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Abstract. 

A Gain-Scheduling Neural Network Architecture is proposed to enhance the noise-filtering efficiency of feedforward 
neural networb, in terms of both nominal performance and robustneas. The Iynergistic benefits of the proposed ar­
chitecture are demonstrated and discuued in the context of the noise-filtering of signals that are typically encountered 
in aerospace control systems. The synthesis of IUch a gsin-scheduled neurofiltering provides the robustneas of linear 
filtering, while preserving the nominal performance &dvantage of conventional non-linear neurofiltering. Quantitative 
performance and robu.ineas evaluatioDs are provided for the signal processing of pitch rate responses to typical pilot 
command inputs Cor a modern fighter aircaf't modd. 

1. Introduction. 
The capability of feed.forward neural networks to serve as noise-filters for complex systems with varying 

characteristics and/or changing modes of operation was recently analyzed for the noise-filtering of signals 
that are typically encountered. in aerospace control and diagnostic sylterna [1]. For such systems, the nominal 
dynamics of the signals are a simplified version of the actual dynamica, due to modelling approximations, 
system uncertainties, and/or changing modes of operation. As a result, the desired neurofilter should not 
only provide satisfactory signal processing over the nominal dynamic range of the signals, but should also be 
robust and maintain its performance in the presence 0' changes in the nominal dynamics of the signals. From 
that perspective, linear and non-linear feedforward neural networks were trained. to filter noise by learning to 
map sequences of noisy input data onto the exact values of the most recently sampled data [1]. Comparative 
performance/robustness evaluations indicated that the synthesized non-linear neurofilter performed beUer 
than the linear neurofilter within the nominal dynamic range of signals; whereas the linear neurofilt.er was 
more robust in the presence of subst.antial variations in the paramet.ers of the signal generating process. This 
result pointed to the need for a more global neural architecture with a potential to synergistically combine 
the complementary benefits of linear neurofiltering and conventional non-linear neurofiltering. 

To address that issue, a gain-scheduling neural network (GSNN) archit.ecture is proposed to find t.he 
optimal combinat.ion of linear and non-linear neurofiltering that. provides the best signal estimates from input 
sequences of noisy data. The system functionality of the gain-scheduled. neurofilter is briefly introduced in 
section 2, while sect.ion 3 describes the gain-scheduling training architecture itself. In Section 4, the nominal 
performance and robustness of the gain-scheduled. neural network are compared to those of the linear and non­
linear neurofilters separately, while Section 5 disculIBe& poaaible extensions towards performance/robustness 
enhancement, non-linear adaptive neurofiltering, and neurosmoothing. 

2. System Functionality of the Neurofilter. 
The system functionality of the neurofilter is illustrated in Fig.1 in the context of an aerospace control 

system application. The signals to be filt.ered are the simulated. pitch-rate responses to both pitch rate 
and velocity commands. The closed-loop system includes a non-linear neurocontroller designed in Refs.[2-3] 
to provide independent control of pitch-ra.te/airspeed for a state-space representa.tion of a modern fighter 
aircraft [4]. The plant model consists of an integrated airframe/propulsion linear model, a fuel flow actuator 
modelled as a linear second order system with position and rate limits, and a thrust vectoring actuator 
modelled as a linear first order system with position and rate limits. As a result, the signal generating 
process represented by the closed-loop control system of Fig.l contains nonlinearities due to the actuator 
position/rate limits, and the nonlinear structure of the neurocontroller. For the purpose of this study, the 
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noise source has been placed outside of the control loop so that a clean baseline signal would be available for 
comparison. The purpose of the trained neurofilter is to provide an estimate of the actual data values that 
have been corrupted by noise in order to enhance any subsequent processing by out-of-the-loop peripheral 
modules such as failure-detectors and failure-identifiers (e.g. Ref.[5]), ofl'-line/on-line system-identifiers (e.g. 
Ref.[6]), damage estimators (e.g. Ref.[7]), etc. 

In this simulation, the information needed to synthesize the neurofilter is provided by closed-loop pitch 
rate responses to input commands ZSEL(t) = (qSEL(t), VSBL(t», where UBL(t) is the pitch rate command 
input, and VSBL(t) is the velocity command input. The pitch rate command input qSEL(t) is a doublet 
randomly centered at a time tc between 2.5s and 5s such that qSEL(t :5 te) = Qo, qSEL(tc < t:5 2tc) = -Qo, 
and qSBL(2tc < t) = 0, as indicated in Fig.2a. The concurrent velocity command input is the step function 
VSBL(t :5 0) = 0 and VSEL(O < t) = VOl as indicated in Fig.2b. These commanded inputs qSEL(t) and 
VSBL(t), which represent the frequency-content of typical pilot command inputs, were subsequently filtered 
through a prefilter-for-commGnd-.haping (Fig.l) in order to generate the commanded trajectories zc(t) = 
(qc(t), ve(t» that are to be tracked by the closed-loop control system. The commanded pitch rate response 
qc(t) and the commanded velocity response ve(t) corresponding to a doublet pitch rate command input 
qSBL(t) and a step velocity command input VSEL(t) are represented in the diagrams of Fig.2. The maximum 
intensities IQol and lVol of the randomly selected input commands were bounded by QmGS = 3deg/sec 
(corresponding to 0.5 inches of pilot stick deflection), and V_ = 20ft/ •• The pitch rate responses to such 
randomly generated pilot command inputs were sampled every A = 107n6 over T = 14., and they were 
corrupted with additive gaussian white noise with a standard deviation O'C,."ining = 0.3deg / .ec before being 
passed to the training architecture of the neurofilter. 

3. Gain-Scheduling Training Architecture. 
The proposed neurofilter consists of a linear neural network and a non-linear neural network with op­

timized internal configurations, and whose outputs are modulated by a gain-scheduling feedforward neural 
network. The optimized linear neural network and the optimized non-linear neural network used in this 
simulation were trained in Ref.[l] with the training architecture shown in Fig.3. During training, the in­
puts of these two neurofilters consisted of sequences 10f the fifty most recently sampled noisy data, and the 
target values were the exact values of the last sampled data. In Fig.3, the notation FA(p, h, 1) represents 
a feedforward neural network with p input units, a single hidden layer of h sigmoidal neurons, and a single 
linear output neuron. Both linear and non-linear neurofilters were trained to minimize the error (q _ q)2(t) 
between the filter output q(t) and the exact value q(t) of the pitch rate signal generated as in Section 2. 
The optimized network configurations of these two types ofneurofilters were F A (50,30, 1) for the non-linear 
neurofiltering (i.e. 50 inputs, 30 hidden sigmoidal neurons, and 1 linear output neuron), and FA (50, 1) for 
the linear neurofiltering (i.e. 50 inputs, and 1 linear output neuron). 

As shown in Fig.4, the "fusion" of the optimized linear and non-linear neurofilters is achieved by tr8ining 
a gain-scheduling neural network to minimize the error (qGSNN - q)2(t) between the GGin.-Scheduled NeurAl 
Network output qGSNN(t) and the exact value q(t) of the pitch rate signal generated as in Section 2. As 
indicated in Fig.4, the gain-scheduled neurofilter estimate q(t)GSNN is an adaptive combination of the non­
linear neurofilter estimate q(t)nOll-linea,., and the linear neurofilter estimate q(t)'inea,.: 

qGSNN(t) = g(t) x q(t)nOft-linea,. + (1- g(t» x q(t),inea,. (1) 

where the gain g(t) is the output of the non-linear gain-scheduling neural network. The role of the gain­
scheduling neural network is therefore to find the optimal combination of linear and non-linear neurofiltering 
that extracts the best signal estimates from input sequences of noise-corrupted data. In order to facilitate 
this "classification", the inputs of the gain-scheduling neural network were chosen to be filter estimates of 
the exact signal values instead of the original noisy data values. These filter estimates were furthermore 
chosen to be the computed outputs of the linear neurofilter, in light of the robustness advantage that linear 
filtering has over conventional non-linear neurofiltering. The configuration of the gain-scheduling neural 
network chosen in this application consisted of twenty five input units, ten hidden sigmoidal neurons, and a 
linear output neuron with the thresholding activation function y(z): 

y(z < 0) = 0; y(O ~ z :5 1) = Zj y(1 < z) = 1 , 

and training was performed with the backpropagation algorithm [8-9]. 
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4. Comparative Nominal Performance and Robustness Evaluations. 
The ability of the linear, non-linear, and gain-scheduled neurofilters to remove the noise from the pitch 

rate response to a given pilot commanded input "c" is measured by the ratio Re 

.jE;'~~(q(t,,) - q(t,,»2 
Be= , 

.jE;'~~n(tk)2 
(3) 

T being the duration of the pilot command input, and A the sampling time of the vehicle outputs. In Eq.(3), 
q(t,,) is the exact pitch rate response, fI.(t,,) is the white noise fluctuation added to q(t,,), and q(tk) is the 
filter output corresponding to an input seqpence of p sampled noisy data, i.e. {q(t"_i)+n(t"_i), minCk, p) ~ 
i ~ OJ. 

To compare the performances of the aforementioned neurofilters, two measures "R" and "r" based on 
Eq.(3) are introduced [1]. The R-measure is a statistical average of Re calculated over the whole dynamic 
range of pilot command inputs as characterized in Section 2 by (Qo, Vo, t e ) where Qo, Vo, and t" are uniformly 
distributed over [-QmClz' +QmClz], [-VmClZ , + Vm=], and [2.5s,5s] respectively. The r-measure is the value 
of R" for a most demanding case of pilot command input corresponding to the pitch rate doublet QSEL(t ~ 
5sec) = QmClz, QSEL(5sec < t ::; 10sec) = -QmCI%' QSEL(10sec < t) = OJ and the velocity step VSEL(t < 
0) = 0 and VSEL(O < t) = VmCl:Z' The R-measure grades the average efficiency of a neurofilter in removing 
the noise over an exhaustive set of pilot command inputs, whereas the r-measure estimates the filtering 
efficiency for one of the worst cases of pilot command inpllts. To test the ability of the neurofilters to 
operate at noise levels other than that used in training, the R- and r- measures were evaluated with gaussian 
white noise of various standard deviations ranging from U m,,, = 0 to U mClz = 1d.egJ sec. The values of the 
R- and r- measures corresponding to the nominal dynamic range of the signals are plotted in Figs.5a & 6a 
respectively. The results show that the gain-scheduled neurofilter outperforms both the optimized linear 
filter and the optimized non-linear neurofilter, not only at the noise level used in training, but also at all 
noise levels between O'm,,, = 0 and 0'_ = 1d.eg J sec. 

To further compare the robustness of the gain-scheduled neurofilter with the robustness of the optimized 
linea.r neurofilter and non-linear neurofilter respectively, the R- and r-measures were also evaluated on a 
test set extending beyond the nominal dynamic range of the signals (used for training) and generated as 
follows. The matrix elements of the A, B, and C matrices of the vehicle model [4] were randomly varied 
within ±50% of their nominal values, with the sole requirement that the stability of the closed-loop system 
be preserved [2]. Due to the severity of the deviations of the A, B, C matrices from their nominal values, 
the closed-loop system responses to typical pilot command inputs presented significant deviations from the 
nominal responses. The statistical evaluations of "R" and "r" are plotted in Figs.5b & 6b respectively for a 
typical set of A, B, and Cs leading to large variations of the vehicle model. The results show that the gain­
scheduled neurofilter still outperforms the optimized linear filter and the optimized non-linear neurofilter 
at all noise levels. This is graphically illustrated in Fig.7 by the filtering of the pitch rate response to the 
most demanding pilot command input of the vehicle model with the same set of off-nominal A, B, 'and C 
matrices as that used for the evaluations of the R- and r-measures plotted in Figs.5b & 6b respectively. 
As shown by the plots of Fig.7a, 7b & 7c, additive gaussian white noise is more efficiently removed from 
the noisy closed-loop signals by the gain-scheduled neurofilter (7c) than by the optimized linear neurofilter 
(7a) or the optimized non-linear neurofilter (7b) separately. The synergistic benefits ofthe newly proposed 
gain-scheduling architecture are even more apparent when comparing Figs.7a, 7b & 7c in light of the plot of 
the gain-scheduling neural netwotk output (identical to the output gain of the non-linear neurofilter) shown 
in Fig.7d. This comparison indicates that the gain-scheduled neurofiltering presents the characteristics of 
linear neurofiltering around 1 sec and 6 sec, i.e. when the pitch rate estimates of the linear neurofilter are 
better than those of the non-linear neurofilter. More specifically, Fig.7d also indicates that, around 1 sec, 
the gain-scheduled neurofilter estimate consists of about 80 % of linear neurofilter estimate, and about 20 
% of non-linear neurofilter estimate. Around 6scc, the gain-scheduled neurofilter estimate is 100 % of the 
linear neurofilter estimate. Otherwise, the gain-scheduled neurofilter estimate is for the most given by the 
non-linear neurofilter estimate, e.g. above 12 sec where it is 100 % of the non-linear neurofilter estimate. 
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5. Conclusion. 
A Gain-Scheduling Neural Network Architecture has been proposed to enhance the robustness of feed­

forward neurofilters, and was analyzed in the context of the noise-filtering of pitch rate responses to pilot 
command inputs for a modem fighter aircraft model. The proposed architecture consists of an optimized 
linear feedforward neurofilter, an optimUsed non-linear feedforward neurofilter, and a gain-scheduling feed­
forward neural network which is trained with backpropagation to synergistically combine the complementary 
benefits of the linear and non-linear neurofilters. The resulting gain-scheduled neurofilter consistently per­
formed better than each neurofilter separately, within the nominal as well as off-nominal dynamic range of 
the simulated signals. 

Future areas of research would include possible extensions of the functionality and scope of the pro­
posed gain-scheduling neural network arcb,itecture. Of particular interest would be the possibility of further 
enhancing neurofiltering through the gain-scheduling of a collection of linear filters that would have been 
separately optimiled on the disjoint elements of a partition of the space of the input signals. The synthesis of 
the multi-output gain-scheduler(s) required for the fusion of such optimized linear neurofilters could benefit 
from the robustness of genetic algorithms or even fuzzy rule-based scheduling, or from training algorithms 
like those developed for the hierarchical mixing of expert neural networks [10]. 

Of additional interest would be the possibility to extend the proposed architecture to achieve non-linear 
a.daptille neurofiltering through the synergy of supervised and unsupervised training schemes, and by taking 
advantage of the on-line learning capabilities of neural networks. An important practical issue to be addressed 
in that regard would be whether neural networks can be trained in unsupervised training modes to efficiently 
gain-schedule the supervised training ofa partition of individual neurofilter& of the type proposed in Ref.[ll]. 

Of further interest would be the possibility to extend the proposed architecture to the smoothing of noisy 
signals by training a neural network to gain-schedule optimized linear and non-linear neuronnoother, that 
would have been previously trained to map sequences of p successively sampled noisy data onto the exact 
values of any of the previous (p-1) samples input to the network. Such gain-scheduled neuro,moother, would 
be expected to provide better signal estimates than their neurofilter counterparts in view of the additional 
information provided [11-12], yet at the expense of the time corresponding to the delay needed for the signals 
to be available. How to reach the best compromise between "accuracy" and "time" would therefore depend 
upon the computational requirements and characteristics of the specific post-processing to be performed on 
the signals. 

Finally, future comparative analysis with other traditional techniques, such as Extended Kalman Filtering 
[13], could also provide insight on how to improve the performance and broaden the applicability of the 
proposed Gain-Scheduling Neural Network approach. 
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