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SUMMARY

The long-term performance of polymer-based composites in the space environment is discussed.

Both thermoset and thermoplastic matrix composites are included in this discussion. Previous efforts on

the space environmental effects on composites are briefly reviewed. Focus of this review is placed on

the effects of hygrothermal stresses, atomic oxygen, ultraviolet (UV), and space debris/micrometeoroid

impacts along with the potential synergism. Potential approaches to estimating the residual strength of

polymer composites after exposures to atomic oxygen erosion or space debris/micrometeoroid impact

are evaluated. New ground-based data are then utilized to illustrate the effects of atomic oxygen and

thermal cycling on the failure behavior of polymer composites. Finally, research needs, challenges, and

opportunities in the field of space environmental effects on composite materials are highlighted.

INTRODUCTION

Many structural materials, including polymer matrix composites, are being used or considered

for space applications. Space-based structures (e.g., in the low-Earth orbit (LEO)) will experience an

environment of very low pressure and temperature extremes, possibly subject to severe hygrothermal

effect (moisture degassing and thermal cycling). The structures will also encounter the attack of various

atomic species, charged particles, radiation, micrometeoroids, and man-made debris. For instance,

atomic oxygen has been found to cause severe erosion of materials (refs. 1-8). The impacts of micro-
meteoroids can cause local cratering, cracking, and possible fracture of structural components (ref. 9).

Very limited data base existed on the interaction between the polymeric composites and the

space environment. This situation is improving since an increasing amount of data are becoming avail-

able from the Long Duration Exposure Facility (LDEF) mission. At the present time, the long-term
behavior and reliability of polymeric composites in space remains poorly understood. The changes in the

properties and structure of composite materials after exposure to the space environment can be better
understood when these changes are compared to the predictions based on the ground-based laboratory

experiments. This would require much more laboratory evaluation of composites and, equally impor-

tantly, a comprehensive model that would allow for the prediction of material durability in the space
environment.

Effective solutions to the space material degradation problems are practically nonexistent.

Maintenance strategy and repair methodology of future space structures have yet to be identified. The

potential of utilizing the space environmental agents to polymerize the protection/maintenance materials

for space structures has not been explored. These represent some of the challenging research opportuni-

ties in the field of space materials.
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BRIEF REVIEW OF RELATED LITERATURE

Surface degradation of space materials has been initially attributed to neutral atomic oxygen,

which has a translational kinetic energy of approximately 5 eV by virtue of the spacecraft velocity of

8 km/s (refs. 1,2,4,6,7). However, various observed orbital effects on materials have been duplicated by

Whitaker and co-workers (e.g., ref. 10) in plasma reactors where translational energy is low. This obser-

vation suggests that the high kinetic energy may not be the primary cause for atomic oxygen erosion. An

alternative explanation offered by spacecraft glow investigators is that the recombination energy of oxy-

gen atoms on surfaces is responsible for the observed degradation (ref. 11). The studies conducted by
Whitaker and Jang (ref. 10) also includes the development of an equation relating exposure area, atomic
oxygen flux, frequency factor, and activation energy to rate of polymer mass loss. Previous studies

(refs. 1-10) have placed emphasis on the causes of atomic oxygen erosion and the changes of material

surfaces. The effects of such erosion on the subsequent structural performance of materials have not

been studied to any significant extent.

Several experiments conducted during the first LDEF mission contained polymer-based com-

posites, which included different reinlbrcing fibers (graphite, boron, Kevlar, S-glass) and a variety of

resin matrices (epoxies, polyimide, polysulfone) (ref. 9). This LDEF project also contained several other

monolithic polymeric materials (without reinforcement). Additional information concerning the mass

loss suffered by these materials due to atomic oxygen erosion, the material darkening effect caused by
UV, and the space debris/micrometeoroid impact-induced damage has just become available (refs.

12,13). These two conference proceedings contain the preliminary data obtained from the various LDEF

composite experiments (refs. 14-26). Some preliminary conclusions have been drawn from these exper-
iment (refs. 27,28). The following are considered to be more important observations from these studies:

Atomic oxygen (AO) effect: Matrix resins were found to erode at a higher rate than the rein-

forcement fibers in composites (ref. 14). The AO erosion depth was inversely proportional to the fiber

content for graphite/polymer composites; fiber content was more important than fiber type in dictating
the erosion rate (ref. 14). The erosion features may be a function of fiber modulus and structure (ref. 24),

but no controlled experiments were designed to assess the roles that the various material factors play.

The erosion depths of the uncoated polymer composites were much less than for matrix resins alone
(ref. 14).

Based on a very small sampling space, a 20- to 30-percent reduction in the flexural strength and

modulus for uncoated graphite/epoxy composites was observed on the leading edge of LDEF (ref. 24).

An uncoated graphite/bismaleimide composite suffered a 60-percent reduction in flexural strength. The
short beam shear strength of these same materials was reduced by 10 percent (ref. 24). These effects

were presumably due to AO erosion; but why AO erosion on a composite surface would result in modu-

lus or shear strength reduction remains unclear. These property degradation results were reported by the

General Dynamics Space System Division (GDSSD). In contrast, the LDEF polymer composites inves-

tigated by the Lockheed Missiles and Space Company (LMSC) did not exhibit any reduction in flexural

strength, modulus, or short beam shear strength (ref. 24). The preliminary data further confirmed the

notion that polymer composites for long-duration-mission spacecraft in LEO would require protection

from AO attack (ref. 28). All the LDEF composite experiments on the effect of AO can only be con-

sidered qualitative in nature. No study was directed toward elucidating the AO erosion kinetics or mech-

anisms of polymer composites, with or without surface protection. Without such a study, design against
AO erosion can only be accomplished by a trial-and-error basis.

Thermal cycling and m0i,stur¢ loss ¢ffeCt: Boeing Defense and Space Group (ref. 19,25) esti-

mated that the leading edge exposed (unshielded) composites had experienced thermal cycling between
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-53 °F (-47 °(2) and 183 °F (84 °C) while the trailing edge exposed composites between -27 °F (-33

°C) and 170 °F (76 °C) for approximately 3,400 cycles during the 69 months in space. Extensive micro-

cracking was observed with the leading edge exposed materials, including graphite/PMR-15 polyimide

and graphite/polysulfone, and with the trailing edge exposed materials, although to a slightly smaller

extent. Microcracking was only observed in the multidirectional (nonunidirectional) laminates.

Microcracking was believed to be caused by thermal cycling (refs. 17,19,25), but moisture content

variations could have been a significant factor. Moisture induced residual stresses (or strains) may be no
less important than those caused by the mismatch in coefficient of thermal expansion (CTE). This factor

appears to have been neglected in the interpretation of the microcracking phenomenon.

_;Pa¢¢ debris/micrometeoroid impact effect: The space debris/micrometeoroid impact damaged

polymer composite samples did not show the typical hemispherical craters found on metallic structures

(refs. 16,26). The damage patterns are characterized by the formation of penetration holes with adjacent

surface damage, some internal delaminations, and local fiber fracture. For composites containing brittle

graphite fibers, the exit and impact holes exhibited cleaner fiber fractures. In contrast, aramid fiber com-

posites failed in a "brush or broom" mode surrounding the impact damage region (ref. 26). These dam-

age morphologies of polymer composites are very similar to what was observed in the composites sub-

jected to low-velocity impact (refs. 29,30). Determination of post-damage residual properties of

advanced polymer composites has been an active area of composites research. However, so far no data

of this nature have been reported from the LDEF community.

The effect of UV radiation: Optical property changes on the composite surfaces were considered

to be an indication of polymer degradation due to UV radiation exposure. These changes were not pre-

sent where graphite fibers could have prevented penetration of UV radiation into the material. Although
synergistic effects between UV and AO were speculated, no direct evidence was available for or against

this speculation.

The small number of specimens recovered from the first LDEF mission has severely limited the

scientists' ability to investigate the residual properties of polymer composites exposed to the real space

environment. Future space-structure design would require additional knowledge on the degree of micro-

cracking and the changes in such critical properties as the CTE, strength, stiffness, fracture toughness,

and vibrational characteristics. A better understanding of these property changes can only be achieved

by conducting more ground-based simulation tests to supplement the long-duration exposure data.

SOME GROUND-BASED SIMULATION RESULTS

Thermal Cycling of Polymer Composites

Thermal cycle induced microcracking phenomena were observed on carbon fiber reinforced

polymer matrix composites (epoxy-, poly(phenylene sulfide)-, and PEEK-based). One or two minute

intraply cracks were observed on thermoplastic matrix composites after a single thermal cycle between

-45 °C and +85 °C. Microcracks were initiated at the fiber-matrix interface, preferentially in fiber-rich
(or resin-deficient) zones (Fig. 1). Microcracking appeared more severe in PPS than in PEEK com-

posites. Microcracking was not observed in epoxy composites for the first 200 cycles. Judging from the
fact that thermoplastic composites tend to have weak fiber-matrix interfacial bonding, these observations

suggest that interfacial bond plays a critical role in initiating microcracks in carbon fiber reinforced

thermoplastic composites. Intraply cracks are known to be the precursors to delamination cracks, the

most serious life-limiting failure mode in laminated composites.

321



Thermalcyclecracksarecausedbythehygrothermalstresses(temperatureandmoisturevaria-
tions)presentin a laminate.Theresidualthermalstressesin afibrouscompositemaybeanalyzedatdif-
ferentlevelsof complexity.First, thedifferentialthermalstressesestablishedbetweena singlefiberand
thematrix maybeestimatedeitheranalyticallyor numerically.Second,theresidualstressfields devel-
opedwithin agroupof regularlyarrayedfibersmayalsobedeterminedeithertheoreticallyor experi-
mentally.Third, thethermalstressesthatoccurbetweenlaminaewith differenteffectivethermalexpan-
sioncoefficients(CTE) (e.g.,dueto differentfiberorientations)andthatcausedby moisturecontent
variationsmayalsobecalculatedusing,for example,theclassicallaminationtheory.In eachlevel of
study,certainassumptionshaveto bemadetorendertheproblemmoretractable.

As afirst approach(levels1and2),a "thick cylindermodel"(fig. 2) (ref. 31)wasdevelopedto
simulatethethermomechanicalbehaviornearafiber in agroupof fiberswith agivenfiber volumefrac-
tion. In this model,thestressandstrainfieldsin athick cylinderunderuniformpressurewerederived
basedon theclassicalelasticitytheory.Usingsuchathick cylindermodel,theresidualstressesestab-
lishedin a modelsinglefiber-matrixsystemrepresentingvariouspolymercompositeswerecalculated.

In practicallyall advancedpolymercomposites,thematrixhasagreaterCTEthanthefiber,
which subjectsthefiber to acompressivestress.Formostpracticalvolumefractionsof fibers, thematrix
will generallybesubjectedto aradialcompressionatthefiber-matrixinterfaceanda tangentialtensile
stress.Evenin theabsenceof agoodchemicalbond,thisradialcompressionagainstthe interfacepro-
videsfriction forcesto assistin the loadtransferprocessbetweenthefiber andthematrix.These
mechanicalbondsareparticularlyimportantfor thermoplasticcompositesin which chemicalbondsare
difficult to form.Themagnitudesof suchresidualthermalstressesatthemicroscopiclevel havebeen
calculatedfor thecompositesystemsbeingconsideredfor spaceapplications.Equation(1) wasutilized
in thesecalculations,whichweremeantto estimatetheordersof magnitudesof thesemicroscopic-level
stresses:

(o_,n-af) AT

P= 1 [r} +r2 _ l-vf (1)

E----_--2-'5-i-2 / +__rm-r f + Vra Ef

In this equation, tx, E, r, and v are, respectively, the CTE, elastic modulus, effective radius, and

volume fraction of the fiber (f) or the matrix (m). Derivation of this equation was based on a single-fiber

system, but did include the effect of fiber volume fraction (ref. 31). In the case of V r = 0.6, r_lr 2 = 0.6

and equation (1) may be further simplified to estimate the magnitudes of P/AT for a variety of com-
posites. The results of such calculations are given in Table 1.

The TCM analysis indicates that, at the microscopic level, the matrix generally is subjected to a

radial compression and a tangential tensile stress at the fiber-matrix interface when the end-use tempera-

ture (Te) is lower than the curing temperature or crystallization temperature (Tc). The lower the end-use

temperature, the greater the magnitudes of these residual stresses. When good chemical bonding is
absent, this radial compression against the interface provides a mechanical bond between the fiber and

the matrix. The magnitudes of such residual thermal stresses at the microscopic level for high modulus

carbon fiber-PPS composites are of approximately 83x103 Pa/K (Table 1). With Tc = 175 °C and Te =

25 °C, we have p = 12.5 MPa. The magnitude of this interfacial compressive stress will drop to 7.47
MPa when the C/PPS specimen is heated to 85 °C. The fact that microcracks in C/PPS were observed

after the second-half (heating) cycle, but not after the first-half (cooling) cycle, may be ascribed to the

reduced interfacial adhesion (compressive stress) when the composite was raised to a higher tempera-

ture. Although the residual stress magnitudes caused by differential CTE's between layers would also be
reduced with a higher Te, these magnitudes were obviously sufficient to overcome the weak interfacial
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adhesionbetweencarbonfibersandthePPSmatrix,leadingto interfacialdebondingand,thus,the
observedmicrocracking.

At themoremacroscopicscale(betweenlaminas),achangein temperature(AT) or moisture
contentof a laminatedcompositestructurecausesa variationin its dimensionsproportionalto the
changein temperature(AT) or moisturecontent(AC)andits initial dimensions.This leadsto thedevel-
opmentof athermalstrain(e_ or hygroscopicstrain(en).However,thermaldeformationof a laminais
constrainedby its neighboringlaminae,leadingto thedevelopmentof residualstresses,themagnitudes
of thesemacroscopicresidualstressesin eachlayerof acompositefor severalcompositesystemsmay
beestimatedusingtheclassicallaminationtheory.Thesestresseswill produceadditionalstressesat the
fiber-matrix interfaceandmustbeaddedto or subtractedfrom themicroscopicinterfacethermalstresses
mentionedearlier.

Themagnitudesof themacroscopicresidualthermalstressesin eachlayerof acompositefor
severalcompositesystems(not includingC/PPSsystem)havebeenestimated.Theresidualstressesin
individual pliesof a C/PPSlaminatearebeingcomputed.Their valuesareexpectedto beof thesame
orderof magnitudeasobtainedwith theC/epoxysystem.Theresults(Table2) indicatethat thetrans-
versestress(Crxxin the90° layers)is approximately12.9MPaat roomtemperatureandreducedto 8.1
MPaat -80 °C.This stresswill yielda local tensilestressat thefiber-matrixinterface.Theinterfacial
compressivestressmagnitudes(causedby thedifferencein CTEbetweenthefiber andthematrix) for a
typical C/epoxywill dropfrom 5.7MPaatroomtemperatureto 3.6MPaat -80 °C.This microlevel
stressis notsufficient to compensatefor thecorrespondingmacrolevelcontribution.Fortunately,rela-
tively strongchemicalbondsarepresentbetweencarbonfibersandtheepoxyresin.Thus,muchhigher
stressesarerequiredto induceinterfacialdebondingin epoxysystems.This is why theC/epoxycom-
positedid notexhibit microcrackingevenafterseveralhundredthermalcyclesbetween-45 °C and85
°C.The moistureeffecthasyet to beanalyzed.

AtomicOxygenErosionof PolymerComposites(ResidualProperties)

Theresponseof four typesof fiber-epoxycompositesto atomicoxygenwasinvestigatedby
Bianchi(ref. 32):carbonfiber-, aramid(Kevlar)fiber-,glassfiber-, andglass/carbon/glasshybridcom-
posites.In termsof massloss,thecarbonfiber-epoxycompositesufferedthegreatestrateof degradation
amongthisgroupof materials(Fig. 3).Thiswasfollowedby theKevlar, hybrid (notshown)andglass
fiber systems.That theglassfiber-epoxyandthehybridcomposite(with thetopandbottomlayersbeing
glassfiber-epoxylaminas)suggestedtheglassfiber to berelativelymoreresistantto theAO attack.In
light of flexural modulusandstrengthretention,theKevlarfiber compositestoodout to be thebest
againstAO degradation for long-term exposures. Again, the carbon fiber system exhibited the highest

rate of strength reduction (Fig. 4).

Surface morphology studies by optical microscopy and SEM indicated that the AO degradation

process in a composite followed a two-step process. In general, the matrix resin appeared to be less

resistant to AO. This observation is consistent with the LDEF findings (refs. 17,24,25). Where

accessible by AO, the resin located within the interstices between fibers tended to get eroded away first

(Fig. 5). This resin erosion step typically proceeded to one or two fiber diameters deep prior to any

significant fiber degradation was observed. The fiber erosion step was characterized by the formation of
surface pores, some larger and deeper holes, nonuniform diameter reduction (necking) and, when a long

exposure time was imposed, some fiber breakages (Fig. 6). Thinner (Fig. 7) and weaker fibers appeared

to be the preferential initiation sites of damaging cracks that were responsible for the reduction in

mechanical properties.
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RESEARCHNEEDSAND OPPORTUNITIES

Previousresearchefforts concerningenvironmentaleffectsonpolymercompositeswerelargely
limited to theobservationsof thechemicalandphysicalchangestakingplaceon thesurfaceof materials.
No systematiceffortshavebeenmadein elucidatingtheAO erosionmechanismsandkineticsof poly-
mercomposites.Little endeavorhasbeendirectedto assessingthesubsequent(residual)performanceof
polymerandcompositematerialsaftervariousdegreesof spaceenvironmentexposure.With abetter
understandingof erosionchemistryandperformance-spaceenvironmentrelationship,wewouldbe
betterpreparedto studythemaintainabilityandrepairabilityof spacematerialsandstructures.Also lack-
ing is a predictivemodelfor materialdurability thatincorporatesbothmaterialandspaceenvironmental
parameters.Theseeffortsareessentialto theestablishmentof improvedguidelinesfor choosingcom-
positesfor spaceapplications.

SpaceEnvironmentEffectson theMaterialPerformance

Futureground-basedsimulationstudiesshouldincludedeterminationof themechanicalproper-
tiesof variousaerospace-gradecompositesin relationto thespaceenvironmentalfactors.Theseproper-
ties includetheresistanceto foreignobjectimpacts,CTE,strength,stiffness,fracturetoughness,and
dampingresponse.

As anexample,compositesmaybeexposedto avaryingbutcontrolleddegreeof AO attackin a
simulatedspaceenvironment.Variousthermomechanicalpropertiesmaythenbemeasuredandcorre-
latedwith thechemicalandphysicalchangesof thematerialsurface.Thiseffort shouldbeaimedat
identifying themostcritical morphologicalor microstructuralfeaturesof materialsurfacesthatwould
governthedegradationeffect.Micromechanicsmodelsmaythenbedevelopedto allow for predictionof
thekey mechanicalpropertiesof composites.

Extensiveandindepthstudieson theresponseof variouspolymercompositessubjectedto low-
velocityimpactsby foreignobjectshavebeenconductedbymanyresearchers(e.g.,refs. 29,30).Many
key materialparametershavebeenidentifiedthatdictatetheimpactresistanceof polymercomposites.
Studiesshouldbeextendedto includehigh-velocityimpacts,simulatingtheinteractionbetween
micrometeoroidsandstructuralcomponents.Sincethedataon thevelocityanddimensionsof space
debris/micrometeoroidsarebecomingincreasinglyavailable,wearenow in abetterpositionto predict
theimpactdamagestateandtheresidualpropertiesof polymercomposites.Informationacquired
throughthesefuturestudieswill helpestablishscientificguidelines,basedonwhich onejudge if, when,
andhowto serviceor repairthespacestructures.

ModelDevelopment

TheLDEF communityperhapsshouldcollaborateto developamodelhavingsomepredictive
valuefor materialdurability.Thedevelopmentof themodelmaybeginbyconsideringthemasslossand
surfacestructuralchangescausedby thesimulatedattacksof AO, radiation,andmicrometeoroids/debris
undertheconditionsof hygrothermalvariations.Theeffectof masslosscanberelatedto theparameters
of microstructuralor morphologicalchanges(whichmaygeneratestressconcentrations,e.g.)mustalso
beconsideredperhapsfrom thestatisticalfracturemechanicsperspectives.Thissuggestionoriginates
from theobservationthatcharacteristicAO erodedanddebrisimpactdamagedsurfacesof materials
containmanydefectsof differing severity(varyingdefectsizeandcracktip radiusof curvature).All
theseeffectsshouldbeincorporatedin themodelandcomparedwith thematerial'sintendedservice
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function (e.g.,structuralintegrity) to predicttheresidualproperties(e.g.,strength)anddurability of the
material.

Maintenance of Space Structures

Future space missions may require development of a reliable maintenance methodology, this

may be accomplished by first evaluating the surface chemical and physical states (surface functional

groups and roughness profile) of potential space-bound polymers/composites exposed to At, UV radia-

tion, and hypervelocity impacts. These surface-eroded or damaged materials may then be coated with

fresh layers of identical material or other chemically compatible materials. Different degrees of surface
treatment (e.g., grit blasting or chemical cleaning) may be applied to the eroded structures prior to coat-

ing/repairing. The mechanical integrity (strength, stiffness, and impact resistance) of the repaired struc-

tures must then be measured as a function of the surface conditions. This task will produce desirable

knowledge on the candidate protection/repair materials and the surface treatments required.

Future space missions may also demand development of effective techniques to cure or poly-

merize the protection or repair materials in a space environment. Conventional aerospace techniques
such as press molding of polymers and autoclave curing of composites require a high temperature to

active the reaction and a high pressure to consolidate the microstructure. Application of a high tempera-

ture and high pressure to the structures in space is not a straightforward task. A better alternative is to
take advantage of the resources in the space environment to activate and accelerate the polymerization

reaction. The potential resources that can be utilized to initiate polymerization include gamma radiation,

electrons, protons, other charged particles, At, and visible/UV light. The feasibility of utilizing atomic

oxygen to initiate or accelerate polymerization reactions of silicon-, epoxide-, and imide-based resins
should be established.

CONCLUDING REMARKS

The spacecraft or the components placed in orbit will be subjected to constant attacks by the

various space environmental agents. The degradation mechanisms and kinetics of polymer composites in
the space environment must be addressed. Further evaluations of structural changes and property degra-

dation will allow us to gain a better understanding of the material-space environment interactions. The

space components may require protection, maintenance, and repair to ensure long-term reliability and

survivability. One goal of future research will be the establishment of an effective methodology to

maintain or service the space structures. Efforts should also be made in the future to develop a durability

predictive model that incorporates both material and space environmental parameters, and hopefully to

suggest improved guidelines for choosing polymer composites for space applications.
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Table 1. The values of P/AT for several fiber-resin combinations.

af Em
Fiber Matrix Ef (GPa) (E-6/K) (GPa)

am P/AT

(E-6/K) (KPa/K)

High-modulus Toughened epoxy 340 7
carbon fiber

Intermediate modulus Epoxy 270 8
carbon

High-modulus carbon PPS 340 7

High-modulus carbon PEEK 340 7

E-glass Epoxy

Kevlar-49 Epoxy

3.0 60 36

3.5 55 37

4.0 99

4.0

3.5 55

3.5 55

83

Table 2. Residual thermal stresses in a carbon/epoxy composite, [0/45/90/-451zs.

Layer AT = -97 °C AT = -154 °C AT = -222 °C

Number axx (Yyy (7xy O'xx O'yy axy (7x.x £Tyy O'xy

1(0 °) -195 8.12 0 -310 12.9 0 --446 18.6 0

2(45 ° ) 93.5 93.5 102 148 148 161 214 214 233

3(90 °) 8.12 -195 0 12.9 -310 0 18.6 --446 0

4(-45 ° ) 93.5 93.5 102 148 148 -161 214 214 -233
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(a)
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(b)

Figure 1. Microcracks in carbon fiber/PPS composites due to thermal cycling,
(a) optical micrograph and (b) SEM micrograph.
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Figure 2. Schematic of thick-cylinder model (TCM).
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Figure 5.
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An atomic oxygen eroded surface of the glass-epoxy composite.

Figure 6. Kevlar fiber/epoxy composite surface after a long exposure to AO.
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Figure 7.

L J

Postflexural test examination of an AO-eroded carbon/epoxy composite indicates

necked fibers being the preferential sizes of crack initiation.
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