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COMPUTATIONAL ANALYSIS OF HIGH RESOLUTION
UNSTEADY AIRLOADS FOR ROTOR AEROACOUSTICS

Todd R. Quackenbush, C.-M. Gordon Lam, Daniel A. Wachspress and Donald B. Bliss*

Continuum Dynamics, Inc. *Duke University
Princeton, New Jersey 08543 Durham, North Carolina 27006

SUMMARY

The study of helicopter aerodynamic loading for acoustics applications requires
the application of efficient yet accurate simulations of the velocity field induced by the
rotor's vortex wake. This report summarizes work to date on the development of such an
analysis, which builds on the refined Constant Vorticity Contour (CVC) free wake model,
previously implemented for the study of vibratory loading in the RotorCRAFT computer
code. The primary focus of the present effort has been on implementation of an airload
reconstruction approach that computes high resolution airload solutions of rotor/rotor-
wake interactions required for acoustics computations. Supplementary efforts on the
development of improved vortex core modeling, unsteady aerodynamic effects, higher
spatial resolution of rotor loading, and fast vortex wake implementations have
substantially enhanced the capabilities of the resulting software, denoted
RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently-
acquired model rotor data are presented, as are other demonstration calculations on main
rotors and tail rotors. These calculations show that by employing airload reconstruction it
is possible to apply the CVC wake analysis with temporal and spatial resolution suitable
for acoustics applications while reducing the computation time required by one to two
orders of magnitude relative to the direct calculations used in traditional methods.
Promising correlation with measured airload and noise data has been obtained for a
variety of rotor configurations and operating conditions.
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matrix of influence coefficients defined in Eq. 6-10

spanwise normal force coefficient (N1 p Va1 Crocal
rotor thrust coefficient

mean blade chord
local blade chord

vortex age parameter, 2 (Tx%) o
spanwise thrust coefficient, dT/dr normalized by i p (QR)* ¢

spanwise distributed thrust

indicial pressure response function of an unsteady loaded wing
nondimensional distance inboard of blade tip (R-r)/R
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main rotor radius
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physical vortex core radius
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turbulent core radius

nondimensional time defined in Eq. 6-1 or span of the tip vortex
rollup region

unit vector giving the direction of the kth side of the jth
quadrilateral

nondimensional time increment corresponding to one rotor
azimuthal increment

total rotor thrust or time for one rotor azimuthal increment

mean freestream onset velocity in the tip region

free stream velocity component in X direction

local free stream speed, Qr + U, siny

vortex swirl velocity

downwash velocity at the control point of the jth vortex
quadrilateral

global axes centered at the rotor hub (X positive aft, Z positive

down)
centroid of a group of vortex elements

position of ith collocation point

shaft angle of attack

vortex filament circulation or bound circulation at the inboard edge
of the tip vortex rollup region

normalized bound circulation, T/QR?2

nondimensional blade tip loading parameter I'/2nsU

bound circulation at jth vortex quadrilateral

difference in pressure between upper and lower surfaces of a blade
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rotor blade root pitch angle

wave length of the spanwise component of a gust field
wave length of the chordwise component of a gust field
rotor advance ratio, U../QR

volume of ith vortex element

indicial response function for near wake downwash
azimuthal age of a vortex element

azimuth angle
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vorticity associated with ith vortex element
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1.0 INTRODUCTION

The efficient and accurate computation of wake-induced loading on helicopter
blades is an important topic for many rotorcraft applications. One such application is
rotorcraft noise analysis, where one of the most significant challenges is the problem of
prediction of noise from rotor/wake interactions. Such noise is generated both by
interactions of main rotor blades with their own wake as well as main rotor / tail rotor
interactions. Very accurate computation of the wake influence is required for noise
calculations, along with high temporal resolution. Previous efforts (Refs. 1 and 2)
addressed an important component of the prediction of unsteady loads, namely the
analysis of wake-induced flow fields. This work was carried out in part to demonstrate
an exceptionally efficient approach to the generation of high-resolution velocity field
calculations, based on the method of flow field reconstruction. The work on this topic
has covered a wide range of wake/rotor interactions, including the interaction of the main
rotor with its own wake (Ref. 1) and main rotor/tail rotor interactions (Ref. 2).

The present report summarizes work on the development of a comprehensive
analysis of rotor aerodynamics designed to obtain high resolution loading for
aeroacoustics applications. The point of departure for this development effort was the
RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) code (Refs. 3 and
4). The analysis that has emerged from the present effort has dramatically expanded
capabilities relative to its parent code. The new analysis has been designated
RotorCRAFT/AA (AeroAcoustics) to indicate its new focus. Broadly, the new
capabilities of RotorCRAFT/AA include:

- flow field and airload reconstruction capabilities that permit high-resolution
computations with a reduction of from one to two orders of magnitude in CPU
relative to direct free wake computations.

- additional efficiency enhancements, including fast vortex methods based on
multipole expansions, that produce a factor of 5 to 10 in CPU reduction in
addition to that realized by reconstruction.

- improved models of unsteady aerodynamic effects.

- high resolution blade surface pressure modeling, including thickness effects

- multilayer vortex core modeling, permitting more realistic predictions of
wake-induced velocity fields during close blade/vortex encounters.

- dual rotor modeling capability to address main rotor / tail rotor interactions

After a brief review of related efforts, the technical details of these and related
basic features of RotorCRAFT/AA will be described. Results involving the application
of reconstruction techniques to both flow field and airload prediction will be presented,
including comparisons to recently acquired measurements of unsteady loads on main
rotor blades. Finally, the priorities currently envisioned for follow-on work to build on
the present code for still more advanced implementations will be summarized.

1.1 Background

As noted, the motivation for the work described here was the analysis of rotor
noise due to wake/rotor interactions. Substantial effort has gone into both experimental
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and analytical study of the general topic of rotorcraft acoustics in recent years (Refs. 5-
11). Experimental studies such as References 6 and 7 have amply demonstrated the
importance of blade/wake interaction in the generation of loading noise. Though recent
analytical and computational work has shown some progress toward predicting rotor
noise (Refs. 8-11), it is clear that substantial problems remain to be solved.

An obvious prerequisite to successful prediction of rotor noise is accurate analysis
of unsteady aerodynamic loading, which in turn depends on an ability to correctly model
the structure of the main rotor wake and the velocity field it induces. Recent studies of
rotor wake vortex dynamics have produced a rotor wake model that is superior in
refinement, consistency, and efficiency to previous treatments. It was found in Reference
12 that in order to successfully predict main rotor aerodynamic loads, it is necessary to
account for the vortex wake generated by the entire blade span, not just the tip region. A
particularly attractive implementation of a full-span wake involves modeling the wake by
a field of constant strength filaments which correspond to the actual resultant vorticity
field in the wake (see Fig. 1-1, which shows the wake of one blade of a four-bladed rotor
at advance ratio 0.3). These vortex filaments are laid out on contours of constant vortex
sheet strength in the rotor wake, a circumstance that gives the method its name: the
Constant Vorticity Contour (CVC) wake model. The CVC wake model treats each
curved vortex element as a resultant vector of the local vorticity field, an approach that
removes the essentially artificial distinction between "shed" and "trailed" vorticity.
Figure 1-1 shows the very complicated incident wake structure generated by typical
rotors; this complex structure leads to a wide range of possible interactions of the wake
with the main rotor blades, as well as the potential for significant main rotor/tail rotor
(MR/TR) interactions. Figure 1-2 illustrates the still more complex vorticity fields that
can arise in low speed flight, when wake-on-wake interaction becomes particularly
significant.

References 3 and 12 discuss the development of the CVC vortex dynamics
analysis method and document its success in the prediction of main rotor blade unsteady
airloading. The resulting RotorCRAFT code uses a vortex lattice representation of the
blade to predict aerodynamic loads and a finite element model of the rotor blade
structure. RotorCRAFT incorporates a full flap/lag/torsion aeroelastic model that
captures realistic blade deflections, as well as a trim algorithm that ensures that the rotor
loading is calculated using consistent control settings. References 3, 4, and 13 describe
the technical substance of RotorCRAFT as well as its application to a variety of
calculations of practical importance, including studies of steady and unsteady
aerodynamic loads on rotors in both high- and low-speed flight.

Reference 4 describes the extension of the RotorCRAFT code to the computation
of blade stresses and hub loads. This work was motivated by the desire to support recent
research into the application of higher harmonic pitch control for the alleviation of rotor
noise. Experimental studies have shown considerable promise in the strategy of applying
four-per-rev(4P) root pitch control to reduce rotor noise (Ref. 14). However, the effect of
such control strategies on vibratory load levels must be considered. To address such
issues, an extended version of RotorCRAFT - denoted Mod 1.0 - was developed that
allowed for the calculation of internal blade stresses as well as forces and moments at the
rotor hub. Representative results of this work are presented in Reference 4.

While the existing variants of the basic RotorCRAFT code embodied a significant
capability for the prediction of unsteady airloads, a substantial increment in performance
was required to enable the analysis to resolve rotor loading on the time scales necessary
for the direct prediction of rotor acoustics. Moreover, additional features had to be added
to permit the computation of distributed surface pressures in a form suitable for input to
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Figure 1-1. Typical Constant Vorticity Contour (CVC) wake geometry for a UH-60
main rotor at advance ratio 0.3 (only the wake of one blade is shown for

clarity).



Figure 1-2. CVC rotor wake geometry for a UH-60A rotor in low speed flight,
advance ratio 0.136.



rotor noise analyses such as NASA's WOPWOP code (Ref. 15). Finally, basic
improvements also were required in a variety of areas, such as the modeling of near wake
unsteady effects on the rotor blade, enhanced representations of vortex core structure, and
the capability to analyze main rotor / tail rotor systems.

These requirements constituted the technical motivation for the development of
RotorCRAFT /AA. The sections that follow address the major elements of the code in
detail. Sections 2 and 3 describe the methods used to accelerate the vortex wake
computations, focusing on flow field reconstruction and fast vortex methods; Sections 4
and 5 discuss fundamental improvements to the wake and blade models; Section 6
describes the computation of surface pressure distributions and the calculation of rotor
noise; Section 7 details the results of an extensive correlation study for both rotor airloads
and noise; and Section 8 summarizes the work to date, as well as the likely priorities for
follow-on work.



2.0 FLOW FIELD AND AIRLOAD RECONSTRUCTION

The results discussed in References 3 and 4 address the prediction of unsteady
loads that contribute to rotor vibration, but aerodynamic loads of much higher
characteristic frequency must be resolved to predict rotor noise. This means that very
small time steps must be used to discretize each rotor revolution. Since the CVC wake
model is a Lagrangian description of the vortex wake, it suffers from problems with
computational efficiency common to all such methods when very high temporal
resolution of the flow is required. A 'reconstruction’ approach has been developed to
allow the refined flow field model inherent in the CVC wake description to be retained
while reducing the computational requirements from one to two orders of magnitude
relative to direct, conventional Lagrangian computations of unsteady vorticity fields.
Previous papers and reports have outlined the operation of this approach, which will be
briefly summarized in this section, along with results of demonstration calculations.

2.1 Qutline of Reconstruction

The first step in motivating the reconstruction approach is to appreciate that the
rapid temporal variations in the velocity field (and airloads) observed on rotor blades
encountering the vortex wake are directly related to the steep spatial velocity gradients
they experience during such interactions. Small time steps are required to resolve these
interactions, leading to large CPU times for conventional Lagrangian models. In such
models, traditional practice is to model several turns of the vortex wake with freely
distorting vortex elements; one element is introduced in the flow field at each time step
(typically at the generating rotor blade) while one is removed (or merged into a
prescribed far wake model) at the end of the free wake region. The computation time
scales with the quantity NTNg2, where Nt is the number of time steps per blade
revolution and N is the number of wake elements. Doubling the number of time steps
per revolution requires twice as many wake elements to represent the same length of free
wake. Therefore, the computation time scales with the cube of the number of time steps.

Now consider a different approach that could circumvent this very substantial
computational burden. First assume that the core size of the main rotor vortices
penetrating or approaching a region of interest ®R could be increased arbitrarily (the
"region of interest" or "evaluation region" is typically a grid of points on the main rotor or
tail rotor blades). This would make the velocity gradients encountered by the rotor blades
much smoother and, consequently, far fewer time steps would be required to resolve the
blade loads to an acceptable degree of accuracy. A simulation with artificially "fat"
vortex cores could thus be undertaken with a complex Lagrangian model such as the full-
span CVC wake using reasonable amounts of CPU time, though the solution would be
physically meaningless because of the artificial smoothing. However, if the use of the fat
core were restricted to computation of the induced velocity in "R and the actual vortex
core were used elsewhere (e.g., wake-on-wake interactions) then the motion of the vortex
wake through the region of interest would be correct; any errors due to the use of the fat
core would only affect the nearfield flow used to compute wake-induced velocities on the

points in M.

This approach assumes that the correct velocity profile inside the vortex core (i.e.,
the 'actual core' solution) is known or that the analyst is willing to specify a suitable
approximation to it. Given this additional assumption, it is possible to construct nearfield
corrections to recover the physically correct solution with the actual core from the
smoothed velocity field with low temporal resolution. Since this correction scheme is



applied only to the relatively small number of points of evaluation in R, the total CPU
time required should be negligible compared to the CVC rotor wake calculation required
to define the wake geometry. Also, the time evolution of the vortex wake elements in &R
is handled through interpolation of the filament trajectories. Since the low-resolution
filament trajectories are interpolated (as opposed to induced velocities), higher effective
time resolution can be obtained.

Using this general approach, then, computations yielding high spatial and
temporal resolution of the wake flow field could become much more efficient, since high
local accuracy is obtained by matching in an appropriate nearfield solution rather than by
direct computation of the vortex wake geometry using small time steps. Clearly, the
execution of such a local nearfield correction is crucial to the accuracy of this method. A
further discussion of the nearfield correction scheme used here is given in Section 2.2,
with further discussion in Section 4.

The first step in the overall computation is to run the CVC free wake model in
RotorCRAFT/AA for a specified number of main rotor revolutions using relatively coarse
time steps, usually between thirty and fifty steps per main rotor revolution. At each time
step the velocity field generated at specified points within a user-defined evaluation
region R is calculated and stored; for most applications of interest here, ® coincides
with the surface of the rotor blades. Simultaneously, the positions and orientations of
vortex filament intersections with a reference volume that encompasses %R are also
recorded. The role of this volume and of the planes bounding it is to define a convenient
reference for the geometry of the vortex filaments in the near field of W, allowing
correction terms to be applied. These computations comprise the initial (and by far the
most computationally costly) phase of the overall analysis. It is important to note,
however, that this calculation requires vastly less computation time than would a direct
calculation at the refined time steps normally required for acoustics calculations.

Once this portion of the simulation is completed, a reconstruction program is used
to take the stored information on the wake-induced velocity field and the "tracks" of the
vortex intersections with the scan planes and regenerate the velocity field induced by the
transit of the actual wake vortices through the vicinity of ®. This is accomplished by
first interpolating the smoothed velocity field generated by using the fat core to yield the
"background" flow at each of the evaluation points, i.e. a low-resolution solution for the
flow field. Note that this is interpolation in time, which can be carried out in confidence
because the use of the fat core has eliminated the steep velocity gradients from the
velocity field at the points of evaluation. Second, the positions of the vortex elements
within the scan volume are also interpolated providing the information needed for
producing high temporal resolution histories of the vortex trajectories and thus of the
local flow field. By applying the nearfield analytical correction terms detailed in
References 1 and 2 to the low-resolution flow computed using the fat core, the velocity
induced using the actual vortex core can be recaptured while simultaneously refining the
time history of the flow field at the selected evaluation points.

As noted above, the reduction in CPU typically scales with the cube of the
temporal interpolation factor, i.e., a factor of 5 should yield roughly two orders of
magnitude reduction in CPU time. A flow chart depicting the major features of the
reconstruction procedure is given in Figure 2-1. Note that this flow chart depicts the
generation of acrodynamic loads as well as high resolution flow field calculations; the
methods used for the computation of such loads will be outlined in the next section.
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This reconstruction procedure is complex to implement, but once in place it yields
not only dramatic reductions in CPU time but also a high degree of flexibility and
robustness. Previous methods using approaches superficially similar to that described
here have in fact been based on ad hoc treatment of close interaction effects. One of the
strengths of the present implementation is that the nearfield velocity corrections are
produced by a formal matching procedure similar to the method of matched asymptotic
expansions. This method is one application of the technique known as
Analytical/Numerical Matching (ANM), an approach to problems in vortex dynamics
described in several recent papers (Refs. 16-18). The discussion in the next section
briefly summarizes the application of ANM in this context.

2.2 Application of Near Field Corrections via ANM

As noted above, the numerical free wake velocity field first is smoothed with an
artificially fat vortex core when velocities at the points in the evaluation region are
computed. Because this smoothing produces very gradual variations in velocity, only
relatively few calculation points are required to reconstruct this velocity field accurately
in the designated region of interest. The fat core smoothing is used only to calculate
wake effects at the evaluation points, whereas the actual core is used when calculating
velocities on the wake itself. This means that the vortex filament motions are still being
accurately computed.

Given the geometry and trajectory of the filaments, an analytical solution is then
developed based on the nearfield filament configuration. This solution incorporates the
local position and curvature of the filament modeled as a parabolic arc. Actually, to
compute the correction term that removes the error introduced by using the fat core, two
such analytical solutions are superimposed. One solution adds the contribution of a
vortex filament with a physically realistic core, and the other solution subtracts a vortex
filament with the same fat core used in the numerical calculation. The net effect in the
near field is to cancel the numerical fat core effect and add the effect of the actual core
size. At the same time, the far field effect remains unchanged since the two portions of
the analytical solution cancel in the far field. The superposition of analytical and
numerical solutions is shown in Figure 2-2.

Typically, "fat" vortex cores are at least three to four times the size of the baseline
"actual” core (see Section 2.5). The numerical smoothing is achieved by use of a
particular vortex core model chosen for its ease of implementation, smooth behavior, and
its functional simplicity. In its two-dimensional form, the vortex swirl velocity is

expressed as vg = ([/2m)r (12 + r.2)-! (i.e., what is conventionally termed a "Scully core").
For small r (<< r.) the velocity behaves as if in solid body rotation, whereas for large r
(>> r.) the velocity behaves as an irrotational point vortex. When velocities are computed
in the evaluation region, 1. is replaced by ¢, where 1¢ is a fat core radius to provide
smoothing; for all other velocity calculations a physically realistic value of core radius r¢
is used.

It is important to note that this choice of a vortex core model was not intended as
an accurate description of the core flow field, but rather as a representative model suitable
for use in demonstrating the analysis. The "actual" vortex core sizes were chosen to be
typical of those visualized or inferred from flow field data in the literature. One of the
strengths of the reconstruction approach implemented here is that the nearfield solution
can take nearly any analytical form. Even relatively complex local flow fields
representing, for example, a multilayer laminar/turbulent core structure may be built into
the nearfield solution without impairing the computational efficiency of the method.
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Implementation of such a core model is discussed in Section 4, which also describes how
this treatment interfaces with the existing core model in the CVC wake.

2.3 Examples of Flow Field Reconstruction

Reference 1 described several preliminary applications of flow field
reconstruction to representative main rotor systems. This work involved test calculations
on representative rotors and evaluation points on and near the main rotor blades. These
calculations produced generally very favorable results, demonstrating effective time
interpolation factors of up to 4:1 using fat cores three times larger in radius than the
nominal actual core radius of .02R. Very accurate reconstruction of downwash velocity
fields was obtained for both three- and four-bladed rotors at advance ratios ranging from
0.14 to 0.39. Since good airload correlation had been achieved for both of the rotors
examined (the main rotors from the SA-349 Gazelle and the H-34 described in Refs. 19-
21), it was inferred that the reconstructed velocity fields would closely parallel reality,
assuming that the good airload correlation would carry over into the modeling of the
induced velocity field.

One difficulty that was observed, however, was that the computations proved
somewhat sensitive to the location and orientation of the scan planes which were used to
capture vortex passage events. A typical implementation of these scan planes is shown in
Figure 2-3. While this orientation would capture many realistic interactions, it did not
prove to be sufficiently robust, producing some results where the quality of the
reconstruction was excessively sensitive to the relative location of the scan planes at the
points of evaluation. Figure 2-4 shows one such result, specifically the original and
reconstructed velocity field at two points along the span of the H-34 main rotor. In this
case, the scan planes were set up as suggested in Figure 2-3, mutually perpendicular and
with the planes intersecting at /R = 0.9. Figure 2-4 shows that the reconstruction of the
induced velocity field is good at this location, but deteriorates farther inboard (Fig. 2-5).
This indicates an undesirable sensitivity of the reconstruction to the scan plane location.
To remedy this, a more general approach involving a "scan volume" was implemented.

This approach involves setting up a rectangular box enclosing the rotor blade to
capture the vortex intersection events. During the calculation, the wake filaments are
tested for any penetration of the scan volume surface as well as for being enclosed within
the volume. The shortest distance of an enclosed filament arc to a given evaluation point
(typically located on the blade surface) is determined, and the geometric properties of the
corresponding vortex element are recorded for use in subsequent reconstruction Unlike
the intersecting scan plane method, which captures only the position of vortex
intersections and local filament curvature, the scan volume approach stores additional
information about the geometry of 3D arcs near the blade and executes a more refined
reconstruction based on this information.

Test calculations were set up to exercise the scan volume method on a four-bladed
rotor at advance ratio 0.4. The particular rotor configuration used here was a Eurocopter
Puma, a rotor with a radius of 24.8 ft., a constant chord of 1.98 ft., and -12 deg. of linear
twist. The rotor was operated at a thrust coefficient of 0.007. The particular details of the
operating condition were not judged to be critical, however, since the primary aim of this
exercise was to produce a challenging test for the wake capturing tools used here.

For the purpose of these computations, the wake code was forced to use single,
rolled-up tip filaments, using only a very short CVC wake for the moment (see Fig. 2-6).
(Note: because of the overlap near wake model used in this analysis, the blade does not
"see" the multiple filaments trailed in these figures; also, in these figures, the free stream
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Figure 2-6. Representative schematics of the scan volume used to capture blade/wake
interactive events; typical tip vortex interactions are shown.
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runs opposite the local X axis). This was done because the presence of a single, small-
core tip vortex trailing from a rotor blade - while nonphysical in many cases - in fact
poses a more difficult challenge for the reconstruction procedure because the maximum
bound circulation on the blade is concentrated in this filament, making any errors in
locating the vortex or applying nearfield velocity corrections particularly evident. Figure
2-6 shows several of the typical close BVI events that occur in forward flight, as well as
the scan volume used to capture the position and orientation of the filaments relative to
the blade.

Now consider the induced velocity distributions for this case, shown in Figure
2-7. These compare the results obtained using a rotor computation with 144 steps per
revolution (2.5 deg. per step) with those obtained with 48 steps per revolution (7.5 deg.
per step). Clearly the 48-step case (applied with no reconstruction) misses many velocity
peaks and would not produce the same high-frequency loading signature as the 144 step
computation.

Consider next the results shown in Figure 2-8, which also takes a low resolution
wake geometry solution -using 24 time steps per revolution- and applies reconstruction
with a time interpolation factor of 6.0 to predict a high resolution velocity field. Plotting
the results with the high resolution reference case of 144 time steps per rev makes it
evident that reasonable accuracy is achieved in the reconstruction, however some of the
peaks of the induced velocity are not properly recovered. The ability to carry out this 6:
1 reconstruction is very beneficial in computation time, since a CPU reduction of
approximately a factor of almost 200 can be realized with this approach.

Obviously, the maximum CPU savings are obtained if as few steps as possible are
used in the low-resolution initial run. Figure 2-9 shows the results achieved using 48
steps per rev to define the low-resolution wake geometry. In many respects, the results
are substantially improved, indicating that a minimum number of steps is in general
necessary to obtain good resolution of all components of the induced velocity. During
Phase I, some preliminary calculations suggested that it would only be necessary to use
20-30 time steps per revolution to set up the wake geometry, and this may indeed be
adequate in some cases. However, additional investigation has indicated that 40-50 steps
may be more appropriate from the point of view of guaranteeing robust, accurate results.
This judgement is reflected in the cases examined in Section 7. In addition, the need to
run with relatively large numbers of time steps in the low resolution case motivated the
incorporation of accelerated vortex wake models, to be discussed in Section 3.

In sum, all three components of velocity in Figure 2-9 are well reconstructed, with
only minor deviations. The ability to carry out this 3:1 reconstruction is very beneficial in
computation time, since a CPU reduction of approximately a factor of 25 can be realized
with this approach. A particularly important aspect of these results is that even the very
sharp peaks associated with the close encounter of the rotor blades with highly rolled-up
tip filaments are captured. The application of the scan volume approach described earlier
has made this possible, reflecting a considerable improvement in the performance of the
reconstruction algorithm relative to the Phase I code described in Reference 1 and to
versions used earlier in the present effort. :

2.4 Reconstruction of Airloads
The discussion to this point has focused on the reconstruction of flow fields
without directly addressing the application to airload calculations. The prediction of

aerodynamic loading in RotorCRAFT/AA is at present handled primarily through the
application of a quasi-steady vortex lattice model, with nearfield unsteady wake
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Figure 2-7. Comparison of direct velocity predictions for three components of induced
velocity at /R = 0.5 on the Puma main rotor: 48 time steps compared to
144 time steps.
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corrections to account for rapid gradients in loading. Since such models depend directly
on the predicted induced velocity field to compute the loading, good performance in
velocity field reconstruction can in general be taken to presage similar performance for
airloads.

Test cases were run to verify this, though these will not be presented here, since
the data correlation studies given in Section 7 will serve this purpose. During this
process, though, other features came into focus that were required to ensure a consistent
reconstruction. As noted above, the reconstruction process involves linearly interpolating
the positions of vortex filaments to account for their motion relative to the evaluation
points. In the flow field computations above, these points were either fixed or moved in a
prescribed manner on a rotating "pseudo-blade” occupying the same location in space as
the blade itself. In airload calculations, the blade surface itself is typically moving in a
much more general fashion than rigid rotation, since fully coupled lag, bending, and
torsion motion may be taking place. In such a case, the positions of the flexible blade
surface must also be interpolated to a time resolution level appropriate for the
reconstruction problem.

2.5 Additional Comments on Reconstruction

As has been clear to this point and as will be illustrated further in Section 7, the
basic scheme of reconstruction has been quite successful. Dramatic reductions in
computation time have been achieved with a high degree of robustness in terms of the
ability of the vortex tracking algorithms to correctly reconstruct a wide variety of incident
velocity and vorticity fields. This section summarizes information obtained to date
regarding parameter selection within the code as well as a discussion of the
implementation of the present model and its limitations.

First, as to the selection of the fat core radius, the considerations to bear in mind
are that the core must be large enough to meaningfully smooth blade/wake interactions to
the point where a blade time step at the rotor tip traverses roughly one fat core radius.
For a representative low resolution run involving 48 time steps per revolution, this

suggests a fat core radius of approximately 2tR/48 = 0.13R. Since typical vortex core
radii for tightly rolled-up vortices are in the vicinity of 1-2% of radius, this implies a fat
core multiplier of roughly 10.

Second, a clarification of the exact role of the fat core model is in order. The
baseline 'actual core' in the CVC wake model is used to compute the wake-on-wake
interactions of the filaments, so that the artificial smoothing in the fat core does not affect
the evolution of the wake. Moreover, the velocity induced by the smoothed fat cores on
the blade is in fact computed on a companion pseudo-blade coincident with the "real”
blade used in the computation. The "real" blade sees the induced velocity field of the
baseline actual cores, and therefore produces a blade motion solution consistent with this
velocity field. This is an important step, since this blade motion solution is used in the
reconstruction analysis, as discussed in Section 4. The smoothed velocity field on the
pseudo-blade is stored and used as the starting point of the reconstruction analysis.

Third, the maximum time interpolation factor that can be used has not formally
been determined, though numerical experimentation to date indicates that a factor of 30:1
is achievable with the current analysis. Flow field reconstruction computations in Phase I
routinely operated at factors of 3:1 or 4:1, but these relatively low multipliers were
chosen in part because validation of the interpolated results could not conveniently be
done, due to the large CPU investment necessary to obtain a high-resolution result.
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However, computations during the present effort have routinely been performed with
reconstruction multipliers between 8:1 and 20:1 with no apparent anomalies. Many of
the computations carried out in Section 7 use an 8:1 time interpolation ratio, which yields
azimuthal steps of roughly 1 deg. given a typical low-resolution case involving 48 time
steps per revolution (7.5 deg. azimuthal increments). Other computations in Section 7
use factors as high as 20:1, yielding an azimuthal resolution of 0.375 deg.

Finally, it is important to specify a central assumption of the method, namely that
the velocity field during the high-resolution reconstruction process is adequately
represented by computing the velocities induced by vortices with interpolated positions.
Those features of vortex evolution that are not easily captured by such simple
interpolation procedures will be lost in reconstruction. In most cases, such errors are
judged to be negligible, though in some cases at very low forward speeds, some wake
distortion may take place on a time scale that would not be captured by the coarse time-
resolution case. In addition, the blade load motion solution is not re-converged in the
presence of the high resolution velocity field as part of the reconstruction. Thus an
element of consistency may in principle be lost in the final reconstructed solution.
However, closing this computational loop is possible and in fact a desirable objective of
follow-on work.
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3.0 ACCELERATED VORTEX WAKE MODELING

Section 2 has described the reconstruction strategy pursued in the current effort
and documented the dramatic reductions in CPU time that it makes possible. The basis
for this strategy is using a free wake run with the CVC model with relatively low
temporal resolution to set up the incident wake geometry in those regions where high-
resolution results for the flow field and airloads are required. However, in some cases the
initial run with low temporal resolution itself can be moderately computationally
intensive, particularly if it is desired to use a large number of vortex elements to provide
high spatial resolution of the wake. Thus it was judged appropriate to focus additional
effort on simplifying and accelerating the basic free wake model, since this would yield
increments in computational efficiency gver and above the gains realized through the use
of reconstruction.

3.1 Simplified CVC Wake Calculations

Two relatively straightforward strategies were pursued within the basic CVC
wake calculation itself to enhance its computational efficiency. The fundamental
approach to the computation of vortex filament geometry and wake-induced velocity is
the 'direct' Lagrangian wake computation involving the calculation of the full effect of
each vortex element on every other vortex element in the wake. The implementation of
this approach and various methods for reducing the CPU demands of the full free wake
computation are discussed in Reference 3; details of its implementation are given in
Reference 22. These include the various approximate models of the far wake, such as
collapsing the CVC filaments into single free vortices, and/or then approximating these
free vortices by semi-infinite prescribed filaments.

One option made available as part of the present effort involved implementation
of an optional time stepping scheme that can replace the default integration scheme, a
predictor-corrector method drawn from Reference 23. This scheme is presently used to
advance the position of each collocation point in the wake x; based on the wake-induced
velocity v;. The current scheme involves the following steps to advance from the nth to
the n+1st time level:

Predictor: 5("?” =X+ V,(XHAt (3-1)
- - PN o[ kn+l
Corrector: K =xD 4+ 0-5(Vi(x?) + vi(x i ))At (3-2)

This scheme yields second-order accuracy, but does require two evaluations of the
vortex-induced velocity field. An alternative backward difference treatment was tested
during this effort that involved a single velocity field evaluation:

Backward Difference: X1 =%; +0.5 (3Vi(ii‘) - Vi(i'?’l))At (3-3)

Here, the second velocity evaluation is bypassed by using "old" velocity information
from the previous time step. Owing to the need for only a single velocity evaluation, this
approach requires only half of the CPU used by the predictor-corrector. Moreover, the
method is also second-order accurate in time, albeit with a larger constant multiplying the
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(At)2 term. In most cases, this option provides a factor of two acceleration of the free
wake computation with very little degradation in accuracy.

Another feature presently available is the restriction of the domain of the
application of the full wake-on-wake velocity computation. Such interactions are
typically quite important in the immediate vicinity of the rotor disk, and should be
retained for cases at low to moderate advance ratio or high thrust. However, for higher
forward speeds, the wake distortion can be ignored for points sufficiently far from the
rotor blades. Thus, a second option tested during the present effort removed wake-on-
wake velocity computations for points downstream of the main rotor disk. This option
has been found to be most appropriate for advance ratios above 0.2; in such cases, the
typical reduction in CPU has been up to roughly a factor of two, though the exact result
will vary as a function of other wake acceleration features used in the model.

3.2 Fast Vortex Computations

The basic computational tool in all of these computations is the parabolic Basic
Curved Vortex Element, or BCVE (Ref. 24). Over the last ten years, the BCVE has
proved to be an exceptionally efficient and accurate tool for vortex wake computations,
superior to the straight line vortex elements it replaced. However, its high accuracy is
useful primarily in near-field interactions; for distant interactions, it is possible to replace
it by much simpler models that require less CPU time. Moreover, an appropriate choice
for such a model is the vortex particle or vorton (Fig. 3-1); this artifact is particularly
amenable to use in reduced-order models that can achieve dramatic reductions in CPU
relative to direct calculations. These so-called fast vortex methods are now described.

3.2.1 Background

As noted above, a full free wake calculation results in an N-body interaction
problem with an asymptotic time complexity of O(N2). This is very expensive and

usually limits the number of elements used in a calculation to 0(104). Recently, Leonard
and a co-worker (Ref. 25) addressed this problem for 2D computations, developing a fast
two-dimensional vortex method where the vortex particles are clustered into groups and
the interactions between well-separated groups are simplified using a far-field
approximation. In their calculations, a grid of boxes is superimposed on the flow domain,
and vortex particles which reside within the same box are clustered into groups. The
interactions between particles which are from the same group or immediate-neighboring
groups are treated using an exact pair-wise interaction. However, in considering the far-
field effects, an approximate group-to-group interaction is used. For example, given two
groups A and B (see Fig. 3-2), to compute the induced velocity of group A on group B the
inducting effect due to group A is computed as a truncated multipole expansion. This is
evaluated at the centroid of group B and a Taylor series is used to extrapolate the velocity
at each vortex location within group B.

This method is highly accurate and provided that the two groups are well separated
(i.e., r>D, where r is the separation distance between the two groups and D is the diameter
- or characteristic dimension - of the inducting group) the multipole expansion converges
(Ref. 26). Using such far-field group-to-group approximations, considerable savings in
computational time can be achieved. In particular, for large N and M, where N is the
number of vortex particles and M is the number of groups (boxes), the time complexity of

the method becomes independent of the number of groups and is O(N4/ 3).
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Figure 3-1. Approximations of BCVEs by vortex particles for far-field interactions.
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In the present effort, we have applied an extended version Leonard's two-
dimensional fast vortex method for the three dimensional flow field around the rotor,
invoking an arbitrary-order multipole expansion of the three-dimensional Biot-Savart Jaw.
This has been used in the evaluation of the far-field velocity induction where a point
vortex representation yields accuracy essentially equivalent to the BCVE. The induced
velocity due to a group of point vortices is in general given by:

N — — had
- (X - Xj) X @ Ov; :
UK) = 411&% Iil 7 L (3-4)

where @ and dv are the vorticity vector and the volume (length times cross-sectional area)
of vorticity, respectively of the BCVE. A multipole expansion about the centroid of
vorticity of Equation 3-4 is carried out. The centroid of vorticity is computed by:

N
Y, Xjloj 8vi

Xem= b — (3-5)

N -
z lw; Ov; |
i=1

Since both signs of vorticity may be present in the wake, in each locality the vortex
elements are clustered into two separate groups, one for the positive-sign (counter-
clockwise rotation, seen from downstream of the generating blade) vortices and one for
the negative-sign (clockwise rotation) vortices. This is necessary because the centroid of a
mixed group of opposite-sign vortices may be at infinity.

For the purpose of illustration, we assume that the centroid of the group of vortices
is at the origin. The arbitrary order multipole expansion can then be written as:

i) =--L1Y Ed 3-6
41tr3 k=0 k;I ( )
Ex =) i cosy) if(X - X)) x @; 8v; (3-7)
i=1

where r =X, r; = X}, cos(y;) = €€, € =X/r, € =Xy and the coefficients C& are the
Gegenbauer polynomials (Ref. 27) given by:

K r(2x+k)r(27»2+1) 1A
2k remrEtlag K

ctw = d—i{(l-tz)“k'%} (3-10)
dt

and I" is the Gamma function. The use of the Gegenbauer polynomials facilitates the
expansion to arbitrarily high order. It is useful to note that the 1/r2 Biot-Savart kernel in
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the induced velocity drops off very rapidly with increasing r, where r = X -i'ﬂ. Typically,
sufficient accuracy can be obtained with two or three terms in the expansion.

In the present effort, three terms, i.e., the monopole, dipole and quadrupole, are
kept in the expansion. This makes the evaluation of the vortex induced velocity (which is
the bulk of the vortex calculations) extremely efficient. For example, given a group of N
tightly clustered vortex elements (e.g., group A in Fig. 3-2) and M observation points
where the velocity is to be evaluated, if direct evaluation is made using Equation 3-4, then
the summation over N terms in this equation must be evaluated at every observation point,

resulting in NM evaluations (as in the classical N2 method). However, if we assume that
the evaluation points are well separated from the group of vortex elements, then the far-
field approximations given by Equation 3-6 can be used. In Equation 3-6, the coefficients

Ex can be further manipulated to a form which depends on the distribution of vorticity
only (i.e. first moment, second moment and so on) and not on the observation point X.
The evaluations of these coefficients involve N operation counts, but, once computed, they
are used for all the evaluation points. The total number of machine operations is therefore
N+M, which is considerably fewer than NM, for large N and M.

Using Equation 3-6, the far-field induced velocity due to a group of vortex
elements can be computed efficiently. The velocity is evaluated at the centroid of a distant
group, as shown in Figure 3-2. The latter can be any group of points where the local
velocity is needed, and in the present effort these include wake points, blade surface points
and off-rotor flow field evaluation points. The centroid of the group of wake points is
computed using Equation 3-5, while the centroids of groups of blade surface points and
off-rotor scan-plane points are computed simply by taking the average location of the
points within each group.

A further improvement in computational efficiency can be attained by using a
Taylor series approximation. To illustrate, let us consider the example given in Figure
3-2, with N vortex elements and M observation points. If we assume that the observation
points are also tightly clustered in physical space, then the induced velocity given by

Equation 3-6 need only be evaluated at the centroid Xcm of the group and the velocity at
each observation point can be obtained using a Taylor series expansion about the centroid:

BE) = T o) + 8% -V UK o) + 21—'(8?{ V P& em) + .. (3.9)

where OX =X -Xcp and V =9/0X. In Equation 3-9, the velocity gradients aa’/axi,
Bzﬁlaxiaxj- and so on (here, x; and x; denote the ith and jth components, respectively, of
the vector X) are evaluated only once at Xcm and the velocity at each observation point is
obtained through simple multiplication, which is much cheaper than evaluating the terms

1/r, 1/r2 etc. needed in Equation 3-6. Similar to the velocity evaluations, the gradient terms
are also approximated using a multipole expansion. In the present effort, because of the
fast drop-off of the Biot-Savart kernel, only two terms are kept in the Taylor series
expansion.

3.2.2 Vortex Clustering Scheme

) In the present effort, a single-level vortex clustering scheme was used. The
computational length-scale introduced by the arc-length of the BCVEs, which is much
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larger than the core size of the element, sets a lower bound on the size of the group, i.e. the
diameter of the smallest group must be greater than the arc-length of each individual
element. Therefore, it is judged most appropriate simply to cluster the elements into one
set of vortex groups, each of the same size.

Figure 3-3 shows a typical wake/rotor combination to which the clustering scheme
must be applied. A fixed grid of cubic boxes is laid over a limited domain in the flow,
typically encompassing the rotor diameter in lateral dimension and at least one diameter
downstream; the vertical dimension of the wake varies with advance ratio, but one blade
radius typically suffices. All curved vortex elements with same-sign circulation and
whose mid-points reside within a given box are assigned to the same group. Note that the
end-points of the elements may extend beyond the box. However, it is important that the
arc-length of the elements be smaller than the size of the box. Figure 3-4 schematically
depicts this box geometry around the wake of one blade.

The RotorCRAFT/AA analysis can accommodate any user-selected distribution of
boxes. However within the present code, an appropriate default system for setting the size
of the boxes has been adopted, as described in Reference 28 and references therein. This
default selection has been found to be robust from the point of view of yielding good
accuracy while retaining the improvements in computational efficiency characteristic of
the fast vortex method.

As an aside, it should be noted that the technology needed for a multi-level,
hierarchical clustering scheme has been well proven in related work on vortex dynamics
(e.g., Refs. 27 and 29). In those calculations, vortex particles (with no associated length-
scale) are used exclusively, though in some cases, a numerical smoothing core - which is
of the order of the smallest spacing between elements - is incorporated. (Although the
core size introduces a computational length-scale into the calculation, it is chosen to be
smaller than the smallest physical length scale which the calculation attempts to resolve).
In a typical Lagrangian calculation, the spectrum of length-scales usually spans several
orders of magnitude. In cases where calculations are performed only with vortex particles,
it is therefore appropriate to use a multi-level, hierarchical clustering scheme such that the
interactions between different groups of varying sizes representing various length-scales in
the calculation can be treated accurately and efficiently.

3.2.3 Test Results

The fast vortex method has been implemented in the present version of the
RotorCRAFT/AA code, and representative rotor configurations have been examined.
Three terms are used in the multipole expansion of the velocity induction (Equation 3-6)
and two terms in the Taylor series approximation of the induced velocity (Equation 3-9).

Calculations were run to quantify the gains in CPU time using this approach.
Figure 3-5 shows a comparison of the CPU time (in seconds) taken per time step to
compute the wake-on-wake velocity interactions. The data are plotted against the number

of vortex elements in the wake. In the calculations using the classical N2 Biot-Savart
summation (square), because of the quadratic dependence, the CPU requirement increases
rapidly with increasing number of elements. In the fast vortex calculations (triangle), the
N-dependence is much weaker and the increase in CPU requirements is considerably
slower. With a total number of elements of about 2500 (representative of a typical
forward flight condition), the fast method is roughly three times as fast as the classical
method.
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Figure 3-3. Schematic showing a model-scale helicopter flow configuration composed
of a fuselage, a four-bladed rotor and a trailed CVC vortex wake. :
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However, it is important to note that the improvement in computational efficiency
of the fast method increases dramatically as the number of elements is increased. From
the standpoint of executing calculations with the rotor operating at low advance ratio, this
is particularly attractive. A dramatic reduction in CPU time is observed for calculations
at low forward speed where several thousand computational elements are typically
required.

As to the accuracy of the fast vortex treatment, Figure 3-6 shows the comparison

of the velocity components computed using the classical N2 Biot-Savart summation
(square) and the present fast vortex method (triangle) computed at points along the x-axis
on the top surface of a fuselage immersed in a helicopter rotor wake (Ref. 28). The
fuselage used for this test case was the forebody of the University of Maryland fuselage
(Ref. 30). Approximately 1500 curved vortex elements are used in the wake
representation and a grid of 180 (15x6x2) cubic boxes is laid in the flow domain. This
grid completely covers a physical domain which contains a four-bladed rotor, a body of
revolution representing the fuselage, and a free wake consisting of three turns of eight
filaments, each filament consisting of 72 curved elements.

Figure 3-6 shows comparisons of the three wake-induced velocity components u, v
and w, respectively, on the top of the fuselage. The agreement between the two
calculations is very encouraging. This is especially true for the u- and w-velocity
components where the two computed curves are essentially the same. A slight
discrepancy is observed for the v-component simply because of the low magnitude of the
v-component compared to the total velocity. This computation reflects the fact that both
the direct Biot-Savart computation using BCVEs and the fast vortex method yield
essentially identical results.

Finally, complete calculations of isolated main rotor runs were carried out, using
all of the wake acceleration techniques described in this section. A representative sample
case was that of the a UH-60 main rotor at advance ratio 0.15 in which 5000 free vortex
elements were used. All of the options cited in this section were enabled, i.e., the fast
vortex method, limited application of wake updates, and backward difference time
stepping. The aggregate acceleration of the computation was a factor of 11; in practical
terms, this translated into a calculation requiring only 8 CPU hours on a Silicon Graphics
Indigo workstation in place of a 90 hour computation using the direct methods of the
original RotorCRAFT code. Still larger computations realize even more of an
improvement, a case with 10,000 elements experienced a CPU reduction of a factor of 17.
It is difficult to scale these computations in a concise manner, but it is clear that
RotorCRAFT/AA can accelerate rotor calculations by over an order of magnitude relative
to the original RotorCRAFT code even without the application of reconstruction.
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4.0 MODELING OF VORTEX CORE STRUCTURE

A persistent challenge in any study of rotor loading with free wake methods is the
characterization of the vortex core. In general, the wake-induced velocity field can be
computed through direct application of the Biot-Savart law, but some numerical
smoothing must be introduced to remove the singularities present for close interactions of
vortex filaments with evaluation points on the blade and in the wake itself.

Clearly, it is desirable to employ a model that resembles as closely as possible the
physical swirling velocity distribution within the vortex core. This aim is complicated by
a limited understanding, even on an empirical basis, of the actual structure within the
core; the experimental information gathered to date (Refs. 31-33) has been instructive,
but does not cover the full range of possible combinations of wake age and blade loading
that would be needed to parameterize the core structure for general flight conditions.
Even with such information in hand, the challenge of "mapping" experimental core
information onto the computational filament structure would itself be prohibitive.

Thus, computational modeling of the vortex core properties is necessary. Direct
resolution of the process of wake roll-up is still well beyond the scope of engineering
analysis methods for routine applications, given the difficulties associated with direct
computational attack on even simple model problems (Ref. 34). The majority of methods
implemented to date have applied simplified functional forms to smooth the induced
velocity fields in the immediate vicinity of Lagrangian wake filaments. Proposed
approaches have involved the use of cores involving solid body rotation (Ref. 36), a
closely related smooth functional distribution (Refs. 35 and 37), and a Betz roll-up model
(Ref. 12). All of these approaches have achieved some limited degrees of success, but all
have also shown substantial sensitivity to the particular choice of core size. One of the
ongoing objectives of work on the CVC wake model and its successors has been to
reduce as much as possible the purely modeling role of core size as a "dial" in typical
computations, as well as to introduce more direct physical motivation into the selection of
the flow model for the core. Recent work in this area will be addressed after a discussion
of the approaches previously taken in this direction.

4.1 Core Modeling in the Baseline CVC Wake Model

One of the objectives in formulating the CVC wake model was to remove as
much of the sensitivity of airload results to core size as possible. As long as core radius
parameters exist within wake calculations, it will be possible to "dial" or adjust the
predicted loads. The discussion that follows outlines an approach that is judged to
constitute a reasonable step towards reducing the modeling role of vortex filament cores.

It is first important to appreciate that the full-span CVC free wake model itself
contributes substantially to the aim of weakening the modeling role of the core.
Alternative models, such as using single free tip filaments, must of necessity use
adjustments in the core size to capture flow field effects which are in fact attributable to
spanwise and azimuthal loading changes. Since such changes are automatically captured
with the CVC wake analysis, one possible ambiguity has been removed. Of course, the
solution accuracy will still be dependent on the number of filament trailers, since this is a
very basic measure of the numerical discretization of the problem. In most of the cases
examined to date, only relatively small differences in airloads are observed once the
maximum number of vortex filament trailers is increased above 14. However, since
modeling wake-induced blade loading - and particularly BVI- properly is still a topic of
research, it is difficult to reach definitive conclusions on this point. As with any
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numerical method, it behooves the investigator to occasionally increase spatial resolution
(i.e., the number of filaments) above the recommended threshold in order to gauge if
results are affected.

However, since filamentary vortices are in fact still used, some effective core
structure must be imposed to remove the flow field singularities associated with line
vortices. The core model used in the baseline CVC model was the one originally
proposed by Scully (Ref. 35); the swirl velocity profile is

vg =1 —I
"2t 2412 (4-1)

This constitutes an 'algebraic' core model, which retains half of the vorticity associated
with the vortex inside the core radius r. and leaves half outside. Scully notes that this
swirl velocity profile has considerable experimental substantiation. Also, this particular
core structure is a convenient choice for the implementation of vortex elements based on
ANM, as discussed in Section 2.

The issue of the selection of the core radius itself remains. In the basic CVC
wake model the core radii are determined by the analysis and not by the user, eliminating
the possibility of "dialing" in results. The radii vary from filament to filament and along
filaments from azimuth to azimuth. In keeping with the spirit of the discretization of the
CVC wake, which places curved filaments on contour lines of constant strength of the
wake sheet trailing from each blade, the local core radius is based on the distance
between vortex release points at each azimuth. (Note: vortex release points are the points
at which the vortex filaments release from the blade, as called for by the circulation
distribution on the blade at a given azimuthal location). The core radius becomes the
average distance to the neighboring release points on either side (at a given azimuth) with
special cases at the root and tip of the blade. That is, for filaments numbered n-1, n, and
n+1, the core size of filament n is computed as

)y = ((rv)n - (fy)n-1 )‘; ((rv)n+l - (rv)n) (4-2)

At the center of the blade circulation distribution, averages are taken between the nearest
filament and the maximum circulation line. At the root and the tip, averages are taken
using the distance to the blade cutout or the blade tip.

In the current analysis, bounds can be placed on the core size and, if desired,
particular core radii can be chosen for each filament. Numerical experimentation has
shown that the rotor loading is still sensitive to arbitrary adjustments in core size.
However, the mode of operation for the correlation runs discussed in References 3and 4
(as well as those below) was to allow the core radius assigned to each filament to adjust
itself to local conditions as dictated by Eq. 4-2. It is judged that this approach is
consistent with the overall aim of removing as much arbitrariness as possible from the
analysis of rotor airloads.

One weakness in this treatment, however, is that it does not provide for directly
treating rolled-up vortices that are, in fact, well represented by a single filament or that
are partially rolled-up yet contain significant vortical structures. Currently, these are
modeled as clusters of overlapping filaments with algebraic cores. Such an approach is
technically consistent with the structure of the CVC wake model, in that circulation

31



trailed from the tip region will be conserved, the filament trajectories will trace the
position of the centroid of vorticity, and the gross scale of the distribution of vorticity in
the wake will be captured. Also, in the limit of a large number of filaments and for a
wake trailed from a blade with a steep gradient of circulation near the tip, the CVC wake
will form a tightly clustered vortex. However, this approach still leaves out significant
features of the inner core structure of the wake where viscosity plays an important role.

Until recently, it has been impractical to consider implementing a model that
attempts to capture this behavior except in a very coarse manner. Two circumstances
have combined to change this:

- first, the implementation of flow field reconstruction; as noted above, this
provides a ready framework for the implementation of sophisticated inner
solutions for the vortex core, through the application of ANM

- second, the development of efficient rollup models based on integrated blade
properties; this is an extension of early work in Reference 38 on the prediction
of wake self-induction, which in turn was related to integral models of wake
rollup and core structure in the spirit of Betz (Refs. 39 and 40).

The following section describes the particular rollup model developed for use in the
context of rotor wake calculations, while Section 4.3 outlines its implementation in
RotorCRAFT/AA.

4.2 Vortex Core Modeling Based on Integrated Blade Properties

As noted above, each rotor blade trails a vortex sheet along its span that is
modeled numerically using the CVC wake constructed of curved vortex filaments. In
many situations, a peak in bound circulation occurs near the blade tip. The portion of the
vortex sheet between the maximum circulation point and the blade tip rolls up into a
concentrated vortex structure. The structure of this vortex is treated analytically by a
separate procedure, since the basic numerical scheme cannot resolve this region
accurately. This analytical approach is also more computationally efficient.

The roll-up of the sheet occurs rapidly and proceeds from the tip region inward.
The sheet rolls up into a large, tightly wrapped spiral. The radius of the spiral scales with
the spanwise extent of the original sheet, the exact relationship depending on the details
of the circulation distribution. In an ideal inviscid flow, at the center of the spiral the
velocity would be infinite and the spiral turns infinitesimally close together. Under these
circumstances the actual flow is unstable, and a viscous/turbulent core forms in a
relatively small region at the center of the spiral vortex. The actual size and structure of
this central core depends on the circulation distribution.

The structure of the vortex core must be known to predict the self-inducted
motion of curved vortex filaments, and to accurately predict blade vortex interaction. A
weakness of prior free-wake analyses has been the arbitrary specification of vortex core
size and structure. The present analysis is a significant step towards establishing a sound
technical means to characterize the vortex core.

4.2.1 Analysis Method

The vortex core is divided into two parts: an outer spiral region characterized by
vortex sheet roll-up, and a viscous/turbulent central core. The structure of the spiral
region is governed by the following conditions:
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- mass flow conservation

- Bemoulli's equation

- conservation of circulation and vorticity centroid
- conservation of axial flux of angular momentum

Figure 4-1 shows the configuration for spiral roll-up. Each of the above conservation
conditions is applied on a station-by-station basis, namely on each of the progression of
annular streamtubes beginning at the blade and ending in the formed vortex. At the blade
each streamtube is centered on the local centroid of vorticity. The spiral structure is
assumed to be sufficiently fine and tightly wound that the final vortex flow is
axisymmetric to good approximation. Bernoulli's equation applies because all points in
the spiral are in the same domain of irrotational fluid, and can be reached without
crossing vortex lines due to the spiral structure. The axial flux of angular momentum is
related to the torque applied to the streamtube by the lift on the blade tip region.
Application of these conservation conditions leads to a pair of coupled nonlinear ordinary
differential equations, as described in Reference 38.

The present model extends the earlier model by using a the turbulent vortex core
that is modeled in integral fashion. Functional forms of the swirl and axial velocity
distributions are assumed which are consistent with experimental data. The swirl velocity
is assumed to be a central region of solid body rotation surrounded by a log-law velocity
distribution. The axial velocity is assumed to satisfy a simple power law as a function of
radius. This turbulent core is related back to a corresponding streamtube passing over
the tip of the rotor blade, as shown in Figure 4-2. The following conservation conditions
are applied in integral form:

- net mass flow conservation

- conservation of circulation and vorticity centroid

- conservation of net axial flux of angular momentum
- conservation of net axial momentum

Note that the axial momentum balance replaces the Bernoulli equation, which no longer
applies. This momentum balance includes force and fluxes on the vortex streamtube at
the wing, in the formed vortex, and on the streamtube sides. Given the assumed
functional form of the velocities, the conservation conditions lead to a set of coupled
nonlinear algebraic equations.

The solution procedure consists of satisfying the integral conservation conditions
for the turbulent vortex core and solving the differential equations for the vortex sheet
roll-up. The core radius provides the inner boundary condition for the sheet roll-up
equations, and the outer boundary condition is that the axial velocity return to free-stream
value. Only one core radius satisfies both these boundary conditions and the integral
conservation conditions. The solution procedure is difficult because it involves finding
the solution to simultaneous nonlinear equations.

4.2.2 Results of the Rollup Calculation

One case can be solved analytically in closed form. When the bound circulation
distribution decreases to zero linearly at the tip, the spiral roll-up equations and boundary
conditions can be solved in a fairly simple manner. The problem is then reduced to
finding the solution of a system of nonlinear algebraic equations. The radius of the
turbulent core, and the radius of the surrounding spiral, are found in terms of a
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Figure 4-1. Schematic of inviscid tip vortex rollup model.
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Figure 4-2. Schematic of tip vortex rollup model including viscous core effects.
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nondimensional loading parameter € = I'/(2nsU), where I' is the maximum circulation, U
is the average freestream onset velocity in the blade tip region, and s is the span of the tip

region (from maximum I" to the tip). Note that larger € corresponds to higher tip loading,
namely higher lift coefficient in the tip region.

Figure 4-3 shows the dimensionless turbulent core radius r/s and the

dimensionless spiral core radius r./s as functions of € for the case of linear loading. Note
that this nondimensional result is universal in that it applies for all cases having linear tip
loading. The physical behavior indicated by this curve is interesting. As the loading

parameter, €, increases, the outer radius of the spiral contracts and the radius of the
turbulent core grows. The contraction of the outer radius is associated with increased
axial velocity associated with increased loading. This axial velocity draws the spiral
structure inward to conserve mass flow as the vortex rolls up. At the same time, greater
axial velocity leads to a larger, more energetic turbulent core structure. The swirl and

axial velocity distributions for two values of € are shown in Figure 4-4. The distributions
shown here for wing calculations are similar qualitatively to those observed in rotary
wing computations in RotorCRAFT/AA; as suggested schematically in Figure 4-2, the
peak swirl velocity typically occurs in the turbulent core region, outside of the boundary
of the region of solid body rotation.

Other tip load distributions can be solved numerically. Of particular interest is
elliptical loading. In these cases the system of nonlinear algebraic equations governing
the turbulent core must be solved simultaneously with a shooting problem involving the
nonlinear differential equations for the spiral region and their boundary conditions. In
each such case, the results are reducible to a single nondimensional curve for the radii r,/s

and r/s as functions of €, similar to Figure 4-3 for linear loading. An elliptic rollup
calculation is not presently implemented in RotorCRAFT/AA; this option will be
incorporated future versions of the analysis.

However, the solution for the rollup of the linearly loaded blade tip described
above can be used to approximate the behavior of the elliptic case. This is done by
constructing a loading distribution consisting of a constant lift section followed by a
linear roll-off to the blade tip. In this approximation, the size of these regions are chosen
such that the same total lift is obtained as in the elliptically loaded tip; this corresponds to
a constant-lift section 0.57s followed by a linear roll-off over the remaining 0.43s.
Applying the rollup calculation to this roughly equivalent distribution allows the
determination of a core size and swirl velocity that approximate those that would be
obtained from a direct calculation of elliptic roll-off. This is the approach presently in
place and the results shown in Section 7 incorporate this assumption.

To summarize, this portion of the rollup analysis functions as follows: for a given
value of bound circulation I at a spanwise station a distance s = kgR inboard of the tip

over which the average onset free stream speed is U, a value of € is computed. This is
used to compute core velocity distributions using the procedures and assumptions just
described. The remaining issue is how to associate a portion of the wake at a given
azimuthal age downstream with a particular region on the blade so as to allow this
computation to be carried out. The following section describes this procedure in more
detail.
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4.3 Implementation in RotorCRAFT/AA

With the model for vortex core properties in hand, it remains to implement it in a
manner consistent with the CVC wake model and the reconstruction approach. As noted
previously, as part of the reconstruction process the vortex scanning routines capture the
filament trajectories in the vicinity of the rotor blades. In the basic approach discussed in
Section 2, the inner solution that recovers the "actual core" properties is applied on a
filament-by-filament basis, with each constant-strength filament being corrected locally
to recover the velocity field induced by the filament with the "actual core". However, to
consistently to incorporate the model of the rolled-up vortex just described, several
filaments must be "bundled” together and considered effectively merged. It is important
to note at the outset that this bundling will not necessarily involve all of the filaments
trailed outboard of the peak in bound circulation but may instead reflect a partially rolled-
up vortex wake.

Several closely related issues must be addressed to effect this bundling:

- First, for a portion of a vortex filament of a given azimuthal age, the spanwise
location of its release from the generating blade must be identified; a criterion
must be established to determine whether this filament is to be treated as part
of a bundled filament; if so, the spanwise extent of these regions (i.e., the
fraction of the bound circulation that is to be rolled up) must be identified and
the distribution of circulation within this region stored.

- Second, those filaments trailed from this region must be "tagged" and
identified as filaments to be bundled together; those that pass into the scan
volume around neighboring blades must be identified for the reconstruction
program to be treated as a single rolled-up filament.

- Third, the new core model developed in the previous section must be applied
to allow the swirl velocity for this new inner core solution to be computed.

The first of these tasks, effectively establishing a rollup criterion, involves
estimating the time required for the wake trailed by a given distribution of circulation to
roll up. A useful conceptual framework for this is provided by an existing fixed wing
wake rollup analysis (Ref. 41); this reference describes a modified Betz roll-up model,
with the downstream state of the vortex (i.e., percentage of strength rolled up) given by a
closed form calculation as a function of the initial loading distribution and the
downstream distance. In the cases examined here, the outboard portion of the blade is
treated as an effective wing, and the distance downstream of this "wing" required for
completion of the rollup is converted into an azimuthal increment downstream of the
rotor blade, as described below. (Note: though the fixed-wing analysis in Ref. 41 is not
strictly applicable to rotary wing tip vortex roll-up (because of the absence of the
symmetry of the trailing wake about the peak circulation as well as because of the neglect
of the effects of rotation and wake curvature) it was nonetheless judged to provide a
useful guide for estimating the degree of roll-up that occurs in typical rotary wing
calculations. A model more closely fitted to the rotary wing environment would be a
desirable improvement to the current treatment).

Denoting the nondimensional distance from a given radial station to the blade tip

as kgR and nondimensionalizing the circulation I at this station by QR? yields a form for
the "vortex age parameter” D as follows:
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D= 4-3
k2 ¢ (4-3)

O]

Here, ¢ is the azimuth angle downstream from the generating blade. Note that this
parameter incorporates both a measure of the circulation gradient on the generating blade
and the azimuthal age of vortex wake, making it a physically plausible descriptor of the
rollup process. The motivation for including this parameter is to add some measure of
physical motivation to the amalgamation of the trailers, rather than adopting a simpler,
more ad hoc approach involving, for example, merging all tip filaments at a given
azimuthal age downstream of the blade.

Assuming an equivalence between the rollup of the wake of the blade tip and the
wake of a wing, a value of D of 1.0 corresponds to a rollup 90% of the strength of the
vortex sheet from an elliptically loaded tip, while a value of D of 0.2 corresponds to
roughly a 60% rollup (Ref. 41). For further illustration, consider a limiting case where all
of the bound circulation outboard of the peak level on the blade is to be rolled up. For D =

1 and typical values of I'pax of .01 and kg of 0.1, ¢ is 2.0 radians, indicating that rollup
will take place within roughly 120 deg. downstream of the generating blade. Note,
however, that larger values of kr (corresponding to shallower blade loading gradients near

the tip) rapidly increase the value of ¢; using kg = 0.25 (a quite realistic value for blades in

the second quadrant), ¢ increases to 12.5 radians or essentially two full rotor revolutions.
This indicates that shallow loading gradients on the rotor blades are associated with
protracted rollup processes that may lead to following blades encountering partially rolled
up wakes.

In the present implementation, a value of D is selected at the outset of the
computation when the integral core model is to be invoked. Given this, all filamentary
trailers are checked at each value of ¢ to see if, for the specified value of D, the blade
loading on the generating blade (which determines kg and I') was such that the filament

should, at an age of ¢ , be considered part of a rolled-up bundle. The actual procedure
involves scanning the bound circulation distribution on the generating blade and
identifying all filaments that are released outboard of locations where the following test is
true:

r

4-4
2 (4-4)

>

| —
S|C

Once the outboard portions yielding rapidly rolled-up wakes are identified in this
manner, the filaments that trail from them are tagged. These filaments will now act as
"markers" that define the position of a "replacement vortex" formed from a bundle of
individual filaments; this bundled "replacement vortex” is assumed to lie at the centroid
of the bundle of marker filaments. Using the individual filament geometries that pass
through scan volumes like those shown in Section 2 (Fig. 2-6), the trajectory of this
replacement vortex is computed for use in the reconstruction analysis. The CPU time
required for this process is essentially negligible compared to the computation of the
motion of the free vortex wake itself.
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To complete the implementation, the four-part integral core structure model is
applied to this replacement filament, using the strength of the bundled filaments to
determine the level of the swirl velocity. This swirl distribution becomes the new inner
solution for the ANM treatment of wake-induced velocity.

At present, the choice of the vortex age parameter D produces several distinct
effects. Selecting a high value will in general lead to very few or no filaments being
treated with the rolled up integral model, since only very "old" filaments will be bundled
and these may be downstream of the rotor disk itself (note that in cases where bundling is
not invoked, the Scully core acts on each filament). As D is decreased, however, a
progressively greater range of younger filaments (i.e., filaments more likely to be close to
the rotor disk) are bundled, which will in general lead to a larger number of discrete
blade/wake interactions; also, as D is decreased, the strength of the bundled replacement
vortices will in general increase as more filaments are lumped into them. A complication
can be introduced, however, since the location of replacement vortex is assumed to be at
the centroid of the bundled filaments at a given azimuthal age. Thus, as D is altered the
replacement vortex may move as the number of filaments bundled together changes,
possible altering the relative location of the blade and the filament.

As will be seen below, the present rollup model does allow physically significant
mechanisms of blade loading to be captured, though the current treatment, being a
relatively simple model of a complex phenomenon, does also introduce some undesirable
extraneous loading events. Also, the use of a fixed wing rollup model in a rotary wing
context is clearly an approximation, though one that has proved useful in work to date.
Thus the analysis underlying this part of RotorCRAFT/AA is a topic of ongoing work;
the primary topics being addressed are the extension of the range of core models to
accommodate more general tip loadings, alternatives to the current assumption that places
the replacement vortex at the centroid of the vortex bundle, and studies of the influence of
particular choices for the age parameter D.
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5.0 DUAL ROTOR MODELING

The present RotorCRAFT/AA code features substantial capabilities in the analysis
of dual rotor systems, of which one particularly common example is the main rotor/tail
rotor (MR/TR) combination. One focus of earlier work on flow field reconstruction (Ref.
1) was the analysis of the interaction of the vortex wake of the main rotor on the tail
rotor. Owing to the relatively simple geometry of most interactions with the tail rotor,
this was a suitable early demonstration of the capabilities of this general approach.
Though the primary focus of the present effort has been on main rotor loading, the major
capabilities for tail rotor load reconstruction have been retained from earlier coding and
in many cases extended. This section describes these capabilities and outlines some of
the computational results obtained to date.

5.1 Typical Main Rotor/Tail Rotor Interactions

One of the first tasks undertaken in this area was the execution of sample
calculations to investigate the type of MR/TR interactions characteristic of particular
flight regimes. Initial results on this topic appear in Reference 42, including a discussion
of the impact of climb angle, tail rotor inflow, and forward flight velocity. For that
preliminary effort, it was judged appropriate to scrutinize a few representative cases, in
particular sample calculations of a "generic" two-bladed rotor at a thrust coefficient of
.004 in level flight. The results in Reference 42 include a case at advance ratio 0.3, with a
tail rotor located 1.3R downstream of the main rotor (hub to hub distance) with a radius
of 0.2. The top and side views of the main rotor wake shown in Figure 5-1 indicate the
vortices being swept through the tail rotor disk The dense cluster of positive filaments
that form the tip vortex are evident in Figure 5-1a; succeeding plots show these positive
vortices being convected through the tail rotor disk, along with the more highly distorted
inboard filaments.

This particular case is representative of the results of other similar computations,
which have indicated that the primary type of interaction characteristic of single-rotor
helicopters is the near-normal intersection of relatively "young" tip vortices trailed from
the main rotor blades just upstream of the tail rotor disk. In addition, wake geometry
plots such as Figure 5-1 make it clear that the inboard wake can impinge on the tail rotor
in many flight conditions, particularly at high forward speed. Plots of the velocity field in
and around the tail rotor disk (shown in Refs. 1 and 42) also indicate that this portion of
the wake can make significant contributions to the local flow field, particularly the
component normal to the disk.

As a result of these initial calculations, it was concluded that the convection
dominance of the high speed cases will cause discrete filaments from the CVC wake to
transit the disk in a narrow "corridor”, though the intensity of the vortex interactions will
depend not only on the intersection trajectories but on the relative phasing of the main
rotor and the tail rotor as well. At lower speed, the high downwash along the wake
centerline sweeps most discrete filaments away from the disk, leaving only a relative few
trailed immediately upstream to undergo interactions. For low as well as high speed, the
tip vortices intersect the disk at angles very near ninety degrees (deviations from this in
typical calculations are no higher than 15 degrees, and changed only minimally during
the transit).

Additional computations carried out as part of the present effort reinforced these
conclusions. The calculations are based on the flight test experiment of the Aerospatiale
Puma helicopter documented in References 43 and 44. This work involved the
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Figure 5-1. Top and side views of MR wake geometry and tail rotor position for a
typical two-bladed rotor, advance ratio=0.3.
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acquisition of a unique body of data on the unsteady surface pressure on tail rotor blades
in the presence of the main rotor wake. The data was taken on one blade of the tail rotor
of a Puma in hover and in forward flight at 10, 20, and 30 knots. The tests measured the
instantaneous pressure coefficient at 2% chord; this local value of Cp has been found to
be a suitable indicator of the sectional lift coefficient. With the assistance of RAE
personnel, data containing the unsteady pressure measurements for the 30 knot case was
obtained for use in correlation studies with the RotorCRAFT/AA code.

The sign conventions and the co-ordinate system adopted here are defined as
shown in Figure 5-2. The gear ratio of the tail rotor to the main rotor is 4.82, and
therefore the azimuth angle of the tail rotor is not necessarily in phase with that of the
main rotor. To date, only the case in forward flight with a free stream velocity of 30
knots (advance ratio 0.072) has been considered. In the calculations that follow, the

azimuth of the instrumented tail rotor blade is initialized to be Yu=67.22° when the
reference blade of the main rotor is at 0° azimuth. In this case there will be three
complete revolutions of the instrumented tail rotor blade in the revolution of the main
rotor. The first complete revolution of the instrumented tail rotor blade starts when the

main rotor reference blade is at Ymr=60.74°; the second begins when the reference blade
is at Ymr=135.43° and the third begins when it is at Ymr=210.12°.

The first calculation is arranged such that the tail rotor blade can only "see" the
wake of one blade of the four-bladed main rotor. The intersections between the blade tip
filament and the tail rotor disk for the three complete revolutions of the instrumented
blade are shown in Figure 5-3a. The symbols showing filament intersections with the
scan plane are each one main rotor time step apart, and different symbols are used for
each tail rotor revolution. Forty time steps are used in each main rotor revolution,
yielding between eight and nine time steps per tail rotor revolution. The azimuthal
scanning polar plot of the z-component velocity evaluated at one tail rotor blade are given
in Figure 5-3b. (It is important to note that this does not represent an instantaneous
"snapshot” of pressure over the disk but rather a continuous sweep of a single blade over
the disk, representing a complete tail rotor period. Because the tail rotor rotation
frequency is not an integral multiple of the main rotor frequency, these plots repeat
themselves only over very large numbers of tail rotor periods; thus, time domain
simulations must be carefully phased with the position of the generating blade on the
main rotor). It is observed from Figure 5-3a that for the second revolution, the filaments
(square symbols in Fig. 5-3a) have been convected further downstream and are found
intersecting the tail rotor disk; this event is captured by a high velocity gradient shown in
Figure 5-3b. As the wake is convected further downstream and gets closer to the hub in
the third revolution (diamond symbols in Fig. 5-3a), the region of high velocity gradient
will shift correspondingly.

In a second set of calculations, the induced velocities at the moving plane include
the contributions from the wake of all of the main rotor blades. In Figure 5-4a, the
location of the tip filaments from all four main rotor blades during the third revolution of
the tail rotor blade are shown on the plane of the tail rotor disk. The azimuthal scanning
polar plots of the z-component of the flow field evaluated at the tail rotor blade surface
are presented in Figures 5-4. It is shown that the reference blade first encounters the
wake of main rotor blade #4 in the first quadrant of the cycle and then encounters the
wake of blade #2 in the third quadrant. This causes two regions of high velocity
gradients in Figures 5-4, one in the first quadrant and the other in the third quadrant.
These plots clearly associate the transit of vortices across the disk with rapid pressure
disturbances, and confirm the earlier observations regarding wake vortex geometry.
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5.2 Tail Rotor Flow Field Reconstruction

The results just discussed and those generated in previous research motivated the
approach to tail rotor flow field and airload reconstruction presently in place. It follows
the outline of the general reconstruction techniques discussed in Section 2, though it is
somewhat simpler in that the scan volume typically is fixed in space, and encompasses
the entire tail rotor, as sketched in Figure 5-5. This figure schematically depicts both
major classes of interactions experienced by the tail rotor, namely the transit of tip
vortices across the disk and the close passage of inboard filaments. Using a scan volume
type of method is necessary to capture the full range of such wake interactions.

As with main rotor calculations, vortex trajectory information is used to
reconstruct the incident flow field at the tail rotor disk with a higher level of temporal
resolution than that available from a direct calculation. The aerodynamic loading on the
tail rotor blade can then be carried out in the presence of this flow field, assuming that it
is "frozen", i.e. that the subsequent evolution of the tail rotor's own wake does not affect
the main rotor wake trajectories. As will be discussed below, the present analysis allows
quite general computations of MR/TR interaction within these restrictions, though during
the course of this effort the "self-interaction” of the tail rotor with its own wake was
investigated.

5.3 Modeling of Tail Rotor Aerodynamics
5.3.1 Tail Rotor Wake Effects

Initial investigation of tail rotor wake effects in Phase I involved a simplified
model, consisting of a set of skewed vortex rings, as discussed in Reference 42. The
thrust on the rotor was set at a value that would counteract the torque of the rotor, and the
wake skew angle was set based on the free stream convection and an estimate of the self-
induced velocity of the tail rotor wake. Even for this simple model, the wake of the tail
rotor itself made significant contributions to the inflow at the disk. In view of the
disparity of time scales for the main rotor and tail rotor, an approach was sought that
would incorporate an accurate treatment of local effects on the tail rotor without the
complication and computational cost of running two complete, fully coupled free wake
calculations. To support an assessment of this issue, "stand alone" free wake tail rotor
computations were executed.

To help assess the importance of rotor wake effects, it was useful to employ a
representative pressure plot from the RAE Puma flight test data discussed above. Figure
5-6a shows a representative plot of the pressure data discussed in Reference 19; this
figure is an azimuthal scanning polar plot which represents a complete time history of the
pressure coefficient at 2% chord for a full rotor rotation. Also, the time increments in the
measurements correspond to roughly 100 steps per tail rotor revolution, indicating that a
high temporal interpolation factor must be used to obtain appropriate resolution. This
calculation also provided a framework for exploring the application of reconstruction to
the prediction of surface pressures on the instrumented tail rotor in the presence of the
main rotor wake.

Flight test data and geometric layout information supplied by the RAE allowed
the trim condition of the aircraft to be estimated. The computational model of the main
rotor wake used four turns of free CVC wake; a baseline calculation was carried out
involving forty time steps per main rotor revolution, corresponding to roughly eight time
steps per tail rotor revolution, given the 4.82:1 gear ratio. To obtain reasonable
reconstruction of the tail rotor loading, at least 40 time steps per tail rotor revolution are
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required, thus requiring roughly 5:1 time interpolation in the reconstruction. The
reconstruction procedure outlined above was used to yield a high resolution description
of the inflow induced by the main rotor wake on the tail rotor. By using reconstruction
with 5:1 time interpolation, a reduction in CPU of over a factor of 100 was obtained
relative to a direct calculation of the velocity field at the tail rotor disk.

The measured pressure at 2% chord over one revolution of the Puma TR blade is
shown in Figure 5-6a, while the calculation for the initial case assuming a prescribed
wake consisting of a skewed vortex helix (outlined above) is shown in Figure 5-6b. To
supplement these results, a second calculation was undertaken using a freely distorting
CVC wake to compute the influence of the tail rotor's wake; the result of using this
downwash in the TR pressure calculation in place of the simple inflow is shown in Figure
5-6¢c. Clearly, the calculation using the free wake option produces a considerably more
realistic prediction of the pressure coefficient than the simple inflow model, reflecting the
importance of including the tail rotor's own wake in this calculation. This result is not
surprising, given the relatively heavy loading on the tail rotor at the low advance ratio.
This computational result confirms the experience of experimentalists working with the
Puma TR data (Ref. 44), who have identified many distinct loading events in the Puma
data that clearly arise from interactions of the tail rotor with its own wake.

The correlation achieved here is encouraging, though the differences with the
measured results are clearly still substantial. These may well be due in part to the effect
of the vertical fin, which lies roughly 0.5Rtg above the tail rotor disk and whose effect
cannot be conveniently included in calculations of this type.

5.3.2 Correction for the Effect of the Main Rotor Shaft

One potentially important feature of MR/TR interaction involves accommodating
the main rotor shaft effects on the wake. Such effects are especially significant for the
wake filaments shed from the leading edge of the main rotor disk and convected
downstream to impinge on the rotor shaft. This kind of vortex/surface interaction could
in principle be modeled with a combination of an inner viscous region wrapping around
the shaft surface and an outer inviscid region. Although there is presently no intention of
resolving such complex interactions in the current context, it is important to take into
account some of the gross rotor shaft effects on the wake filaments. Thus, a zone has
been defined around the main rotor shaft such that any wake filaments convected through
it will be removed permanently from the calculation. (This can be thought of as if
defining a viscous zone around the shaft in which the vortex filaments are simply merged
with the surface of the zone during the interaction). This crude model has been employed
to delete spurious vortex/surface interactions in recent research of rotor-wake/fuselage
interaction (Ref. 28) and has been adopted in RotorCRAFT/AA to delete spurious tail
rotor interactions.

5.3.3 General Dual Rotor Capabilities

Though the discussion to this point has dealt primarily with tail rotor
aerodynamics, the procedures evolved here can be applied to general dual rotor
calculations. Tandem, side-by-side (tilt rotor), and coaxial configurations can be
accommodated, within the restriction that a full dual free wake computation is not
presently possible. The present method for dealing with such cases is an extension of the
logic of the tail rotor case discussed above, though obviously the orientation and
dimensioning of the rotor must be altered to suit the case of interest. Either rotor may
adopt clockwise or counterclockwise rotation. Additional discussion is provided in
Reference 45.

51



6.0 SURFACE PRESSURE COMPUTATIONS FOR ROTOR NOISE PREDICTIONS

The development of an efficient and accurate method for computing rotor noise
was a topic of research at NASA/Langley in the 1980's (Ref. 15). One of the primary
objectives of the present effort was to produce surface pressure output from
RotorCRAFT/AA compatible with the input requirements of the acoustic program,
WOPWOP, that resulted from this earlier work. WOPWOP was selected because of its
robustness in analyzing general helicopter rotor configurations, and previous
investigators have effectively validated WOPWOP by using experimentally measured
pressures to accurately predict far field noise (e.g., Ref. 10).

The fundamentals of WOPWOP's acoustic analysis are based on Farassat's
subsonic formulation of the Ffowcs Williams-Hawkings equation derived for the noise
generated by surfaces in arbitrary motion. Assuming that the surface loading distribution
is known beforehand, Farassat's scheme provides an effective prediction of noise
generated by surfaces in subsonic flow. The scheme implemented in WOPWOP was
specially tailored for the helicopter rotor acoustic problem, and both the blade motions
and surface pressures are required inputs to the program. The surface pressures, in
particular, must be accurately specified to a high degree of resolution to obtain good
noise predictions.

Since prior versions of RotorCRAFT focused largely on the prediction of
integrated aerodynamic loading that contributes to vibratory airloads, only a modest level
of chordwise resolution was employed in these early calculations (typically one to five
chordwise stations). A substantial increase in refinement is required to determine the
detailed chordwise pressure distribution for input to WOPWOP. Substantial research
work has been done to develop practical models for the accurate solution of high
resolution surface pressures for acoustics applications (Refs. 46-49). Since many issues
pertaining to the creation of a generally applicable model for unsteady loading remain
unresolved, it was judged appropriate for current purposes to adopt a relatively simple
model based on extending the existing vortex lattice blade load model to predict high
resolution chordwise distributions of pressure. The following discussion provides
background on prior investigations of this topic as well as on the distinctive new features
of the current implementation.

6.1 Background

Investigations into the prediction of unsteady blade loading in the context of rotor
aeroacoustics have been underway for several years. A variety of approaches have been
taken for tackling this issue, including transfer function methods (Refs. 46 and 47) and
computational analyses using full potential solvers (Refs. 48 and 49). Earlier in the
development of the RotorCRAFT code, relatively simple analysis methods were
implemented to allow a preliminary assessment of the ability of the code to predict rotor
acoustics. A routine designed to provide the necessary interface was implemented in
RotorCRAFT Mod 1.0 (Ref. 4) as a post-processor to the rotor wake calculation and was
invoked after the convergence of the blade motion and loading solutions. The converged
unsteady upwash predicted on each rotor blade (composed of the time-varying free
stream and the unsteady wake contribution) was treated as an arbitrary gust. To find the
lift response, each blade was segmented in the spanwise direction and each segment was
treated as a two-dimensional flat plate airfoil. The Kussner function was used with the
Duhamel superposition integral to evaluate the loading response of the airfoil to this
simplified problem, in which the wake-induced velocity was treated as a time-varying
gust.
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This initial, simple model had several important limitations. For example, the
basic transfer function approach assumed a two-dimensional linear wake extending far
downstream of the airfoil. This particular limitation was relaxed by approximating the
effect of the skewed helical wake of a rotor blade; the latter folds back on itself rather
than extending to infinity, and thus adjustments were made to the analysis that effectively
truncated the wake at a finite distance downstream of the blade. These adjustments were
fairly crude, however, and a more refined approach has subsequently been implemented,
as will be described shortly.

Moreover, the transfer function itself was essentially two-dimensional and thus
was inappropriate for capturing tip effects or for modeling close blade/wake interactions.
Finally, both the amplitude of the pressure response and the scaling of the
nondimensional time were adjusted for compressibility using a Prandtl-Glauert type
correction. In sum, this approach clearly required many approximations, but it did
provide a useful first approximation to the unsteady surface pressure distribution on the
rotor blades suitable for direct input to WOPWOP.

The present effort involved several steps designed to relieve these limitations.
The surface pressure computation carried out here captures full 3D effects through the
application of a refined vortex lattice treatment, employing additional quadrilaterals along
the chord to yield sufficiently high resolution for input to WOPWOP; near wake terms
were added to account for unsteady loading and improve the handling of wake truncation;
a 3D version of the Prandtl-Glauert correction appropriate for a vortex lattice was used to
address compressibility effects; and finally, an option for incorporating the effect of
thickness was made available, building on a 2D source panel model. Additional research
was carried out on still more advanced and novel methods for rotor blade load
calculations that are candidates for follow-on implementation. The sections that follow
address the major features of these modeling methods.

6.2 Unsteady Near Wake Effects

As discussed in Reference 2, the original model of the near wake just downstream
of each rotor blade consists of a set of straight vortex trailers that are extended back into
the wake from the bound vortices on the blade. The orientation of these trailers may
adjust with the local free stream direction at a given radial station (Fig. 6-1), thus
providing a coarse approximation of the behavior of the near wake suitable for the
resolution of low-frequency loads; however, any other structure of the shed vorticity
within this overlap region is neglected. The effect of the shed vorticity in the wake far
downstream of the rotor blade is of course captured with the full-span CVC free wake
model.

As part of the improvement of the aerodynamic model of the blade, a more
refined treatment of the unsteady loading due to shed vorticity in the near wake has been
incorporated, building on the preliminary studies described in Reference 4. The approach
presently in place involves adjusting the downwash used to compute the loads on the
vortex lattice with an approximate indicial function that captures the near wake effects.
In principle, the downwash could be adjusted by explicitly including vortex elements in
the near wake and laying out components of shed vorticity parallel to the blade span to
supplement the trailers shown in Figure 6-1. This approach would involve a variety of
computational difficulties, including the need to carefully position the discrete shed
vorticity as a function of time step, and the necessity to incur a computational penalty
associated with retaining high-resolution discrete vortex representations of the wake.
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Given this, it was judged desirable to use an indicial function to compute the lift
response of the rotor blade to the shed vorticity in the near wake. This approach is
implemented in the vortex lattice method as part of the calculation of the induced velocity
at a control point. Let w represent the downwash at a typical control point due to the
influence of the wake and the blade motion. The modification required to take account of
near wake unsteady effects can be formulated as a correction to the downwash w ; the
resulting quantity w* will be used to compute the bound circulation distribution and can
be stated as:

w¥(s)=w ®p (s,s1,N) (6-1)

where s is the nondimensional time and @ is an indicial function that reduces to 1.0 in
the case where near wake shed vorticity is omitted. The nondimensional time here is
s=(Ut/c), where the reference velocity U is assumed to be

U= Qr+U_ siny (6-2)

for a given radial position r and azimuth station ¥, and U,, is the free stream velocity. If

Y,y is the extent of the overlap near wake (Fig. 6-1), then st is the nondimensional time

at which the blade occupied the azimuthal position Y - y,,;. T is the time elapsed
during one blade azimuth increment and N is the number of azimuth increments
contained within the overlap region.

The indicial function assumes that the downwash at the control point varies
linearly from zero over the time step T, reaching its full value at that point. The present

vortex lattice scheme assumes essentially a step increase in downwash at each time step
that does not generate any shed vorticity in the overlap near wake. The indicial function

®,, is designed to add in the effect of this near wake while also including the effect of its

truncation beyond Y, so as not to double-count the wake that is captured by the CVC
model. ’

In the case of the present rotor wake analysis, the downwash is desired at discrete
multiples of the time step T (which is assumed to be ramp time st ) :

w*(nst) = w @y (nst,s1,N) (6-3)
The indicial function can be constructed from
(Dn (O,ST,N) =0

and

(Dﬂ (HST,ST,N) = ¢O (HST,ST) + 2 ¢m (DST,ST,N) (6'4)
m=1
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where

Dy (S, S'r) =0
for s < st and
Dy (s,s1)=1+ -S-I—T— In (S'—Ss_|_2i2) (6-5)

for s > st . The term @, is determined by a recursion relation

n-mN
®p (05T,5T:N) = >, (@t ([k+H(m-1)N]s7,57,N) - @y 1 ([k-1+(m-1)N]s,s7.N)} *
k=1
d,, ([n-mN+1-k]sT,sT,N) (6-6)
for n > mN and

®p, (nsT,sT,N) =0
for n <mN. The term ®,, in Equation 6-6 is given by

Dy (s,s,N)=0

for s < s, while the term

Dy (s,51.N) _1_[1 +11 (s—sr+2] 7 (2s+2+(2N-D)st)  (s-s7) N

T@N+Dsrl st o\ s42 | T@N+D)sr (25 + 4+ (2N-1)s7) (25 + (2N-1)s1)
2(In[(s - sT+2) (2s + 2+ (2N-1)s7)] -In[2(2N+1)s1])

4(s+2)% + 4(s+2)(2N-1) st + (2N-1)2s72

(6-7)

The primary effect of this type of indicial function is to introduce a phase delay
into the response of the aerodynamic loading while also decreasing the magnitude of the
response to a given upwash or blade motion input. It has been included in the sample
computations discussed in Section 7.

6.3 Extended Lifting Surface Modeling

A variety of options were considered for the prediction of the chordwise
distribution of pressure on the blade surface, including transfer functions more
sophisticated than the flat plate treatment mentioned in Section 6.1. These methods are
fundamentally 3D extensions of the Sears function, long used to compute the lift response
of 2D airfoils to sinusoidal gusts. Later investigators (e.g., Ref. 50) extended this work to
infinite span wings immersed in an oblique gust field. Typically, such fields are
characterized by characteristic wavelengths or frequencies in the directions parallel and

56



perpendicular to the span of the wing (Fig. 6-2). The form of the pressure response
function for a rectangular planform is

Ap(x,y Kk ) = 2MpUW(K K ) G(x Kk k) ity ~kaU 6-8)

for any point (x,y) on the planform surface. Here, U is the local freestream velocity, p is
the free stream density, W is the Fourier decomposed vertical gust velocity, and G is an
airfoil response function. A modified form derived for use in rotors and propellers is
given by Amiet in Reference 46. Amiet's model has been applied both to rotors and to
main-rotor/tail-rotor interaction by Tadghighi (Ref. 47), and taking this approach to
pressure prediction here was one possible approach to the prediction of unsteady surface
pressures.

In general, linearized unsteady flow analyses evolve from the imposition of flow
tangency conditions on lifting surfaces, along with appropriate companion conditions on
conservation of circulation in unsteady flow and the Kutta condition. It was noted during
the course of this effort that an extension of the existing vortex lattice model would be a
candidate approach for chordwise resolution of loads due to the vortex passage;
moreover, implementation would be simplified since a time domain formulation could be
retained. The solution method used to find the bound circulation given this lattice is
similar to classical approaches described in the literature on lattice methods for fixed
wing and rotary wing applications (e.g., Refs. 51 and 52). Each of the quadrilaterals is
examined individually and a mean vector normal to the quadrilateral surface is
established as shown in Figure 6-3, which also shows the location of the 'control point
associated with the quadrilateral. Given this and the location and orientation of each of
the quadrilaterals on the blade, the velocity induced by the blade lattice on each of the
control points is determined, assuming unit strength for each quadrilateral. Then the
resulting velocity is resolved in the normal direction at each control point, yielding an

array of influence coefficients relating the vector of bound circulations, Y , to the
downwash, w, at each control point:

= A
W= 6-9)
where
A= i,j=1..0
a (6-10)

Here, n is the number of vortex quadrilaterals on the blade.

This array of coefficients is stored and the velocity induced at each control point
by the free stream, the blade rotation and deflection, and the rotor wake are summed and

resolved into 'normal-wash' velocities that are then used to find the vector Y of bound
circulation values on the disk as follows:

q; = (4 free stream) jt (a4 wake) j t (4 blade) j 6-11)
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defined as indicated.
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The wake-induced velocity computation of course includes the unsteady velocity due to
the vortex passage.

Wi=4j" 0] (6-12)

Yy=Alw (6-13)

The vector Y can then be used to solve for the load distribution on each segment of the
blade by applying the following expression for each the four edges of the vortex
quadrilaterals, i.e.,

Fix = pYj(Ajk X Sjk) %k » = L..n k= 1,2,3,4 (6-14)

Here, Sjk is the unit vector directed along edge k of quadrilateral j ; kjk is the

length of this side, while Y] is the strength of the quad. The reference velocity q for

the evaluation of forces is computed at the midpoint of the edge k. This velocity
contains all the components deriving from the free stream, the wake, the motion of the
blade, and the velocity induced by the entire vortex quadrilateral grid, though the
influence of the segment on which a particular point lies is deleted. The pressure
distribution over the surface is obtained summing the total force on each quad F; and
dividing by the area of the quadrilateral.

This approach was judged to be convenient and desirable in view of the pre-
existing lattice analysis within the RotorCRAFT/AA code, as well as the recent addition
of the unsteady near wake model described in the previous section. One potential
drawback to this is that conventional vortex lattice computations become computationally
expensive when applied to blade surfaces with a high density of chordwise vortex
quadrilaterals (e.g., ten or more). Since such densities are required to yield adequate
resolution of chordwise pressure distributions for WOPWOP, this can pose a fundamental
constraint, owing to the high computational cost of computing the wake-induced flow
field at each control point, as well as the inversion of the matrix A required to find the
circulation strength of each quadrilateral. These costs can be circumvented as follows:

- first, flow field reconstruction is applied to compute the wake-induced
velocities; this greatly reduces the number of full wake-on-blade velocity
evaluations required to complete a full revolution;

- second, the matrix inversion for the high density lattice is only performed over
one blade revolution during reconstruction once the wake configuration and
blade dynamics have already converged to the final result. In this way the
reconstructed airloads and surface pressures both gain improved resolution
without incurring the huge increase in CPU that would be associated with
utilizing the high density lattice throughout the original RotorCRAFT
calculation.

This approach has made practical calculations involving up- to 500 vortex quadrilaterals
distributed over the blade surface. This allows adequate resolution of the major features
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of blade/vortex interaction events, though further improvements are required, as will be
discussed in Section 7.

6.4 Corrections for Thickness

The thin surface analysis described above solves for the difference in upper and
lower surface pressure on the airfoil. However, it is of interest in some circumstances to
directly compute the pressure on these surfaces. This option has been provided through
the implementation of a 2D source panel program that computes the pressure
perturbations due to the local section profile. The panel code used is drawn from
Reference 53 and has been validated for several NACA profiles. The implementation of
this feature of the model is discussed in Reference 45.

6.5 Alternate Singularity Methods for Unsteady Compressible Blade Modeling

As part of the present effort a compressible unsteady lifting surface method was
examined for applicability to rotorcraft blade aerodynamics calculations. The point-
doublet method (Refs. 54 and 55), which is basically an acceleration potential method,
was studied. In its basic form this method uses aerodynamic doublet singularities with an
infinite flat wake. Previously, point-doublet had been used successfully to analyze
oscillating wings in subsonic and supersonic flow, though prior to this work, the
oscillation frequencies to which the method had been applied were relatively low.

To apply the method to rotor blades several issues needed to be addressed. In the
present CVC method, a prescribed near wake is used to assure the proper relationship
between the blade aerodynamics control points and the near field of the CVC trailing
vortices. When the blade is modeled by a vortex lattice of this type, the prescribed wake
models only trailed vorticity, and the shed wake is handled by a local quasi-two-
dimensional transfer function that includes the effect of prescribed wake truncation.
Compressibility is handled by a local Prandtl-Glauert stretching. The advantages of the
point-doublet method are that unsteadiness and compressibility are handled more
formally and consistently within the context of linear potential flow aerodynamics. To
apply point-doublet to rotor blades, the infinite wake must be replaced by a truncated
wake (Fig. 6-4) and the effects of blade rotation should be incorporated.

As part of the current effort, research was undertaken to apply the point-doublet
method to rotor blade aerodynamics. As a first step, a wing aerodynamics code using
point-doublet was implemented. Test cases with this wing code indicated some
significant shortcomings of the method originally described in Reference 54 in the
parameter range suitable for rotorcraft applications. Although the point-doublet method
is fairly simple in principle, there are several mathematical subtleties associated with the
derivation of the kernel function. In previous work the doublet distribution was first
integrated in the chordwise direction, thereby constructing the doublet equivalent of
horseshoe vortices. The resulting kernel function involves integrals that could not be
evaluated directly but were evaluated by a series expansion method. In addition, for
control points directly behind upstream doublets the integral exists only in the Mangler
sense. It was found that the series representation of the kernel function behaved poorly in
terms of convergence for higher oscillation frequencies and for high aspect ratio wings.
The high aspect ratio and higher frequency cases are in the range applicable to rotorcraft.
Apparently, this parameter range had not been previously tested, since the original
interest in the method was associated with low aspect ratio wings at relatively low
induced frequency (less than unity). Failure of the series representation of the kemel
function was associated with the need to take a very large number of terms in the series,
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extremely rapid divergence of the series, and difficulty in quantifying the parameter space
in which this failure occurs.

After considerable study, it was concluded that the above shortcomings of the
method could only be resolved by a basic reformation of the kernel function. The
original series approach responsible for the difficulties was replaced by a new treatment
in which a portion of the integrand in the kernel function representation was replaced
with a curve fit. This curve fit employed functions that rendered the integrand. This
undertaking amounted to a redevelopment of the entire point-doublet method. The new
kernel function has been extensively checked-out over a wide range of frequencies and
aspect ratios and behaves well everywhere. Because of the closed-form nature of this
new solution there are no issues of convergence or range of applicability. In addition, the
new kernel function expressions are of a fairly simple form, and are computationally very
efficient.

Because of a need to redevelop the entire method, it was not possible to
implement the point-doublet method into the present version of RotorCRAFT/AA.
However, the method is now ready for implementation in follow-on versions of the code.
If this implementation is undertaken, the results should be an improved treatment of blade
compressibility and unsteadiness, particularly in the tip region where the combined
effects of three-dimensional flow and compressibility are particularly pronounced..
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7.0 EXAMPLE PROBLEMS IN FLOW FIELD AND AIRLOAD RECONSTRUCTION
7.1 Summary of Test Database Configurations

To demonstrate the capabilities of the reconstruction analysis, several sample
calculations have been undertaken. Previous efforts in this direction (Ref. 3) focused on
correlating RotorCRAFT predictions with available wind tunnel and flight test data (Refs.
19-21). Results obtained from these correlation studies provided encouraging evidence of
the ability of the RotorCRAFT code to capture important features of vibratory airloads
and illustrated the importance of applying appropriately sophisticated models to the
prediction of wake-induced loading.

Since the completion of the baseline RotorCRAFT version, two comprehensive
data sets have become available that contain combined airload, noise, and structural data
on modern rotor designs. The first of these was drawn from tests carried out in the DNW
tunnel on a 1/5th scale model of the Boeing Model 360 main rotor (Ref. 56). This rotor is
a four-bladed design with -9.32 degrees of nonlinear twist as well as a planform that
tapers .321:1 outboard of 0.9R. Major characteristics of the planform and the test are
shown in Table 7-1. The tests covered a wide variety of flight configurations, but the
results made available for correlation work here included three test points: Test Point 63,
advance ratio 0.2 with a shaft angle of attack of 0 deg.; Test Point 66, advance ratio 0.2
with a shaft angle of attack of 4 deg.; and Test Point 193, advance ratio 0.3 with a shaft
angle of attack of -3.4 deg. The former two points simulate moderate advance ratio cases
in descent, with substantial BVI loading; the latter is representative of a high speed cruise
flight condition.

TABLE 7-1
Model Blade Geometry for the Boeing 360 Rotor

Radius (in.) = 60.619
Inboard chord (in.) = 5.285
No. blades = 4
Tip taper = 3206
Taper initiation (1/R) = 09
Cutout, /R = 268
Airfoils:
Tip /R=1.0 VR-15
r/R = 268 to .85 VR-12
Hover MT11p 0.636
Natural fregs.:
1st flap 2.62P
2nd flap 4.68P
3rd flap 7.52P
Ist torsion 5.25P

The second rotor test was described in References 57-59, and was also carried out
in the DNW tunnel. Here, a 1/5.73 scale model of the four-bladed Sikorsky UH-60A
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main rotor was tested. The planform and twist distribution are sketched in Figure 7-1
(from Ref. 59). The blade planform has 20 deg. of sweep outboard of 0.929R and a
nearly constant chord. Other major characteristics of the planform and the test are shown
in Table 7-2. The flight conditions tested featured a wide range from low advance ratio
in descent to high speed cruise. The cases tested here focused on advance ratios 0.15, 0.2,
and 0.3.

TABLE 7-2
Model Blade Geometry for the Sikorsky UH-60A Rotor

Radius (in.) = 56.28

Chord (in.), airfoil:
/R = .122to .466 3.625 SCI1095
/R = .49710.823 3.661 SCI095RS8
r/R = .854t01.0 3.625 SC1095

No. blades = 4

Cutout (r/R) = 0.122

Hover MT1p = 0.636

Tip sweep (deg.) = 20

Sweep initiation (I/R) = 0.929

Test computations that follow focus on integrated normal force and sectional
thrust predictions, first undertaken for cases without the application of airload
reconstruction, then with reconstruction in place to address the resolution of selected high
frequency loading events. Following this, predictions of noise will be described using the
interface with NASA's WOPWOP code.

7.2 Rotor Load Correlation Studies: Baseline Cases without Reconstruction

The initial calculations carried out here were designed to be representative of the
results that could be expected from the RotorCRAFT/AA code without the application of
airload reconstruction. For some of the cases studied, the additional time resolution
offered by the application of reconstruction is necessary to resolve certain high frequency
events in the rotor blade loading.

7.2.1 Boeing 360 Model Rotor

The test calculations undertaken for the BV360 rotor focused on two flight
conditions, corresponding to Test Points 63 and 66 for the experimental study described
in Reference 56. The actual test data was obtained with the aid of Boeing Helicopters
personnel. The major model inputs for this case were as follows:

- each blade was represented by a lattice of 34 vortex quadrilaterals distributed
across the span, with one chordwise. Sensitivity studies suggested this to be
adequate for resolution of predicted airloads consistent with the time steps
used in these initial computations.
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- the blade dynamics model included six dynamic modes, four for out-of-plane
bending, one in torsion, and a rigid lag mode. The computed natural
frequencies compared favorably with those shown in Table 7-1.

- the wake was discretized by using two turns of full-span CVC wake. A
maximum of fourteen CVC trailers was used for the Zone 1 wake (see Ref.
22), with default vortex core sizes (Ref. 3).

For the cases discussed, a time resolution of 48 steps per blade revolution was used.
Though four to five rotor revolution periods typically sufficed to allow the calculation to
converge, ten revolutions were used as a matter of course.

Figure 7-2 shows the comparison of measured and predicted normal force
coefficient for three radial stations (r/R = 0.8, 0.88, and 0.95) for Test Point 63, which
involves an advance ratio of 0.2, a thrust coefficient of 0.00694, and a shaft angle of
attack of 0 deg. The comparison of the data at r/R = 0.8 shows close agreement, while
the comparison becomes less favorable for stations farther outboard. Note, however, that
the shape of the predicted and measured loading is quite similar in all three cases. This
type of offset in loading suggests that it may be some gross aspect of the blade motion
that is not captured by the computation. It is clear, however, that an abrupt loading event
occurs in the third to fourth quadrants, and that the phasing and magnitude of this event is
well captured.

Figure 7-3 shows the comparison for the same advance ratio and thrust but for a
shaft angle of attack of +4 deg., a setting that promotes close wake interaction with the
rotor blade. This again is particularly evident in the fourth quadrant, where several sharp
spikes in loading are clearly evident. Smaller "ripples" in the loading appear in the first
quadrant. This type of feature is clearly a candidate for improved resolution through the
application of reconstruction. The 7.5 deg. azimuth step used here captures the gross
features of the unsteady loading but fails to reproduce these high frequency events. The
overall correlation with test data has been found to be quite good at this level of temporal
resolution.

Figure 7-4 presents snapshots at four different azimuths of the wake trailing from
one of the 360 model rotor blades for Test Point 66. These snapshots illustrate BVI
events that are likely causes of the high frequency loading ripples observed in the data
shown in the previous figure. The darker vortex filaments represent vorticity trailing
from the tip region of the rotor blade while the lighter filaments represent vorticity
trailing from the inboard wake. The inboard and outboard wake filaments have opposite
sign vorticity.

Figures 7-4a and 7-4c show typical BVI events associated with high frequency
loading response in the fourth quadrant of the data. These BVI occur when an individual
blade successively passes through the tip vorticity trailed from the preceding blades. The
parallel encounter shown in Figure 7-4¢ causes the large high frequency perturbation near
azimuth angle 315 degrees found in the prediction and the data.

Figures 7-4b and 7-4d show BVI events associated with high frequency loading
response in the first quadrant of the data. Figure 7-4d shows that in the first quadrant,
unlike the fourth quadrant, the trailed root vorticity contributes to the interaction as well
as the tip vorticity. Though the magnitude of the high frequency peaks are smaller in this
quadrant, (as seen in Fig. 7-3), the acoustic response has been found to be quite sensitive
to high frequency events occurring at this location in the blade azimuth. Therefore,
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b) Reference blade at ¥ = 135°
Figure 7-4. Top view of CVC wake for the Boeing 360 rotor, Test Point 66.
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accurate modeling of these first quadrant events is essential for effective prediction of
rotor generated noise.

7.2.2 UH-60A Model Rotor

For the case of the UH-60A model rotor, the computations carried out below
modeled the planform with 15 segments of piecewise linear twist to represent the
distribution shown in Figure 7-1. The rotor blade planform has a nearly constant chord
with the tip section outboard of the 92.9% radial station swept back 20 deg. The
computations used 46 vortex quadrilaterals on the blade span to capture the aerodynamic
loading, with one in the chordwise direction. The structural model of the blade included
16 finite elements using cross-sectional properties taken from Reference 59. A total of
six dynamic modes were included in the model. The presence of substantial tip sweep
caused the torsion and flap modes to be coupled. Thus, though the model nominally uses
four flap (out-of-plane bending) modes, two torsion modes, and one (rigid) lag mode, the
highest frequency "flap" mode and the two torsion modes are in fact coupled flap-torsion
modes.

Several operating conditions were examined to study the ability of
RotorCRAFT/AA to capture the major features of rotor blade loading. The three
conditions to be shown here are from runs 1126, 1137, and 1311. The flight conditions in
detail were:

- 1126: advance ratio 0.15, Ct/o = 0.071, shaft angle = 5.5 deg.
- 1137: advance ratio 0.20, Ct/o= 0.070, shaft angle = 4.0 deg.
- 1311: advance ratio 0.30, Ct/c = 0.071, shaft angle = 1.0 deg.

The hover tip Mach number for the rotor was 0.636 in each case.

The first computation focused on advance ratio 0.15. The correlation of airload
predictions with test data is shown in Figures 7-5a to 7-5c for three radial stations. With

the exception of the boundary between the second and third quadrants (¥ = 180 to
225 deg.), the overall correlation is very good. However, once again several of the high
frequency ripples in the first and fourth quadrant are not captured. The discussion later in
this section will illustrate the utility of reconstruction for this purpose.

Figure 7-6 shows the results obtained for the case of advance ratio 0.2 (Test Point
1137). Again, the major features of the rotor loading are captured around the azimuth,
with the exception of loading far around in the second quadrant. Also evident here is
some evidence of a possible role played by the inboard wake in determining unsteady
loads in the first quadrant. Careful correlation of wake visualization and blade loading
time history has established that the loading events in the first quadrant are due to
encounters with rolled-up vorticity trailing from both the tip and the inboard portion of
blades upstream of the interaction. The wake geometry evident in Figure 1-1 suggests
this type of feature. The ability to resolve such structures is one of the strengths of the
CVC wake model, a strength that has been noted in prior data correlation efforts (Refs. 12
and 60).

Figure 7-7 addresses Test Point 1311, a rotor at advance ratio 0.3. Here, an
important and apparently intractable issue becomes apparent. It has been noted in
previous studies of rotor airload correlation with the UH-60 data base (Ref. 48) that
predicted rotor blade loading at cruise conditions becomes inaccurate in part because of
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the inability to accurately predict the blade's torsional deflection. Moreover, it has been
shown that even given the measured airloads, industry-standard dynamics analyses do not
produce satisfactory predictions of torsional stresses or deflections for the UH-60A model
blade (Ref. 61). The plots in Figure 7-7 show clearly that the baseline prediction using
RotorCRAFT/AA shares this type of difficulty. However, if the predictions are modified
by prescribing the blade motion to the extent of specifying the torsional deflection, then
the overall agreement improves dramatically. Take particular note of the markedly
improved correlation at I/R = .965.

The ultimate source of this problem is at present unclear; it may be attributable to
a shared but subtle shortcoming in the dynamic models applied to date, or it may reflect
an undocumented or unappreciated feature of the fabrication or deflection of the UH-60A
wind tunnel model. In any event, recent flight tests on a full-scale UH-60 aircraft may
shed light on this issue.

It is of interest to note the effect of selective refinement of the wake model.
Consider, for example, the prediction of loading for Test Point 1126. There exists within
the RotorCRAFT/AA code an option to suppress the interaction of the wakes of each
blade on each other while retaining the effect of the wake of a given blade on other
filaments trailed from that blade; the flag used within the code to denote this expression is
NWAKES = 0. It was noted during the course of the investigation that for rotors at
moderate forward speed, it is important to use the full free wake calculation to ensure
maximum accuracy in the blade loading prediction. Figure 7-8 is included to illustrate
this point. It shows the considerable improvement in the magnitude and phasing of first
quadrant loading if NWAKES=1 (full free wake calculation) is used.

Figure 7-9 presents snapshots at four different azimuths of the wake trailing from
one of the UH-60A model rotor blades for case 1137, (advance ratio = 0.2). These
snapshots illustrate BVI events similar to those previously discussed for the 360 model.
Figures 7-9a through 7-9c offer excellent examples of the successive fourth quadrant
blade/vortex interactions responsible for the rippling effect seen in the data. Also evident
is the first quadrant BVI with both root and tip vorticity which is important when
predicting rotor unsteady loading. The oblique views in Figure 7-10 show the intensity of
the BVI associated with the root vorticity for this rotor configuration.

7.3 Airload Computations with Reconstruction

Several calculations were undertaken to illustrate the application of the analysis
with airload reconstruction in place. As is evident from the results already presented, the
low-resolution computations have captured many of the major features of loading of the
rotor blades. However, certain features of the high frequency loading characteristic of
close wake/rotor interaction have been missed in many of these cases. The application of
reconstruction provides the opportunity to capture these events.

The computations carried out typically used 32 to 48 time steps per revolution to

set up the low resolution solution. For N time steps, a smoothing core of (2n/N)R was
used on all wake filaments to set up the low-resolution velocity field, the point of
departure for the reconstruction calculations. The ANM procedures described in Section
2 were then invoked to recapture the flow field due to the smaller 'actual’' vortex cores
using temporal interpolation factors ranging from 8:1 to 20:1. This represents levels of
azimuthal resolution ranging from 0.94 deg. to 0.375 deg. The former is essentially the
minimum level of temporal resolution appropriate for BVI studies, while the latter is a
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b) Reference blade at ¥ = 105°
Figure 7-9. Top view of CVC wake for the UH-60A rotor, Test Point 1137.

82



\‘; 'V

¢) Reference blade at ¥ =217.5°

d) Reference blade at ¥ = 292.5°
Figure 7-9 (Cont'd). Top view of CVC wake for the UH-60A rotor, Test Point 1137.
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a) Reference blade at ¥ =0°

b) Reference blade at ¥ =180°
Figure 7-10. Oblique view of CVC wake for the UH-60A rotor, Test Point 1137.
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conservative choice for good resolution of the pressure transients that lead to BVI noise
in the far field.

It is difficult to confirm the CPU reduction associated with this level of temporal
interpolation, because of the extreme difficulty of running a direct calculation to
completion, even with 1.0 deg. time steps. However, the CPU savings estimated for 8:1
reconstruction is conservatively estimated at a factor of 100, and probably closer to 500,
while for 20:1 the CPU savings is probably an order of magnitude higher still.

7.3.1 Boeing 360 Model Rotor

As noted above, Test Point 66 for the Boeing 360 model rotor contains a
substantial BVI signature, both in the first and fourth quadrants. The present discussion
will focus primarily on the fourth quadrant events, since these are due primarily to
interactions of the blade with tip vortices. The treatment of advancing side blade
interactions and encounters with the root vortex system will be addressed later.

Figures 7-11 and 7-12 show the results of the application of 8:1 reconstruction to
this flight condition for a baseline run with 32 steps per blade revolution. Figure 7-11a
shows the comparison of the complete time history of normal force coefficient at the
/R = 0.8 station. The presence of large "background” loading levels tends to mask the
details of the high frequency loading component that is to be resolved by reconstruction;
in order to make this clearer, the same time histories were filtered by removing the first
ten harmonics of rotor frequency. This filtered signal allows a much improved view of
the high frequency components characteristic of blade/wake encounters. Figure 7-11b
shows the comparison of this portion of the signal, and it is evident that the agreement is
excellent in both magnitude and phase in the fourth quadrant. Repeating the same
exercise for the station r/R = 0.95 (Fig. 7-12) indicates that the phasing of the loading is
still very well captured, though here the magnitude of the loading is underpredicted by
30-40%.

Despite some quantitative errors, these results are judged to be very encouraging,
in that the high frequency events are occurring at very nearly the correct amplitude and
phase while no attempt has been made to "fine tune" the computation. The precise
magnitude of the loading is, of course, somewhat sensitive to details of the vortex core
modeling, i.e., the issues discussed in Section 4. The reconstruction procedure here was
set to use the baseline variable-core Scully model (described in Section 4.1) as the inner
solution. The next section discusses the application of the more advanced integral rollup
model to this problem, as well as issues relevant to improved resolution of first quadrant
loading.

7.3.2 UH-60 Airload Reconstruction

Correlation calculations similar to those carried out for the Boeing 360 were
executed for the UH-60A rotor, exploiting the reconstruction capabilities of
RotorCRAFT/AA. The same three flight conditions used in Section 7.2 will be
discussed, though here the emphasis will be on computing the aerodynamic loading with
high temporal resolution. Each of the three flight conditions modeled features some
events that require very small time steps for effective resolution, though this by itself
does not guarantee good correlation, as will be seen. A combination of good temporal
resolution of blade/wake interaction events and accurate spatial resolution of the vortex
core structure was required.
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The UH-60A Test Point 1126 (advance ratio = 0.2) will be used as an example
case for discussing the roles of refined temporal and spatial resolution in predicting
higher harmonic airloads and noise. The baseline "low resolution” solution is the
calculation discussed previously with 10 complete blade revolutions, 48 time steps per
revolution and 2.5 turns of free wake with a maximum of 14 vortex filaments spanwise at
any azimuth, This calculation was reconstructed with a multiplier of 20:1 to obtain a
"high resolution” solution with 960 time steps per blade revolution. This high multiplier
was chosen because a minimum of roughly 720 time steps per revolution (i.e., 0.5 degree
steps) are necessary in order to accurately predict noise generation. The low resolution
calculation took roughly 14 hours to complete on C.D.I's Iris workstation with the
subsequent reconstruction requiring an additional 2 hours. A direct calculation of 960
time steps without the use of reconstruction would optimistically require roughly 20,000
hours (2 years) of CPU to complete and is therefore not included here for comparison.

Figures 7-13 and 7-14 compare airload predictions obtained with the low
resolution and high resolution calculations at two spanwise locations near the tip. A
slight improvement can be seen in the correlation with the high frequency ripples in the
fourth quadrant. However, even with the extremely fine temporal resolution there is still
room for further improvement. Similar statements can also be made concerning the other
UH-60A Test Points 1137 (advance ratio = 0.2) and 1311 (advance ratio = 0.3),
especially with regard to high frequency events in the first quadrant that are not recovered
by simply increasing the time resolution. It was discovered that extremely fine spatial
resolution is also necessary in order to precisely model these high frequency events, i.e.,
it appears necessary to recover the exact location and strength of the rolled-up tip vortex
and to use the refined core model for the internal structure of the tip vorticity to properly
model the higher harmonic airloads. This level of refinement was expected to be
necessary in order to accurately predict noise generation, however, it is apparently also
required to recover the high frequency airload events present in the UH-60A data. Other
possible causes are being investigated, though evidence to date supports this conclusion
as will be discussed in the following section.

7.3.3 Application of Refined Core Models

In order to examine the anticipated need for a refined tip vortex core model,
consider that the calculations discussed above contained a maximum of 14 filaments
spanwise at any azimuth. Even when tightly packed, these filaments still have a core
radius of roughly 5%R near the blade tip based on the code's default core model. As
noted above, correlations with data using this default core model have been excellent for
numerous studies. However, the present effort is attempting to model very high
frequency events previously unstudied. A 5%R core radius near the blade tip would

correspond to an azimuth step of roughly 360*0.05/(2nt) = 3 degrees, far greater than the
0.5 degree accuracy required for predicting noise generation, though not unreasonable for
expecting to capture the high frequency airload events. While increasing the number of
filaments trailed from the rotor blade may improve results somewhat, this could still fail
to accurately model the structure of the rolled-up tip vorticity. In principle, the CVC
model could directly compute the vortex filament rollup through the use of an arbitrarily
large number of filaments and very small time steps. This is obviously impractical if
reasonable computational efficiency is to be retained. The most appropriate approach
within the context of the reconstruction method is to apply a refined core model like that
outlined in Section 4.

The core model described in Section 4 was thus implemented in conjunction with
reconstruction in order to improve the prediction of high frequency airloads and far field
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noise. This core model affords a more physically accurate representation of the internal
structure of the rolled-up vortex than simple smoothing core depicted in Eq. 4-1; a more
refined model is necessary when investigating these small time and spatial scales. Of
equal importance is the accurate determination of the location and strength of the rolled-
up tip vortex structure. This is obtained by using the centroid and strength of the tip
vortex elements in the low resolution calculation that are identified as those that roll up
into the tip vortex structure.

Figure 7-15 shows airload results for UH-60A Test Point 1126 for a 256 time step
per blade revolution calculation performed with the refined core model. The same
spanwise locations are shown as in Figures 7-13 and 7-14 to facilitate comparison. The
refined core model result was obtained with 8:1 reconstruction of a 32 time step per
revolution calculation. Unlike previous calculations, the high frequency event in the first
quadrant of the airload is now present in the prediction. Also the prediction of the fourth
guadrant higher harmonic airload appears to be improved, though slightly over predicted
in the r/R=.865 case. Figure 7-16 compares just the higher harmonic airloads (harmonics
above 10) between the low resolution, 48 time step calculation and the reconstructed, 256
time step, calculation with the refined core model. Clearly high frequency events absent
in the low resolution calculation are being recovered with the reconstructed case with the
refined core model. The correlation in both magnitude and phase clearly need to be
improved, but are nonetheless encouraging. These results suggest that indeed both
reconstruction and the refined core model are necessary to accurately model these high
frequency airload events.

7.4 Rotor Noise Correlations

As noted previously, the ultimate application of the software developed here is the
prediction of far-field noise. To this end, the RotorCRAFT/AA code contains a direct
interface with NASA's WOPWOP code. Upon completion of a RotorCRAFT/AA
calculation, the user has the option to continue directly into a WOPWOP calculation.
The input parameters required by WOPWOP are automatically channeled from
RotorCRAFT/AA and stored in the appropriate arrays and input subroutines. These
parameters include blade geometry information, blade motion information, run
configuration information, airfoil section profile information and the blade surface
differential pressure distribution as a function of chord, span and azimuth location. The
chordwise surface pressure distribution can be evaluated with the refined lattice solution
described in Section 6 or with a flat plate distribution. Absolute pressures on the upper
and lower blade surface are currently not available though could be determined using 2-D
look-up tables to evaluate the viscous contribution to surface pressure if desired. The
version of WOPWOP currently linked to the RotorCRAFT code is essentially that
described in Reference 15 with a few minor modifications that allow calculations for
secondary rotors (e.g., tail rotors) which rotate at different rates than the main rotor. (For
such cases, the surface pressure distribution is aperiodic.) The interface allows users
familiar with RotorCRAFT/AA but not WOPWOP to obtain acoustics predictions with
little effort.

The following two sections contain sample noise prediction calculations using the
interface between RotorCRAFT/AA and WOPWOP to demonstrate the progress achieved
to date. Calculations are presented for the same three UH-60A flight conditions
discussed previously: Test Points 1126 (advance ratio 0.15), 1137 (advance ratio 0.20)
and 1311 (advance ratio 0.3). Extensive acoustic pressure data was recorded as part of
the DNW rotor tests (Refs. 57-59). Acoustic pressure signals were recorded at
microphone locations shown schematically in Figure 7-17. In order to provide a
representative sample of the results obtained, computed acoustic pressure will be shown
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fo'r four locations: microphones 3, 6, 7 and 9 as shown in Figure 7-17. Since the
microphones do not measure mean pressures, the mean pressure has been removed from
the predictions in order to facilitate a proper comparison.

7.4.1 Low Resolution Noise Computations

The first demonstration calculations presented are WOPWOP calculations using
the results obtained from the low resolution, 48 time step calculations discussed in
Section 7.3. For these acoustics results, little difference was observed when using the flat
plate surface pressure distribution instead of the refined lattice distribution (see Section
6). Therefore, the flat plate distribution was used which greatly reduced CPU time.
Surface pressure information and blade motion information were channeled directly from
RotorCRAFT/AA into WOPWOP and also stored in external files so that WOPWOP
could subsequently be re-initiated for calculations at different microphone locations
without repeating the entire RotorCRAFT/AA calculation. Default values from
Reference 15 were used in most cases for WOPWOP input parameters. It was observed
that 256 calculation points per blade passage were adequate for the high resolution
acoustics calculation and 100 calculation points were adequate for the low resolution
calculation. It was also verified that results were not sensitive to increasing the
chordwise and spanwise surface pressure resolution beyond the default values.

Figure 7-18 shows the predictions for the low advance ratio case, Test Point 1126.
The results at all four microphones exhibit the same qualitative accuracy; the predicted
disturbance is similar in magnitude and very nearly in phase with the measured pulses,
though lacking the fine structure in the data. This is particularly notable in Figure 7-18d,
microphone 9, where the spiky signature in the data, indicating BVI noise, is noticeably
absent in the prediction. Figure 7-19 (Test Point 1137, advance ratio 0.2) shows broadly
similar results, though the under prediction of the down-pulse seen at the in-plane
microphone 7 is more pronounced. The final comparison shown in Figure 7-20 confirms
this pattern for Test Point 1311 (advance ratio 0.3). Though the high frequency BVI
loading is imperfectly captured, the overall size and shape of the pressure pulse
nonetheless emerges clearly in all three cases.

7.4.2 High Resolution Computations of Airloads and Noise

The correct resolution of BVI airloads and noise is a topic of prime importance
and was the focus of considerable computational experimentation during this effort. As
discussed previously with regard to airload reconstruction calculations, both high
temporal and high spatial resolution appear to be necessary to accurately predict high
frequency loading events and far-field noise. Therefore, the refined integral core model
as described in Section 4 was incorporated in the reconstruction approach to study its
effect on noise prediction. A discussion of airload predictions is first presented to
identify the BVI events responsible for the noise generation and the ability of the analysis
to model them.

Figure 7-21 shows the airload time histories at two radial stations for the UH-60A
at Test Point 1126; here, the basic reconstruction scheme with the Scully core inner
solution (Eq. 4-1) is used, with the core sizes selected using the default scheme described
in Section 4.1. The calculation used 20 filaments trailing from each blade at 32 azimuth
locations reconstructed with a multiplier of 30:1 to obtain 0.375 degree azimuth
increments in the final result. It is evident that the loading signature on the retreating side
is captured moderately well while the small but important BVI loading peaks on the
advancing side are missing. Using visualizations of the computed wake configurations
(e.g., counterparts to Fig. 7-9 for Test Point 1126), it was observed that the tip filaments
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were the likely source of the loading event around azimuth angle 45 deg., and that the
CVC trailers that composed the vortex bundle interacting with the blade at this point
exhibited a strong tendency to roll up, though the rollup appears incomplete at the time of
interaction. It was also evident that the events on the retreating side (which are also due
to tip vortex interactions) are caused by relatively "young" tip vortices (90-180 deg. of
wake age) while those on the advancing side are caused by "older” tip vortices (360-540
deg. of wake age) generated from previous rotor rotations.

Applying the refined vortex core model in addition to reconstruction gave the
results shown in Figure 7-22. The correlation on the retreating side of the rotor improves
slightly, but the event on the advancing side is still not predicted well. This calculation
was run with a relatively low value of a "vortex age parameter" which governs the age of
vortices that are considered to be candidates for amalgamation (or "bundling") with the
refined core model, as well as determining the strength and position of the bundled
replacement vortex. The fact that the effects of the refined core model are seen here on
the retreating side but not on the advancing side indicates that some element of the
structure of the group of filaments encountering the blade in the first quadrant has not
been fully captured with this low setting of the vortex age parameter. Increasing this
parameter leads to the result in Figure 7-23, which indicates that the measured loading
signature on the advancing side is now beginning to be captured (though some extraneous
loading events at other azimuth locations also appear).

Increasing the vortex age parameter in this manner in general leads to fewer
filaments being bundled into a replacement vortex at a given azimuthal age, but it also
leads to a shift in the position of the replacement vortex, owing to the assumption that this
vortex is positioned at the centroid of the bundled filaments. The change in predicted
loading observed here is attributed to this effect; though fewer filaments are bundled
together as the age parameter is increased - resulting in a weaker replacement vortex - the
position of the bundled filament appears to shift closer to the blade, leading to the
appearance of a loading event that resembles the measured signature.

In one sense, this result simply reinforces a lesson of both this and previous
investigations, namely that miss distance is very important in capturing BVI loading.
However, here only a subset of the trailed filaments from the generating blade will in
general participate in the close interaction, suggesting that the vortical structure that the
blade encounters is only partially rolled up. Qualitatively, the vortex wake geometry in
this interaction is similar to that shown in Figure 7-9 for Test Point 1137, with a group of
widely spaced filaments trailing from the blade in the second quadrant bundling loosely
together and encountering the blade in the first quadrant. Ultimately, it will be necessary
to obtain better resolution of the rollup process to enhance confidence in the quantitative
predictions, but the present results are judged to be a promising step in the direction of
illustrating the important mechanisms at work in this type of interaction.

To illustrate the effects of the refined vortex core model on high resolution noise
prediction, the surface pressure distributions from the computations above were used to
calculate the sound pressure level at microphone 9. The results are presented in Figure
7-24, with and without the refined core model. As is seen in this figure, using the refined
core model captures the spikiness associated with BVI noise found in the data, whereas
the spikiness is not predicted with the baseline Scully core model. Though there are still
magnitude and phasing discrepancies between the prediction and the data, this result is
encouraging and suggests that further improvement of the refined vortex core model
within the reconstruction scheme is required to successfully capture the impulsive BVI
noise signature.
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8.0 SUMMARY AND FUTURE WORK

The focus of this effort has been on developing and demonstrating methods for
applying reconstruction techniques using the CVC wake model for the prediction of high
resolution airloads. The reconstruction approach permits such calculations to be carried
out with dramatically reduced computation time compared to conventional direct
methods. The original formulation and implementation of flow field reconstruction for
main rotors and tail rotors has been extended to directly address the loads induced by the
interaction of the rotor with its self-generated wake. Demonstration calculations carried
out on realistic rotor configurations in both high- and low-speed flight have shown that
the current reconstruction procedure can produce high resolution predictions of the wake-
induced loading. Furthermore, these reconstruction calculations confirm and even exceed
early estimates of a reduction of from one to two orders of magnitude in CPU relative to
direct calculations.

During the course of this effort, considerable additional improvements have been
made beyond the implementation and testing of reconstruction. For example, new,
accelerated free vortex modeling methods have been brought to bear on the initial low-
resolution computations. Even though relatively large time steps are used in these
computations, the need to have adequate spatial resolution of the CVC wake (i.e., a
sufficient number of spanwise filaments and an adequate length of free wake downstream
of the generating blade) means that large numbers of vortex elements will still be in use,
causing a substantial computational burden. The fast vortex method applied here allows
reductions in CPU of a factor of three to five for typical rotor wake computations. An
alternative time integration scheme has also been employed in conjunction with code
options that limit the domain of full free wake computations to offer a further factor of
two to three reduction in CPU. In sum, an order of magnitude reduction in computation
time can be realized over and above that obtained through the application of
reconstruction.

Integral modeling of the rollup of the trailing wake from the rotor blades has
made possible improved representation of the vortex core. This new core model builds
on a flexible numerical matching technique that incorporates a more realistic core
structure into the swirl velocity profile. This type of modeling is an example of the
flexibility afforded by the reconstruction approach, which allows the analytical swirl
velocity profile to be matched into the CVC filament model in a consistent manner. This
implementation has also helped remove another layer of arbitrariness from the
representation of the vortex wake by introducing a swirl velocity profile with direct
physical motivation. While more general models for the core structure can and should be
developed, the present treatment is a useful "template” for such successor models.

The analysis of rotor blade aerodynamic loading has been enhanced through the
application of a selectively refined vortex lattice computation that provides improved
resolution of the surface pressure distribution on the airfoil for input to the WOPWOP
noise analysis. This refined lattice capability includes the effect of the unsteady near
wake through an indicial function model that implicitly builds in the spanwise shed
vorticity in the region immediately downstream of the blade.

Also, the final version of RotorCRAFT/AA has retained and in some cases
enhanced the dual rotor capability built into the baseline high-resolution flow field code
that was in hand at the outset of the effort. These capabilities have not been extensively
discussed in this document, since the present focus is on correlation work with main rotor
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airloads. However, the potential for dual rotor computations remains for application to
tilt rotor, tandem, and coaxial configurations, within the limitations discussed above.

As indicted in the correlation studies discussed in this report, the current version
of RotorCRAFT/AA has produced promising agreement with measured data, though
results vary from case to case. Low resolution computations of unsteady loading at
several radial stations for both the Boeing 360 and the UH-60 are close to the measured
values, even though the predictions are effectively filtered by the use of coarse time steps.
A similar assessment applies to the noise computations of the UH-60 test, where the gross
size and phasing of the acoustic pressure is reasonably well captured at several different
microphone locations.

High resolution computations with time steps as small as 0.375 deg. show the
benefits of applying reconstruction to these airload and noise calculations and the
importance of precise vortex core modeling for capturing the high frequency events
properly. The application of the new integral core model appears to contribute
substantially to the accuracy of the predicted unsteady airloads, in particular to begin to
capture the loading characteristic of first-quadrant BVI events. In addition, the
computations with both high time resolution and the enhanced core model in place
capture some of the appropriate physical features of BVI noise in the far field, though the
sensitivities of the predicted results to such issues as spatial resolution of the CVC wake,
the choice for modeling the surface pressures, and the detailed structure of the core have
yet to be fully determined.

A variety of near term tasks remain to be pursued during ongoing development of
RotorCRAFT/AA. Additional test calculations must be carried out to assess the
robustness and accuracy of using various combinations of temporal interpolation and
vortex rollup strategies to predict measured airloading. Investigations of the distinctive
role of the inboard wake should also be conducted, to assess its importance in
determining the unsteady loading encountered by the rotor. Dual rotor calculations
should be undertaken to document and evaluate the ability of RotorCRAFT/AA to
directly address tail rotor loading and noise. Also, as discussed in the previous section,
additional work must be done on analyzing the role of partially rolled-up vortical wakes
in generating crucial first-quadrant BVI loading. Finally, the costs and benefits of
complete closed-loop reconstruction - in which blade motion and loads are updated to be
fully consistent with the flow field generated by the high resolution inner solution -
should be assessed.

In summary, substantial improvements have been achieved in the analysis of
rotor/rotor-wake interactions through the development of the high-resolution CVC wake
model described in this report. The use of flow field and airload reconstruction in
conjunction with linear acrodynamic blade models and improved treatments of the vortex
core structure have demonstrated considerable capability in capturing unsteady rotor
loading that contributes to rotor noise. However, prediction of noise for tilt rotors and
helicopters for fully general flight conditions will require extending current capabilities to
adequately model rotor transonic aerodynamics and aeroelasticity, since the analysis of
the unsteady loading of rotor blades at high speed demands both refined structural
modeling and advanced analyses of computational fluid dynamics. Such an endeavor
constitutes the next logical step in the development of the computational tools now
available.
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