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Dynamic Constraints on CO2 Uptake

by an Iron-FertilizedAntarctic

Tsung-Hung Peng, W.S. Broecker, and H.G. OstIund I

Introduction

Because of the concern regarding the impacts of greenhouse

warming caused by rising atmospheric CO 2 content, consideration

is being given to the possibility that the power of the ocean's biologi-

cal carbon pump could be artificially strengthened. The linkage

between atmospheric CO 2 and marine biological activity Is the gas

exchange across the sea-air Interface and photosynthesis in the

photic zone of the surface waters. The organic material formed In

surface water would take up about I30 carbon atoms per phospho-
rus atom. Thus the effect of biological activity is to reduce the total

C02 (ECO 2) content in the surface water. The CO 2 partial pressure

(pCO 2) In surface ocean water is influenced, in rum, by the extent to

which photosynthesis reduces the ZCO 2 content of the water. The

magnitude of this reduction Is controlled by the efficiency with

which the limiting nutrients phosphorus tetroxide or phosphate

(PO 4) and nitrogen trioxide or nitrate (NO3) are utilized. In temperate

and tropical oceans the utilization efficiency Is high, and hence

pCO 2 reduction is close to maximum. By contrast, in the polar

oceans the utilization efficiency ls low, leaving plenty of nutrients

unused. Therefore, if a way can be found to increase the efficiency of
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nutrient utilization in these waters, their pCO 2 and in turn that for

the atmosphere could be reduced.
Recently (Martin, 1990; Martin et al., 1990b; Baum, 1990), Iron fer-

tilization in the Antarctic has been proposed as a potential means to

enhance the biological carbon pump for drawing down pCO2 in this

region and hence to absorb more CO2 from the atmosphere to reduce

the rising atmospheric CO2. Martin and his co-workers (Martin and

Fitzwater, 1988; Martin and Gordon, 1988; Martin et al., 1989,

1990a, 1990b; Martin, 1990) have shown in Incubation experiments

that plant growth rates in waters from polar regions can be acceler-

ated through the addition of trace amounts of dissolved Iron. Iron is

an essential mlcronutrient required for the metabolism of all forms of

life. Its primary function Is in cytochrome formation. Because Iron ls

one of the most particle-reactive elements, its concentration in the sea

is very low, with the lowest values occurring in regions like the

Antarctic which are most remote from the continental sources.

Extensive discussion and consideration have been given to the

biological aspects of Martin's Iron fertilization hypothesis. However,

very little attention has been directed to the potential dynamic con-
straints on CO 2 uptake resulting from the enhanced biological car-

bon pump in the Antarctic. Through discussion with J. Sarmiento,

we became interested in studying the response of atmospheric CO2

to a successful iron fertilization in the Antarctic. Our major concern

is the limitation by ocean dynamics of the potential for CO 2 removal.

We present here a tracer-calibrated advection-diffusion box model

which incorporates the rate at which surface waters in the Antarctic

Ocean are replaced by vertical mixing and advection. This replace-

ment process governs the rate of CO2 removal from the atmosphere.

In a hypothetical case where water circulation does not exist in

the Antarctic ocean, only an amount of CO2 equivalent to that

removed as a result of the Initial Iron fertilization would be

sequestered from the atmosphere. In such a situation the atmos-

phere and surface oceans of Antarctic and non-Antarctic regions

would rapidly reach a new equilibrium, leaving the atmosphere with

a CO 2 content only slightly lower than it had before Iron fertilization
was instituted. In order to achieve a significant reduction of the

atmosphere's CO2 content, the surface waters of the Antarctic must

be replaced frequently from below. Thus, the critical issue Is the

rate of vertical mixing in the Antarctic ocean.

Tracer Distribution and Dynamics

in the Antarctic Ocean

The distribution of anthropogenic tracers in the Antarctic pro-

vides important constraints regarding the surface water replacement
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rate. Measurements made as part of the Geochemical ocean Sec-

tions Survey (GEOSECS) program (see Figure 1 for station locations)

provided the basic data. The first piece of information these results

supply is geographic domain in which surface waters contain appre-

ciable amounts of unused NO 3 and P• 4. As can be seen from the

map In Figure 1, the ambient P• 4 level for Antarctic surface water

(during the summer months) of 1.6 I_mol drops off rapidly between

50°S and 40°S. We adopted 45°S to be the northern boundary of the

region where iron fertilization has potential. Table 1 shows the area

of the ocean in 5 ° latitude belts south of this boundary. The total
represents 16.8% of the global ocean.
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Figure 1. The upper left panel shows the location of the GEOSECS

Antarctic stations (black dots) and of four SAVE stations (crosses).

The other three maps show the surface water PO 4 concentrations

at these stations, the mean penetration depth of tritium at the time

of the GEOSECS surveys (see Broecker et al., 198_), and the ratio

of the water column inventory of nuclear testing radiocarbon to the

input of nuclear testing radiocarbon (see Broecker et al., 1985). The

dashed circle at 45°S marks the latitude where, on the average,
surface PO 4 reaches one-half its ambient Antarctic concentration.



80 ModelingtheEarthSystem

Table1: Oceanareasin5° latitude belts for the Antarctic region

Latitude Area % of Global

l_ange (10 6 kin2) Ocean Area

80os_75os 0.52 O. 1

75oS__70os 2.60 0.7

70os_65os 6.82 1.9

65oS_60os 10.30 2.9

60oS__55os 12.01 3.3

55os_50os 13.89 3.8

50oS_45os 14.69 4. I

Total 60.83 16.8

From Sverdrup et al., 1942.

The results of the tritium (3H), carbon-14 (14C), and silica (SIO2)

measurements for Southern Ocean stations are summarized in Fig-

ure 2. Two aspects are important. First, the tritium results allow an

estimate to be made of the extent of downward mixing into the ther-

mocline on the time scale of one decade (i.e., the time between the

tritium delivery and the GEOSECS surveys). As can be seen from

the summary in Figure 1, this depth ranges from as little as 150 m

in the deep Antarctic to as much as 600 m at 45°S. Second, as the

tritium profile at any given station is the mirror image of the dis-

solved silica profile, the far more complete silica data set can be

used to portray the upper ocean volume available for the uptake of
(text continues on p. 84)
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Figure 2. Plots of radiocarbon, tritium (solid circles), and silica (open circles in tritium plots) versus

depth for 24 stations occupied during the GEOSECS program. Following Broecker et al. (1985), an

estimate of the prenuclear radiocarbon profile is reconstructed, allowing the _nventory of bomb I 4c

{cross-hatched sections) to be calculated. The error of individual tritium measurements ranges from

0.5 T.U. for the Indian Ocean stations to 0.9 T.U. for the Atlantic and Pacific stations. The data are

from 6stlund and Stuiver, 1980; Stuiver and Ostlund, 1980; Stuiver and Ostlund, 1983; and the

GEOSECS atlas series.
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Figure 2, continued.
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Figure 2, continued.
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excess CO 2 on the time scale of one decade. Figure 3 summarizes

meridional sections of dissolved silica for the Antarctic.

The other important source of information comes from the 14C

results. Broecker et al. (1985) used measurements on samples

taken before the above-ground nuclear testing of the 1950s to esti-

mate the prenuclear A14C values for surface waters at the

GEOSECS stations at which 14C measurements were made. The 3H

measurements allowed an estimate to be made of the depth to

which significant amounts of bomb-produced 14C had penetrated at

the time of the GEOSECS surveys. With these two end points and a

knowledge of the shape of the 3H profile, the prenuclear 14C profile

for each station could be established. The area between the mea-

sured profile and the prenuclear prorde provided an estimate of the

water column burden of excess 14C. Broecker et al. (1985) showed

that these excesses have a distinct geographic pattern (see Figure

4). Higher-than-average inventories are found in the temperate

regions of the ocean and in the northern Atlantic. Lower-than-aver-
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Figure 3. Meridional sections of dissolved silica (_mol/kg) for the Antarc-

tic. At the time of the GEOSECS survey an excellent anticorrelation

existed between tritium and silica for each station (see Figure 2). The

large dots show the mean penetration depth of tritium for those stations

(numbers on top axis) where tritium measurements were made. This

diagram provides a feeling for the geometry of the volume available for

excess CO 2 storage.

age inventories are found in the equatorial zone, in the northern

Pacific, and in the Southern Ocean. These authors pointed out that

the areas of high inventory correspond to regions of downwelling

and the areas of low inventory to regions of upwelling. Further, they

attributed this correspondence to lateral transport of bomb-pro-

duced 14C from regions of upwelling to regions of downwelling.

Experiments conducted with the Geophysical Fluid Dynamics Labo-

ratory ocean model confirmed that such transports can explain the

inventory pattern (Toggweiler et al., 1989).

Broecker et al. (1985) went a step further and compared the inven-

tory at any given station to the net amount of bomb-produced 14C

invading that station from the atmosphere. This allowed the magni-

tude of the excess or deficiency to be quantified (see Figure 5). Their
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Figure 4. Bomb-produced 14C inventories as measured

during the GEOSECS, NORPAX, and 7"1"0 programs (as

summarized by Broecker et al., 1985). The dashed

lines show the amount expected at the time of the
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Figure 5. Map showing the ratios of observed bomb-testing radiocarbon inventories to those calcu-

lated were there no lateral transport _rom Broecker et al., 1985).

calculations neglected the dependence of CO 2 exchange rate on wind

speed. Were wind speed to be taken into account, the magnitude of
the deficiencies for the Antarctic stations would be Increased. The

reason Is that the wind speed and hence the CO 2 exchange rate over

the Antarctic is higher than the global average. At all latitudes In the

Antarctic, less bomb-produced 14C is present than entered the

ocean. The deficiencies range from very small at 45°S to as much as

90% of the total input closer to the Antarctic continent.

Together the 3H penetration depths and the bomb-produced 14C

deficiencies allowed Broecker et al. (1985) to obtain estimates of the

average upwelling and downwelling velocities for various regions of
the ocean. The values they obtained are summarized in Table 2. For

the Antarctic they require an average vertical eddy diffusivity of 3

cm2/s and upwelling velocities ranging from 9 m/yr (for the Indian

sector) to 31 m/yr (for the Atlantic sector).

Model of Antarctic and Non-Antarctic Oceans

Based on these tracer distributions and lateral transport mecha-

nism of Broecker et al. (1985), we devised a box model of Antarctic

and non-Antarctic oceans (Peng and Broecker, 1991a). It Involves

two, side-by-side, Oeschger et al. (1975) box-diffusion columns
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linked together by an overlying atmosphere and underlying deep sea

(see Figure 6). One column represents the Antarctic and the other

the non-Antarctic region of the ocean. Each column is capped by a

75-m-thick mixed layer. These mixed layers are underlain by 2000-
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Figure 6. Linked vertical advection-di.ffusion model used to evaluate the

response to iron fertilization of Antarctic surface waters. The upper panel

shows the case where the water upwelled in the Antarctic is transferred

laterally to the non-Antarctic surface ocean. The lower panel shows the

case where this upwelled water is converted to deep water and trans-

ferred directly to the model's deep reservoir.
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m-thick diffusive zones. Beneath the diffusive zone is a single well-

mixed deep reservoir. The area and volume of the Antarctic column

are taken to be 10% of the ocean total. We did not set the area of the

Antarctic at 17% because iron fertilization could draw the surface

water pCO 2 only during those months when sunlight is plentiful. In

the light-poor austral winter months the pCO 2 would be driven back

toward its prefertilization value by vertical mixing in the upper 100

m or so of the water column.

Consistent with the distribution of bomb radiocarbon, we set the

vertical eddy diffusivity in the Antarctic column at 3 cm2/s and that

in the non Antarctic column at 1 cm2/s. The upwelling flux in the

Antarctic column was set at 17.4 Sverdrups (i.e., an upwelling rate of

15.2 m/yr). Because we had no firm means to determine the fate of

the upwelled water, we adopted two limiting scenarios. In the first, all

of the water is transferred entirely to the surface of the non-Antarctic

column. In the second, it is transferred entirely to the deep reservoir.

We started our calculation with a steady state. The residence

times for PO 4 with respect to biological removal from the surface

reservoirs were set so as to yield 1.6 lamol PO4 in the surface water

above the Antarctic column and close to zero PO 4 in the surface

waters of the non-Antarctic column. The regeneration function for

falling organic debris was set to yield PO 4 vs. depth profiles similar to
the observed (we hasten to point out that the choice of this respira-

tion function has no influence on the result of the calculation of the

atmospheric CO2 response to iron fertilization). The atom ratio of car-

bon to phosphorus in the organic matter falling from the surface

mixed layer is 130. We then adjusted the XCO2/alkalinity ratio in the

model ocean to yield an atmospheric pCO2 pressure of 280 _atm.

To simulate a totally successful Iron fertilization, we perturbed

this steady state by greatly decreasing the residence time with

respect to biological removal of PO 4 from Antarctic surface water,

bringing its PO 4 content to near zero. In this simulation we contin-
ued the iron fertilization for 100 years, holding the PO 4 content of

the surface Antarctic water at zero over this entire period. The evo-

lutions of the vertical distributions of PO 4 and ECO 2 In the Antarctic

column are shown In Figure 7. As can be seen, while the water col-

umn integral of PO 4 remains unchanged, a bulge of excess ECO2

appears. This bulge represents the CO 2 transferred from the atmos-

phere and the non-Antarctic column to the Antarctic column (Peng
and Broecker, 1991a). The time trends for the pCO 2 in the two

ocean surface layers and in the atmosphere are shown in Figure 8.

In the lateral transfer scenario, the atmospheric CO2 content drops

ever more slowly as the century progresses, reaching an asymptote

about 15 _tatm lower than the Initial value. In the deep transfer sce-
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F_gure 7. Vertical distribution of PO 4 and ZCO 2 in the Antarctic column before
the onset of fertilization {dashed line} and I, 10, and 100 years after the

onset of fertilization for the scenario where water is upwelled at the rate of
17.4 Sverdrups and transferred to the deep sea.

nario the decrease continues, reaching about 34 _atm after one cen-

tury (Peng and Broecker, 199 l a). The reason for the difference is

that in one case the surface water from the Antarctic is transferred

to the surface of the non-Antarctic region, allowing the excess CO 2F
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to reenter the atmosphere, while in the other this water is removed

to the deep sea, isolating it from the atmosphere.

The question naturally arises as to what would happen if at some

point Iron fertilization were terminated. As shown in Figure 8, the
answer Is that any reduction in atmospheric C02 content accom-
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Figure 8. Model runs for an Antarctic upweUing flux of 17.4 Sverdrups.

The upper panel shows the case where the upweUed water is trans-

ferred to the surface of the non-Antarctic Ocean; the lower panel
shows the case where the upweUed water is transferred to the deep

sea. In each case totally successful iron fertilization is conducted for

I O0 years and then stopped. For the steady state conditions which

precede the onset of fertilization, the pCO2for Antarcttc surface
waters is nearly identical to that for the atmosphere.
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plished by the fertilization would be lost on more or less the same

time scale as it was gained.

As a sensitivity test, we have made runs for upwelling fluxes of

twice and half the 17.4 Sverdrups value for our best case scenario

and also for no advection. As summarized in Table 3, changes in

upwelling flux have little effect on the results for the lateral trans-

port endmember model. However, in the case of the deep transfer

endmember model, the greater the upwelling flux, the greater the

reduction of the atmospheric CO 2 content brought about by iron fer-

tilization. Clearly, the key question to be answered in the evaluation

of the dynamic constraints on the iron fertilization scheme is the

rate and extent of vertical transport in the Antarctic.

Effects on an Anthropogenically
Affected Atmosphere

To test the effects of iron fertilization on an anthropogenically

affected atmosphere, we introduced excess CO 2 Into the atmosphere

starting in 1800 and continuing through 1990. The input function of

fossil fuel production was based on a recent estimate (Marland, 1990).

The release of CO 2 from the perturbed terrestrial ecosystem was

derived from deconvolution (Peng, 1991) of the time history of atmos-

pheric pCO 2 based on pCO 2 measurements of air bubbles In ice cores

(Neftel et al., 1985) and of air samples (Keeling et al., 1989). The

release scenario of the business-as-usual case for the next century

was taken from a report of the Intergovernmental Panel on Climate

Change (IPCC; Houghton et al., 1990). The CO 2 emission between

1800 and 2100 is shown in Figure 9. Before introducing anthro-

pogenic CO2, the steady state of our ocean-atmosphere model with

pCO 2 of 280 l_atm was the same as described earlier. Shown in Figure

l O is the atmospheric pCO 2 for the next century resulting from the

Table 3: Summary of pCO 2 after 100 years of iron fertilizaiton

Experiment Upwell pCOz pCO2 pCO2 pC02 ApCO 2
No. Rate initial final final final Atm.

Atm. Atm. non-Ant. Ant.
(sv) (_atm) (_atm) (_atm) (_atm) (_Atm.I

I 34.8 280.5 265.5 270.8 215.2 -15.0
2 17.4 279.7 265.0 268.5 232.2 -14.7
3 8.7 280.0 263.2 265.6 240. I -16.8
4 0.0 284.3 262.2 263.2 248.2 -22.1
5 8.7* 283.1 255.2 256.8 233.4 -27.9
6 17.4* 286.0 251.6 253.7 221.7 -34.4
7 34.7* 291.0 244.0 246.8 200.7 --47.0

*The water upwelled in the Antarctic is converted to deep water.
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Figure 9. Time history of CO2 emission for the period between 1800 and
1990 combined with the IPCC business-as-usual C02 release scenario for

the period between 1991 and 2100.
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Figure I O. Atmospheric pCO2 from Mauna Loa Observatory measurements
(I 970-1990) combined with the IPCC business-as-usual C02 emission
scenario (1991-2090). The solid curve is the predicted atmospheric pCO 2

without iron fertilization, and the dashed curve is the one with iron fertiliza-
tlon in the Antarctic Ocean. Standard dynamic conditions of 17.4 sv

upwelling flux and deep transport of upwelled water are used for simulation.
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IPCC CO 2 release scenario without iron fertilization in the Antarctic

Ocean. An upwelling flux of 17.4 sv is used, and the upwelled water is

transferred to the deep reservoir. The result of a successful iron fertil-

ization to reduce the atmospheric pCO 2 under such dynamic condi-

tions is also shown in the same figure for comparison. The difference

between these two curves represents the net effect of iron fertilization.

We made a series of sensitivity calculations with various

upwelling fluxes to estimate the amount of reduction In atmospheric

pCO 2 with 100% successful Iron fertilization In the Antarctic. As

shown in Figure 11, the lateral transport scenario is not sensitive to

upwelling fluxes, with reductions in the range of 20 to 30 laatm for

the time in the next century when the atmospheric pCO 2 reaches

800 ktatm. This reduction corresponds to only about 3% of the

atmospheric CO 2 content. But, in the case of deep transport, the

reduction is very sensitive to upwelling fluxes. The reduction ranges

from 6% of the atmospheric pCO 2 for an 8.7-sv upwelling flux to
12% for a 34.8-sv upwelling flux, with the best case of 8% reduction

(or 64 jaatm) for a 17.4-sv upwelling flux.

Similar model simulations of the possible effects of iron fertiliza-

tion in the Southern Ocean on atmospheric pCO 2 have been made

by Joos et al. (1991a, 1991b). Their model ls a high-latitude

exchange and low-latitude interior diffusion advection four-box

model calibrated with bomb 14C distribution. The Antarctic Ocean is

represented by two well-mixed boxes, one for the surface and one

for deep water. They obtained a reduction of 107 laatm for the IPCC

business-as-usual release scenario under their standard dynamic

condition after 100 years of successful iron fertilization in the

Antarctic. Their sensitivity tests showed that the most Important

factors affecting the magnitude of CO 2 reduction are the area of fer-

tilization and the amount of future CO 2 emissions.

The lower estimates of atmospheric pCO 2 reduction In our simu-

lations as compared with those of Joos et al. (1991a, 1991b) have

been criticized as resulting from the failure of our model to use a

larger surface area for fertilization (i.e., 16%, instead of 10%). How-

ever, as reported by Peng and Broecker (1991b), a reduction of 71

t_atm after 100 years of successful iron fertilization is estimated if

the total Antarctic surface area is taken to be 16% of the global

ocean area. This estimate is not significantly different from a reduc-

tion of 64 laatm In the standard case. The reason for such a small

difference is that the upwelling flux of 17.4 sv is kept constant In

spite of increased surface area. It was the upwelling flux rather than

an upwelling rate that was constrained by Broecker et al. (1985) In

their analysis of the bomb 14C data. The increase In surface area

causes the upwelling rate to drop from 15.2 to 9.5 m/yr.
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More elaborate model simulations were made by Sarmlento and

Orr (in press) using a three-dimensional ocean carbon cycle model

based on a general circulation model (GCM). A reduction of 72 t_atm
in the next 100 years was obtained for a successful iron fertilization

in the Southern Ocean (with 16% surface area) when the anthro-

pogenic CO 2 emission followed the IPCC business-as-usual sce-

nario. It is Interesting to note that our estimate is comparable with

theirs, although there are large differences in the modeling
approaches.

Effects of Seasonal Iron Fertilization

Light availability certainly limits photosynthesis in the Antarctic,

especially during the winter months. To gain some Idea regarding

the Impact of this limitation, we have introduced seasonality into

our model. It involves turning off the impact of iron fertilization for a

number of months each year. We do this without changing the

model's dynamics: i.e., upwelling and vertical mixing continue

unchanged throughout the year. Shown In Figure 12 are the result-

ing surface water PO 4 and pCO 2 cycles for the first four years after

the onset of fertilization for the scenario involving 17.4 sv upwelling

coupled with transport to the deep sea. The period of totally suc-

cessful fertilization is set at eight, four, and two months. These

results depend strongly on our choice of PO 4 residence time in the

mixed layer during the period of fertilization and on the choice of

vertical eddy diffusivity. Our choices lead to a rapid drawdown of

phosphate content of the mixed layer after the onset of fertilization,

but much slower rise when fertilization ceases. Under these circum-

stances four winter months of no productivity caused only a small

reduction in the long-term CO 2 drawdown (see Figure 13). Even

when the period of fertilization was reduced to only two months per

year, two-thirds of the atmospheric CO 2 drawdown achieved for the

full-year scenario occurred (see Figure 13).

It is tempting to conclude from this that were iron added for only

two months of the year, two-thirds of the maximum possible atmos-

pheric drawdown would be achieved. We urge caution in this regard;

our result depends very strongly on the ratio of the PO 4 drawdown

time to the water replacement time for the mixed layer. Were a less

favorable ratio to be adopted, the turnoff of iron fertilization would

have more nearly a proportional impact. Our choice of one month

for the phosphate drawdown time is just a guess. As our surface

water replacement time is chosen to match the vertical distribution

of tritium about one decade after the cessation of large-scale bomb

testing, it has little bearing on the actual rate of water exchange
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Figure 12. Seasonal cycles of surface water pCO 2 and PC)4 in the Antarctic

with a productive season of eight months (solid line), four months (long
dashed line), and two months (short dashed line). Iron fertilization is

assumed to work successfully during the productive season. The VO 4 cycle

is plotted in the upper panel for the first four years after the fertilization,

and the pCO 2 cycle is plotted in the lower panel.
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Figure 13. Reduction of pCO 2 in the atmosphere and in the Antarctic surface

water resulting from seasonal iron fertilization. A two-thirds total reduction

in the atmosphere can be achieved by two-twelfths yearly fertilization with
iron in the Antarctic Ocean.

between the mixed layer and the underlying thermocline. Further,

the actual vertical exchange has a strong seasonality. Winter cooling

thickens the mixed layer, while summer warming and sea Ice melt-

ing thin it. The only valid conclusion to be drawn from our seasonal-

ity exercise is that careful attention should be given to seasonality

in any plan for iron fertilization. The Interplay of changing light

availability and vertical mixing with the timing of Iron addition could

be used to optimize the amount of atmospheric CO 2 drawdown per
unit fertilization cost.

Implications of SAVE 14C Results

The real power of transient tracer data is seen when the spatial

distribution ls used In combination with temporal evolution. Unfor-

tunately, no more recent tritium and 14C data sets are available.

However, 14C data have recently become available from four stations

occupied during the South Atlantic Ventilation Experiment (SAVE)

survey of the South Atlantic (see Figure 1 for locations). Two of these

stations are close to GEOSECS station 68 at the northern fringe of

the Antarctic in the Argentine Basin. While the depth profiles of ] 4C

at these stations are quite different than that at station 68, when

14C is plotted against silica absolutely no difference is seen (Figure

14). This is puzzling because the silica distribution is at steady state
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Figure 14. Comparison of depth proJiles for silica and radiocarbon and

of silica vs. radiocarbon trends for GEOSECS station 68 (December

1972) and nearby SAVE stations 184 and 187 (December 1988). As can
be seen, the relationship between radiocarbon (a transient) and silica

(at steady state) shows no change over this period of time. The 1988
silica results are from the SAVE preliminary data report series and the

1988 radiocarbon results are from Ostlund, 1990.

while the 14C distribution is evolving. The other two recent stations

lie within the Antarctic. As can be seen in Figure 15, again no

change in the 14C-silica trend is seen over a 16-year period. One

gets the idea that the vertical distribution of bomb-produced ]4C

adjusted to a transient steady state on a time scale of a decade and
that as the surface water A14C value went up and then came back

down again (see Figure 16) in response to the changing atmospheric

A14C, the Antarctic A14C-silica trend rotated first toward a higher

A14C value and then back down again, reaching by chance its

December 1972 value once again in December 1988 during SAVE

survey.
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Figure 15. Relationship in the Antarctic between radiocarbon and silica for

the GEOSECS Atlantic stations, three of the GEOSECS Indian stations, and

two SAVE stations. Despite the passage of 16 years from late 1972, when

the GEOSECS Atlantic samples were taken, to early 1989, when the SAVE

samples were taken, no evidence exists for a change in the radiocarbon-

silica relationship. Only the GEOSECS station (82) which is the nearest to

the Weddell Sea departs from the ambient trend. It should be kept in mind

that prior to bomb testing no waters in the Antarctic had 14C values above

-75%o. The GEOSECS data are from sources mentioned above and the

SAVE data are from the preliminary shipboard measurement report and
from Ostlund, 1990.

As can be seen in both Figures 14 and 15, no evidence exists for a

buildup of bomb ]4C in waters with more than about 80 llmol of sil-

Ica. The ]4C content of these waters lies close to the average (see

Figure 17) obtained by GEOSECS for deep waters of the Antarctic

(potential temperatures in the range of 0 to 1°C). Hence, little excess

CO 2 entering the Antarctic as the result of iron fertilization can be

expected to reach waters with more than 80 _mol of silica on a time

scale of 25 years. A sense of magnitude of the volume of water lying
above this silica horizon is shown in Figure 3.
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Figure 16. Time trends for the surface water 14C computed using the

Broecker et al. (I 985) column models for three sectors of the Antarctic.

The times for the GEOSECS and SAVE sampling are marked with hashes.
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Figure 17. Summary of GEOSECS results on deep water samples from

the Antarctic (Ostlund and Stuiver, 1980; Stuiver and Ostlund, 1980;
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Conclusion

While our ability to model what goes on in the Antarctic remains

in a primitive state, the evidence we have certainly waves a red flag

with regard to optimistic claims (see Baum, 1990) that Iron fertiliza-

tion of the Antarctic, even if biologically successful, will significantly

draw down the CO 2 content of the atmosphere. Interest in this pos-

sible Intervention scenario clearly adds yet another item to an

already long list of reasons why we should redouble our efforts to

obtain extensive transient tracer data for the Antarctic.
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