
w

tiASA-CR-195116

THE UNIVERSITY OF ALABAMA IN HUNTS_

SUMMER FACULTY FELLOWSHIP RESEARCH
CONTINUATION PROGRAM

_b79"3

A. P

NAG8-212, TASK 9
5-30175

FINAL REPORT

Submitted to:

George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Marshall Space Flight Center, AL 35812

Prepared by:

Gerald R. Karr, Ph.D.

Principal Investigator
Professor and Chairman

Department of Mechanical and Aerospace Engineering
The University of Alabama in Huntsville

Huntsville, AL 35899
205/895-6154

Submitted by:

The University of Alabama in Huntsville

April, 1994

,$

N m co

,,I" u O
(_ t- O
Z _ O

Z._a
C3 _.

0

Z
U. C3 ,-.

t-

wCO.j
_ZOck
tmL_

!--fm
_Zf_
WO

A_L_

_t3 r"

I I (D_

Z tD 0 ,,_
vie IE v

0
Pq

P_
0

https://ntrs.nasa.gov/search.jsp?R=19940025344 2020-06-16T14:20:14+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42786949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aspects of Model-Based Rocket Engine

Condition Monitoring and Control

A Final Report Submitted to

Dr. Gerald R. Karr, Director

NASA/ASEE 1991 Summer Faculty Fellowship Program

at the Marshall Space Flight Center

Mechanical Engineering Department

The University of Alabama at Huntsville

Huntsville, Alabama 35899

by

Arthur J. Helmicki

Department of Electrical and Computer Engineering

University of Cincinnati

Cincinnati, Ohio 45221-0030

: \ (:



Contents

1

2

3

4

5

6

7

8

9

10

11

12

Introduction

1.1 Current Approaches to SSME Modeling .........................

1.2 Control and Condition Monitoring Based Approach ...................

1.3 Research Assistants .....................................

Summary

Overview

Nomenclature

Equation of State for LH2 and LOX

Dynamic Fluid Flow Through a Control Volume

Nondlmensionalization

Discretization

State Assignment

Forcing Terms

SSME HPFP Nominal Model

SSME HPFP Anomalous Model

13

References

2

3

4

5

6

7

8

9

13

15

17

19

20

22

26

12.1 Pump Speed Disturbance ................................. 26

12.2 Fuel Leak .......................................... 27

Conclusions 29

31



1 Introduction

Modern rocket engine systems often utilize some type of control scheme in order to achieve require-

ments on system performance. The increased sophistication of space missions demands that rocket

engine systems not only be reliable, but also have low maintenance costs and longer life spans.

So, in order to enhance reliability, extend system life, and reduce operating costs the develop-

ment of condition monitoring systems, which would augment the control system is currently under

study. Previous investigation of the issues involved in the design of condition monitoring systems

lead to a proposed the design of condition monitoring systems using a novel approach; one that
viewed the condition monitoring problem and the control design problem from within a common

system-theoretic framework [15, 14]. This approach was chosen because it possesses two major

advantages over traditional approaches to the study of the condition monitoring problem. For one,

it characterizes the extent to which trade-offs exist between control design objectives and condition

monitoring objectives and moreover, it provides a way to quantify these trade-offs. Secondly, since

this approach is based on existing system-theoretic concepts, the full range of system design tools

can be utilized in the analysis and design of control and condition monitoring systems. In contrast,

other approaches such as [24, 25, 16, 23] focus solely on the condition monitoring aspect and do

not consider any possible effects on the control system. Moreover, the interaction between the

condition monitoring and control systems has not been addressed.

The integrated approach to condition monitoring and control is predicated on the ability to

model anomalous conditions arising in rocket engine systems. The need for rocket engine models

able to predict both nominal and anomalous behavior motivated the work presented here. A

modeling scheme for anomalous conditions should prove itself compatible with system analysis

tools. Two such schemes are introduced here: signal representation and uncertainty representation.

[13, 15, 14]. Figures 1 and 2 depict the general configuration of the two schemes. The nominal

!
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Figure 1: Signal Representation

" \

Figure 2: Uncertainty Representation

model blocks in Figures 1 and 2 can represent an entire system or just one of its components.

In the case of Figure 1 anomalous conditions are represented by the injection of f, an external

signal . In the case of Figure 2 anomalous conditions are represented by the A block containing

+ ,
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someadditional dynamicsindicativeof a type of failure or degradation.The ability to model
anomalousconditionsin thesetwo waysprovesindispensablein the applicationof the system-
theoreticframeworkmentionedabove.

1.1 Current Approaches to SSME Modeling

At this writing rocket engine dynamic modeling is anything but exact. This is readily apparent

to anyone who has tried to read through the dearth of literature on the subject. Existing SSME
models such as the RL00001, the RTM, the DTM, and the ttOCETS package have been verified

to some degree against hot fire test data. However, the approach taken in developing the dynamic

equations in each case can be described as largely ad hoc and heavily reliant on empirical data. Such

an approach necessitates the introduction of corrective parameters tuned to some standard mode

of operation. Moreover, no method to date has proved useful in the development of models that

can describe anomalous conditions, and this is critical in the development of model-based condition

monitoring methods. The various chemical and thermal processes involved in a rocket engine are

so complex that it is impossible to develop a model solely from first principles. Many researchers,

therefore, resort to modeling based largely on empirical data. Models such as the RL00001, the

RTM, the DTM, and ROCETS package were developed in this fashion. However, there are several

shortcomings associated with this approach:

1. These models are often tuned to the data available and so they can become inaccurate when

the modeled engine is slightly altered.

2. Often these models contain "correction" factors in the form of various coefficients necessary to

get the model to match the observed data. For example, the various "B" coefficients employed

in the RE00001, I_TM, and DTM simulations. As a result, nobody but the one who developed

the model understands the origin and or physical significance of these factors, and thus no one

else can verify or build upon the model without some kind of support from the developer. In

addition, there is no information inherent in the models that indicates why certain dynamics

are kept while others are approximated by memoryless input/output relationships, a process
known as residualization.

o

............ 2.

.

Although models such as the RTM and MARSYAS purport to be modular in design, the

module interconnections axe so complex that it becomes difficult to isolate certain components

to study them separately or to compare them to other models.

Models are so complex that they become too cumbersome to use for control design purposes.

Because of the ad hoc modeling method it is unclear how to reduce the modeling order without

sacrificing fidelity to the actual engine.

Finally, these models are not easily used to study anomalous conditions, because it is difficult

to know how to modify an empirical model to accurately account for modeling an actual

anomaly.

For example, if one tries to compare Nguyen's SSME model [22], piece by piece, with Tiller's

SSME model [30] few similarities will be found. This is due in large part to the inclusion of the

so-called "corrective" parameters discussed above. A closer look at the dynamic "B" factors of

the RTM reveals that for some of the flow equations the "B" coefficients governing dynamics differ

by a factor of 100. One would hope that some of the dynamic equations could be residualized.

However, some of the dynamic continuity equations are in terms of pressure while others in terms



of density.Comparingthe magnitudeof the dynamic"B" factorsof theseequationsis meaningless
astheyarein termsof differentunits.TheRTM ttPFP isagoodexampleof Item3. Thedynamic
flow equationassociatedwith the pumpis composedof pressuresandflowsfrom variousother
components,someof whicharedynamic.Thismakesit difficult to discernthe actualboundaries
of the pump model.

So,while eachof thesemodelsmayaccuratelyreplicateavailablenominalhot fire test data,
thephysicalinterpretationsof thevariousinternalvariablesissomewhatin question.Furthermore,
thesemodelsareill equippedto modelanomalousconditions.Modelswith suchlimitationsdonot
lend themselveseasilyfor integratedhealthmonitoringandcontrolsystems.

1.2 Control and Condition Monitoring Based Approach

A rigorous modeling method to describe quasi one-dimensional gaseous fluid flow through an ar-

bitrary control volume has been previously developed [7] based on the conservation laws and ther-

modynamic laws and properties. The methodology cited above can be briefly described as follows:

The mass, momentum and energy conservation laws and thermodynamic properties were cast in

terms of common flow variables such as the pressure, temperature and velocity of the fluid in the

control volume. The resulting partial differential equations (PDE's) were reformulated in terms of

Mach number and made computationally tractable by shedding their dependence on a particular

system of units via a process called nondimensionalization and by a conversion to ordinary differ-

ential equations via a novel spatial discretization. The how and why of the nondimensionalization

and discretization procedures adopted for our purposes is discussed in detail in Sections 7 and 8.

This method has been successfully applied in modeling the high frequency transient dynam-

ics associated with turbomachinery such as air-breathing turbojet engines [6, 5]. This modeling

scheme combines in a rigorous fashion modeling techniques based upon first principles and mod-

eling techniques based upon empirical data when first principles are too difficult to apply. The

advantage of this is that first principle models are easier to manipulate and extend to model a wide

variety of states/conditions and anomalous behaviors for the system being modeled. When it is

too difficult to apply first principles, for example the pump maps associated with turbopumps, we

can use steady state experimentation to determine appropriate forcing terms which can be incorpo-

rated into the model yet still maintain the structure and uniformity. Models generated using this

approach possess the following advantages over the existing models discussed in Section 1.1:

1. Changes in the operation of the physical system can be accommodated by modifying only the

steady state input/output maps leaving the rest of the model unaltered.

. Because of the rigorous method, the models contain no vague "correction" factors and are

quite structured. Each part of the models is either derived from first principles or obtained

through steady state experimentation. Someone wishing to verify or build upon these models

should be able to do so without support from the developer.

3. System models are made up of distinct components with well-defined boundaries and inter-
connections.

4. The potential to reduce the model order is inherent in the models making them suitable for

control design purposes.

5. Most importantly for integrated control and condition monitoring, these models are equipped

to handle anomalous conditions in a rigorous manner.

4



In this work, the abovemethodsareextendedto handleliquid fluid flows thereby yielding

modeling methods which can be applied to liquid rocket engines systems. In addition, it is discussed

how these methods can be applied to develop models which describe the nominal operation of rocket

systems as well as models describing various anomalous or degraded rocket engine systems. As such

this work provides rigorous methods for control and condition monitoring oriented rocket engine

modeling.

1.3 Research Assistants

Please note that the work presented herein is a result of a collaborative effort between Primary

Investigator Dr. ttelmicki, and Graduate Research Assistants Sayeed Jaweed and Ksenia Kolcio.

Both students work in the Applied Systems Research Lab headed by Dr. ttelmicki. Sayeed Jaweed

and Ksenia Kolcio are pursuing Ph.D. and Master's Theses, respectively. Some of the results of

this document will contribute directly to their theses. This research project has led to the following

four conference papers:

1. A. Helmicki, S. Jaweed, and K. Kolcio; An Integrated Approach to Rocket Condition Moni-

toring and Control.

Appeared in the Fourth Annual Space System Health Management Technology Conference,
1992

2. A. Helmicki, S. Jaweed, and K. Kolcio; Propulsion System Modelling for condition Monitoring

and Control: A Status Report.

Appearing in the SAE 1994 Aerospace Atlantic Conference and Exposition

3. A. Helmicki, S. Jaweed, and K. Kolcio; Liquid Rocket Engine Modeling for Control and

Condition Monitoring: Part I, Theoretical Foundations.

Appearing in the 1994 JPC

4. A. Helmicki, S. Jaweed, and K. Kolcio; Liquid Rocket Engine Modeling for Control and

Condition Monitoring: Part II, Application to the Space Shuttle Main Engine.

Appearing in the 1994 JPC



2 Summary

A rigorous propulsion system modelling method suitable for control and condition monitoring

purposes is developed. Previously developed control oriented methods yielding nominal models for
gaseous medium propulsion systems are extended to include both nominal and anomalous models

for liquid mediums in the following two ways. First, thermodynamic and fluid dynamic properties for

liquids such as liquid hydrogen are incorporated into the governing equations. Second, anomalous

conditions are captured in ways compatible with existing system theoretic design tools so that

anomalous models can be constructed. Control and condition monitoring based methods are seen

as an improvement over some existing modelling methods because such methods typically do not

rigorously lead to low order models nor do they provide a means for capturing anomalous conditions.

Applications to the nominal SSME HPFP and degraded HPFP serve to illustrate the approach.
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3 Overview

An equation needed to relatethermodynamic propertiesfora liquidisdevelopedin Section5 and

incorporatedintothe mass, momentum and energy conservationequationsin Section6 yieldinga

setofpartialdifferentialequationsabletodescribethe flowofL//2and LOX through an arbitrary
controlvolume.

Section7 reformulatestheseequationsintoa more compact form where the statesare givenby

the standard flowvariables:Mach number, pressureand temperatureand rendersthem independent

of the choiceof basicunitsthrough the use of a nondimensionalizationscheme. An added feature

ofthisnondimensionalizationscheme isthatitprovidessome insightintothe dynamic behaviorof

the differentialequations.

Once the generaldimensionlessflowequationsare developed,the controland conditionmon-

itoringbased techniquesare discussedin Sections8-9 resultingin a generalmodel applicableto

liquidfluidflow systems. The equationsare firstdiscretizedin Section8 followingthe successful

approach used in [7]to arriveat a system of ordinary differentialequations. Then in Section9

decisionsare made regardingthe choiceofinputsand outputsto the model.

Section 11 appliesthismethod developed in the previoussectionsto discussthe development

of a low order dynamic nominal model of the SSME HPFP.

Section12 shows how the nominal HPFP model can be augmented with the signaland uncer-

taintyrepresentationsintroducedin SectionI to includeparticularanomalous conditions.



4 Nomenclature

Here the varioussymbols and notationappearingthroughoutthiswork arelistedforeasyreference.

A area T

c orifice coefficient t

DW mass flow c_

e internal energy u

f force z

S shaftspeed o_

L length /_

M Mach number E

P pressure 7

Q rate of heat transfer X

R gas constant p

LOX liquid oxygen LH2

temperature
time

constant volume specfic heat

fluid velocity

position

cubical expansion coefficient
isothermal bulk modulus

dynamic dimensionless parameter

dimensionless parameter

dimensionless parameter

density

liquid hydrogen

The various subscripts and superscripts used will be defined as the need arises. It is important to

note that throughout this work a distinction is made between variables having units (dimensional)

and those void of units (nondimensional). From here on, the " symbol over the dimensional

variables differentiates them from their nondimensional counterparts.



5 Equation of State for LH2 and LOX

Before the control and condition monitoring approach can be applied to liquid rocket engines, the

equations developed in [7] for gaseous flows must be augmented to accommodate liquid flows.

The development of the modeling techniques referenced in [7, 6, 5] relies on the use of the ideal

gas law. Consequently the models thus developed are not applicable to all components of a liquid

rocket engine such as the SSME because LH_ and LOX do not obey the ideal gas law. This section

develops a new thermodynamic state equation for a liquid such as LH2 or LOX that agrees with

empirical data found in [20].

For a liquid the ideal gas law

P = _/_T (i)

no longer applies. Unfortunately no equation of state (EOS) relating density to pressure and

volume of an arbitrary liquid e_sts [21]. All such equations come about using empirical methods

[17, 27, 12, 2, 28], and each equation is tailored to describe the density of a specific set of fluids.

As well, many of the equations from the literature are useful only in limited ranges of the pressure,

density, and temperature surface of a particular fluid. For example, a two-parameter equation of

state developed in [12] was verified for liquid hydrocarbons, but not for LIt2; and the Van der

Waals equation reviewed in [27] works for gaseous hydrogen but is not recommended for the liquid

region.

The SSME HPFP experiences large pressure and temperature variations from inlet to outlet. At

109% Rated Power Level (RPL), the inlet pressure and temperature are about 350 psi (pounds per

square inch) and 26 K (degrees Kelvin), while the output pressure and temperature of the ttPFP

are about 6870 psi and 56 K, respectively. The HPFP inlet to outlet pressure and temperature

• range given above will be referred to as simply the operating range.

With such large pressure and temperature variations, one would not expect any one equation

to cover the entire range. Indeed, as evidenced by Figure 3, the equation given in [20] for LH2 does
not fit the empirical data in the operating range of the SSME HPFP.

Following the modelling scheme of this work, first principles facilitate the derivation of the EOS

used here. The EOS takes the form ;_ = f(/5, _). The total differential of density can be written

[11] as

This equation can be simplified by noting that the isothermal bulk modulus _ is defined as [11]

T

and that the cubical expansion coefficient or coefficient of volume expansion a is defined as [11]

P P

Substituting these definitions, Equation 2 then becomes

= --- d/5 - .
, O

Integration from (#, P, T) to (_,/5 _,) yields

9
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wherefi, P, f' are reference values. Isolating density in this expression yields

= _e¢_p-_ , (3)

where the reference values have been collected into the constant term _:.

Figure 4 gives plots of this EOS against the empirical data found in [20]. Comparing these plots
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Figure 4: Comparison of CRC EOS and new EOS both against empirical data.

with those of Figure 3 it can be seen that this EOS provides a better fit than those given in [20].

Now a few words about the choice of reference values and the a and fl parameters. The reference

parameters, fi, P and _', were chosen from the approximate mid point of the operating range. The

a and _ parameters actually vary with pressure and temperature. However, in order to simplify

the integration step above, the parameters were first assumed constant with respect to pressure

and temperature. The constant a and fl were obtained as described next. From each operating

range pressure and temperature entry in the empirical tables in [20], a corresponding a entry was

11



extracted. A vectorof these_ valueswas then averaged to yielda mean a. Similarly,a mean

/3was calculated.These mean _ and 3 valueswere then used in the derivationof Equation 3.

Similarresultsapply in the casewhere LOX isconsidered.Next, the conservationequationsare

introduced and the new EOS iscombined with them.
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Dynamic Fluid Flow Through a Control Volume-6

The well-known differential forms of the dimensional continuity, momentum and energy equations

for quasi one-dimensional, fluid flow through a variable area control volume are given respectively,

as [31,7,4]

0 - 0 -

_(_A) = -_-_(_A), (4)

(_fiA) + (_fi2A) = -A.-_x + pAA + pAl, u, (5)

- _ o[(_2(_ + _:_---_[_A(_ + -_-)] + =y)] -_(_P_) + _5,_L + _. (6)

The variables used in these equations are defined in Table 1.1 These equations hold at each

point in an arbitrary control volume.

Equation 4 maintains that the time rate of change of mass in a control volume (CV),

0 -

must equal the mass flow through the CV,

_O(¢a_).

Equation 5 restates Newton's second law that the total rate of change of momentum in the CV,

0
0_(_A) + _(_ ),

must equal the sum of the force due to pressure on the CV,

-0P
A_,

the force due to wall friction,

and the force due to some shaft moving through the fluid,

Finally, Equation 6 states that the time rate of change of energy in the CV,

,]2
[_(_ + -_11,

plus the net flow of energy through the CV,

fi2
[(_2(_ + _-1],

must equal the sum of the rate of the shaft work and pressure work done inside the CV,

-O(_-PSi) + pA_L ,
Ux

13



W-VarTable Description

P
density (lbf - sec2/in 4)

f_

fi

pressure (Ib f �in2.)

7, temperature (Rankine, R)

fi velocity (in/sec)

position (in)

time (sec)

cross-sectional area (in 2)

internal energy (in2/sec 2)

heat transfer rate (Ibf /sec- in 2)

is shaft-on-fluid forces (in�see 2)

f_ wall-on-fluid friction (in/see '2)

Table 1: Dimensional variables.

plus the rate of heat added to the CV, .J,_. Note that the wall friction does not appear in the

energy equation because the frictio_t acts at a point in the flow where the velocity is zero and hence
no work is done.

Along with Equations 4, 5, 6, and 3, the well known thermodynamic equation relating the

internal energy and temperature
_= c_7_

complete the set of equations governing unsteady, compressible, viscous, quasi one-dimensional

flow of a liquid such as LH2 or LOX. These equations, because of the partial derivatives with

respect to position and variables such as internal energy and density, do not lend themselves easily

in solving fluid dynamic problems. The goal is to first reformulate these equations in terms of

the usual flow variables, pressure, temperature and velocity and then to approximate somehow the

partial derivatives with respect to position. After eliminating the internal energy and simplifying,

the following equations result:

OfL _Or` 10P
0--7= -_ - _ o_ _ L + L,

o_ _o¢ Pot, Pr, o;t (_
_ Zt q- .'7"-'- .

O_ O_ _c. O_ 7t_c_ O_ pc.

At this point the EOS could be substituted in for the density and the result solved for the pres-

sure. However, due to the complexity of the EOS, first transforming the dimensional variables to

nondimensional ones proves simpler. Section 7 explains this nondimensionalization process.

1Note that here body forces such a.s electromagnetic and gravitational forces have been ignored and/or assumed
negligible.
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7 Nondimensionalizat ion

Historically, nondimensionalization has been employed in scale models [29] and in the reduction of

parameters needed for solutions [18]. In fluid dynamics, the nondimensionalization process yields

nondimensional parameters such as the Reynolds number, Re. The size of Re determines whether

laminar or turbulent flow is to be assumed. Because of the nondimensional nature of Re, not only

does its numerical value stay the same in the face of a change of units but different fluid dynamic

systems in different units can be compared using their respective Reynolds numbers. Most recently,

the advantages of nondimensionalization have been applied to dynamic system modelling [7, 6, 5, 8]

to gain more insight into dynamic behavior. A nondimensionalizing scheme eliminates the need

to keep track of units and transforms the equations to a more elegant form. The dimensionless

variables employed herein are defined in Table 2.

Variable/Parameter Description

p = In (_) dimensionless

'P = _ dimensionless

T=a "

M - fi/V/_

z =

A = A/A dimensionless area

e = _ g e'r- dimensionless dynamic factor

fs: aL "-_-. fs dimensionless shaft force

f_, = _ fw dimensionless friction force

Q ....... dimensionless heat transfer

3'1 = _ dimensionless parameter

3'2 = _ dimensionless parameter

density

pressure

dimensionless temperature

Mach number

dimensionless position
dimensionless time

Table 2: Nondimensional variables and Parameters

The process proceeds as follows: First, the EOS, Equation 3, is nondimensionalized and used

to eliminate density from the expressions. Second, the remaining variable substitutions are made

and algebraic manipulations are used to simplify the resulting equations. Because of the complex

nature of these computations, this nondimensionalization process was accomplished with the help

of the symbolic math software package, Mathematica [34]. Below is the result of this procedure
presented in matrix form:

where

1--u p

e Ot T M
= r(M, X) O P

T

+ O(M,x,A)_ +

+5(71,72)
0

fl(M, X, A)-_-, (7)

=

15



r(M,x) =

a(Vl, 2) =

-(x + 1)
-Z

"I'2 72
0 -M

0 -M

M 2
--4-.-1

1)

0

M 2

-'4"
-q(x + l) ,
-M(_ + 1)

6)(M,x,A) = -'_(X + 1) , ft(M,x,A)= -

-M X 0

71 = _ep_ T , "I2 = 3---_ , X = cv

Matrix Equation 7 describes the dynamics of liquid fluid flow in terms of three nondimensional

equations relating three nondimensional fluid flow variables. The study of these equations leads

to several insights in behavior of liquid fluid flows and their dynamics. Consider the term e which

appears as a coefficient of each of the left hand side matrix terms of Equation 7. Note that e

has physical meaning in that the term _ is a reference speed of sound determined by the

and _; of the liquid. In dimensional variables e = -_.4/_'_. This is similar to theproperties

dimensionless parameter employed in fluid transients called the Strouhal number which is the ratio

of length to mean velocity and fluid oscillation period [19].

The e parameter controls the speed of the dynamic response of these equations. Since e appears

in front of all three equations it serves as a "system" parameter in that depending on its size, all

the dynamics are either kept or residualized. The fact that e appears in all three equations is a

direct consequence of the nondimensionalization procedure. For e relatively large the dynamics

equilibrate quickly, reaching steady state essentially instantaneously. In this case, the dynamics

are residualized meaning that they are reduced to memoryless input/output relationships. For

e relatively small the dynamics are slower, taking a significant amount of time to reach steady

state. For this case, the dynamics are retained. Although the residualized equations have the same

form as steady state relationships they have quite a different meaning. Residualized equations are

algebraic and apply at each point in time while steady state relationships apply only after transient

effects have died away. So for residualized equations the algebraic input/output relationships can

be applied at some initial time, t = to while for equations where dynamics axe retained, the steady

state relationships can be applied only after some appropriate t > to • Thus, depending on the size

of e the possibility exists for the dynamic order of a component model to be reduced. Two other

dimensionless parameters of interest are 71, 3'2 and X. Their relative sizes may cause certain terms

such as the forcing terms to drop out. Such simplifications can greatly reduce the overall model

complex.ity for multi-component models.
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8 Discretization

Spatial discretization of the nondimensionalized PDE's developed above is necessary in order to be

able to easily code the equations for computer simulation purposes. Spatial discretization serves to

change the PDE to an ordinary differential equation via some approximation of the spatial partial
derivative. Here, the same discretization method introduced in [7] is employed.

First the entire system is compartmentalized into components employing natural boundaries.

For example, in the SSME various components would include the HPFP, the HPOP, the combustion

chamber and the injectors, to name a few. Next, the spatial domain of each component is split

into n elements. For some components a single element will suffice, while for others more than one

may be necessary. The entrance to the first element is demarcated by zo while the exit of the last
element is x,,. It is then assumed that the variables with spatial derivatives vary linearly across

the element. The linear distributions take the following form

M(x,t) = Mk-l(t) + [Mk(t) - Mk_t(t)l(z- xk-1),

P(z,t) = Pk-l(t) + [Pk(t) - P__t(t)](z - zk-t),

T(z,t) = Tk-l(t) + [T_(t)- Tk-l(t)](z - zj,-t) ,

A(x,t) = Ak-t(t) + [Ak(t) - Ak_l(t)](z - xk-t) ,

where Mk(t) := M(xk,t) and z_-t is at the entrance to the kth element while zk is at the exit and

k E [1,..., n]. The same definition applies for Pk(t), Tk(t) and Ak(t). Note that t and x are the

only variables in the above equations. The positions xk-x and zk axe fixed at the entrance and exit,

respectively, of the kth element. The difference of the variables across the element approximates

the spatial derivative of the variable. After taking the derivative of the above with respect to z,

the spatial derivatives can then be approximated by

O-_-M _ Mk(t)-M1,-t(t),
Oz

o e
Oz ,_ Pl,(t) - Pk-l(t) ,

o__r
Oz _ Tk(t) - Tk-t(t) ,

LA
Oz ._ A_(t)- Ak-l(t) •

Once the spatial derivatives have been approximated, the resulting equations are valid at any

point in the spatial domain of the element. This is a consequence of the linear distribution as-
sumption as the spatial derivative is a constant. Even if the spatial distribution proves not to be
linear across an element for a certain value of n then n can be sufficiently increased until a linear

approximation is valid. Substituting these discretized spatial derivatives into Equation 7 yields

1 d M Mk - Mk-1 f,
--- P = r(M,x) Pk - Pk-t + A(71,72) f,,,
e dt T Tk - Tk-t q

lft M A dA
+ O(M,x,A)(Ak-Ak-x) + ( ,X,

These equations apply to each of the n elements of a component or subsystem. For each

element three dynamic equations result. For a component or subsystem, then, that makes 3n
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9 State Assignment

The discretization process divided the system into components along natural boundaries. Some

configuration of the inlets and outlets of the physical components are used as the inputs and

outputs of the model. Care should be taken so that the choice of inputs and outputs make sense

physically. This has potentially important ramifications when the problems of sensor and actuator

placement are considered.

Typically, outlet Mach numbers are either known to be a certain value or at least desired to

be a certain value. In other words, Mk(t) is an input. For this reason the temporal derivative of

Mach number, c_M/_t, is evaluated at the entrance of the element, forcing Mk-l(t) to be a state.

Similarly, inlet pressures and temperatures axe usually known. Therefore OP/Ot and OT/Ot are

evaluated at the eMt of each element, forcing Pl_(t) and Tk(t) to be states. The rest of the terms in

Equations 8 are evaluated at z = Zk for M and at z = zk-1 for P and T. Evaluating some temporal

derivatives at z = zk and other variables at x = z_-i is acceptable because in the limit as the

spatial mesh becomes finer and finer, z_-i approaches zk.

Using the state assignment scheme just discussed the discretized equations for the kth element

of the spatial domain become

--- Pk = r(Mk,xk-1) Pk - Pk-1 + A(71,72) f_
e dt Ta Tk - Tk-1 Q

dA
+ O(Mk, x_-l,Ak-1)(Ak - Ak-1) + l_(Mk,xt_-l,Ak-1)-_ ,

E

and

(s)

_V_ Tk-i-P_-_
f'- e

Equations 8 comprise a general set of equations able to model a generic fluid dynamic system or

component. In the next section we discuss the forcing terms.
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10 Forcing Terms

In general, the forcing terms are functions of all the flow variables, their spatial and temporal

partial derivatives, the various parameters and inputs and the system geometry. If it is assumed

that the dependence is only on the flow variables, parameters, external inputs and geometry, then

$ "--

Q =

f_( M, P, T, A, L, e_, a, 3, _, external inputs) ,

fw(M, P, T, A, L, c,, a, 3, _, external inputs) ,

Q( M, P, T, A, L e_, a, 3, _, external inputs) .

External inputs could include the ambient pressure and the pump shaft speed of the HPFP, for
OM eliminates fluid on fluid viscous forces but retains shaft-example. Assuming no dependence on "J7

on-fluid and wall-on-fluid frictional forces. Now, the particular discretization method chosen above

demands that all variables in the F, A, 0 and ft matrices and variables in the forcing functions be

evaluated at the inputs. The forcing functions then have the form

fs = f_(Mk, Pk-1, Tk-1, Ak-1, A_, L, cv, a, 3, _, external inputs) ,

fw = f,(Mk, Pk-1, Tk-1, Ak-x, A_, L, c_, a, 3, _, external inputs) ,

Q = Q(Mk, Pk-1, Tk-1, Ak-x, A_, L, ev, a, 3, _, external inputs) .

Forcing terms are defined in one of two ways: either known forms are assumed, for example

Fanno, Raleigh or isentropic area change, or unknown forcing terms are determined through steady

state input/output experiments. If the form of the functions is unknown, we turn to steady state

experiments to obtain input-output maps. It is common practice in turbomachinery applications

to make use of nondimensional pump and torque maps to characterize the pressure rise across

pumps and shaft torque as a function of flow variables and shaft speed absorbed into a dimension-

less variable [32, 10]. The pressure rise across the SSME turbopumps is found in terms of such

nondimensional pump maps.

The dynamic equations must be manipulated so that the maps resulting from input-output

experiments can be folded back into the dynamic equations. To this end, let the functions fl, f2

and f3be defined by

/2 :=-r-xA
Y3 Q

The new functions fl, f2, f3 depend on the same variables as fs, f_ and

of (A_ - Ak-1) through the second term in the above equation. Substituting

into Equation 8 gives

_"d-'t PJ' = r(Mk, Xk-_) Pk - Pk-1 - f2
Tk Tk-Tk-1 A

d
+l fl( Mk, Xk-1, Ak-1)-_ Ak •

In steady state, the time derivatives in Equation 9 vanish and the following should be satisfied

M,_ - M_:-I fl

Pk-Pk-I = I2

Tk - T_,-i f3

Q with the addition
these functions back

(9)
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Thesefunctionscanbe obtainedvia steadystateexperimentsprovidedthat the full domainof
input variablescanbe traversedin steadystate.

Restrictingthe functionsto dependon inputsonlyratherthanstatesallowsexplicitdetermina-
tion of theseforms. If the functionswereallowedto dependonstatesaswell asinputs,then they
couldnot be determinedfrom steadystateexperiments.Forexample,supposethat n = I and the

only forcing function happens to be .fl(Mo, Po, To) which depends on the state variable, Mo. In

steady state

M1 - Mo = ]'l(Mo, P0, T0)

should be satisfied. However, if one were to attempt to run steady state input/output experiments

one could not simultaneously traverse the domain of M0 values as inputs to fl and record the

corresponding Mo output values.

The next task is to apply the set of equations derived above to a specific system using the

control and condition monitoring based approach. This approach can be outlined as follows:

Step 1:

The physical system is conceptually divided into distinct interconnected components. For

example, the HPFP is one component of the physical system the SSME. If necessary, each

component is further subdivided into finite elements. The dimensionless flow equations are

applied to each element of every component.

Step 2:

For each element, the discretization and state assignment scheme is utilized to obtain a

nominal lumped parameter model.

Step 3:

For elements having nonzero forcing terms, relations describing these forcing terms are either

determined from first principles or from steady state experiments.

Step 4:

Based on the relative size of the E parameter resulting from the nondimensionalization, a

decision is made to either residualize or retain the flow dynamics for each element.

Step 5:

The developed models for all system elements are aggregated to form the overall nominal

system model.

Step 6:

Depending on the nature of the anomalies, anomalous conditions are introduced to the model

as either additional dynamics or injected signals.

_ The dynamic dimensional flow equations for Step 1 have been developed in Sections 5- 7. Step

.......... _ .... 2 was discussed in Sections 8- 9. The next two sections deal with Steps 3-6. In these sections,

the generic eq--ua,_ons :generated above are used to model the SSME ttPFP in order to illustrate

their application. Section 11 describes the nominal model and Section 12 describes models able to
characterize certain anomalous conditions.
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11 SSME HPFP Nominal Model

The SSME HPFP is a three staged centrifugal pump. The turbine generates the available torque

to turn the pump shaft. Liquid hydrogen fuel enters the pump at the inlet volute, courses through

the pump stages where the kinetic energy of the flow is converted to potential energy (pressure),

and exits at the outlet volute. The purpose of the pump is to compress the fuel to a high enough

pressure so that it may enter the combustion chamber.

For simplicity, it is assumed for now that the entire HPFP can be modeled as one element.

Following the notation of Section 7, a one element component means that k = 1. The pump inlet

pressure, P0, and temperature, To, and the Mach number at the pump outlet, M1, serve as the

model inputs while the pump outlet pressure, P1, and temperature, T1, and Mach number at the

inlet, Mo, become the states and outputs of the model. If it is determined that more than one

element is necessary, each pump stage can be modeled as an element. The elements would then be

concatenated to form the entire HPFP. Increasing the number of elements means that additional

pump maps would be needed for each compressor stage in order to determine the forcing functions.

From a practical standpoint, obtaining these maps is not a trivial task. Thus, the classic trade-off

between theory and practice is incurred. The same procedure would be applied to the turbine only

using the equations derived for a gaseous fluid. The HPFP and turbine models together would

comprise the High Pressure Fuel Turbopump, HPFTP.

Some general assumptions are in order. As flow through the pump is assumed to be adiabatic,

heat transfer is negligible so the Q term drops out. Fluid-on-fluid forces are negligible so the fs

term covers shaft forces exclusively. However, wall-on-fluid friction forces exist and appear in the

fw term. Since there are no valves within the HPFP, the time derivative of area drops out of the

nominal model. To determine the f_ and fw terms either some particular functional forms must

be assumed or maps derived through an analysis of the SSME steady state operation which is well

understood. In the SSME RTM and the SSME MARSYAS models the pressure rise generated by

the pump comes from steady state pump maps [22, 30]. Here, instead of choosing a functional form

for fs we attempt to fold in the existing HPFP pump map. In this case the maps incorporate the
friction term as well.

According to the RL00001 document [22] the pump map, FFp, accepts a nondimensional flow

variable input ¢ and outputs a corresponding nondimensional head variable ¢. The pump map is

defined by eRR :'- FEB(eRR) • The ¢ variable is a function of the pump fuel flow, D_VFp, density,

and pump speed, S,FP. The pump map will be incorporated here in the following manner: first, ¢ is

cast in terms of the dimensional variables, ,4, _i, _, and SFp. Pump speed is introduced as another

input to the model. Second, the output of the map, ¢, is redimensionalized in terms of the pressure

difference across the pump, density and pump speed. The map input ¢ must be constructed from

the flow variables used in Equation 8. Using the definition of the flow variable consistent with [22],
we have

I)WFp AUFp
_FP :-" -"

 FP ,l:P SFP

To construct ¢, the variables A and fi must first be redimensionalized from the variables A1,
M1. As SFP comes as an external input, it can be used directly. Note that consistent with the

explicit form of the model developed here, only system inputs are used. The dimensional ¢ is then

nondimensionalized for use in the map. The nondimensional output of the map, ¢ is dimensionalized

in terms of the pressure across the pump, AP, density and pump speed
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where¢ := Ap The dimensional pressure rise across the pump is then given by•

By inspection of Equation 10 and the equation above, it is seen that after nondimensionalizing the

above equation f2 may be obtained directly as

/2 = ¢;¢ (J'°-T°)gFPg  , •

Some additional steady state experiments where input and output temperatures axe measured must

be carried out in order to obtain f3. After constructing f3 the fact that at steady state the mass

flow at the input must equal the mass flow at the output is used to relate fl to f2 and f3. Thus,

one additional map f3 must be found to complete the nominal model of the SSME HPFP.

Although it seems that more steady state information is needed to actually complete the ttPFP

nominal model compared to existing models, we now show that the model developed here is the

general case while existing models employ some additional assumptions. Indeed, recall that no

initial assumptions regarding compressibility or friction were made for the models developed here.

Now, suppose that incompressible isentropic flow is assumed. In this case there is no friction or

heat transfer so that fw and Q are zero. The energy equation in steady state then reduces to

d_F
_-'0 •

d_

From Equation 10 it is seen that ]'3 = 0 . If there is no area change then the incompressible

continuity equation implies that
dfi

d_

which in turn in steady state and nondimensionat variables implies that

M1- Mo = O .

Consequently, fl from Equation 10 drops out as well. Therefore, under incompressible isentropic

constant area flow conditions, only one map f2 need be found to determine the unknown forcing.

The RTM, DTM and MARSYAS models consider the flow through the HPFP as incompressible and

adiabatic. In light of the above first principles analysis, it would seem that additional assumptions

of isentropic flow and no area change were applied as well. IIowever, any SSME schematic where

various pressure, flows and temperatures are noted at different points at some rated power level,
shows that in fact there are temperature rises in the ducts leading to and from the IIPFP. Most

likely, there is a temperature rise across the pump as well. Yet, no equations characterizing change

in temperature are given in the RTM for liquid flow. Temperature enters the calculations only when

gaseous flows are assumed. Even if the temperature rises were lumped in the ducts surrounding the

HPFP, the model does not provide a means of calculating these temperature changes. Apparently

there exists the following inconsistency. If incompressible and adiabatic conditions prevail then

the pump map accounts for both shaft force and friction. However, a means to account for the

temperature rise due to the friction is not provided. If incompressible and isentropic conditions

prevail then the pump map accounts solely for the shaft force and from the isentropic assumption,

the inlet to outlet temperature change should be zero. However, as mentioned above, a rise in

temperature is known to exist.
So it is seen that under the assumptions of incompressible and isentropic flow, the steady

state maps used in models such as the RTM, are sufficient to complete the nominal HPFP model
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developedhere. In otherwords,modelslike the R.TMcanbeviewedasspecialcasesof the more
generalmodelwith respectto theassumptionsmadefor theforcingfunctions.

Weconsidernowthevalidityof theincompressibleassumptionmadein theRTMandMARSYAS
I-IPFPmodels.Takingpressuresand temperatures from a 109% RPL SSME schematic at approx-

imately the inlet and outlet of the ttPFP, and the steady state flow through the HPFP from

the RL00001 document, some rough Mach number and density calculations can be made. The

schematic used is shown in Figure 5. The density and speed of sound are calculated using the EOS

developed in this work. A 17% decrease in Mach number from inlet to outlet is observed. More-

over, calculations show roughly a _5_ increase in density from inlet to outlet. By most engineering

standards such a large gradient must be taken into account. According to [3], only density changes
of not more than 5% warrant the incompressibility assumption. Although the Mach numbers are

low _ .05, it must be remembered that the substance is a liquid, not a gas, so that the standard

practice in gas dynamics of equating low Mach numbers with incompressibility no longer applies. In

many situations, liquids can be considered to be incompressible because they are not subjected to

extreme pressures. In the case of waterhammer, however, where pressure quickly rises proportion-

ally to the speed of sound [21, 9, 26], compressibility effects are considered. Similarly, in the case

of the HPFP, £H2 undergoes a tremendous pressure increase as it flows through the HPFP. From

this analogy, assuming most liquids exhibit similar thermodynamic and fluid dynamic behavior, a

considerable change in density is to be expected. It seems that the more general case which includes

compressibility effects should be used to account for the temperature rise and density change seen
across the SSME HPFP.

La addition to lack of temperature input/output information, other problems concerning geo-

metric parameters and model comparison were encountered. For L, the length of the pump, care

must be taken to account for the helical path the fluid follows as it flows through pump. This

can be accomplished provided that the axial pump length is known. The correct inlet and outlet

areas must also be obtained. Because of the rigorous first principles based modelling method that

utilizes no extra correction factors, it is crucial to obtain the actual lengths and areas in order to

mutc_ both steady state and dynamic HPFP behavior. Unfortunately, attempts to glean geometry

information from the RTM, DTM and MARSYAS models have failed as the information is buried

so deeply or combined with other parameters that extraction of the necessary lengths and areas is

impossible. Once a working model is up and running, it will be difficult to compare to the DTM
ttPFP model because it is unclear how to isolate the ttPFP component. Again, this is a reflection

of the rather vague component boundaries typical of the DTM.
The next section discusses how certain anomalous conditions can be modelled using the uncer-

tainty and signal representations mentioned in Section 1.
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12 SSME HPFP Anomalous Model

In order to apply model based condition monitoring, there must exist a way to incorporate anoma-

lous conditions into the system model. As pointed out in Section 1.1, the empirical approach to

model development may not yield a model capable of matching anomalous hot fire test data. Such

models need "tuning" via special "corrective factors" to match nominal hot fire test data. A model
tuned to reflect nominal conditions becomes "out of tune" to anomalous conditions. Typically, the

"corrective factors" are an amalgamation of individual system properties Once formed, however,

it is difficult extricate the original properties from the factors so that the factors have no physical

meaning. Consequently, in tweeting the factors to match steady state, there is no way of discerning

which physical properties are changing.
The control and condition monitoring based approach allows nominal models to be augmented,

in a rigorous manner, with portions describing anomalous behavior. The signal and uncertainty

representations of anomalous conditions introduced in Section 1 are applied here to the HPFP.

Signal representation involves the injection of an extraneous signal at the system input or output

characterizing the anomaly. Figure 6 illustrates signal representation of anomalous conditions.

Injecting a signal of zero magnitude reflects nominal behavior.
Uncertainty representation treats anomalous conditions as a dynamic block multiplicatively or

additively augmented to the nominal model. Figure 7 depicts the three ways the delta block can be

augmented to the nominal model. The delta block contains dynamic representations of anomalous
conditions and reflects the uncertainty about the system behavior introduced by the anomalies. A

zero value for delta reduces to the nominal model. The choice of scheme depends on the type of

anomalous condition. If an anomaly has some dynamics associated with it, then the uncertainty

representation is appropriate. If the anomaly manifests itself as an extraneous signal independent

of the inputs, then the signal representation is applicable. The basic approach of the two schemes
is illustrated below in Sections 12.1 and 12.2 by two specific cases of ttPFP failure modes taken

from SSME failure documentation [1].

" _,.J.2
- model

/0

_Y U-- t model_"_ "--'-'_

Figure 6: Signal Representation

12.1 Pump Speed Disturbance

Consider a disturbance, _SFP, in the pump speed, SFP, SO that the actual input to the pump

becomes

SFP -- SFP + _SFP ,

where _'FP is the nominal speed. As the disturbance is assumed independent of the input nominal

speed, it is seen that _SFp caJl be modelled as a signal injected at the input to the nominal model

as shown in the left part of Figure 6. Note that SFP appears as one of the external inputs to the

steady state map, ]'2.
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Figure7: UncertaintyRepresentation

12.2 Fuel Leak

Fuel leaks caused by seal degradation can lead to problems as serious as complete engine failure.

Consider a damaged seal at the input volute that establishes another flow path through the leak.

The region around this leak becomes another element in the model. The dimensional inputs to
this element consist of the inlet volute pressure just upstream from the leak,/50, the inlet volute

temperature just upstream of the leak, 7_0, and the inlet flow, Dv_r0 . The outputs include the

pressure across the inlet volute,/Sdo, the pressure across the leak,/slk, the temperature at the inlet
volute, 7_do, the temperature across the leak, 7_lk, the flow through the leak, DPVIk, and the flow

just downstream of the inlet, DVI,rdo.

As the spUt in the flow occurs over a very short axial distance, the dynamics of this component
can be residualized. Furthermore, it is assumed that the fluid properties (pressure and temperature)

just upstream of the leak are equal to the fluid properties at the inlet volute. Since temperatures

and pressures are the same then it follows that the densities should also be the same. From these

assumptions the following equations hold:

D_Vo = D_V,io + DPtr_k

or by expanding the flow terms,

 oAo o =  doAdof eo+  lkA,, lk

Po = /sdo=?'l 

= =

ao = A o.

Because the leak can be treated as an orifice, the well-known orifice equation [21]

_,k = cdl/2(/5o -/5.)

applies. The dimensionless orifice coefficient is defined as

1
Cdl :_ ,.

Ao

(ii)
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where cc is the contraction coefficient which depends on the type of orifice. Here we assume a sharp

edged orifice. In this case, cc is taken from [33] to be cc = .62. The pressure, Jss, is the ambient

pressure present on the other side of the leak. Simplifying the above continuity equation yields

_ 24/k

rio = fido + u_k"_ •

Substituting the orifice Equation 11 into this equation, nondimensionalizing and simplifying we
have

Mo=Mdo+ cd /2(Po- Ps) (12)
where

Ark

Cd :'- Cdl-_o "

In order to use Equation 12 in conjunction with the nominal model, the derivative with respect to

time must be taken and the result substituted in for Mo. The most general case includes both a

time varying leak area, imbedded in the discharge coefficient c4, and time varying input pressure,

Po. The time derivative of Equation 12 is given below

d
d d Cd d _(cc2cdlCd + 1)_/2(P0 - Ps) _dlk (13)"-_Mdo = "_ Mo - V/_( po _ p_,) "_ Po - AO

To complete the leaky model, Equation 13 is augmented to the nominal model by an additional

dynamic block consisting of

d
ca d cd.l (cc2c,llCd + 1)X/2(Po- Ps) _Atk.As = _/2(P0- P_)' _Po + A0

Note that the Much number associated with the leak is given by M_k = c4_2(P0 - P_). Substituting

this relation into the A equation yields

A_ = ---_Poc24 d + Cd._l(cc2CdlC d + 1)Mlk dAIk • (14)
Mlk AoC4

This anomalous behavior is modelled using the uncertainty representation.

The fundamental parameter determining the amount of uncertainty is based upon the size of

the leak area, Aik. When the leak area is zero, c4 --* 0 and the anomalous block, As, reduces to

zero restoring the nominal model. The above two examples illustrate how anomalous conditions

can be modelled as additional portions augmented to the nominal model. The complete anomalous

model becomes the aggregate of the anomalous portion and the nominal portion.
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13 Conclusions

This work presents a rigorous liquid propulsion modelling method for condition monitoring and

control. Some key attributes of this method are the following:

1. Thermodynamic and fluid dynamic properties for a liquid such as L//2 are incorporated into

the governing conservation dynamic equations via a novel equation of state.

2. Information from steady state input/output experiments can be folded into the model in a

straight forward manner, as dictated by the equations, to determine unknown terms such as

friction or heat transfer effects. Vague correction terms are not used to match actual steady

state behavior.

3. A nondimensionalization procedure frees the equations form a particular set of units and

transforms them into a more elegant form. Moreover, the procedure introduces a dimension-

less parameter that can be used to reduce model dynamic order.

4. Via a discretization and state assignment method, lumped parameter components are ob-

tained that exploit the system's natural boundaries.

5. Anomalous conditions are modelled by augmenting the nominal model with a dynamic uncer-

tainty block representation or an extraneous signal representation of anomalous conditions.

The anomalous model is an aggregate of the nominal portion and the portion reflecting
anomalous behavior. The nominal model remains unaltered and can be easily recovered from

the aggregate anomalous model by allowing the anomalous portion to vanish.

This method is deemed condition monitoring and control oriented as it can generate models that

are reduced order and that can describe anomalous conditions. The former is desired for control

while the latter is needed for condition monitoring.

Preliminary results involving the SSME HPFP imply that models developed using this approach

are especially suited for liquid rocket engine systems provided that system geometry and certain

static input/output relationships can be acquired. Given the wealth of data available for the SSME,

this does not seem unattainable. Discussions with experts in the at MSFC alerted the authors to

some practical considerations concerning model validation. For one, the coupling effects between

adjacent components of the SSME make it difficult to test individual components developed here

against similar components from the DTM. In order to exploit information from the DTM model,

a model of at least one side, i.e. fuel, of the SSME should be built following the method herein

and then compared to the DTM. As system model order reduction using the e parameter should

really be done after the entire system is complete, this would actually be more faithful to the mod-

elling approach developed here. Another consideration is the effect that the various assumptions

regarding flow conditions and forcing terms have on the existing models as compared to the model

developed here. In Section 11 it was seen that under the additional assumptions of incompressibility

and isentropic flow, the forcing function of the nominal model could be determined by steady state

information from the RTM. However, it is not entirely clear what assumptions beyond incompress-

ible flow were made for models like the RTM. If an additional isentropic assumption is included,

then the model fidelity to the real system is sacrificed since a temperature rise does occur across

the actual HPFP. If friction is included then the temperature rise, now allowed by first principles

considerations, is not accounted for by the model. Moreover, it was found that the approximate

density change across the I-IPFP is well above the standard change allowable for the incompressible

.... flow assumption.
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Although the existing models are themselves based on first principles, approximations and

assumptions employed because of practical considerations, especially the correction factors, have
made the models rather cumbersome and incomplete. They are cumbersome because of complex

component interconnections and high model order. Individual components such as the HPFP
cannot be easily extracted from the whole model in order to compare it with other models of the

ttPFP. The DTM has about 200 states which makes it very difficult to use in conjunction with a

sophisticated controller. They are incomplete because not all flow variables are always available for

all components, for example the ttPFP outlet temperature in the RTM model.

The approach developed here employs a sequence of steps where all assumptions and approxi-

mations are clearly defined and first principles are followed as much as possible. When it becomes

necessary to resort to steady state experiments, that information is incorporated in a rigorous man-

ner. The model equations clearly indicate which parts are from first principles and which parts are

steady state maps. The nondimensionalization procedure yields • parameters for each component

whereupon their relative magnitudes determine which component dynamics, if any, can be resid-
uaUzed. Since the nondimensional equations are independent of units the problem of comparing

the dynamics of a continuity equation in terms of density to one in terms of pressure is allevi-

ated. Through the discretization and state assignment process, model components have distinct
boundaries and thus dearly defined inputs/outputs. This modular concept should greatly facilitate

model analysis and simulation, for example the nominal HPFP model could be easily replaced by
an anomalous one without having to change the other SSME model components. Control and

condition based modelling is seen not only as an improvement over existing modelling methods

in developing models for integrated control and condition monitoring systems but also as a well

structured, consistent modelling tool in general.
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