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Turbomaehinery Blades. NASA Lewis Grant NAG3-1433. A Progress Report

for the Period 11 July 1993 through 11 January 1994.

Kenneth C. Hall* and Christopher B. Lorence t

Duke University

Durham, NC 27708-0300

3 April 1994

The purpose of this document is to report on the technical progress made on NASA Lewis

Grant NAG3-1433, "Aeroacoustic Sensitivity Analysis and Optimal Aeroacoustic Design of Tur-

bomachinery Blades," and to outline the work to be accomplished in the first half of the second

year's effort.

Work To Date

During the first year of the project, the principal investigator and his graduate student have

developed a theoretical analysis - and written a computer code based on this analysis to

compute the sensitivity of unsteady aerodynamic loads acting on airfoils in cascades due to

small changes in airfoil geometry. The steady and unsteady flow though a cascade of airfoils is

computed using the full potential equation. Once the nominal solutions have been computed,

one computes the sensitivity. The analysis takes advantage of the fact that LU decomposition

is used to compute the nominal steady and unsteady flow fields. If the LU factors are saved,

then the computer time required to compute the sensitivity of both the steady and unsteady

flows to changes in airfoil geometry is quite small.

The results to date are quite encouraging, and may be summarized as follows:

1) The sensitivity procedure has been validated by comparing the results obtained by "finite

difference" techniques, that is, computing the flow using the nominal flow solver for two

slightly different airfoils and differencing the results. The "analytic" solution computed

using the method developed under this grant and the finite difference results are found to

be in almost perfect agreement.

2) The present sensitivity analysis is computationally nmch more efficient that finite differ-

ence techniques. We found that using a 129 by 33 node computational grid, the present

sensitivity analysis can compute the steady flow sensitivity about ten times more efficiently

that the finite difference approach. For the unsteady flow problem, the present sensitivity

analysis is about two and one-half times as fast as the finite difference approach. We

expect that the relative efficiencies will be even larger for the finer grids which will be used
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to compute high frequencyaeroacousticsolutions. Computational results showthat the
sensitivity analysis is valid for small to moderatesizeddesignperturbations.

3) We found that the sensitivity analysisprovided important insight into how airfoils should
be modified to improve their aeroelasticstability. Using this insight, we redesignedan
aeroelasticallyunstablecascadeto producea stable cascade.

For further details on the theory and resultsobtained to date, pleaseseethe attached Ap-
pendix I. Appendix I is a reprint of a paper that we presentedat the AIAA 32nd Aerospace
SciencesMeeting & Exhibit (Reno,NV, January 10-13,1994),and providesa good description
of the state of the analysisat the end of the first yearof the grant [1].

Future Work

In this section, we discuss the work to be performed during the first half of the second year

of the grant.

Rapid Distortion Theory. In the first half of the second year of the grant, we will

extend the present analysis to include the effect of incident vortical and entropic wakes. These

physical phenomena will be modelled using the rapid distortion theory proposed by Atassi and

Grzedzinski [2] and later implemented by Hall and Verdon [3]. Using this approach, one first

computes numerically the "drift" and "stream" functions. The rotational velocity and entropy

fields may then be computed semi-analytically as functions of the drift and stream functions.

Computation of Streamline Grid. The major difficulty in incorporating such a theory

into a sensitivity analysis is doing it in a way that is easily linearizable. For example, previous

investigators [3] have used two different computational grids: one "regular" grid for the com-

putation of the steady flow, and a streamline grid for the computation of the unsteady flow.

The computation of the drift and stream functions using this approach required that steady

flow quantities be interpolated from the steady grid onto an unsteady streamline grid. For a

sensitivity analysis, this approach becomes problematic because of the inherent nonlinearities

associated with the interpolation process.

Instead, we will use identical streamline grids for the steady and unsteady flow calculations

(aTe already use identical grids, but not streamline grids). Unfortunately, one does not know

the location of the steady streamlines before the computation of the steady flow. Thus, we will

simultaneously solve for the steady potential field and the location of the streamline grid nodes.

This will increase somewhat the computational cost of the steady flow solver because of the ad-

ditional unknowns in the problem, but will greatly simplify the coding of the sensitivity analysis.

Also, the computational cost of the unsteady analysis will remain essentially unchanged.

Analysis of Exit Guide Vane. Once the rapid distortion theory has been implemented into

the analysis, we will begin an acoustic analysis of a proprietary exit guide vane (EGV) design.

Initially, we will examine the two-dimensional acoustic behavior of the EGV. The sensitivity

analysis will be used to determine if the acoustic response is sensitive to the geometry of the

airfoil. This is an important issue since the two-dimensional results will be an early indicator

of whether the three-dimensional acoustic behavior of the EGV can be significantly altered by

blade redesign.
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APPENDIX I: SENSITIVITY ANALYSIS OF UNSTEADY

AERODYNAMIC LOADS IN CASCADES*

Christopher B. Lorencd and Kenneth C. Hall t
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Abstract

A method for computing the effect perturbations in the shape of airfoils in a cascade have

on the steady and unsteady flow through the cascade is presented. First, the full potential

equation is used to describe the behavior of the nonlinear mean (steady) flow and the small

disturbance unsteady flow through the cascade. The steady flow and small disturbance unsteady

flow versions of the full potential equation are then discretized using quadrilateral isoparametric

finite elements. The nonlinear mean flow solution is computed using Newton iteration. At

each step of the Newton iteration, LU decomposition is used to solve the resulting set of linear

equations. The unsteady flow problem is linear, and is also solved using LU decomposition.

Next, a sensitivity analysis is performed to determine the effect small changes in cascade and

airfoil geometry have on the mean and unsteady flow fields. The sensitivity analysis makes

use of the nominal steady and unsteady flow LU decompositions so that no additional matrices

need to be factored. Hence, the present method is computationally very efficient. Finally,

we demonstrate how the sensitivity analysis may be used to redesign cascades for improved

aeroelastic stability.

Introduction

As the efficiency of modern aircraft engines continues to increase, aeroacoustic and aeroelas-

tic considerations play an increasingly important role in the design of turbomachinery blading.

Government regulations and community standards demand reduced levels of noise from aircraft,

while competitive pressures require increased efficiency and mechanical reliability. Currently,

however, the steady aerodynamic design and the aeroelastic design phases during the develop-

ment of compressor, and turbine blading are largely decoupled. First, the blade is designed

primarily to maximize steady aerodynamic performance. Then, detailed aeroelastic studies are

performed to determine whether the blades will meet standards for flutter stability and fatigue.

If the blade fails to meet these requirements, the blade is redesigned, and the process is repeated.

This redesign process increases the time and expense required to design a blade and misses an

opportunity to simultaneously design for steady and unsteady aerodynamic performance.
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In recent years, the capability to analyze unsteady flows in cascades has substantially im-

proved. For example, a number of linearized analyses of unsteady flows about loaded airfoils have

been developed. These include potential analyses [1, 2], potential analyses with vortical gust

effects [3, 4], and linearized Euler analyses [5, 6, 7, 8]. Although these models were developed

primarily for use in aeroelastic analyses, they are also well suited for modeling the aeroacous-

tic response of cascades to vortical gusts and potential interaction arising from nearby blade

rows. These linearized flow models are best viewed as analysis tools rather than design tools.

They are capable of solving the direct problem where the shape of the airfoil as well as the flow

conditions are specified. Unfortunately, except through trial and error or extensive parametric

studies, these codes do not provide physical insight into how, for example, to design cascades to

be aeroelastically stable or to minimize the acoustic response due to wake interaction.

A substantial body of work exists on the inverse design and optimal design of airfoils. Most

of this work, however, is directed at achieving desirable steady flow properties. For example,

Lighthill [9] developed an inverse design method based on conformal mapping techniques. More

recently, a number of investigators have proposed inverse design techniques based on modern

computational fluid dynamic algorithms (e.g., [10]). A number of investigators have used non-

linear programming techniques (e.g., [11]), and Jameson has suggested that the airfoil design

problem may be viewed as an optimal control problem [12]. Researchers have also developed

aeroelastic optimization techniques for rotorcraft [13], aircraft [14], and turbomachinery [15].

These analyses, however, have focused on structural optimization rather than optimization of

the unsteady aerodynamic behavior.

One of the key ingredients in optimization algorithms is the evaluation of the sensitivity of the

quantity to be optimized (for example, the flutter stability or efficiency of a cascade) to a small

change in a physical parameter (such as the airfoil shape). Sensitivity analysis of structures

has been an active area of research for the past decade [16, 17]. Recently, researchers have

begun to develop similar sensitivity analysis techniques for steady aerodynamic problems. For

example, Taylor et al [18] and Baysal and Eleshaky [19] have computed the effect of modifying

the shape of a nozzle on the flow in the nozzle. Their work was based on a sensitivity analysis

of the discretized Euler equations. Most recently, such techniques have been applied to airfoil

design [20]. Despite these advances, only a few unsteady sensitivity analyses have been reported
in the literature - for example the semi-analytical panel method of Murthy and Kaza [21]. Other

unsteady aerodynamic sensitivity analyses have been performed by numerically differencing two

unsteady flow solutions computed for slightly different values of some physical parameter. The

use of finite difference sensitivity analyses, however, is less desirable than an analytical method

because of the large computational expense and susceptibility to round-off and truncation errors

associated with finite difference techniques.

In this paper, we present a new method for computing the sensitivity of steady and unsteady

flows in cascades to small changes in airfoil and cascade geometry. The nominal steady and

unsteady flows are computed using a full potential solver based on a deforming grid variational

principle and finite element method developed by Hall [22]. To calculate the sensitivities, a

perturbation analysis is performed on the nominal steady and unsteady finite element equations.

This leads to a set of linear matrix equations for the sensitivity of the steady and unsteady

potential due to small changes in the airfoil shape. The matrix equations to be solved are

the same as the nominal flow matrix equations, but with new right-hand sides. Thus, if the

nominal flows have been computed using LU decomposition, then no additional matrices need

to be factored, and the sensitivities can be computed by back-substitution. Consequently, the

sensitivity of the steady and unsteady potentials can be computed very efficiently. The approach

is general in nature and can be applied to different governing equations and numerical schemes.



Theory

Nominal Flow Field Description

In the present analysis, the flow through a blade row is assumed to be inviscid, isentropic,

irrotational, and two-dimensional. In addition, the fluid is assumed to be an ideal gas with

constant specific heats. Thus, the velocity field can be represented by the gradient of a scalar

potential, ¢. This potential satisfies the unsteady full potential equation

1 [ 2V$ 06 1 ^ ] (i)

where _ is the local speed of sound. The static density and pressure may be expressed in terms

of the velocity potential as

1

+ -D7 (2)

"v

C$ (V¢)2 + O-t (3)

where PT and PT are the total density and total pressure, respectively, and CT is the total speed

of sound. Equation (3) is simply the unsteady Bernoulli equation.

To complete the problem specification, boundary conditions must be specified (see Fig. 1).

On airfoil surfaces, the boundary condition is that there can be no mass flux through the airfoil

so that O_
V$-fi=--.fi (4)

Ot

where fi is the unit normal to the airfoil surface, and the surface of the airfoil at any time t is

described by the parameterized position vector _. The wake is considered to be an impermeable

surface so that Eq. (4) also applies on both sides of the wake. Also, the pressure must be
constant across the wake so that

=0 (s)

where _] is the pressure jump across the wake. Periodic boundary conditions are applied along

the upstream and downstream periodic boundaries to reduce the computational domain to a

single blade passage. Finally, for unsteady flow problems, nonreflecting boundary conditions

must be applied on the upstream and downstream far-field boundaries to prevent spurious

reflections of outgoing waves.

The problem of solving for the unsteady flow in the cascade is divided into two parts. First,

we solve for the nonlinear steady or mean flow through the cascade. Next, we assume that the

unsteadiness in the flow is a small harmonic disturbance about the mean flow with frequency

co. Therefore, the unsteady perturbation flow is described by a set of linear variable coefficient

equations.

To increase the accuracy of the unsteady solution procedure, the unsteady velocity potential

is computed on a deforming computational grid which conforms to the motion of the moving

airfoils. We define two coordinate systems. The first coordinate system (x, y, t) is the usual iner-

tial coordinate system. The second coordinate system (_, r/, T) is the computational coordinate

system which is attached to the computational grid. Thus a point fixed in the computational

coordinate system (_, rh _-) moves in the physical coordinate system (x, y, t) as the grid deforms.
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Figure 1: Typical solution domain used for calculation of flow through cascades. Five main

boundary types are moving airfoil, upstream periodic, downstream wake, upstream far field,

and downstream far field.

Because the motion of airfoils (and hence the grid) is small,

by a small perturbation, i.e.,

x(_,rl, T) = _ + f({,rl)e ao°r

y(_,_,_) = _ + g(_,_)e'_

t(_,u, T)=7

the two coordinate systems differ

(6)

(7)

(8)

where f and g are the complex amplitudes of the small perturbation. Note that to zeroth order,

the physical and computational coordinate systems are identical.

Similarly, the velocity potential is expanded in a perturbation series

q;(_,v, 7) = _(_, u) + ¢(_, u)d _, (9)

where • and ¢ are the mean flow and small disturbance unsteady velocity potentials, respec-

tively. Substitution of Eqs. (6)-(9) into the full potential equation, Eq. (1), and collection of

terms of zeroth and first order gives the mean flow and small disturbance flow equations. The

mean flow potential equation is given by

v_q' = U v_,. v (v_,)_ (10)

where C is the speed of sound, and is a function of the potential q>. Note that Eq. (10) is

nonlinear in the unknown potential qs. The small disturbance unsteady potential equation is



given by

R
(jwv'_Tv'¢--W2¢) = b (11)

C 2

where b is an inhomogeneous term that is a function of the computed steady flow and the

prescribed grid motion (see [22]), and R is the mean flow density. Here V' is the gradient in the

(_, r/) coordinate system, i.e., V = JV', where J is the Jacobian of the coordinate transformation.

The small disturbance equation is seen to be linear in the unsteady potential, ¢, with coefficients

that depend on the nonlinear steady flow potential, q_.

In a completely analogous fashion, the boundary conditions may be split into mean flow and

small disturbance flow parts. For example, the no through flow condition on the airfoil, Eq. (4),

becomes 0_
-0 (12)

On

for the steady flow problem, and

0¢
- ja_f. fi- JV'q). fi (13)

On

for the small disturbance flow problem. In Eq. (13), J = jrj _ I, and f is the vector of

grid motion functions, (f, g) r. The first term of the right-hand side of Eq. (13) represents the

upwash due to translation of the airfoil. The second term is an additional upwash due to the

shearing of the steady potential field near the airfoil surface. The usual upwash term arising

from the rotation of the airfoil surface, as well as the extrapolation term encountered in fixed

grid computations, do not appear because we perturb the velocity potential in the coordinate

system attached to the deforming grid.

In addition, mean flow and small disturbance flow boundary conditions must be specified at

the inflow, outflow, periodic, and wake boundaries (see Fig. 1). For brevity, we omit the details

of these boundary conditions. The far-field boundary conditions for the unsteady flow solver

are analytically exact nonrefleeting boundary conditions based on the behavior of the linearized

full potential equation in the far-field [23]. The remaining boundary conditions are substantially

the same as in Ref. [22].
Once one has solved for the mean and small disturbance potentials, one can compute the

resulting steady pressure P and unsteady pressure p using the Bernoulli equation. Expanding

Eq. (3) in a perturbation series gives

....7._

2C_ (Vq))2 (14)

and

p= -R [v'_Tv'¢ + jw¢- jwf . V',1_ + Iv'g2TJV'_] (15)

Note in particular that the unsteady pressure p is produced by the small disturbance potential

¢, and by the deformation of the steady potential field q5. Finally, appropriate integrations of

the pressure around the airfoil give the steady and unsteady lift and moment acting on the

airfoils.



Numerical Solution Technique

One could solve the abovedifferential equations in a number of ways, e.g., using finite
difference, finite volume, or finite element techniques. In the present analysis, we discretize
theseequationsusing a variational finite elementtechnique.Hall [22] hasshownthat Eqs. (10)
and (11) are the Euler-Lagrangeequationsof steady flow and small disturbanceunsteady flow
variational principles basedon a variational principle due to Bateman [24]. Furthermore, the
natural boundary condition of the variational principles are the steady and small disturbance
no through flow conditions,Eqs. (12) and (13), respectively.

First, considerthe solutionof the steadyflow problem. The steadyflow variational principle
is discretizedusing quadrilateral isoparametricfinite elements.The auxiliary boundary condi-
tions are discretizedusing a combinationof finite elementand finite differencetechniques.The
result is a set of nonlinearequationsof the form

N(V; X)=0 (16)

where N is a vector of nonlinear functions, V is the vector containing the as yet unknown
steady velocity potential • at eachof the computational nodes,and X is a vector containing
the location of the computational nodes(thus the airfoil shapeis also containedin X).

To solve Eq. (16) for the nominal airfoil and cascadegeometry,we useNewton iteration.
Hence,given the nth estimate of the solution V n, the (n + 1)st estimate is given by

vn+l=Vn[ON] -10--V n N(Vn'X) (17)

Using Newton iteration, the system of nonlinear equations, Eq. (16), is reduced to a sequence

of linear equations, Eq. (17). Because we use an H-grid in the present investigation, the matrix

0N/0V is block tridiagonal. Of course the matrix is not actually inverted, but rather factored

using an LU decomposition algorithm which takes advantage of the block-tridiagonal structure.

The Newton iteration procedure is very fast with solutions typically obtained in about five

iterations.

Having computed the nominal steady solution, we next discretize and solve the nominal

linearized unsteady flow problem. The small disturbance variational principle is discretized,

again using quadrilateral isoparametric finite elements. The auxiliary equations are discretized

using a combination of finite elements and finite difference operators. The result is a linear

matrix equation of the form
Av=b (18)

where

A = A(V,X,w)

b = b(V, X, f, w)

and v is the vector containing the nodal values of the unsteady velocity potential ¢. Equa-

tion (18) is large, sparse, complex, and block tridiagonal, and is solved efficiently using LU

decomposition.

Sensitivity Analysis

Now that the nominal steady and unsteady flow problems have been solved, the next step

is to determine the effect a small change in airfoil or cascade geometry has on the steady and



unsteady flow. Returning to Eq. (16), if the geometry is perturbed slightly, the perturbed
solution will satisfy the equation

N(V + V'; X + X') = 0 (19)

where X is the nominal cascade geometry, X _ is the perturbation in the geometry, V contains

the nominal steady velocity potential, and V _ is the sensitivity of the steady potential to per-

turbations in the geometry. Expanding Eq. (19) in a perturbation series about the nominal

solution gives

?lv,E0 lx,_V + _-2 = o (20)

Solving for the unknown perturbation V' gives

v, ,21,
Computationatly, [ON/OX]X' is very inexpensive to form. Furthermore, note the similarity of

Eq. (21) to Eq. (17). The same matrix must be "inverted" to obtain the perturbed steady

solution that was used in the last iteration of the Newton solver. Therefore, if the steady flow

has been computed using Newton iteration with LU decomposition, and the last factored matrix

has been saved, then the sensitivity V' can be obtained with very little additional computational
work.

Having computed the sensitivity of the steady potential to a change in geometry, it is now

possible to compute the resulting sensitivity of the unsteady potential. The solution of the

unsteady flow problem due to small changes in the geometry, frequency, and mode shape will

be of the form

[A(V+ V',X + X',_ + J)]{v + v'} =
b(V + V', X + X', f + f', a_ + w') (22)

where f_ is the prescribed perturbation in the motion of the airfoil and grid, a/is the prescribed

perturbation in the frequency of the unsteady motion, and v t is the unknown sensitivity of the

unsteady potential. Expanding Eq. (22) in a perturbation series and collecting terms of first

order gives the desired equation for the unknown v',

EA,v' [0b]v, 
- _-V +_-2 +-b-J Jv (23)

or more succinctly

[A] v'= b'-[A]'v (24)

Note that the terms X', if, and J are prescribed, and V' is known from the solution of the

steady sensitivity problem.

In principle, one could assemble the matrices [0b/0V], [0A/0V], etc. in Eq. (23), then

multiply by the known perturbations and sum the results to obtain the right-hand side of

Eq. (23). However, it is computationally much more efficient to perform the multiplications

and summations during the integration phase of the finite element, construction. Hence, at the

10
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Figure 2: Steady surface pressure of cascade of NACA 5506 airfoils.
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element level, we construct A _ and b _ directly without ever forming the derivative terms. The

elemental matrix A _ is multiplied by the elemental vector v and the result subtracted from

the elemental vector b _. Finally, the elemental contributions are assembled to form the global

right-hand side to Eq. (24).

As in the steady sensitivity analysis, the computational effort required to solve for v _ is

insignificant since the matrix [A] has already been factored into upper and lower triangular

matrices when the nominal unsteady solution v was computed.

Finally, we note that although the present sensitivity analysis has been applied to a finite

element discretization of the steady and unsteady full potential equation, the method can be

applied equally well to finite difference and finite volume discretizations, and may be applied

to other flow models (e.g., Euler, Navier-Stokes) as well. The crucial feature which makes

the present sensitivity analysis computationally efficient is the use of LU decomposition in the

nominal steady and unsteady flow solvers.

Results

Steady Flow Through a Compressor

To demonstrate the present sensitivity analysis, we will analyze a linear cascade of NACA four

digit airfoils. The nominal cascade is similar to modern compressor cascades, and is composed

of NACA 5506 airfoils. For the case considered here, the inflow Mach number M__ is 0.5, the

inflow angle ___ (measured from the axial direction) is 55 °, the stagger angle O is 45 °, and

the blade-to-blade gap G is 0.9. Figure 2 shows the nominal steady surface pressure, P, for

two different grid resolutions, a 65 x 17 node grid and a 129 x 33 node grid (the pressure has

been nondimensionalized by the upstream density times the inflow velocity squared). The flow

is entirely subsonic with a maximum Mach number on the suction surface of about 0.61. Note

also the good agreement between the coarse grid and fine grid solutions.

Having computed the nominal flow through the cascade, we next consider the effect of six

11
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Figure 3: Sensitivity of steady surface pressure of cascade of NACA 5506 airfoils to perturbations

in thickness, camber, stagger, gap, _znd reflex. M-oo = 0.5,/_-oo = 55 °, 0 -- 45 °.

different design parameters on the steady fiowfield. Three of these parameters are from the

NACA four digit airfoil definition: the airfoil thickness, camber, and position of maximum

camber. Each of these quantities are measured in fractions of the airfoil chord c. We also

consider the effect of changes in the cascade stagger angle O, and blade-to-blade gap G. Finally,

we introduce an additional design variable, the reflex. The reflex parameter modifies the height

of the mean line by the magnitude of the reflex times the chord c times sin(27r_/c), where _ is

the distance along the airfoil chord.

Figure 3 shows the sensitivity of the steady surface pressure to changes in five of the six

geometry variables (the sensitivity to maximum camber location is not shown). The sensitivities

are computed using the present sensitivity analysis; all results were computed on a 65 x 17 node

grid. To check these results, we also compute the sensitivities using a finite difference approach.

The finite-difference result is computed by solving for the steady flow about two slightly different

airfoils, differencing the two, and dividing the result by the difference in the airfoil parameter.

12



Table 1: Sensitivity of steady forces and moment. The nominal steady lift, L, is 0.2907, the

nominal drag, D, is -0.0177, the nominal moment about the leading edge, MLE, iS --0.1215,

and the nominal lift in the y-direction, Ly, is 0.1931.

Variable L' D' MILLE L_

Thickness

Camber

Stagger

Gap

Max. C. Loc.

Reflex

-0.1935

1.5637

-0.6632

0.2743

0.0873

-1.5506

-0.0135

0.1446

-0.0642

-0.0244

0.0083

-0.1476

-0.1234

-1.4003

-0.0548

-0.0764

-0.1060

1.9235

-0.1464

1.2080

-0.5144

0.1767

0.0676

-1.2008

Note the excellent agreement between the two solutions indicating that the effect of small changes

in the design variables is linear, and that the present sensitivity analysis correctly predicts the

sensitivities. Also, one sees that the largest sensitivity in pressure occurs near the leading edge

of the airfoil.

Next, the surface pressure sensitivities were integrated to obtain the sensitivity of the steady

lift and drag (measured normal to and along the chord) and the moment about the leading edge.

These results are given in Table 1. Also tabulated is the sensitivity of the lift in the y-direction

(the cascade direction). The steady lift in the y-direction is a measure of the turning done by

the cascade and hence is related to the steady work done by the cascade. Table 1 shows that

the lift in the y-direction is most sensitive to changes in camber, stagger angle, and reflex. Since

these parameters control the metal angle of the trailing edge, and the deviation between the exit

flow angle and the metal angle is small for cascades, one would expect them to have a strong

influence on the steady lift.

Unsteady Flow Through a Compressor

Having computed the steady flow through the cascade, we next consider the unsteady flow

due to plunging and torsional vibration of the airfoils. Figure 4 shows the aerodynamic damping

EB of the cascade vibrating in plunge at three reduced frequencies and for a range of interblade

phase angles (the aerodynamic damping is proportional to the imaginary part of the unsteady

lift). Note that for plunging motion, the system is stable, that is, the aerodynamic damping is

positive for all interblade phase angles. However, the aerodynamic damping is generally less for

low reduced frequencies (high reduced velocities). The pronounced peaks in the damping curves

correspond to acoustic resonance, the point at which acoustic duct modes are "cut-on."

Figure 5 shows the aerodynamic damping Er for the case where the airfoils vibrate in pitch

about their midchords (the damping is proportional to the imaginary part of the unsteady

moment). Again, the cascade is least stable at the low reduced frequencies. In particular, note

that the system is unstable (ET < 0) for several interblade phase angles at the lowest reduced

frequency ca of 0.4.

Consider the case where the airfoils pitch about their midchords with a reduced frequency w

of 0.4 and an interblade phase angle cr of 60 ° (this is the least stable interblade phase angle for

the reduced frequency _ of 0.4). Figure 6 shows the real and imaginary parts of the complex

amplitude of the nominal unsteady pressure, p, on the surface of the reference airfoil for two
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different grid resolutions, a 65 x 17 node grid and a 129 x 33 node grid. Note that the imaginary

part of the pressure distribution is the part that does work on the vibrating airfoil. For this case,

we see that the imaginary part of the pressure difference across the airfoil is generally negative

over the front half of the airfoil and positive over the aft half. Thus, since the airfoil pitches

about its midchord (positive nose up), the unsteady pressure does positive aerodynamic work

(negative aerodynamic damping) on the airfoil over most of the airfoil.

We next compute the sensitivities of the unsteady surface pressure to changes in geometry.

Figures 7 and 8 show the real and imaginary parts, respectively, of the sensitivity of the unsteady

pressure to small changes in six of seven design variables (the effect of the location of maximum

camber is not shown, and the reduced frequency _ is included as a design variable for unsteady

flow calculations). All results were computed on a 65 x 17 node grid. The sensitivities are
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also compared to a finite difference calculation. Note the excellent agreement between the

two solutions indicating that the present method correctly predicts the sensitivities. Also, the

imaginary parts of the sensitivities to changes in stagger and reflex have pressure distributions

that are fairly large in magnitude and have shapes that would tend to do work on pitching

airfoils. That is, the sign of the pressure difference across the airfoil changes at roughly the

midchord of the airfoil.

Having computed the sensitivities of the surface pressure to design variables, we can now

integrate to obtain the sensitivities of the aerodynamic damping. Table 2 shows the sensitiv-

ity of the aerodynamic damping to small changes in the design variables. The column labeled

"Unconstrained" gives the sensitivity of the aerodynamic damping to changes in a single pa-

rameter. Here ":'T is the sensitivity of the aerodynamic damping due to pitching motions, and

Z'B is the sensitivity of the aerodynamic damping due to plunging motion. In both cases, the

nominal reduced frequency _ is 0.4. Note that as expected, stagger and reflex have a strong

influence on the aerodynamic damping in pitch. Also note that for both pitching and plunging,
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the sensitivity of the damping to changes in frequency is positive. This is consistent with the

results shown in Figures 4 and 5.
The results in the "Unconstrained" column of Table 2, however, can be somewhat misleading

since changing each design variable independently also changes the steady work done by the

cascade and changes the steady incidence at the leading edge of the airfoil. Generally, one

would want to leave these quantities unchanged. To avoid this difficulty, it is useful to let two of

the design variables "float" so that the steady lift Ly and the leading edge incidence ct remains

constant. In this study, we allow the stagger angle O and the reflex r to float. For example,

then, if we vary the gap G, we must vary the stagger angle and reflex such that

cgL_ r' OLy ,OLy O' + + 0 (25)
oe -o--dc =
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aa_, Oa , 0__,
+ + VSu = 0 (26)

Equations (25) and (26) give two equations for the two unknowns (9' and r' in terms of the

perturbation G' and the sensitivities. In Table 2, the column labeled "Constrained" refers to

the sensitivities to each variable using this procedure. For both the pitching and plunging cases,

it is clear that changing the camber has a very strong effect on the aerodynamic damping. In

the pitching case, an increase in camber is destabilizing; in the plunging case, an increase in

camber is stabilizing.
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Table 2: Sensitivity of aerodynamic damping. The nominal aerodynamic damping in torsion,

_T, is --0.0214, and the damping in plunging, EB, is 0.8882.

Variable

Thickness

Camber

Stagger

Gap

Max. C. Loc.

Reflex

Frequency

Unconstrained

_T _B

-0.2208 0.3046

-0.0018 -1.9868

-0.6672 1.4079

0.1723 -0.0237

-0.0383 -0.1143

0.7362 2.0131

0.4030 1.3337

Constrained

_I _'_1

_T _B

0.1344 -0.1879

-5.2561 3.3668

-0.2564 0.5707

0.0300 -0.0159

0.4030 1.3337

Redesign of a Compressor for Aeroelastic Stability

Next, we use the constrained sensitivity analysis to redesign an unstable cascade to make it

stable. The nominal cascade has a reduced frequency cz of 0.4 and an interblade phase angle a

of 60 °. We note from Table 2 that decreasing the camber has a stabilizing influence on torsional

flutter. Thus, for the first redesign (Redesign A), we reduce the camber by 0.004 units. Using

the constraint relations above, this requires us to reduce the stagger angle by approximately 1.4 °

and increase the reflex by 0.0064 units. Although the sensitivity analysis predicts that these

changes alone will make the airfoil stable, the sensitivity analysis also predicts a large steady
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Table 3: Computational times for present method using 129 x 33 node grid.

Procedure

Present Method

Nominal Steady

Nominal Unsteady

Steady Sensitivity (6 var)

Unsteady Sensitivity (7 var)

CPU Time (sec)

23.6

7.2

4.7

42.5

Finite Difference

Steady Sensitivity (6 var) 283.6

Unsteady Sensitivity (7 var) 100.4

pressure gradient on the suction surface near the leading edge. To smooth out the pressure

distribution, we increase the thickness by 0.02 units, which in turn requires us to reduce the

stagger by approximately 0.52 ° and add 0.0014 units of reflex.

For the second redesign (Redesign B), we reduce the gap G by 0.1, Again Table 2 predicts

that. this change will make the cascade stable, and requires that we reduce the stagger angle by

approximately 3.1 ° and add 0.0261 units of reflex.

Figure 9 shows the computed steady surface pressure on the nominal and redesigned airfoils.

Also shown is the pressure predicted by the linear sensitivity analysis. The good agreement

between the two indicates that nonlinear geometrical effects are small. Although the steady lift

on the airfoil in the y-direction has only slightly changed, the pressure distribution has changed

significantly. Note that the pressure gradient on the suction surface is larger for both redesigned

airfoils. Both redesigns are therefore likely to increase somewhat the aerodynamic losses of the

cascade.

Figure 10 shows the real and imaginary parts of the unsteady pressure on the surface of

the redesigned airfoils. Although the real part of the pressure distribution remains largely

unchanged, the imaginary part shows significant changes, particularly on the suction surface.

Note that the agreement between the sensitivity analysis prediction and the actual pressure

distribution, while not quite as good as in the steady case, is still remarkably good. The actual

damping of the Redesign A cascade is 0.0086, indicating that the new cascade is stable. The

damping of the Redesign B cascade is 0.0030, so this cascade is also stable.

Figure 11 shows the aerodynamic damping of the redesigned airfoils for a reduced frequency

of 0.4 for a range of interblade phase angles o. The five lines in the figure correspond to the

original nominal damping, the damping of the redesigned airfoils predicted by the sensitivity

analysis, and the actual damping of the redesigned airfoils. Note that both redesigned airfoils
are stable for all interblade phase angles. In addition, the sensitivity analysis prediction gives

excellent estimates of the actual damping of the redesigned airfoils.

Computational Efficiency

Finally, a note about computational times. Table 3 shows the CPU time required to perform

various calculations using the present method on a Silicon Graphics Indigo R4000 workstation.

All calculations were performed using a 129 x 33 node computational grid. The steady sensitivity

analysis requires only a fraction of the CPU time necessary to perform a single nominal steady
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calculation. For the seven design variables considered here, the unsteady sensitivity analysis

required about six times the CPU time as a single nominal unsteady calculation, but only about

half of what was required for a finite difference sensitivity analysis. Furthermore, the present

sensitivity analysis, unlike the finite difference analysis, is not susceptible to truncation and

round-off errors.

Conclusions

In this paper, a new method for calculating the sensitivity of steady and unsteady flows in

cascades to small changes in airfoil and cascade geometry is presented. First, the steady and
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small disturbance unsteady flow through the cascade is modeled using the steady and linearized

versions of the full potential equation. A variational finite element technique is used to discretize

the steady and small disturbance unsteady potential equations. Newton iteration is used to solve

the steady equations with LU decomposition used at each step; the small disturbance equations

are linear and solved with a single LU decomposition.

The sensitivities of the steady and unsteady flow fields to changes in geometry are computed

by perturbing the finite element scheme about the nominal solution. The resulting matrix

equations for the steady and unsteady sensitivity solutions have similar forms to the nominal

flow equations. In fact the matrix equations to be solved have matrices that are identical to those
in the nominal flow solvers. Thus, once the nominal flows have been computed, the sensitivity

analysis requires very little additional computer time. Furthermore, the method is general and

can also be applied to finite difference and finite volume calculations so long as the nominal flow

solvers use LU decomposition.

Finally, we have demonstrated that the sensitivity analysis may be used to guide in the

aeroelastic redesign of airfoils. In the example presented in the paper, a cascade that was

aeroelastically unstable in torsion was redesigned to be aeroelastically stable.
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