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Abstract

The reference time scale for all scientific and technologic applications on the Earth, the

Universal Coordinated Time UTC, must be as stable, reliable and accurate as possible. With

this in view the BIPM and before it the BIH, have always calculated and then disseminated

UTC with a delay of about 80 days. There are three fundamental reasons for doing this.

i) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to

be collected and for errors to be eliminated.

ii) Changes in clock rates can only be measured with high precision well after the

fact.

iii) The measurement noise originating in time links, in particular using Loran-C, is

smoothed out only when averaging over an extended period.

Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100

days and corresponded to an Allan deviation oy(_) of about 1,5xl0 14 when compared to the

best primary clock in the world, the PTB CS2.

For several years now, a predicted UTC has been computed by the USNO (Washington D.C.,

USA) through an extrapolation of the values [UTC - UTC(USNO)] as published in deferred

time by the BIPM. This is made available through the USNO Series 4, through the USNO

Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor

predictability of the available clocks, and the intentional SA degradation of GPS signals, the

real-time access to this extrapolated UTC has represented the true deferred-time UTC only

to within several hundreds of nanoseconds.

Recently, there have been dramatic improvements in several domains.

i) New commercial Hewlett-Packard caesium clocks and active auto-tuned hydrogen-

masers, both presenting a remarkable frequency predictability, are now available in

timing centres.

ii) The widespread use of GPS in common-views, combined with improved

performances of contributing clocks, has improved the stability of UTC, namely Oy(,)
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to the order of 8x10 "15 for averaging times of 40 days, and this could also help to

decrease the delay of access to UTC.

iii) The SA is now overcome both for GPS common-views and for real-time access to

GPS time. In addition, other time dissemination methods, which are not intentionally

degraded, are now very promising.

iv) Modern computer capability and improvements in data communication capability

allow quicker and more efficient automatic data transmission.

By taking advantage of these advances, it may soon be possible to obtain a real-time

estimate of UTC, provisionally entitled UTCp, from the lpps output of a commercial clock

maintained at the BIPM. In this project the BIPM clock is steered to a software time scale

computed by combining present data with extrapolated frequencies, relative to UTC, from a

small ensemble of highly predictable clocks maintained in several timing centres. In this way

and with definitive computation of UTC performed every month, it seems feasible to

maintain a representation of UTC to within + 60 ns (20 ns standard deviation).

The physical clock which delivers UTCp will be used to measure timing signals, such as those

from GPS, GLONASS, INMARSAT and a hydrogen-maser on board the Russian satellite

Meteor 3M. Anyone measuring those timing signals could then link local time scales to the

estimated UTC, in near real-time, by simple data communication with the BIPM where time

corrections between timing signals and UTCp would be continuously available.

We are now studying in detail how all this might be done with a view to carrying out some

pilot experiments.

INTRODUCTION

It is anticipated that rapid advances in telecommunications will yield very high rates of data

transport. The advent of the Synchronous Digital Hierarchy (SDH) and the Synchronous

Optical Network (SONET) requires the best of clock technology and transmission systems.

This growing need for synchronism within the telecommunication community was expressed

recently by Dr Ghani Abbas, System Design/International Standard Manager of a m_or

telecommunications company in the UK, who said:

"New technologies, such as SDH, SONET ..... are being introduced into the telecom

transport networks. These technologies require good quality synchronization as well

as better short term clock stability. In order to meet the synchronization needs of

these new emerging technologies, a convenient tie to UTC to better than 100 ns is

required. In the long term this requirement will be a global one."

The fundamental role of UTC is to be the ultimate reference time scale for any application on
the Earth. Thus UTC must be as stable, reliable arid accurate as possible. This can be

accomplished correctly only if UTC is computed in deferred-time [1].
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To be reliable, UTC is based on a weighted average of the readings of about 200 clocks

spread world-wide in national timing centres. To compute this average the BIPM needs

several weeks for data collection and verification. In addition, the need for long-term

stability calls for the observation of each participating clock for a time sufficient to detect

any frequency change with high precision and to treat it correctly. Since the beginning of the

UTC computation, the length of the period of observation has always been two months. This

averaging time is sufficient to average the measurement noise to be less than the clock noise.

The measurement noise is dependant upon the time link. In particular, it is essential to

average data using Loran-C as the time comparison method, for at least two months in order

to reach the stability of some atomic clocks.

Until mid-1992, the ultimate stability of UTC was reached for averaging times of about 100

days and corresponded to an Allan deviation oy(O of about 1,5x10 14 when compared to the
best primary clock in the world, the PTB CS2.

Conformity of the UTC scale unit with the SI second on the rotating geoid is obtained

through frequency steering after comparisons with the best primary frequency standards,
the PTB CS1 and CS2. Twelve such corrections, each of order 0,5x10 14, were applied

between 1989 and mid-1992 in order to ensure a UTC accuracy of 2x10 -14 [2].

The deferred-time access to UTC described above does not satisfy the needs of the

telecommunication community. The sole possibility is to provi_ie a prediction of UTC in real-

time and to make it readily available.

For several years now, a predicted UTC has been computed by the USNO (Washington D.C.,

USA) through an extrapolation of the values [UTC - UTC(USNO)] as published in deferred

time by the BIPM [3]. This is made available through the USNO Series 4, the USNO

Automated Data Service, and GPS signals. Due to the instability of UTC and mainly to the

intentional SA degradation of GPS signals, real-time access to this extrapolated UTC

represents the true deferred-time UTC only to within several hundred of nanoseconds.

The aim of this paper is to show that it may be soon possible to provide a better real-time

prediction of UTC thanks to recent significant advances in timing technology. It also explains

the actions already taken, and shortly to be taken by the BIPM with the help of several

national timing laboratories.

The first section of this paper shows the improvement of UTC stability during 1993. Further

steps, in particular a reduction in the time of access, will be taken from the beginning of

1994. In the second section, we show how associating the improved qualities of UTC, which

remains a deferred-time scale, with the improvement in available clocks and data transfer

systems makes it possible to obtain a good real-time prediction of UTC. It is based on

present data and extrapolated frequencies, relative to UTC, from a subset of the clocks

contributing to UTC with a very good time predictability and with long-term frequency

stability of less than lxl0 -14. This prediction of UTC, computed every few days, is used to
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steer a physical clock, maintained at the BIPM, the output of which can be measured, in real-

time, against other time scales. The time scale corresponding to the physical lpps output

from this BIPM clock is named UTCp. We anticipate that UTCp will represent UTC within +60

ns (20 ns standard deviation). In the third section we explain how UTCp could be made

available to users.

1. IMPROVEMENT OF _ STABILITY

The important changes which have occurred in time metrology since 1992 are the widespread

use of GPS in strict common views and the maintenance in timing centres of clocks with high

predictability such as auto-tuned active hydrogen-masers and the new caesium clocks from

Hewlett-Packard.

1.1. GPS time comparisons

In September 1993, 38 of the 45 timing centres keeping a local representation of UTC,

UTC(k), were equipped with GPS timing receivers. Most of them follow the international

tracking schedule published by the BIPM and regularly send their GPS observations to the

BIPM. This means that nearly all time links involved in the TAI computation are now

obtained by one of the most accurate time transfer methods available and undergo a unified

treatment. The international GPS network is organized as shown in Figure 1: it features local

stars on a continental scale and two long-distances links, OP-NAOT and OP-NIST, chosen

because of the excellence of the GPS antenna coordinates of these three laboratories and

also because measured ionospheric delays are routinely available at locations close to these

sites.

The current computation of GPS time comparisons incorporates a number of refinements.

For most links the BIPM uses strict common views (synchronization within 1 s) in order to

remove the clock-dither noise brought about by SA [4]. There is then no impediment to wide

use of Block II satellites. In addition, a major source of error is reduced thanks to the

accurate knowledge of GPS antenna coordinates and their world-wide homogenization in the

ITRF [5]. Since October 1993, results obtained for both of the long-distance links have been

corrected in deferred time for precise satellite ephemerides.

It appears that the precision of one single measurement [UTC(kl) - UTC(k2) ] is now about 2

ns for short distances and 8 ns for long distances [6]. An important consequence is the

improvement of the short-term stability of the resulting time scale. This can be seen in

Figure 2 which compares the Allan deviations Oy(¢) of the free atomic time scale EAL, relative
to the PTB CS2, for two different periods, mid 1986-mid 1988 and 1992-1993 (UTC is deduced

from EAL by frequency steering and addition of an integer number of seconds, UTC stability

is thus very close to EAL stability except for very long averaging times). For the data

covering the period 1992-1993, the measurement noise brought about by time comparison

methods is already completely smoothed out for averaging intervals of 10 days, where
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formerly 40 days were required. The real qualities of the contributing clocks thus appear for

short averaging intervals, • = I0 days, which should allow reduction of the basic interval of

computation.

1.2. Hydrogen-masers and new commercial caesium clocks

A dramatic improvement in the stability of the clocks contributing to UTC has recently been

observed. In particular, active hydrogen-masers with specific auto-tuning modes and caesium

clocks of the new HP 5071A design have been introduced in the computation, nearly all of

them with the maximum weight authorized by the BIPM algorithm [1]. Table 1 indicates the

evolution of the composition of the UTC ensemble from the end of 1991 until mid-1993.

i) The percentage of clocks at upper limit of weight increased from 2196 to 2896. This

leads to a more efficient averaging of individual drifts and thus reduces the residual

drift of the scale. It also helps to maintain its accuracy and avoid the need to apply

steering corrections.

ii) Hydrogen-masers contribute about 12%. Their auto-tuning modes greatly reduce

their natural tendency to drift and improve their long-term stability. For instance, the

Russian hydrogen-masers kept by the PTB (CHI-75 from Kvarz) present frequency

drifts of order lxl016/day and the N5 unit (Sigma-Tau) from USNO has no significant

drift.

iii) At mid-1993, data from 36 HP 5071A clocks were reported to the BIPM, nearly all

of them entering with the maximum weight. This results from their excellent stability

as shown in Figure 3 (data kindly transmitted by Dr G.M.R. Winkler from USNO).

They present a flicker floor of order 6x10 15 for averaging intervals from 20 to 60

days. It is anticipated that about 50 HP 5071A will participate to UTC, each with

maximum weight, in January 1994.

The widespread use of GPS and the introduction of clocks with remarkable predictability

have already greatly improved the stability of UTC. Using data from the beginning of 1992,

the best stability of EAL and UTC, compared to PTB CS2, is characterized by an Allan

deviation Oy(O of 8x10 "15 and is reached for 40-day averaging intervals.

1.3. Further improvement of UTC stability and accuracy

The BIPM has already taken action to improve the stability of UTC still further. From

Circular T 72, corresponding to January 1994, UTC will be computed on the basis of clock

observations taken over 30 days rather than 60 days. This is now possible for the reasons

described in sections 1.2. and 1.3.: wide use of GPS and good stability and predictability of

contributing clocks.

The new algorithm to be implemented in 1994 for computation of UTC will be described

elsewhere [7]. Tests carried out with real timing data for the years 1992 and 1993 show an

improved stability of the 'one-month' time scale, when compared to PTB CS2, for all

averaging times (see Figure 4). The best stability Oy(O is reached for z of order 30 days. Its
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value, of order 6x10 dS, probably reflects the instabilities of both UTC and PTB CS2. The part

of instability due to UTC alone can thus be estimated to be of order 4,5 10 dS.

Another important consequence is the reduction of the delay in access to UTC. Nowadays,

with a basic sample duration of two months and the slow delivery of some data, still

reaching the BIPM via conventional post, the definitive results of UTC for month (n-l) and

(n) are given on the 28th of month (n+l). With the wide use of efficient electronic mail, it

should become feasible for the BIPM to obtain timing data in the form of files with pre-

determined format. This should save time, in particular it will allow automatic data sorting

and checking. The BIPM is already working hard on this point, encouraging all contributing

laboratories to use a uniform data file format and to respect the deadline for making them

available. The present objective of the BIPM is to produce the definitive results for UTC for

month (n-l) on the 20th of month (n), before the end of 1994.

In future, it is anticipated that UTC may become a simple average of commercial HP 5071A

and hydrogen-maser units, with specific frequency prediction modes for each clock type. This

should improve both UTC stability and accuracy. Indeed, one HP 5071A unit has a

manufacturer stated accuracy of order lx10 d2, but the actual performance has been shown

to be much better: an ensemble of 36 HP 5071A clocks kept at USNO presents an average

frequency of 3x10 d4 relative to UTC, with an error bar, on the average frequency, of 2,5x10

14 [results kindly transmitted to the BIPM by Dr G.M.R. Winkler, USNO]. This suggests that

ensembles of a large number of HP 5071A units can provide absolute frequency information

that is competitive with the performance of the best current laboratory standards.

2. REALIZATION OF A REAL-TIME PREDICTION OF UTC, UTCp

2.1. Principle of realization

The real-time prediction of UTC, provisionally entitled UTCp, is the time scale corresponding

to the lpps output issued from a physical clock which is maintained at the BIPM. This

physical clock is steered on a software time scale, provisionally entitled UTCs, computed at

the BIPM as the optimum prediction of UTC from past knowledge of UTC combined with a

small amount of clock data available with a short delay. The block diagram for the

realization of UTCp is given in Figure 5.

An atomic time scale, UTCs, is computed from a small ensemble of clocks as a simple average

of their readings. To produce an optimum prediction of UTC with a short time of access, the

UTCs algorithm requires an estimation of the current values of the clock frequencies relative

to UTC. This can be extrapolated from past values obtained from last UTC computation. The

clocks contributing to UTCs should then be highly predictable.

One can easily imagine the UTCs clock ensemble composed of HP 5071A caesium clocks, auto-

tuned active hydrogen-masers, and primary frequency standards operating continuously as
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clocks. Such clocks reach their flicker floor for averaging times ranging from 20 days to 40

days. Their frequencies relative to UTC, for the current month, can thus be predicted to be

equal to their known frequencies relative to UTC, computed over the previous month.

Clocks of the UTCs ensemble will be chosen from those maintained in national timing

centres. The BIPM will thus need the help of a small number of laboratories willing to make

their timing data available to the BIPM regularly and with a very short delay. Technically

this can be done using anonymous File Transfer Protocol (FTP) accessible through the

INTERNET network. The BIPM could then retrieve clock and time transfer data for

immediate treatment. In addition it would be essential to use data from a number of

laboratories in order to detect simultaneous frequency steps of several clocks, which might

occur due to external changes in a given laboratory.

The combination of the readings and predicted frequencies from clocks of the UTCs ensemble

allows updating UTCs when new data is available. However, as updating involves several

laboratories, the exchange of current GPS timing data from these laboratories is also

necessary. Filtering of data takes a time of order 12 hours for short-distance links and 1 or 2

days for long-distance links. UTCs may thus reasonably be expected with a delay of access of

several days. The requirement of access in real-time can be realized by steering a physical

clock to follow UTCs. The output of this clock is the real-time time scale UTCp. Between two

consecutive updates of UTCs, the quality of UTCp is maintained by the intrinsic qualities of

the physical clock. The temporary loan of a HP 5071A unit to the BIPM, officially agreed by

Hewlett-Packard during summer 1993, is an important step of our project. This unit is

expected to be in operation before the end of 1993.

2.2. Expected qualities of UTCp

The ultimate stability of UTC, Oy(O = 4,5x10 qS, corresponds to flicker noise of frequency and
is reached for • of order 30 days. The time error (lo) on the optimum prediction of UTC over

a _-long prediction interval is equal to _xoy(O/x/In2 [8l. The part of the time error on the
optimum prediction UTCp, accumulated after 30 days and due to the instability of UTC itself,

can be estimated of order 16 ns.

A simple average of clock readings is more stable than any of its contributing elements. With

an ensemble of 10 clocks equally weighted in the average and presenting flicker floors of

order 6x10 q5 over 30-day intervals, the expected flicker floor of the simple average is of

order 2x10 -15 and is reached for averaging intervals of 30 days. This leads to an additional

accumulated error (la) after 30 days of order 7 ns.

The total error on the optimum prediction UTCs of UTC would then be of order 18 ns (lo). In

the future, it is anticipated that the 16 ns originating from UTC instability will be greatly

reduced.
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With a daily update of UTCs, the error accumulated by the physical clock maintaining UTCp

comes from its intrinsic noise over a 1-day averaging period. This is theoretically less than 1

ns and is thus negligible. However an eventual abrupt frequency step of the BIPM clock

would give an additional error of several nanoseconds. With one single clock, such a step can

be detected only when external data arrives at the BIPM. In the future, we anticipate having

three clocks at the BIPM, thus greatly reducing the probability of an undetected frequency

step.

From the preceding values, one can reasonably estimate that the real-time UTCp will

represent the true deferred-time UTC within +60 ns (20 ns standard deviation).

2.3. First tests for the realization of UTCp

At a first step, the BIPM intends to retrieve clock and GPS data through the INTERNET

network, three times a week (on Mondays, Wednesdays and Fridays), from two laboratories,

the PTB and the USNO.

The advantages of this arrangement are that only two time links are needed, one long-

distance link between the USNO and the PTB, and one short-distance link between the PTB

and the BIPM, while the available ensemble of clocks is quite interesting. An ensemble of

about 15 highly predictable and independent clocks could comprise:

- one PTB primary frequency standard operating as a clock, PTB CS1 or PTB CS2,

- one PTB active hydrogen-maser from the tandem of auto-tuned Russian units

maintained at the PTB,

- one or two HP 5071A kept at the PTB,

- the Sigma-Tau N5 active hydrogen-maser kept at the USNO, and

several HP 5071A from USNO, kept in different locations with individual

environmental control.

Formal steps to initiate this particular collaboration, which requires specific inputs from the

USNO and the PTB, have not yet been taken. If such a collaboration is approved and if the

obtained results are convincing tests could be carried out on a daily basis and with the

gradual involvement of other laboratories. Implicit in this proposal is the implementation of

a completely automatic system of data retrieval, checking and treatment. Whatever

procedure is agreed, the BIPM clock will not participate in the computation of UTCs, its sole

role being to follow UTCs in order to provide a physical output, UTCp, in real-time.

3. ACCESS TO UTCp

The UTCp, being physically available in real-time, can be made available through

measurements of the time differences between UTCp and other time scales, observable from

user laboratories, using satellite systems like GPS, GLONASS, INMARSAT, the hydrogen-

maser on Meteor 3M .... etc.
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This leads to two requirements:

- calibrated reception equipment, capable of receiving all available signals, is required

at the BIPM and must operate under excellent metrological conditions (accurate local

coordinates, ionospheric measurements, multi-channel receivers, temperature and

humidity control of the clock room .... etc),

- development and implementation of efficient methods for the extraction, from real-

time measurements, of the best estimates of the requested time differences [UTC -

GPS time], [UTC - GLONASS time] ... etc.

The UTCp will be available in real-time at the BIPM, but the extraction and delivery of

usable time differences takes some time. For example, efficient averages for smoothing out

SA noise from raw GPS data requires the use of simultaneous measurements on several

satellites taken for about one hour [9]. Once the BIPM has obtained the average time

difference [UTCp - GPS time], it can deliver it via its INTERNET anonymous FTP. This will be

updated when new data is available: the periodicity could be as short as one hour. A given

user who also accesses GPS time from his local time scale could obtain the BIPM information

through a connection to the BIPM INTERNET anonymous FTP. The user can take full

advantage of this value only if:
- the INTERNET connection is established shortly after the BIPM has delivered an

updated time difference,

- the user receiving equipment is well calibrated and is used under excellent

metrological conditions, and
- an efficient method is available for restitution of GPS time in the user laboratory.

In the case of GPS, the restitution of GPS time detailed in Ref. 9 adds an uncertainty of

about 10 ns. In the best case, the user will then access UTCp within ±75 ns (25 ns standard

deviation) and with a delay not less than one hour. This performance may be improved when

timing equipment becomes commercially available for satellite systems which do not present

intentional signal degradation.

CONCLUSIONS

The production and distribution in real-time of a predicted UTC calls for the computation in

short deferred-time (of order several days) of a software time scale, UTCs, from a small

ensemble of clocks with good predictability, and the steering on UTCs of a commercial clock

maintained at the BIPM. Its real-time output is the time scale UTCp, which represents the

true deferred-time UTC within 20 ns (lo). Its availability is made through the delivery by the

BIPM of time differences between UTCp and time scales distributed by global satellite

systems, in near real-time (of order several hours) and with uncertainties of order 25 ns (lo).

This BIPM project, suggested by Allan and Lepek [10], comes in response to current and

anticipated needs within the telecommunications industry. It is also indirectly encouraged by

Recommendation S 5 (1993) approved by the Comit6 Consultatif pour la D6finition de la

225



Seconde (CCDS) during its 12th meeting (24-26 March 1993). In this, the Comit_ Consultatif

pour la D_finition de la Seconde, recommends [11]

"... that time centres provide information to facilitate time coordination to UTC in real

time with a goal of 100 ns, standard deviation, when this is feasible, and that the

technical problems implicit in this goal be carefully studied n.

The BIPM is already carrying out studies on the real-time prediction of UTC. However it is

important to underline that, even after experimentation has validated the concepts of a real-

time predicted UTC, its concrete implementation at the BIPM will take place only after
discussion in the CCDS and consultation with interested bodies.
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F'.wure I. Organization of the international GPS network used in UTC computation

(September 1993). Acronyms of laboratories can be found in Ref 2.
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F'.wure 2. Allan standard deviation of the time difference [EAL - PTB CS2] computed with

l O-day data covering a two-year period:

[] mid 1986-mid 1988,

• 1992-1993.
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Nov - Dec Nov - Dec May - Jun
1991 1992 1993

i Total number

of clocks 194 194 215

Max

contribution 1.6% 1.4% 1,2%

Number at max

contribution 41 44 61

H-masers

HP 5071A

Total number

at max contr

under test

Total number

at max contr

under test

2O

8 (12.8%)

6

23

10 (14,0%)

4

8

1 (1.4%)

4

27

11 (13,2%)

6

36

14 (16,8%)

20

Table 1. Contribution of hydrogen-masers and HP 5071A clocks in UTC computation.
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_'= 20 to 40 days
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T/day

E] [3

F'.ulure 3. Allan standard deviation of the time difference between the lip 5071A clock

serial number 111t and the Sigma-Tau hydrogen-maser N5, both kept by USNO.

(Log-Log graph).
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F'._ure 4. Allan standard dev/at/on of the time difference [EAL - PTB CS2] computed with

lO-day data covering years 1992 and 1993:

[] EAL computed with two-month basic intervals,

• EAL computed with one-month basic intervals.

c-
O

N

63

v

r_
63

63
>
63

•=_200 clocks
all

laboratories

= 15 clocks
several

laboratories

1 clock
BIPM

satellite system
receivers

BIPM

observation
smoothing

optimum average output
combination

UTC Ipre£,J UTCsI , 4 UtCp I ,, klUTCp - time signalsctionls°ftware I ste rr_n hardwareI "1 GPS
"I software I GLONASS

1 l [' ' I INMARSATetc

few weeks few days real-time few hours
(users) (BIPM) (BIPM) (users)

F'._qure 5. Block diagram of the realization of the real-time prediction of UTC, UTCp.
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QUESTIONS AND ANSWERS

David Allan, Allan's Time: I think the long-term hope is that this will be of great service

to the user community, especially the telecommunication user community who has specified a

need at the sub-100 ns level. And of course, the hope would be that other countries would

have their UTC scales also synchronized, so that this would track the real time UTCP in any

country at this very high level. NIST and USNO have both been very actively steering their

clocks. The Observatory time unfortunately has been kept within something like less than 100
ns, maybe 50 ns. Is that true, Dr. Winkler?

Dr. Winkler: Yes.

David Allan: Of course, GPS broadcasts the UTC/USNO correction. So in addition to being

able to have something of the order of tens of ns directly from BIPM on an operational basis,

GPS will be broadcasting UTC BIPM. So I think with this cooperative as Dr. Thomas indicates

we hope that it continues to go on. I think it has been excellent today. With international

cooperation we can see UTC BIPM as represented by UTCP being a real time scale in every

country at the hundred ns level, or certainly better.

Dr. Winkler: My comment is that indeed what I would like to see is an evaluation of the

existing predictions which are available in real time. In fact, the correction between UTC at

every moment is available on the computer. And I think that should be evaluated by you. You

accessed that several times, I know that. Because, that prediction is based on a clock set which

is much larger than the one which you will have.

The real problem is that until now we have only had the two months evaluation period. And

if these corrections disappear, then of course the prediction will be immediately much more

accurate and all of these values will converge to zero I hope.

Claudine Thomas: I hope so too.
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