
N94-30678

The NIST Internet Time Service

Judah Levine

Joint Institute for Laboratory Astrophysics

National Institute of Standards and Technology

and University of Colorado

Boulder, Colorado 80309

Abstract

We will'describe the NIST Network Time Service which provides time and frequency information

over the internet. Our first time server is located in Boulder, Colorado, a second backup server is
under construction there, and we plan to install a third server on the East Coast later this year.

The servers are synchronized to UTC(NIST) with an uncertainty of about 0.8 ms RMS and they

will respond to time requests from any client on the internet in several different formats including

the DAYTIME, TIME and NTP protocols.

The DAYTIME and TIME protocols are the easiest to use and are suitable for providing time
to PCs and other small computers. In addition to UTC(NIST), the DAYTIME message provides

advance notice of leap seconds and of the transitions to and from Daylight Saving Time. The

Daylight Saving Time notice is based on the US transition dates of the first Sunday in April and

the last one in October. The NTP is a more complex protocol that is suitable for larger machines;

it is normally run as a "d_emon" process in the background and can keep the time of the client to
within a few milliseconds of UTC(NIST).

We will describe the operating principles of various kinds of client software ranging from a

simple program that queries the server once and sets the local clock to more complex 'deemon"

processes (such as NTP) that continuously correct the time of the local clock based on periodic
calibrations.

Introduction to the Internet

The current ir_ternet is based on the ARPANET, a small network started in the 1960s and

originally funded by the Department of Defense. The network has grown dramatically in the

last decade and now connects thousands of sites worldwide. One of the important reasons for

the success of the network is its support for a group of relatively simple message protocols whose

structure is largely independent of the details of the underlying transmission medium. Two of

the most widely used protocols are the User Datagram Protocol (udp) and the Transmission

Control Protocol (tcp); both of these are in turn built on a common base called the internet

protocol (ip) and hence are usually referred to as udp/ip and tcp/ip.

An important concept supported by the internet protocols is that of a logical connection -

a connection between two processes on two different machines so that messages sent by one

P_ I_._ OLANK NOT FIL_Et_

https://ntrs.nasa.gov/search.jsp?R=19940026173 2020-06-16T12:22:32+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42786708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


are received by the other without either end-point needing to be concerned with the details

of the physical realization of the network or the topology of the intervening path. A machine

may have more than one of these logical connections active at the same time, with two

independent processes transmitting and receiving messages over the same physical connection.

This multiplexing requires a hierarchical address - both the source and destination addresses

must contain not only the address of the machine, but also some identification of the process

on the machine that is the source or destination of the messages. This end-point is usually

called a port, and it is identified by a port number. A process that wishes to communicate

over the network must logically connect to the port to send and receive messages.

The protocols also support the concept of a server process - a process on a machine that

is continuously "listening" for connections and performs some action whenever a connection

request is received. There are often several such processes on any machine; they may each be

actively listening for connections or they may designate a super-server that listens on behalf

of all of them. The response is basically the same in either case - a request to a specific

port on the machine logically activates the server process that has advertised its willingness to

respond to that type of request. Once the server process has been activated, the communication

between it and the client proceeds transparently through all of the intervening layers in both

machines - both of them see the connection as if it was a dedicated physical circuit with

full-duplex capabilities.

If a server process is to be useful, the client must know which port it is listening to, since the

port number must form part of the request for service. A group of standard "well-known"

port numbers have been assigned to address this issue, and all machines on the internet are

expected to conform to these standard assignments. The mail-server, for example, is expected

to be listening for connections on tcp/ip port 25; other well-known services have similar port

assignments (Comer, 1991, pages 167 and 201).

Three ports have been assigned for time services. Port 13 is for the "daytime" service using

either the tcp/ip or udp/ip protocols; port 37 is for the "time" service using either tcp/ip and

udp/ip protocols, and port 123 is for the Network Time Protocol (NTP) using udp/ip only.

This paper describes a server whose time is synchronized to the NIST clock ensemble; it will

respond in the appropriate format to time requests on any of these three ports from any client
on the internet.

Time Formats

In addition to defining a standard port number for each service, it is equally important to

define a standard message format. These formats are specified in a series of documents

called "Requests for Comments" or RFCs. The RFC documents are numbered sequentially in

chronological order; revisions to a protocol are usually assigned a new number so that many of

the lowered-numbered documents have been superseded and are obsolete. The RFC documents

are available in several formats from the Network Information Center (Comer, 1991, Appendix

1). The daytime protocol is specified in RFC-867, the time protocol is in RFC--868 and the

Network Time Protocol in several documents including RFC-1119, RFC-1128, RFC-1129 and
RFC-1305.

506



1. The Time Protocol

The time protocol is the simplest one to use. The server listens on port 37 and responds to

a request in either tcp/ip or udp/ip formats by replying with the time in UTC seconds since 1

January 1900. The response is an unformatted 32-bit binary number; the conversion to local

civil time (if necessary) is the responsibility of the client program. The 32-bit binary format

can specify times over a span of about 136 years with a resolution of 1 second; there is no

provision for finer resolution or for increasing the dynamic range. The transmitted time will

wrap-around through 0 in the next century and, if the protocol is still in use at that time, there

will be a 136--year ambiguity in the transmitted time thereafter.

The strength of this protocol is its simplicity - many computers connected to the internet

keep time internally as the number of seconds since 1 January 1970 (or sometimes since 17

November 1858) and a conversion between the received time and the internal format is a simple

matter of binary arithmetic. This strength must be balanced against several serious weaknesses:

a. There are two difficulties with the handling of leap seconds - a practical one of what

time to transmit at the leap second and a conceptual one of how to specify the time

afterwards. The choices depend on whether or not the clients are assumed to know

that a leap second is currently being inserted and whether they can remember all of the

previous leap seconds to correct the transmitted time afterwards. The simplest solution

is to adjust the time on both the server and the client at the time of the leap second,

which is equivalent to pretending afterwards that the leap second did not happen. This

raises difficulties when a client tries to compute the time interval between two epochs on

opposite sides of a leap second, but this difficulty is a generic one and is not limited to

computer docks.

b. The protocol is awkward for machines that keep time internally as time of day plus the

date (PCs fall into this category) since the conversion of the received message to the

internal format in the client requires a full knowledge of the vagaries of the calendar and

the time-zone system and of the transitions to and from daylight saving time.

c. There is no provision in the message for additional information such as the health of

the server, and the protocol cannot be easily expanded without the risk of breaking the
software in some clients.

2. The Daytime Protocol

The daytime protocol has many of the advantages of the time protocol and addresses many of

its short--comings as well. The server listens on port 13 and responds to a request in either

tcp/ip or udp/ip formats by replying with the time and date as a line of text whose exact format

is not specified in the standard beyond the requirement that it be composed of human-readable

standard ASCII characters. We have chosen a format for the daytime service which conforms

to the very broad requirement of RFC-867 and which addresses many of the short--comings

that characterize the time format we have just discussed. Our message format is very similar to

the format used by our ACTS system (Levine et al., 1989). A typical message is shown below:

5O7



D L
MJD YY-MM-DD HH:MM:SS ST S H Adv.

49302 93- 11 -11 17:30:42 00 0 0 50.0 UTC(NIST) *

The message consists of a single line of text; the identifying characters in the legend above

the line have been added here to show the significance of each field. The first number is

the Modified Julian Day. It is included for those systems that keep time as the number of

seconds since some epoch, since the conversion between a Modified Julian Day number and

such formats is a simple matter of binary arithmetic and does not require a knowledge of the

calendar. The next 6 numbers are the UTC date and time as shown by the legend and can be

directly understood by a human observer and easily used by machines that use the date and

time system internally. (Although this format can transmit the time during a leap second in a

natural way, I discuss below a number of reasons for not doing this.) The DST flag and LS flag

give advance notice of the transitions to and from daylight saving time and of the imminent

occurrence of a leap second, respectively. The format is the same as in the ACTS system:

If DST is 0, then the US is currently on Standard Time; if DST is 50 then the US is currently

on Daylight Saving Time. If DST is between 49 and 1 a transition from Daylight Saving Time
to Standard Time is imminent. The DST value is decremented at 0000 UTC every day and

the transition will arrive at 2 am local time when the counter is 1. If dst is between 99 and

51 a transition to Daylight Saving Time is imminent. The DST value is decremented at 0000

UTC every day and the transition will arrive at 2 am local time when the counter is 51.

If LS is 0 then no leap second is imminent. If LS is 1 then a leap second is scheduled to be

added after 23:59:59 UTC on the last day of the current month. That second will be called

23:59:60, and the next second will be 00:00:00 of the next day. If LS is 2 then a leap second is

scheduled to be dropped at the end of the current month. The second following 23:59:58 will

be 00:00:00 of'the next day.

The server itself transmits UTC and therefore experiences no internal discontinuity during the

transitions to and from Daylight Saving Time, but there is likely to be a discontinuity during

a leap second. As pointed out above, there is an ambiguity in what to transmit during and

following a leap second depending on whether or not the client is assumed to know of its
existence and whether or not it knows how to parse a time of 23:59:60. After the leap second

has occurred, this ambiguity is resolved in the server by adjusting the time of the server and

pretending that the leap second did not happen. There are many reasons for making this

adjustment gradually by slewing the clock rather than suddenly by stepping it. This adjustment

will therefore take a finite time to complete, so that the time of the server may be ambiguous

while it is going on. The client software will face the same problem during leap seconds and

may also have a much larger version of it each Spring and Fall when Daylight Saving Time
starts and ends if its internal clock is set to local time rather than to UTC. The client, too,

must choose between slewing the clock and adjusting it in one step. The first alternative results

in a clock that is wrong for a significant period of time, and the second may play havoc with

many of the time-dependent processes on the machine. Many implementations of the client

software choose the single-step alternative in both the leap--second and Daylight-Saving-Time

5O8



situations; the leap-second adjustment could be implemented by parsing both 23:59:59 and
23:59:60 as 23:59:59.

The H parameter gives an estimate of the health of the time server, with a value of 0 indicating

fully healthy. Positive integers indicate increasingly poor health; both the magnitude of the

possible time errors and the uncertainty with which they are known increase as this parameter

increases from 0. Users who need the time with an uncertainty of less than 1 second should

not use the message if the health parameter is non-zero and those who need the time with an

uncertainty of 3 s or less should not use the message if the health parameter is greater than

+1. A value of +2 indicates a time error of up to 5 minutes and values greater than this

indicate an internal failure in which the time error may be small but cannot be determined.

The final parameter gives the time advance in milliseconds. The entire packet (not just the

terminating on-time marker) leaves the server early by this amount to compensate approximately

for the delay in the travel time through the internet. Within the continental US, travel times

on the internet range from about 30 ms to 150 ms, so that the packet is likely to arrive within

100 ms of the correct time anywhere in the US. This parameter is fixed at the present time

since our experience with ACTS indicates that this accuracy is sufficient for most users, but

future enhancements to the server software may estimate this parameter dynamically as is done

with ACTS at the present time.

The message ends with an asterisk for compatibility with the ACTS format, but this character

has no special significance as an on-time marker since the entire message will most likely be

transmitted and received as a single network packet. The time advance parameter applies to
the entire packet for this reason.

3. NTP - The Network Time Protocol

NTP is the most complex and sophisticated of the time protocols, and it can provide the

highest accuracy to a time client as a result. It normally runs continuously on the client as a

"daemon" (background) process; it periodically queries the server and makes small adjustments

to the local time based on the data that it receives. The server responds to each query

with a packet in a special NTP format that is built on the udp/ip network protocol (Mills,

1991). The client software can also be configured to query several servers and to average

the responses in a statistically robust manner. In particular, it evaluates the response of each

server against the average and is prepared to consider the possibility that one of the servers

is broken. NTP must receive its calibration data via the noisy internet, and it will be limited

by the un-modeled noise in the transmission medium. It is most likely to have problems at

intermediate periods of a few hours or so, because the internet noise in this period regime is

likely to have low-frequency divergences (which would appear in an Allan variance analysis as

Flicker or Random-Walk Frequency Modulations) that are difficult to estimate because they

are not amenable to improvement by averaging.

509



Server Synchronization

Our server was initially synchronized to UTC(NIST) using periodic calls to the ACTS system.

We found that the time of the server could be kept within 0.8 ms RMS of UTC(NIST) by

calling ACTS once every 3000 s. We are currently upgrading the server so that its clock is

phase-locked to a 1 pulse/s signal received directly from the clock room. This signal is stretched
to 125 s and is connected to the machine in such a way as to generate an interrupt every

second. These interrupts can initiate the phase-lock task which in turn adjusts the internal
clock so that its time is an exact even second. Periodic calls to ACTS are also scheduled, since

the phase-lock process cannot detect a slip of an integer number of seconds. This process can

keep the internal clock within 100 s RMS of UTC(NIST). The improvement in the accuracy

and stability of the reference time of the server is unlikely to be noticed by the users, since

the uncertainty in the received time is dominated by the uncertainty in the travel time across

the network.

Both synchronization methods have advantages and disadvantages: the phase-lock system is

easier to implement but requires a direct 1 pulse/s signal; the ACTS system requires much

more complex software but can be used to implement a stratum-1 clock anywhere a telephone

line is available. We plan to use both of these methods in the future in constructing additional

time servers. This could greatly reduce the jitter due to the network delay for many users since
the distance between them and a server would be much smaller.

Access to the Server

Our primary network time server is named time_a.timefreq.bldrdoc.gov, and its internet address

is 132.163.135.130. A backup server named time_b.timefreq.bldrdoc.gov is being constructed;
its address is 132.163.135.131. The times of both servers will be synchronized to UTC(NIST)

using the phase-lock method we have outlined above.

We have written example software that can be used to set or check the time of a client

machine by parsing the "daytime" format response of the server. The client software includes a

routine to convert the received message to local time, if necessary; conversion to daylight saving

time is also supported. This software can be adapted to run in most software and hardware

environments, requiring only a network connection and standard interface software to send and

receive messages on the internet. It provides a time capability similar to the ACTS system (but

at lower accuracy) without the need for making toll calls. The example software is publicly

available via anonymous ftp from the primary network time server in directory/pub/daytime.

Both the source code and the documentation are in this directory.

We have also written example software to access the time service, but this service provides

less information than the daytime service with no appreciable increase in accuracy, and we do

not recommend its use. This service is often used by time programs that are supplied with

commercial network software for PCs. These programs usually require external environmental

information to specify the time-zone of the user and what to do about daylight saving time.

Examples of how to specify this information are in the documentation in the directory specified
above.

510



The softwarefor the NetworkTime Protocolis widelyavailable,and is often bundledwith the
operatingsystemitself. It is normallydistributed in sourcecode with instructionsfor how to
build it for manydifferent environments.

Conclusions

The NIST Network Time Service provides time information to internet users that is directly

traceable to UTC(NIST). The information is provided by a time-server located in Boulder; the

server will respond to requests for time in several different formats. The simpler formats are

well suited to the needs of small computers with modest accuracy requirements, while the more

complex formats can provide substantially better accuracy at a substantial increase in both the

size and complexity of the client software.

One of the synchronization algorithms we have developed for the server itself uses periodic
calls to our ACTS service to synchronize the time of the server; it could be used to construct a

stratum-1 time-server needing only a standard voice-grade telephone line for synchronization.

This server might be connected to a local network that is disjoint from the intemet or it might
be used as a stand-alone machine wherever accurate time-stamps are required.

Acknowledgements

I am grateful to David Mills of the University of Delaware, the designer of NTP, for many

helpful discussions. This work is supported in part by grant NCR-9115055 from the National

Science Foundation through the University of Colorado.

References

Comer, Douglas E., 1991. "lnternetworking with TCP/IP", Volume 1, Second Edition.

Englewood Cliffs, New Jersey, Prentice Hall.

Levine, J., M. Weiss, D. D. Davis, D. W. Allan and D. B. Sullivan, 1989. "The NIST

Automated Computer Time Service", J. Res. of the Natl. Inst. Stand. Tech., 94,
311-321.

Mills, David L., 1991. "Internet Time Synchronization: The Network Time Protocol",
IEEE Trans. Communications, 39, 1482-1493.

511



QUESTIONS AND ANSWERS

Dr. Winkler, USNO: This is a remarkable experiment. We have for the last half year or

so made regular timings between our station at Richmond and Washington. And we find

that in that network, through that connection which we have, delays are vastly different from

second to second. They are in fact traffic-dependent. It is a packet-switch network and in this

packet-switch network each node of course retransmits the packets, depending on its own local
traffic. So for that reason the actual noise which you see is a function of time of day. So that

is why we have abandoned that, actually, as a practical missile for the dissemination of time,

of timing between stations; and we are also looking at circuit boards with GPS receivers which

is much more economical and more precise.

J. Levine: I agree with you 100 percent. May I show another slide? What I did was say let's

measure the delay between Boulder and Washington; and let's measure the outbound delay

and the inbound delay. So here you have it. Boulder or Washington go through 16 gateways:

Denver, St. Louis, Chicago, Cleveland, New York, etc. The delay is 59 ms. This is measured

kind of average. Back delay: Washington to Boulder turns out to be a very strange delay,

because it goes through NIST Gaithersburg and then in one step it makes it to NIST Boulder.

The delay: 55 ms. The answer is the difference is a few ms; it is remarkably the same. Of
course four ms, that is the kind of the noise you are going to get; or four, or ten or 12 or

some number like that.

Dr. Winkler: May I add just one thing? During these experiments we have not advanced by

50 milliseconds but one-half of the round-slip delay as measured at that moment.

Tom Becker, Air System Technologies: Is this transfer done on a transactional request
basis? Or are these two machines essentially logically connected continually?

3. Levine: All of the protocols have to put up a request to the server for the time. In the case

of the time and the daytime protocol, you do it by hand; in the case of NTP, NTP schedules

itself with a variable time ranging from a few minutes to a few hours. If you don't ask, you

don't get.

Tom Becker: Yes, it would seem that if it were a continuous process and there were very

many people doing this, the network would be overloaded just by time transfer information.

What happens then in-between requests? What would a local machine do to maintain accurate

time?

J. Levine: Well again that depends on what your client software is. If you have NTP, then
NTP is a d_emon and it is making small adjustments to your client software. If you are using

the other protocols, then nothing happens and your clock is free running.

512



Tom Becker: NTP does or does not run on PCs?

J. Levine: NTP is probably too big for most PCs. There is no reason why it couldn't run in

principle; it is mostly a matter of size.

Tom Becker: But you are not aware of an implementation of NTP for PC?

J. Levine: It is written in C; it should run on a PC if you didn't run on a hardware speed

first. But I really don't know the answer to the question.

513/514




