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Abstract

Generally, it is possible to obtain equally spaced timing data from oscillators. The measure-

ment of the drifts and noises affecting oscillators, is then performed by using a variance (Allan

variance, modified Allan variance, Time variance) or a system of several variances (multi.variance
method [1, 21).

However, in some cases, several samples, or even several set of samples, are missing. In the

case of millisecond pulsar timing data, for instance, observations are quite irregularly spaced in

time. Nevertheless, since some observations are very close together (1 minute) and since the timing

data sequence is very long (more than 10 years), information on both short-term and long-term

stability is available. Unfortunately, a direct variance analysis is not possible without interpolating
missing data.

We used different interpolation algorithms (linear interpolation, cubic spline) to calculate vari-

ances in order to verify that they do neither lose information nor add erroneous information. A

comparison of the results of the different algorithms will be given in the paper.

Finally, we adapted the multi-variance method to the measurement sequence of the millisecond

pulsar timing data: we calculated the responses of each variance of the system for each type of

noise and drift, with the same missing samples as in the pulsar timing sequence. An estimation of
precision, dynamics and separability [1] of this method will be given in the paper.

INTRODUCTION

The time stability measurement of oscillators is well known in the case of signals composed of

equally time-spaced data[ 1, z, 3, 41. However, in some cases, e. g. the millisecond pulsar timing

data, the sequence of time error measurement is not regularly spaced. It is then necessary to

reconstruct a sequence of equally time-spaced data from the original sequence. The aim of

this paper is the study of different ways of sequence reconstruction.
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1. DIFFERENT METHODS OF SEQUENCE RECONSTRUC-
TION

The goal of the reconstruction is to get N equally time-spaced data from M irregularly spaced

data without losing information or adding information.

From M data we measure "r0, the smallest interval between 2 consecutive timing data. This

smallest interval "r0 is the basic interval between all consecutive data of the reconstructed

sequence. N, the new number of data, is then equal to the duration of the sequence divided

by "r0. Actually, in order to easily perform Fast Fourier Transform over the reconstructed data,

we choose as N the first power of two greater than the duration of the sequence divided by

To. Let us define "r0the date of the first sample of the sequence and 7-M_1 the date of the last

sample of the sequence, N is given by the relationship :

N=2 (1)

Generally, the available data are time error z(t) measurements between the oscillators and
a reference oscillator. However, the time stability is mainly studied from the instantaneous

normalised frequency deviation samples ffk, obtained from the x(t) data by the relationship:

x(tk + "c)- x(tk)
= (2)

Reconstructing equally spaced data from the x(t) data or from the ffk samples yields different

ways of reconstruction.

1.1. Reconstruction by linear interpolation of the x(t) data

This first method (see Fig. 1, left) keeps the same ffk samples as in the original irregularly

spaced sequence. The only difference this method yields, is the division of each initial ffk

sample into several _-0-1ong samples with the same value. Thus, the added information is the

constancy of the frequency deviation during the initial samples.

1.2. Reconstruction of the x(t) data by cubic spline functions

Obviously, the real frequency deviation y(t) is not constant over the time interval of each initial

ffk samples. In order to avoid this hypothesis of constant samples within each initial sample, it

is possible to fit the x(t) data with cubic spline functions (see Fig. 2, right). The new r0-1ong

samples vary smoothly while preserving the same average over the initial samples. The added

information is then an hypothesis of continuity (and derivability) of the ffk samples, due to the

continuous variation (derivability of second order) of x(t).

Although the x(t) samples are strongly correlated for the low frequency noises, the hypothesis of

continuous variation of the x(t) samples is completely wrong in the case of a white noise! Since

the types of frequency" noises can vary from f-3 (only in the case of millisecond pulsars[ s, _!)
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to f+2, i. e. from f-5 to fo phase noises, this method may be justified only for correlated x(t)

data, but not in the case of a white phase noise (f+2 frequency noise).

1.3. Reconstruction by linear interpolation of the ffk samples

On the other hand, it is possible to reconstruct directly the ffk samples by linear interpolation.

The new yk sequence is then continuous but not derivable. The x(t) sequence is obtained by

the relationship :

x(tk + = x(tk) +  0gk (3)

In this case, the x(t) function is only derivable once. However, the hypothesis of continuity

of the ffk samples is wrong in the case of a white frequency noise (f-2 phase noise) or higher

frequency noise. This method may only be applied to low frequency noises.

1.4. Reconstruction of the Yk samples by cubic spline functions.

Theoretically, this method could only be justified for very low frequency noises (f-3 frequency

noise) ; nevertheless we decided to observe the behaviour of such a method for all the types
of noi.ses in order to confirm our theoretical considerations.

2. Analysis method

2.1. Use of the multivariance method

The multivariance method uses a system of several variances, calculated for scvcral integration

values T, over the same signal [1, 2]. The results arc the most probable (in the sense of the

least squares) set of h,_ noise coefficients and drift coefficients. Moreover, this method yields
an estimation of the confidence interval of each coefficient.

In order to study the influence of the reconstruction way by the multivariance method, we

generated several sequences of 8192 simulated x(t) data. Each of these sequences was composed

of one only pure noise (one sequence of f-3 frequency noise, ..., one sequence of f+2 frequency

noise). Then, we removed a lot of data according to a real pulsar timing sequence : we kept

only 157 irregularly spaced x(t) data from the 8192 ones (see Fig. 2).

2.2. Responses of variances for the different reconstruction method

Figure 3 shows the responses of the modified Allan variance[71 for the different types of noises

and for a linear frequency drift. On each graph, the response of this variance for one type of

noises with equally time-spaced data (continuous line) is compared with the a-esponses obtained

with the different reconstruction methods. Actually, each curve is the average of the results
for 100 different realizations of these noises.

For f-3 frequency noise and linear frequency drift, the reconstruction from the ffk yields curves

closer to the reference curve (corresponding to equally spaced data) than the curves due to the
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reconstructionfrom the x(t) data. In these cases, the ffk samples are strongly correlated with

their neighbours and the smoothest reconstruction methods provide the best results. Moreover,

for _- values greater than 5fir0, which is about the ratio of 8192 over 167, the different curves

converge to the reference one.

However, for the higher frequency noises, the curves corresponding to the reconstruction by

linear interpolation of the x(t) data, remains the closest to the reference curves. The only

important difference is visible in the case of f+2 frequency noise : although the slope is the
same as the one of the reference curve, the variance measurement are about 100 times greater

than the reference variance measurements. We may also notice that the curves corresponding

to the reconstruction by cubic spline functions of the x(t) data are not very far from the curves

corresponding to the reconstruction by linear interpolation of the x(t) data.

On the other hand, the results given by the reconstruction of the ffk samples for f °, f+l and f+2

frequency noises always yield the same behaviour. Therefore, these 2 reconstruction methods

should not be able to separate these 3 types of noises. Of course, interpolating high frequency

noises by linear interpolation or, a fortiori, by cubic spline functions completely modifies the
information about the initial data.

2.3. Generating a model of variance responses

In order to increase the sensitivity of the multivariance method, we used the results shown in

Figure 3 as the theoretical responses of the different variances for the different types of noises
and for the different reconstruction method. Thus, the determination of the noise and drift

coefficients of a signal, will be obtained by minimizing the differences between the variance

results for this signal and the new theoretical responses of variances.

Therefore, if we choose for instance the reconstruction by linear interpolation of the x(t) for

analysing a signal mapped as in Figure 2 (with 167 data obtained for the same date as in

Figure 2), we will compare the variance results with the new model corresponding to this

type of interpolation and not with the classical theoretical variance responses. Consequently,

this method requires the calculation of the correspohding model for ea6h irregularly spaced

sequence.

3. Results and discussion

3.1. Results for pure noises

Figure 4 shows histograms of values obtained for 100 realizations of the same pure noises (only

f-3 noise, ... , only f+2 noise) and for the different reconstruction methods. For the low

frequency noises (f-3 and f-2 frequency noises), the different methods yield histograms similar
to the reference one (in front), i. e. the histogram obtained with 8192 equally spaced data.

The histogram corresponding to the reconstruction of the x(t) data by cubic spline functions

(3rd in order of depth) seems to be slightly better than the ones of the other methods.

For a f-1 frequency noise, the histogram corresponding to the reconstruction of the ffk by

cubic spline functions (last in order of depth) is already larger as the other ones. These other
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histograms remains similar to the reference one.

Finally, for a f+2 frequency noise, the dispersion is very important for the different methods.

Only the histogram of the reconstruction of the z(t) by linear interpolation (2nd in order of

depth) seems to be interesting.

3.2. Results for a signal composed of all types of noises

Figure 5 shows histograms obtained for 100 realizations of a signal composed of 6 types of
noises:

with

Su(f) = h_3f -a + h_2f -2 + h_lf -1 + hof 0 + h+lf +1 + h+2f +2 (4)

h-3 = 1.2 x 10-7; h-2 = 3.1 x 10-_; h-1 = 0.002; h0 = 0.031; h+l = 0.25; h+2 = 1

With these values, each type of noise prevails over the other within an interval of the studied

range of frequencies.

Although the f-3 noise is detected by all different methods, the measurement of the h-2

coefficient is difficult, even in the case of 8192 equally spaced data. The best method seems

to be the interpolation of z(t) by cubic spline functions (3rd in order of depth), because the

number of non-null measurement is about 60%, and the maximum of the histogram is about

the entered value. However, for f-1 and, a fortiori, for f+2 frequency noises, the measurement

is almost impossible (from 70 to 90% of null measurement).

Conclusion

The results obtained for pure noises shows that the 4 methods are able to measure a signal

over which a low frequency (from f-z to f-1 frequency noises) prevails. For higher frequency

noises (f0 to f+2 frequency noises), only the methods of reconstruction of the z(t) seem to be
reliable.

On the other hand, in the case of a signal composed of 6 different noises with noise coefficients

of equivalent levels, only the f-3 frequency noise can be determined by the 4 methods and

sometimes the f-2 frequency noise by the spline reconstruction of the z(t). It may appear that

these results are poor for a classical oscillator measurement.

However, in the case of the millisecond pulsars, we are only interested in the very low frequency

noises (f-3 and f-_ frequency noises). The interest of the millisecond pulsars is their great

long term stability. Especially, the question is: does the stability curve of the millisecond

pulsars will continue to go down versus time, under the estimated threshold of the International

Atomic Time stability, or will it change of slope and go up because of f-2 or f-3 frequency

noises? Perhaps is it already possible to answer!
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x(t) data [time error)

Reconstruction by linear Interpolation

x(t) clata [time error)

Reconstruction by cubic spllne functlons

Figure 1 ."Reconstruction by linear interpolation of the time error data (left) and by cubic spline functions

of the time error data (right).
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Figure 2 • Sequence of irregularly time-spaced data (167 data).
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