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Abstract

Finite difference methods for solving problems of time-harmonic

acoustics are developed and analyzed. Multi-dimensional inhomoge-

neous problems with variable, possibly discontinuous, coefficients are

considered, accounting for the effects of employing non-uniform grids.

A weighted-average representation is less sensitive to transition in

wave resolution (due to variable wave numbers or non-uniform grids)

than the standard pointwise representation. Further enhancement in

method performance is obtained by basing the stencils on generaliza-

tions of Pad6 approximation, or generalized definitions of the deriva-

tive, reducing spurious dispersion, anisotropy and reflection, and by

improving the representation of source terms. The resulting sclmmes

have fourth-order accurate local truncation error on uniform grids and

third order in the non-uniform case. Guidelines for discretization per-

taining to grid orientation and resolution are presented.
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1 Introduction

Boundary-value problems governed by ttle Helmholtz equation model propa-

gation and evanescence of time-harmonic waves, describing a variety of physi-

cal phenomena, including acoustic, elastic and electromagnetic waves. When

the wavelength is of the same order as characteristic length scales asymptotic

methods usually cannot be employed and standard numerical methods such

as boundary element, finite element or finite difference methods are often

required.

Finite difference methods are a prevalent computational technique that

applies to variable coefficient as well as nonlinear problems. A general frame-

work for deriving higher-order finite difference schemes was proposed by

Lynch and Rice for ordinary differential equations [1] and elliptic partial

differential equations [2], and applied to the nelmholtz equation [3]. The

coefficients of the stencil in this method are computed by solving a local sys-

tem of equations so that it is exact on a given space of polynomials. This is

repeated at every gird point at which the solution is unknown, contributing

to the cost of computation. Accuracy is further enhanced by judiciously se-

lecting the points at which source terms are evaluated and computing their

coeffcients in the same way.

A family of finite difference schemes with improved representation of a

range of wave numbers is presented and analyzed in [4]. Tam and Webb [5]

optimize the dispersion properties of higher-order finite difference discretiza-

tion of the linearized Euler equations. In this approach the order of accuracy

of a stencil is allowed to drop, freeing a parameter that is then designed to

improve dispersion response.

Finite difference equations can be obtained by replacing the limit that

defines the derivative with a finite counterpart. The familiar definition of

the derivative may be generalized by introducing a resolution-dependent pa-

rameter leading to improved performance of the discrete methods. As long as

the limit behavior is unaltered consistency of the approximation is retained.

This idea was introduced by Mickens and employed as a means of generat-

ing stable finite difference schemes on uniform grids for several differential

equations in one spatial dimension ([6, 7] and references therein). Similar

discrete equations are obtained by new classes of finite element methods for

a variety of applications, including wave propagation (e.g., [8] and references

therein). It should be noted that analysis of the computation of waves [9]



indicates that accuracy dependsnot only on the product of wave number
and grid size (related to resolution), but alsoon product of other powersof
thesequantities.

In this workweapply generalizationsof the definition of the derivativeand
of Pad_approximation, to finite differencestencilsfor the Hehnholtz equa-
tion in order to obtain improved dispersionbehavior. Contrary to HODIE
methods,the coefficientsareobtainedexplicitly. Multi-dimensional inhomo-
geneousproblemswith variable,possiblydiscontinuous,coefficientsarecon-
sidered,accountingfor the effectsof employingnon-uniform grids. Several
finite differencestencils in one and two dimensionsare presentedin Sec.2.
The analysisof the numerical methods gradually builds up to the general
case. Performanceof the various formulations for homogeneousproblems
with constant coefficientson uniform grids is examinedby dispersionanal-
ysis in Sec. 3. This tool is employedto define the resolution-dependent
parameter for improvedperformance. In Sec.4 the effect of the direction
of wave propagation relative to grid lines is accountedfor. The effectsof
non-uniform grids and discontinuitiesin physicalpropertiesare investigated
in Sec.5. Standard finite differencemethods are often not well-suited for
interface problems(see,e.g., [10,pp. 17-21]). However,appropriate repre-
sentationpreservesthe order of accuracyof the continuous-coefficient,and
evenconstant-coefficientcase.(Issuesrelatedto curvedinterfaces,aswell as
curveddomainboundariesarenot treatedherein.) The resultsof theseanal-
ysesare corroborated by meansof local truncation error analysisin Sec.6,
accounting also for the effectsof sourceterms. Numerical testing of these
stencilswill be performedin future work.

2 Discrete Formulations

The Helmholtz equation is

A¢ + k25 + f = 0 (1)

where k = W/Co is the wave number, w is the angular frequency and Co is the

speed of sound, and f is a given source distribution. Although not explicitly

addressed in the following, the case of k: < 0 which corresponds to evanescent

waves or singular diffusion problems is also covered. An inhomogeneous

medium is represented by spatial variations in k(x).
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2.1 One dimension

Consider a uniform grid of size h with points at xj = jh. A typical start-

ing point is based on the standard finite difference stencil for the second
derivative

¢j+1- 2_j + ¢;_1 (2)
Dx_¢; := h2

and pointwise (PT) representation of undifferentiated terms

Dx_8; + k28j + f; = 0 (3)

where _b; is the discrete solution at point j and f; = f(x;). On a non-uniform

grid this generalizes to

¢j+l --¢j Cj--Oj-1) /h+ ÷ h--h_ h- 2 + k'2¢j ÷ f; = 0 (4)

where h- and h + are the grid size before and after point j, respectively. For

a discontinuity in physical properties at point j the stencil becomes

h7 2 + h++ h- ¢; + L = 0 (5)

where k- and k + are the wave numbers before and after point j, respec-

tively. These may be also considered as piecewise-constant approximations
of variable coefficients.

The undifferentiated terms may be represented by a weighted average

(wA) suggested by linear finite elements (with piecewise linear approximation

of the source distribution, see, e.g., [i1, pp. 45-46])

D_x¢;+ k_¢;+1+ 4¢; + ¢;_, + L+, + 4L + L-1 = 0 (6)
6 6

This scheme has the same asymptotic behavior as the pointwise representa-

tion, but improvement in performance on coarse grids is evident (see See. 3).

For variable coefficients this becomes

D_x¢; + (k2¢)J+l + 4(k2¢)i6 + (k2¢)J-1 + fj+l + 4fJ6 + fj-1 = 0 (7)

where (k295)j = k2(xj)¢j.



On a non-uniform grid tile appropriate weighting is

_7 2 +

t.2( h+ h- )3 h + .-1- h- (_j+l 4- 2¢j) -}- h+ -t- h- (2¢j _- Cj-l) Av

3 h++ h- (fj÷' + 2I_)+ h++ h-(2fj + fj-l) = 0 (S)

Superior performance oil non-uniform grids (see Sec. 5) is attained with no

increase in the number of points in tile stencil. For a discontinuity in physical

properties at point j the stencil becomes

(_J+' - _J ¢, _2_-' h-7,V )/h++- 2 +

1 ((k+)2h + (k-)2h - )3 h++h -(¢j+_ +2¢j)+ h++h_(2¢j+¢j__) +

1( h + h- )3 h + _- h- (fj+l + 2fj) + h+ + h- (2fj + fj_,) = 0 (9)

Again, this may also be considered as a piecewise-constant approximation of

tile case of variable coefficients.

Performance of finite difference schemes for the Hehnholtz equation may

be enhanced by basing the stencils on more general defnitions of the deriva-
tive

d¢ = lim _5(x + h) - ¢(x) 10)
dz h--.o /_(t'h,) h

where, for consistency

lim /3 = 1 11)
kh-'-*O

This definition depends on kh, an indication of wave resolution by the grid.

For the Laplacian this reduces to the standard definition for grids of any size.

This generalization of the derivative definition may be applied for either

the first or second derivatives, or to both. On uniform grids all are equivalent.

Since tile parameter depends on the grid size it is applicable to non-uniform

grids as well. Superior performance on non-uniform grids is obtained by

4



applying this concept to the secondderivative alone (seeSec.,5). For the
uniform casethis reducesto

Cj+l-2¢j+¢j-, +k2¢J+'+4¢J+¢J-' +L+l+4fj+fJ-_ =0 (12)
_h 2 6 6

The resolution-dependent parameter ¢3is defined to improve method per-

formance. For example, the parameter may be defined to eliminate numerical

dispersion

/3 - 6 1 - cos(k/z) (13)
( h)2 2 + cos(kh)

so that in simplified settings the phase is exact (EP), resulting in no trunca-
tion error under some circumstances. This definition satisfies the consistency

requirement (11). In such cases the representation of source terms, which is

exact for piecewise linear variation, is no longer sufficiently accurate. A

modification of the representation of source terms that does not degrade the

higher-order accuracy of such schemes, similar to that employed by HODIE

methods [2], is

6j+_-2¢j+6j-, +k 2¢j+i+4¢3+db-_ +L+_/2+L+L-1/2 =0 (14)
/_h 2 6 3

(suggested by linear finite elements with piecewise quadratic approximation

of the source distribution) where fj+l/2 is the load term evaluated at the

midpoint. For a piecewise linear source distribution this is identical to (12).

One possibility of the parameter

12
fl _ (15)

12- (k,h)2

yields t_igh-order representation

D_:¢j + k 2 Cj+_ + lOCi + Cj__
12

+ fj+,/2 -t- L + L-,/2 = 0 (16)
3

(HO). This stencil (without the modification in tile representation of source

terms) may also be derived by employing Pad(_ approximation

Oxx

1 + h2/12 D_ Cj + k2¢j ÷ .fd = 0
(17)



(see,e.g., [12,p. 538]).
This concept,in its original form, which may beviewedasan averageof

the pointwise and weighted-averagerepresentationsof the undifferentiated
term [13], provides high-order performance on uniform grids, but severely

degrades in the non-uniform case. However, an appropriate generalization to

non-unifornl grids, based on the concept of generalizing the derivative deft-

nition, leads to improved performance in the general case as well (see Secs. 5

and 6). Allowing discontinuities in physical coefficients and accounting for

non-unifornl grids the proposed scheme is

1 ( (k+)_a+h+ (k-)_-h- )
/

! ( /_+h+
k/3+h-gT__h - (2fj+,/_ + fj) +

+

+ (18)

_-h )/3+h+ + fl-h- (fj + 2fJ-'/2) = 0

where/3 + = fl(k*h+).

2.2 Two dimensions

Consider a two-dimensional uniform grid of size h with points at xi = ih

and yj = jh. For simplicity we consider the homogeneous case. A typical

starting point is the five-point representation

D,:,:¢,,j + Dvv¢i,j + ]C2¢i,j =

¢i+_,j - 2¢i,j + ¢_-1,j ¢i,j+_ - 24;i,j + ¢_,j__
+ + k2¢i,j = 0 (19)

h 2 h 2

which is the two-dimensional analog of (3). Non-uniform grids and material

discontinuities may be accounted for by generalizations of (4) and (5).

The two-dimensional counterpart of the idea that leads to (6), obtained

by employing bilinear finite elements, is a nine-point representation

¢i+l,j-1 + 20i+1,j + ¢i+l,j+l -- 8_i,j + ¢i-l,j-I + 2qSi-l,j + ¢i-1,j+1
h 2 +

¢i-l,j+l + 2q)i,j+l + q)i+l,j+l -- 8_9i,j + q_i-l,j-1 + 20i,j-1 + ¢i+l,j-I
h 2 +



-6-(@+1,j+1 + 4@+1,j + 4¢i,j+1 + @+ad-1 + 16@,y+ (20)

¢i-l,j+l -4- 40i,j-1 "_ 40i-l,j "_- ¢i-l,j-1) = 0

leading to a significant reduction in spurious anisotropy (see Sec. 4). HODIE

methods [2] also employ nine-point stencils in two dimensions. The band-

width of the ensuing linear algebra problem is typically slightly larger but

the difference in the cost of computation is insignificant.

Performance can again be improved by substituting j3h for h as in the one-

dimensional case (14), based on the same definitions (13) and (15), although

the methods are higher order only for propagation along grid lines.

In order to maintain higher-order performance on uniform grids in two

dimensions in all directions of propagation, the Padd approximation concept

is employed. The two-dimensional counterpart of (17) is

DX2:

h 2

1 + -_ D_,,

Dyy .

¢"_+ 1+ _ Dyy¢'j + k2¢''j =0 (21)

This may be generalized to

l + _ Dyy D_.:@,j + I + -_ D_.: Dyy@,j+

( h_ h4 )k_ 1+ -_(D_ + D_) + 7-i_ Dx_D_ ¢,,j = 0 (22)

where 3, is selected to further improve properties in directions other than

along grid lines, without effecting dispersion along grid lines and without

degrading, higher-order behavior in all directions.

The standard Pad6 approximation is obtained by selecting 7 = 1 which

yields the scheme

( )D,:x + Dy_ + -_ D_:Du_ @,j +

k 2

]-_(@+_,j+l + lO@+a,i + lO¢i,j+r -t- q)i+l,j-1 q- lO0¢i,j+

¢i-l,j+l -Jv lO¢i,j-i "3v lO¢i-l,j qi_ ¢i-l,j-l) = 0

(23)



where

( h2 )D_ + D_! , + --6- D_D_ ¢_,j =

¢_+_,j_, + 8¢,+_,/+ ¢i+_,s+l - 20¢i,j + ¢_-l,j-_ + 8¢___,j + ¢___,j+_
h 2 +

¢i-l,j+1 -1- 8¢i,j+1 + 0i+1,j+1 -- 20qSi,j -t- _i-l,j-I -]- 8el,j-1 "_ ¢i+l,j-I

h 2 (24)

Neglecting higher-order terms in the Pad4 approximation by selecting "7 = 0

leads to the slightly simplified stencil presented in [12, p. 542]

k2(¢i+l,j -_ (_i,j+l _- 8¢i,j _- el,j-1 -_ (_i-l,j) = o (25)

The computational cost is essentially unaffected since the bandwidth of the

algebraic equations is identical. Another alternative presented in [12, p. 542]
is

Dx_: + D_ + -_ D_.:Dyy ¢i,j+

k 2

--6(¢i+1,j+1 31- 4_i+l,j -b 4¢i,j+1 + Oi+l,j-I -q- 52_i,j-b

0i-l,j+1 + 4Oi,j-I + 4¢i-l,j nu _i-l,j-1) = 0

(26)

obtained by selecting -y = 2.

Other values for 7 lead to other alternatives.

selecting 7 = 2/5, which leads to the stencil

In Sec. 4 it is seen that

( h2 )D_ + Dyy + --_ D_.:Dyy ¢i,j +

k2

-_(Oi+_,j+_ + 28¢_+1,j + 28_i,j+1 + ¢i+1,j-1 + 24&hi,j+ (27)

q)i-l,j+l -']- 28¢/,j-1 -t- 28q_i-l,j -]- ¢i-l,j-1) = 0

minimizes dispersion along the diagonals. On the other hand, reducing sen-

sitivity of the scheme to direction of propagation is attained by the choice of

8



7 = 14/5, which yields the stencil

k2

_(7(}i+l,j+l + 16_bi+l,j + 16¢i,j+1 + 7¢i+1,j-1 + 26_¢i,j+ (28)

7¢i-l,j+1 + 160i,j-1 + 16¢i-ld + 7¢i-1,3-1) = 0

All these alternatives reduce to (HO) in one dimension. Thus the dispersion

analysis for (Ito) in Sec. 3 describes the dispersion of all alternatives along

grid lines. In Sec. 4 the perforlnance of various alternatives in other directions

is compared.

3 Spurious Dispersion

A homogeneous, isotropic continuum is non-dispersive. Waves travel at a

phase velocity

- co (2,9)
Cp.-- k

and energy propagates at the group velocity

_ := _ = c0 (30)

and so both are identical.

For the discrete representation this is usually no longer the case. Each

stencil can be characterized by an approximate wave number k h = kh(kh),

which depends on wave resolution and thus accounts for nulnerical dispersion.

The phase velocity in the discrete case is

w kh
%=_-;= kh co

and the numerical group velocity is

h
Cg -- Ok h

Ow Ok
m

Ok Ok h

(31)

= Co (32)



On a uniform grid in one dimensiona numericalsolution in the form of
a plane waveis

Cj = exp(ikhh)j (3,3)

PT For point j the pointwise representation (3) of the plane wave solution

yields

0 = exp(ikhh)- (2-(kh) 2) + 1/exp(ikhh)

= 2cos(khh)- (2-(kh) 2) (34)

leading to the dispersion relation

khh = arccos (1-(kh)2/2) (35)

In one dimension the number of grid points in a wave is

a = 2 _/(kh) (36)

The discrete solution represents propagation in the range kh < 2 which

corresponds to a limit of approximately three grid points per wave-

length. Within this range the numerical phase velocity is thus

chv/co = kh/ arccos (1 - (kh)2/2) (37)

and the numerical group velocity is

c_/co = _/1 -(kh)2/4 (38)

Both are slower than the speed of sound in the material Co.

WA Similarly, for the weighted-average representation (6) the dispersion
relation is

k hh = arccos 7 _,} (39)

representing propagation in the range kh < v/_, a limit of approxi-

mately two grid points per wavelength. Within this range the numerical

phase velocity is obtained directly from the dispersion relation and the

numerical group velocity is

c_/co = V/1 -(kh)2/12 (1 + (kh)2/6) (40)

Both are faster than the speed of sound in the material.

10



EP Tile resolution-dependentparameter fl may be defined so that discrete

representations are non-dispersive (13) as is the case for the continuum.
I11 one dimension this formulation has zero local truncation error for

the homogeneous, constant coefficient case oll uniform grids, and tile

phase and group velocities are exact. Careful generalization leads to

improved performance on general configurations.

HO Tile higher-order representation (15) is an approximation of the exact

phase definition (13) on uniform grids. The resulting higher-order dis-

persion relation

1-khh=arccos 17+(_ 2- / (41)

is a (1, l) Pad6 approximation, representing propagation in the range

kh < x/6, a limit of approximately 2 1/2 grid points per wavelength.

Within this range the numerical phase velocity is again obtained di-

rectly from the dispersion relation and the numerical grout) velocity
is

c_/co = _/1 -(kh)2/6 (1 + (kh)2/12) (42)

Both are slower than tile speed of sound in the material. The power

series expansion of the dispersion relation

(kh) '_ (kh) _
khh _ kh + -- + -- > l,'h (43)

480 12096 -

demonstrates the higher-order nature of this representation.

Dispersion of the various formulations is plotted in Fig. 1. Note that the

region of primary interest is G > 4, a resolution of at least four grid points

per wavelength. Within this region the errors in tile pointwise and weighted-

average representations are similar, and the asymptotic behavior is the same

(see Sec. 6). However, even approaching the limit of resolution, and certainly

beyond it, the weighted-average performance is superior. For example, at

the limit of resolution (G = 4) there is a 38% error in tile group velocity' for

the pointwise representation, whereas in the weighted-average representation

the error is only 26%. The higher-order method offers significantly superior

representation, an error of only 7% in group velocity at (7 = 4, and the

exact-phase method provides dispersion-free solutions.

11
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tions.

12



4 Spurious Anisotropy

On tile unifornl grid in two dimensions a numerical solution ill the form of a

plane wave oriented at angle 0 to the grid lines is

¢i,j = ext)( i/,'hh cos O)i exp( ikh h sin O)j (,14)

PT For point i, j tile pointwise representation (19) of tile plane wave solution

yields

exp(ik/_h sin 0) + exp(ik hh cos 0) - (,4, _ (/,'h)2) +

1/ ext)(ikhhcosO) + 1/ exp(ikhhsinO)

= ,2 (4-(.,)2)
leading to various dispersion relations, depending on the angle of orien-

tation 0. When the wave is aligned with the grid (e.g., 0 = 0) this leads

to the one-dimensional dispersion relation (35). The other extreme case

occurs when the wave is oriented in the direction of cell diagonals (e.g.,

o = _-/4)

The discrete solution represents propagation in the range kh < v@

Within this range the numerical phase velocity is again obtained di-

rectly from the dispersion relation and the numerical group velocity'

is.

_/_o = _/1-(,_:,,)2/s (,17)
Both are slower than the speed of sound in tile material. It is interesting

to note that the pointwise representation is more dispersive when waves

are oriented along the grid.

WA Similarly, for tile weighted-average representation (21) dispersion rela-

tions are obtained from

13



HO

When the wave is aligned with the grid this leads to the known one-

(timensional dispersion relation (39) and for waves parallel to cell diag-
onals

+   ccosg (khZVi_2/
representing propagation in tile range kh < v/_.

the numerical phase velocity is obtained directly from tile dispersion

relation and tile numerical group velocity is

(49)

Within this range

(50)

Both are faster than the speed of sound in the material. The weighted-

average representation is also more dispersive for waves that are ori-

ented with tile grid.

Dist)ersion relations for the higher-order representation with /3 defined

in (15) at various angles of orientation may be found in similar fashion.

For waves aligned with cell diagonals tile relation is identical to that of

the pointwise representation at this angle (46), and the same hohts for

tile wave velocities. This representation is thus higher order only for

waves oriented along grid lines.

Representations that are truly higher order in all directions of propa-

gation are based on (22). For waves aligned with tile grid this leads to

the higher-order dispersion relation (41) and along cell diagonals the
relation is

khh=v/2arcc°s( 641+(1-3`)(kh)4/144-(4+(6-3`)(kh)2/12))2+3`(kh)2/12

(51)
By examining the power series expansion of this relation

khh_ kh+ (53-̀ 2_(kh)_+ (_:h)---__ (52)
" 5760 96768

it is clear that the value of 3' = 2/5 mininfizes dispersion in the direction

of cell diagonals. On the other hand, 3, = 14/5 minimizes the difference

between the dispersion along grid lines and in the direction of cell

14



diagonals,as seenby comparisonIo the power series expansion of tile

higher-order dispersion relation ahmg grid lines (43). Dispersion ill the

direction of cell diagonals for various values of 7 is plotted in Fig. 2. As

expected, the stencil with "7= 2/5 is essentially non-dispersive in the

region of primary interest with a resolution of at least four grid points

per wavelength.

Tile ratio between numerical dispersion along grid lines and along cell

diagonals is shown in Fig. 3. By design, the stencil with "y = 1,'1/5 is the

least anisotropic in the range of at least four grid points per wavelength.

This is corroborated by the polar plots in Fig. 4, showing the variation

in phase velocity with angle of orientation for various re.solutions. Note

that the figure shows (c_/c0) 4 to accentuate deviations from the exact

value of unity. As expected, all the schemes perform identically along

grid lines, but behavior in other directions is determined by the choice of

"7. Differences among the various cases become more pronounced with

reduced resolution, but in general are not extreme. The two schemes

that stand out are indeed _ = 2/5 which minimizes dispersion along

diagonals, and hence overall, and 7 = 14/5 which reduces anisotropy.

EP The case that is non-dispersive in one dimension (13) may be treated

similarly. In this case there is no dispersion for waves aligned with

the grid and the dispersion relation for waves in the direction of cell

diagonals is

khh=v'_arcc°s( 21+2c°s(lvh'))5+ cos(kh) (53)

The numerical phase velocity is again obtained directly fi'om the dis-

persion relation and tile numerical group velocity is

c__ _ 7+5cos(kh)(5 +_cos(/,'h)'_ (5,1)c7- 1 4-cos(kh) _ )

This representation is obviously less dispersive for waves that are ori-

ented with the grid.

Dispersion in the direction of cell diagonals of the various formulations

is plotted in Fig. 5. Recall that the region of primary interest is G > 4, a

resolution of at least four grid points per wavelength. Dispersion prot)erties of
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each scheme at arbitrary orientations are bounded on one hand by dispersion

along grid lines shown it* Fig. 1, and oil tile other hand by dispersion along

cell diagonals shown in Fig. 5. Performance of the pointwise and weighted-

average schemes improves tile farther the orientation of propagation is from

the direction of grid lines. The same holds for the higher-order schemes of

interest with 7 = 2/5 and 7 = 14/5. For the (EP) method the opposite

occurs, so that performance of this scheme is vastly superior along grid lines.

This scheme is higher order only along grid lines, but it still maintains a high

degree of phase accuracy in all orientations.

The resohltion-dependent parameter /_ may be defined so that tile nu-

merical ret)resentation is non-dispersive for waves at any given angle of ori-

entation. For example

/3_ 12 1- cos(v' kh/2) (55)
2+ cos

eliminates dispersion of waves along cell diagonals. Similar performance was

attained in the context of finite element methods [14]. In general, how-

ever, tile direction of wave propagation is not known in advance and l here

is a concern that defining /3 for any orientation other than along grid lines

may degrade performance on non-uniform grids, as discussed ill the follow-

ing section. Furthermore, grids should be aligned with dominant directions

of propagation to tile extent possible. For these reasons it is preferred to

maintain dispersion-free discrete solutions along grid lines.

Nnmerical dispersion is thus sensitive to the orientation of wax,(' propaga-

tion. Tile two extreme cases are along grid lines shown in Fig. 1, and along

cell diagonals shown in Fig. 5. Tile largest change in dispersion properties

possible is thus tile ratio between tile two, shown in Fig. 6. Recall that the

region of primary interest is G > 4, a resolution of at least four grid points per

wavelength. For highly resolved phenomena tile performance of all schemes

is similar and quite good. As wave resolution is reduced only the higher-

order schemes (with values of 7 shown) retain a low level of anisotropy. Of

the other schemes, approaching the limit of resolution and certainly beyond

it, the pointwise tnethod is clearly more sensitive to direction of propaga-

tion. For example, at the limit of resolution (G = 4), there is 8% anisotropy

in the pointwise representation of phase velocity, whereas the anisotrot)y of

other methods is at most about half that value. This becomes even more
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pronouncedin group velocity.
Figure 7 showsthe variation in phasevelocity with angleof orientation

of different schemesat various resolutions. For presentation purposesthe
figure shows(c_/c0)4. Note that the plot for (PT) doesnot include the case
of G = 3 since this scheme no longer represents propagation at this low

resolution, which, in any event, is outside the region of primary interest of

G > 4. It is clear from these plots that the numerical phase velocity is less

than the speed of sound in the material in all cases shown except for (WA).

Close examination of Fig. 4 indicates that this is true of higher-order methods

only with 7 -> 2/5. With the exception of (El'), all the schemes considered

exhibit superior dispersion behavior along cell diagonals. This would not hold

for higher-order methods with "7 > 14/5, but there is no apparent motivation

to pursue such methods in the first place. As mentioned, employing (55)

eliminates dispersion along cell diagonals, leading to a version of (EP) with

superior dispersion behavior along diagonals that is similar to other schemes

in this regard.

Overall, high wave resolution or higher-order methods are required if

anisotropy is a concern. Of the methods that are not high order, on grids with

lower resolution, the weighted average representation and its enhancements

are much less anisotropic than the standard pointwise representation.

5 Spurious Reflection and Transmission

Reflected and transmitted waves are generated by incident waves at disconti-

nuities in physical properties. Numerical dispersion of discrete formulations

gives rise to incorrect representation of these phenomena at transitions in

wave resolution.

5.1 Grid transition

In a homogeneous material no reflection should occur. However, changes in

grid size alter wave resolution giving rise to spurious reflection and transmis-

sion due to numerical dispersion, phenomena that may be characterized in

a manner similar to that of waves at discontinuities in physical coefficients.

These phenomena are well known [15], have been carefully analyzed [16] and

numerically demonstrated [17].
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(:onsider a one-dimensional configuration discretized by a maiform grid

of size h- to the left of the origin and a uniform grid of size h + to its right.

Due to tile transition in grid size at the origin, an incident plane wave of unit

magnitude traveling in the positive direction with discrete values given in

(33) for j < 0 generates spurious transmission such that ¢0 :/: 1 and spurious

reflection of magnitude ¢0 - 1. The numerical solution is thus

h-h-) j +I¢0-1)/exp(ikh-h-) j, j <0CJ = ¢oexp(ikh+h+) j j > 0
(56)

where the dispersion error is represented by the numerical wave numbers

/_"h+ =/ch(kh +), and the transmission error is represented by O0. In particular

_, = ¢oexp(ikh+ h +) (57)

¢-1 = ¢oexp(ikh-h -)- 2isin(kh-h -) (58)

PT The pointwise representation (4) of this solution at the origin yields

2 (¢1-(1-(k]_+)2/2)¢o ¢_1 - (1 - (/_h-)2/2)¢o)h+ + h- h+ + -/_

'2 f _oexp(ikh+h +) - cos(k/*+ h+)¢0

1_+ 5t- t_- k h+ +

,o exp(ik"- h-) - _i sin(k"-/,-) - cos(_h-,_-)¢o'_
h- )

)2i ((sin(kh+h +) sin(kh-h-) ¢0-2 (59)
h+ + h- \ \ h+ + h- h-

where the second line was obtained by the dispersion relation for the

pointwise representation (35). Thus

2_/1-(kh-)'2/4
¢o = (60)

_/1 -(kh-)2/4 + _/1- (kh+)2/4

which is valid in the range of resolution in which the pointwise formu-

lation represents propagation (along grid lines).
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WA Similarly, the weighted-averagerepresentation(8) of the solution (56)
at the origin leadsto spurioustransmission

(61)4,o
_/1 -(kh-)2/12 + _/1 -(kh+)2/12

which is valid in the range of resolution in which the weighted-average

formulation represents propagation (along grid lines).

HO Transmission for the higher-order representation with the parameter

defined in (15) is

k/1 - ( kh- )2 /6
2

(1-(kh-)2/12) (62)

qSo = _1 -(kh-)2/6 _1 -(kh+)2/6
+

(1 -(kh-)2/12) (1 -(kh+)2/12)

which is valid in the range of resolution in which the higher-order for-

mulation represents propagation (along grid lines).

EP The case that is non-dispersive in one dimension (13) may be treated

similarly. In this case the transmission is

2 sin(kh-)/h-

2 + cos(kh-) (63)
40= sin(kh-)/h- sin(kh+)/h +

+
2 +cos(kh-) 2 +¢os(kh +)

which is valid in the range of resolution in which the higher-order for-

mulation represents propagation (along grid lines).

Spurious transmission of the various formulations at different wave resolu-

tions is plotted in Fig. 8. In general the sensitivity to transition in grid size is

higher for coarser grids. The weighted-average representation is significantly

superior to the pointwise scheme on non-uniform grids. The higher-order

and exact-phase formulations offer further improvement.
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5.2 Interface of physical properties

Discontinuities in physical properties give rise to wave reflection and trans-

mission. The relative amplitudes of the reflected and transmitted waves

depend on the ratio of wave numbers, which defines the character of the

discontinuity. The numerical representation of these phenomena by finite

element methods was studied in [18].

Consider a generalization of the previous configuration in which a discon-

tinuity in material properties as well as a jump in grid size may occur at the

origin, so that k- is the wave number to the left of the origin and k+--to

its right. An incident plane wave of unit magnitude traveling in the positive

direction exp(ik-x) for x < 0 generates reflected and transmitted waves, so

that

exp(ik-x)+(¢(O)- 1)/exp(ik+x), x <O (64)¢ = ¢(O)exp(ik+x), x > 0

where

2k- (65)
¢(0) - k- + k+

The discrete solution is again (56) where the numerical wave numbers are

kh + = kh(k+h±).

PT The pointwise representation (5) of the solution at the origin yields

0 2- h+ + h- h + + h-

_ (2i (sin(kh+h+)+ ¢o-2" ___ (66)
h + + h- \ h + h-

where, again, the dispersion relation for the pointwise representation

(35) is employed. Thus

2k-¢1- (k-h-)2/4
¢o = (67)

k-el -(k-h-)2�4 + k+¢l -(k+h+)2/4
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WA Similarly, the weighted-averagerepresentation(9) of the solution (56)
at the origin leadsto

2k-k/1- (k-h-)2/12
4,0= (68)

k-_/1-(k-h-)2/12 + k+_/1-(k+h+)2/12

HO Transmission for the higher-order representation with tile parameter

defined in (15) is

2k- _/1 -(k-h-)2�6

4,0 = (1 - (k-h-)2�12) (69)

_/1-(k-h-)2/6 k+ _/1-(k+h+)2/6
k- +

(1 -(k-h-)2�12) (1 -(k+h+)2/12)

EP Tile case that is non-dispersive in one dimension (13) inay be treated

similarly. In this case the transmission is

2k_sin(kh-)/(k-h-)

4,0= 2+ cos(kh-) (7o)
k-sin(kh-)/(k-h-) + k+sin(kh+)/(k+h+)

2 + cos(kh-) 2 + cos(kh+)

Physical transmission depends on the ratio of the wave munbers. Nu-

merical solutions depend on this parameter and on the ratio of resolutions.

To find out which of the two parameters significantly effects the numerical

error in transmission consider the transmission error as a function of ratio of

resolutions for 6 grid points per wavelength to the left of the origin. This is

plotted for a ratio of the wave numbers equal to unity in Fig. 8 (top). Increas-

ing the ratio by one order of magnitude and by two yields the behavior shown

in Fig. 9. The difference between these plots is not significant indicating that

the error depends primarily on the ratio of resolutions. All the representa-

tions have the property that 4,o = 4,(0) if k+h + = k-h-. Again, superior

performance of the weighted-average representation and its enhancements is
evident.
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6 Local Truncation Error Analysis

The local truncation error is the residual left by substituting the exact solu-

tion in the discrete representation. In the following, sufficient differentiability
is assumed for all functions involved.

6.1 Uniform grids

Consider the one-dimensional constant-coefficient case on a uniform grid. For

the pointwise representation (3)

T ¢(X_+l)- 2¢(xj) + ¢(xj_l)
= h2 + k2¢(xj) ÷ f(xj)

h 2 . h 4
__AZV l x .'_= ¢"(xj) + 12v , 3, + --(¢"(x+) + _Vi(x-)) + k2¢(xJ) + f(xj)180

h 2 .
- --¢'V_x_+O(h4) (71)

12 _ 3J

where primes and superior Roman numerals indicate differentiation by the

argument. The second line is obtained by Taylor's formula, where xj-1 >_

x- >_ xj and xj >_ x + >_ x j+l, and the third line, which follows from the fact

that ¢ satisfies the Helmholtz equation, indicates consistency. The pointwise

scheme is thus second-order accurate.

The weighted-average representation (6) is similar on uniform grids

¢(x_+,) - 2¢(xj) + ¢(xj_,)
T

h 2

f(xj+l) ÷ 4f(xj) ÷ f(xj-1)

6

= (1 + _) ¢(xj+l)-2¢(xj)+¢(xj-1)h2

f(xj+i) - 2f(xj) + f(xj-1)
f(xj)+

6

h _

- 12¢_v(.j)+O(h 4)

+ k: ¢(x_+,) + 4¢(zj) + ¢(xj_,)

+ k_¢(xj) +

+

(72)

The weighted-average scheme is also second-order accurate. This order of

accuracy is retained in the case of variable coefficients (7).
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For the improved representations(14)

¢(xj+,)- 2¢(xj) + ¢(xj_,) + k2 ¢(xj+,) + 4¢(xj) + ¢(xj_,) +,']-

/3h2

f(xj+l/2) q- f(xj) q- f(xj-1/2)

3

= (1-}-/3(kh)-------_2) ¢(xj+l)-2¢(xj)T¢(xj-l)}-k2¢(xj)+6/3h2

f(xj) + f(xj+l/2) - 2f(xj) + f(xj_l/,2) (73)
3

Employing the definition of/3 that leads to the high-order representation (15)

yields
h 4

r = 24----d(k2¢"(xj) - ffV(xj)/4) + O(h 6) (74)

justifying its name as a higher-order scheme. Note that if the source terms

were not represented appropriately there would be second-order terms in the

truncation error. The scheme that is dispersion-free in one dimension (13)

has a truncation error

h 4

7- = 24_(k2(¢iV(xj) + k2¢"(xj)) - fi'(xj)/4) + O(h 6) (75)

If the fourth derivative of the source vanishes the method becomes six-order

accurate. Furthermore, the truncation error is zero when all the derivatives

of the source from fourth order and higher vanish.

6.2 Non-uniform grids

In analyzing method performance on non-uniform grids a change of variables

from physical space to computational space is often considered, so that the

grid is uniform in the latter [19]. The order of accuracy of some methods

on non-uniform grids may drop in physical space. Nevertheless, in computa-

tional space it remains unchanged from the order in the uniform case. To a

certain extent grid stretching should reflect variation of the solution. In this

case accuracy in computational space is representative of the situation. In

practice, however, grid variation is determined by geometric considerations
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as well. The following resultsare thus presentedin physical space,which
describesthe moregeneralcase.

For the pointwiserepresentation(4)

(¢(Xj+l)--¢(Xj) ¢(xj)-¢(xj-1)) /h+ + h-r = \ -hT - h- 2 + k2¢(xJ) + f(xj)

h+ - h- (h+) - h+h- +
= ¢"(xj) + 3 ¢'"(xj) + 12 +

1

60(h+ + h-)((h+)4¢V(x+) - (h-)4¢'(x-)) + k'2¢(xJ) + f(xj)

- h+ -3 h- ¢"'(xj)+ (h+)2 - h+h-12 + (h-)2OiV(xj) O(h 3)+ (76)

The pointwise scheme is indeed second-order accurate on uniform grids, but

may drop to first order in the non-uniform case.

Whether the scheme actually drops to first order or not depends o11 tile

degree of grid stretching. If

h + - h- = O(h p+I), p > 0 (77)

the stretching is called algebraic [19]. With algebraic stretching the pointwise

scheme retains second-order accuracy. Otherwise tile accuracy drops to first
order.

In contrast, for the weighted-average representation (8)

r = \(¢(xJ+')-h_ ¢(xj) _ ¢(xJ)-h_¢(xj_l)) /h+ +2 h- +

3 h++h -(¢(xj+l)+2¢(xj))+ h++h -(2¢(xj)+¢(xj-')) +

l( h+ h- )3 h + + h-(f(xj+l) + 2f(xj)) + h+ + h- (2f(xj) + f(xj-1))

- h + + h- 1 + _ h + +

(1+ (kh-)2) ¢(xj-l)-O(xJ)) + k2(}(xj)+h-

1
(h+(f(xj+l)- f(xj)) + h-(f(xj) - f(xj-1)))f(xj) + 3(h+ + h-)
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= (h+)2- h+h- + (h-)_¢,v(xj) + O(h3) (7s)
12

first-order terms cancel out even on non-uniform grids so that second-order

accuracy is retained in any case. Again, these results apply to the case of

variable coefficients as well.

For the improved representations

k2 ( /_+h+;_+h++ 9-h- (¢(xj+l) + 2_(xj))

_-h- )+/_+h+ + _-h- (2_(xj) + _(xj_,)) +

1 ( 8+h +
\/3+hT--__h - (2f(xj+l/,2) + f(xj))

3-h- )+ /3+h + +/3-h- (f(xj) + 2f(xj-1/2))

,2 ((/3+h+ + _-h- 1 + k_Z+h+h+) ¢(xj+l)- ¢(xj)6 h;

f(xj)+

k_/3-h-h- _ )) + +(1+ 6 ) ¢(xj_al__ ¢(xj . k '2¢(xj)

2 (/3+h+(f(xj+,/2)- f(xj))
3(_+h+ +/3-h-)

+/3-h-(f(xj) - f(xj_,/2))) (79)

For the definition of/z? that leads to the high-order representation (15)

r = (h+ - h-)((h+)2 + (h-)2)(k2¢'"(xs)- f"(xj)/4) +
9O

(h+)4 _ (h +)3 h- + (h +)2(h-)z _ h+(h-)a + (h-)4(k2Oi.(xj) _ ff'(xj)/4) +
240

o(h_) (so)

the truncation error is third-order accurate 011 non-uniform grids (and, of

course, fourth order in the uniform case).
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7 Conclusions

In this work finite difference methods for solving problems of time-harmonia

acoustics are developed and analyzed. The well-known pointwise represen-

tation, eqs. (3) and (19) in one and two dimensions, respectively, is second-

order accurate on uniform grids. However, accuracy may drop to first order

in the non-uniform case (4) unless sufficiently smooth grid stretching (77)

is employed. In multi-dimensional configurations the representation actually

improves the less aligned the propagation directions are ,with respect to the

grid.

A weighted-average representation, eqs. (6) and (21) in one and two di-

mensions, respectively, has the same asymptotic behavior on uniform grids,

but is less sensitive to low wave resolution and, more importantly, to di-

rection of propagation and transition in wave resolution (including material

interfaces). Performance in multi-dimensional configurations again improves

for propagation directions that are not aligned with the grid. In general,

anisotropy in numerical representation is reduced with increased wave reso-

lution. At lower resolution the weighted-average representation (21) is much

less anisotropic than the standard pointwise representation (19). Second-

order accuracy is retained on any non-uniform grid (8) at virtually no in-

crease in computational cost. These results hold for variable coefficients as

well.

Superior performance is attained by basing the schemes on a generalized

definition of the derivative (10) which incorporates a resolution-dependent

parameter. Improved schemes with higher-order accuracy are designed by

appropriate definition of the parameter (15), reducing spurious dispersion

and reflection. Defining the parameter for schemes which are, in some cases,

dispersion-free (la) leads to the same asymptotic behavior with improved

coarse grid accuracy. Source terms must be represented accordingly (14) so

as not to degrade the higher-order accuracy. These methods are, in general,

fourth-order accurate on uniform grids and third order in the non-uniform

case. The performance of these schemes in multi-dimensional configurations

is superior for any direction of propagation. Their performance improves

as propagation directions become aligned with the grid. In principle, grids

should thus be aligned with directions of propagation to the extent possible,

further enhancing the performance of these methods.

Schemes that exhibit higher-order behavior on uniform grids in all di-
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rections in two-dimensi0nalconfigurationsare derivedon the basisof Pad6
approximation and its generalization(22). The dispersionof thesemethods
(aswell astheir spuriousreflectionand transmission)alonggrid lines is iden-
tical to that of the higher-ordermethod basedon the generalizeddefinition
of the derivative. Dispersionalonggrid diagonalsis minimized by employing

= 2/5 which leadsto (27). Thesemethodsareby far lessanisotropic than
all other schemes.The valueof 7 = 14/5 leadsto the stencil with the lowest
degreeof anisotropy (28).

In general,waveresolution(kh) shouldbekept asevenaspossiblethrough-
out the grid to minimize spuriousreflectionand transmission.Sensitivity to
thesephenomenais greateron relatively coarsegrids.
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