*%xx*x*x GRASP77 INPUT FILE **kak?
WRITE(4,’ (A10,2F12.7)’)/SCANNED TO ’,SCAN(1),SCAN(2)
WRITE(4,’ (F12.7,412)’)7.5D-3,2,1,0,0

WRITE(4,’ (A31)’)’** MAIN REFLECTOR INPUT DATA #**’
WRITE(4,’ (3F12.7)')0.,0.,0.

WRITE(4,’ (3F12.7)")1.,0.,0.

WRITE(4,’ (3F12.7))0.,1.,0.
WRITE(4,’(12,2F12.7)’)1,7.795,0.

WRITE(4,’(312)’)4,0,0

WRITE(4,’ (4F12.7)’)0.,0.,0.,13.5

WRITE(4,’ (2F12.7)')5.315,5.315

WRITE(4,’ (A30)’)’** SUB REFLECTOR INPUT DATA *=’
WRITE(4,’(3F12.7)‘)0.,0.,0.

WRITE(4,’(3F12.7)7)1.,0.,0.

WRITE(4,’(3F12.7))0.,1.,0.

WRITE(4,'(I12,2F12.7)’)1, (SRFAT(25,13,2)+SRFAT(1,13,2))/2.D0,
c (SRFAT(13,25,3)+SRFAT(13,1,3))/2.D0
WRITE(4,’(2I2)’)3,0

WRITE(4,’ (5F14.7)’)GCOEF (1) ,GCOEF(2),GCOEF(3),GCOEF (4) ,GCOEF (5)
WRITE (4, (5F14.7)')GCOEF (6),GCOEF(7) ,GCOEF (8) ,GCOEF(9) ,GCOEF (10)
WRITE(4,' (5F12.7,15)’)0.,0.,0.,0.,0.,1

WRITE(4,’ (2F12.7) ) (SRFAT(25,13,2)-SRFAT(1,13,2))/2.D0,
c (SRFAT(13,25,3)-SRFAT(13,1,3))/2.D0
WRITE(4,’ (A21)’)'** FEED INPUT DATA #*x*/

WRITE(4,’ (3F12.7)‘)FEED(2),FEED(3),FEED(1)
WRITE(4,"(3F12.7)').964483694,0.,~-.264142395
WRITE(4,’(3F12.7))0.,1.,0.

WRITE(4,’(I2)")1

WRITE(4,’(6F12.7)’)0.,0.,0.,0.,0.,0.
WRITE(4,’'(F12.7,I2)’)0.,1
WRITE(4,’(4F12.7,312)*)0.,0.,1.,90.,0,0,3
WRITE(4,’(I2)’)6
WRITE(4,’(5F12.7,13)’)-15.,-15.,7.1574,0.,0.,1
WRITE(4, ' (A40) ‘) '** MAIN REFLECTOR FIELD SPECIFICATION ##’/
WRITE(4, ' (I2)’)1

WRITE(4,’(3F12.7)’)7.795,0.,10.
WRITE(4,’(3F12.7)')1.,0.,0.
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WRITE(4, (3F12.7)')v.,1.,0.
W “TE(4,’(216,F12.7,2. )’')60,144,0.,0,0
w. .TE(4,’(3I3)")0,-1,1
WRITE(4,’(F12.7)')10.
WRITE(4,’ (2F12.7)")U,V
WRITE(4,’(2I3)7)0,1
WRITE(4,'(2I3)’)3,1
WRITE(4,'(4F12.7,216)’)-5.D-3,-5.D-3,5.D—3,5.D-3,25,25
WRITE(4,’(416)7)3,1
OUTFILE=’/TMRT1XXX.P1’
OUTFILE(6:6)=CHAR(K(1)+1)
OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))
WRITE(4, ' (A12) ' )OUTFILE
WRITE(4,’ (A39) ') ’**% SUB REFLECTOR FIELD SPECIFICATION #**/
WRITE(4,’(I2)’)0
WRITE(4,’ (A30)’) ‘' ** FEED FIELD SPECIFICATION #%’/
WRITE(4,’(12)')0
ENDFILE(4)
CLOSE(4)
OUTFILE=’/TMRUVXXX.INP'
OUTFILE(6:6)=CHAR(K(1)+1)
OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))
OPEN(4,FILE-OUTFILE,STATUSs’UNKNOWN’)
WRITE(4,’ (A25) ‘) 'UVPROC CONTROL INPUT FILE’
OUTFILE=’TMRT1XXX.P1l’
OUTFILE(6:6)=CHAR(K(1)+1)
OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))
WRITE(4, ' (Al2)’)OUTFILE
WRITE(4,7(6I2)’)1,1,1,1,0,0
WRITE(4,’(2I2)’)1,1
WRITE(4,’(612)7)0,1,0,0,1,0
WRITE(4,’ (A7) ') 'TEMP.P2’
WRITE(4,’(1I2)’)3
WRITE(4,’(2I4)’)101,101
WRITE(4,'(712)’)0,0,1,1,0,0,0
WRITE(4, ' (412)’)3,0,2,0
WRITE(4, ' (F5.1)7)3.
WRITE(4,’(F£.1)’)10.
WRITE(4,’(5I2)')1,0,0,1,1
WRITE(4,’(F7.4)’)0.0606
ENDFILE(4)
CLOSE(4)

*+ B0 GHz GRASP7 Input File
OUTFILE=’TMRT1XXX.INP’
OUTFILE(6:6)=CHAR(K(1)+2)
OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))
OPEN(4,FILE=OUTFILE,STATUS=’UNKNOWN')
WRITE(4, ' (A30)’) ***x*x GRASP77 INPUT FILE #k&kkw&/
~7 ITE(4,’ (A10,2F12.7) ') 'SCANNED TO ’,SCAN(1),SCAN(2)
WHITE(4,’ (F12.7,412)’)3.75D-3,2,1,0,0
WRITE(4,’ (A31)’)’** MAIN REFLECTOR INPUT DATA *®»/
WRITE(4,’(3F12.7)’)0.,0.,0.
WRITE(4,’(3F12.7)’)1.,0.,0.
WRITE(4,’(3F12.7)’)0.,1.,0.
WRITE(4,’(1I2,2F12.7)’)1,7.795,0.
WRITE(4,’(312)')4,0,0
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wRITE{4,"f,-“.v)')b.,o.,o-,13.5
WRITE(4,’\2F12.7)’)5.31&,5.315

WRITE(4,’(A30)’)’** SUB REFLECTOR INPUT DATA *%/
WRITE(d,’(BFlZ.?)')0.,0.,0.

WRITE(4,'(3F12.7)’)1.,0.,0.

WRITE(4,'(3F12.7)’)O.,l.,O.
WRITE(4,'(12,2F12.7)’)1,(SRFAT(ZS,13,2)+SRFAT(1,13,2))/2.Do,

C (SRFAT(13,25,3)+SRFAT(13,1,3))/2.Do
WRITE(4,'(212)’)3,0
WRITE(4,'(5F14.7)')GCOEF(l),GCOEF(Z),GCOEF(3),GCOEF(4),GCOEF(S)
WRITE(4,'(5F14.7)’)GCOEF(6),GCOEF(?),GCOEF(B),GCOEF(Q),GCOEF(lO)
WRITE(4,'(5F12.7,IS)')0.,0.,0.,0.,0.,1
WRITE(4,’(2F12.7)')(SRFAT(25,13,2)-SRFAT(1,13,2))/2.DO,

C (SRFAT(IJ,ZS,3)-SRFAT(13,1,3))/2.DO
WRITE(4,’ (A21)’)’** FEED INPUT DATA %%’/
WRITE(4,’(3F12.7)’)FEED(2),FEED(J),FEED(I)
WRITE(4,’(3F12.7)').964483694,0.,-.264142395
WRITE(4,'(3F12.7)’)0.,1.,0.

WRITE(4, ' (I2)7)1
WRITE(4,'(6F12.7)')0.,0.,0.,0.,0.,0.
WRITE(4,’(F12.7,12)’)0.,1
WRITE(4,’(4F12.7,312)’)0.,0.,1.,90.,0,0,3
WRITE(4,’(I2)’)6
WRITE(4,’(5F12.7,IJ)’)-15.,-15.,7.1574,0.,0.,1
WRITE (4, (A40)’) ' *%x MAIN REFLECTOR FIELD SPECIFICATION %%/
WRITE(4,’(I2))1
WRITE(4,'(3F12.7)’)7.795,0.,10.
WRITE(4,’(3F12.7)')1.,0.,0.
WRITE(4,’(3F12.7)')o.,l.,o.
WRITE(4,'(2IG,F12.7,213)’)60,144,0.,0,0
WRITE(4,’(3IJ)')O,-1,1

WRITE(4,'(F12.7)')10.

WRITE(4,’(2F12.7)’)U,V

WRITE(4,’(213)’)0,1

WRITE(4,'(213)’)3,1
WRITE(4,’(4F12.7,216)’)-2.50-3,-2.50-3,2.50-3,2.50-3,25,25
WRITE(4,’(4IG)')3,1

OUTFILE='TMRT1XXX.P1’
OUTFILE(6:6)=CHAR(K(1)+2)
OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))
WRITE(4,’(A12)’)OUTFILE

WRITE(4,’(A39)')’** SUB REFLECTOR FIELD SPECIFICATION #%/
WRITE(4,’(IZ)')0

WRITE(4,’ (A30)‘)’*« FEED FIELD SPECIFICATION #*¢
WRITE(4,'(12)')0

ENDFILE(4)

CLOSE(4)

OUTFILE=’TMRUVXXX.INP”
OUTFILE(G:6)=CHAR(K(1)+2)
OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))
0PEN(4,FILE=OUTFILE,STATUS='UNKNOWN')
WRITE(4,’(A25)’)’UVPROC CONTROL INPUT FILE’
OUTFILE='TMRT1XXX.P1’
OUTFILE(G:6)=CHAR(K(1)+2)
OUTFILE(7:7)=CHAR(K(2))
0UTFILE(8:8)=CHAR(K(3))
WRITE(4,'(A12)’)OUTFILE
WRITE(4,'(6I2)’)1,1,1,1,0,0
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WRITE(4,’ (212)’)1,1
WRITE(4,’(6I2)7)0,1,0,0,1,0
WRITE(4,’ (A7)’)'TEMP.P2’
WRITE(4,’(I2)’)3

WRITE(4,’ (2I4)’)101,101
WRITE(4,’(712)’)0,0,1,1,0,0,0
WRITE(4,’(412)’)3,0,2,0
WRITE(4,’ (F5.1)7)3.
WRITE(4,’ (F5.1)')10.
WRITE(4,’(5I2)‘)1,0,0,1,1
WRITE(4,’ (F7.4)7)0.0303
ENDFILE(4)

CLOSE(4)

RETURN

STOP

END

tt*tt*t*ti*i**i**i**t*******t*******************it***i****titt*ﬁﬁ*tt*ti*
*

* Type 1 Concept Transmit Mode Raytracing Subreflector Focal Point

* Positioning Code

*
*t*t****iii*******i***tii*********i*i*i***i**********i**********ii*tt*ﬁi

SUBROUTINE POSITF (SFOC, TRANS, GCOEF)
IMPLICIT NONE
REAL*8 SRFA(25,25,6),SFOC(2,3),TRANS(5),SRFMD(4),FOC,FEED(3),
c SCAN(2),T(5) ,GCOEF(10) ,SFOCT(2,3) ,ALPHA,BETA,GAMMA,
c DELTA,C
INTEGER*2 I
COMMON /REFL/ SRFMD, SRFA,FOC, FEED,SCAN
T(1)=TRANS(3)
T(2) =TRANS (4)
T(3)=TRANS(5)
T(4)=TRANS(1)
T(5)=TRANS(2)
DO 1 I=1,2
SFOCT(I,1)=T(1)+SRFA(13,13,1)~-
SIN(T(4))*(SFOC(I,2)-SRFA(13,13,2))+
COS(T(4))*SIN(T(5))*(SFOC(I,3)-SRFA(13,13,3))+
COS(T(4))*COS(T(5))*(SFOC(I,1)-SRFA(13,13,1))
SFOCT(I,2)=T(2)+SRFA(13,13,2)+
COS(T(4))*(SFOC(I,2)-SRFA(13,13,2))+
SIN(T(4))*SIN(T(S))*(SFOC(I,3)-SRFA(13,13,3))+
SIN(T(4))*COS(T(5))*(SFOC(I,1)-SRFA(13,13,1))
SFOCT(I,3)=T(3)+SRFA(13,13,3)+
COS(T(5))*(SFOC(I,3)-SRFA(13,13,3))-
SIN(T(S))*(SFOC(I,1)-SRFA(13,13,1))

an o000 o000

C=DSQRT( (SRFA(13,13,1)~-SFOC(2,1))*+2.D0+
(SRFA(13,13,2)-SFOC(2,2))**2.D0+
(SRFA(13,13,3)-SFOC(2,3))**2.D0) -

DSQRT ( (SRFA(13,13,1) -SFOC(1,1) ) **2.D0+
(SRFA(13,13,2)-SFOC(1,2)) **2.D0+
(SRFA(13,13,3)-SFOC(1,3))**2.D0)

BETA=SFOCT (2,2) -SFOCT(1,2)

GAMMA=SFOCT (2,3) -SFOCT(1,3)

DELTA=SFOCT (2,1) -SFOCT(1,1)

ALPHA=SFOCT (1, 1) **#2.DO+SFOCT(1,2) #%2.D0+SFOCT(1,3) #*2.D0-

nnooaonn
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SFOCT (2,1) *%2.D0-SFOCT(2,2) **2.D0-SFOCT(2,3)**2.D0~
C**2.DO0
GCOEF (1) =4.DO0* (BETA**2.D0-C**2.D0)
GCOEF(2) =8.DO*BETA*GAMMA
GCOEF(3) =4.DO* (GAMMA**2.D0~C**2.D0)
GCOEF(4) =4.DO*(ALPHA*BETA+2.DO*C**2.D0*SFOCT(2,2))
GCOEF (5) =4 .DO% (ALPHA*GAMMA+2.D0*C**2.DO*SFOCT(2,3))
GCOEF (6) =ALPHA*#2.D0-4.DO*C**2.DO* (SFOCT(2,1)**2.D0+
c SFOCT (2,2) **2.DO+SFOCT (2,3) **2.D0)
GCOEF(7) =4.DO* (C*#*2.DO-DELTA**2.D0)
GCOEF (8) =-4.DO* (ALPHA*DELTA+2.DO*C*%2.D0*SFOCT(2,1))
GCOEF (9) =-8.DO*BETA*DELTA
GCOEF (10) =-8 . DO*GAMMA*DELTA
RETURN
STOP
END

0o
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