
N94- 32432

CONFIG - INTEGRATED
ENGINEERING OF SYSTEMS AND THEIR OPERATION

Jane T. Malin

Automation & Robotics Division, Engineering
NASA Johnson Space Center

Houston, TX 77058

Dan Ryan
MITRE

Houston, TX 77058

Land Fleming
Lockheed

Houston, TX 77058

ABSTRACT

This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation
from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the
function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported
in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG

supports integration among diverse modeling approaches (component view, configuration or flow path view, and
procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated

engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer
systems, and chemical processing and transport systems.

INTRODUCTION

The core of engineering design and evaluation focuses on analysis of physical design. Today's computer-Aided

Engineering (CAE) and Product Data Management (PDM) software packages can support concurrent engineering,
bringing together engineering and production design. However, depending on the engineering domain, they are
oriented toward geometry or continuous process and control parameters. They do not provide enough support for
conceptual design early in the life cycle or for engineering for operation, fault management, or supportability
(reliability and maintainability). Integrated modeling and analysis of system function, structure, behavior, failures

and operation is needed, early in the life cycle. The same models can also be reused to support design of fault
management software and procedures for the system.

Benefits of concurrent engineering include reduced costs and shortened time for system development. Benefits of
engineering for operations and supportability include more robust systems that meet customer needs better and that
are easier to operate, maintain and repair. Benefits of reuse in the design of software and procedures include faster
software development and more robust fault management.

Conventional system modeling approaches were not designed for evaluating conceptual designs early in the system
life cycle. These modeling approaches require more knowledge of geomelric or performance parameters than is

usually available early in design. Thus, designers rely on "engmeenng judgment or systems engineering analysis
for early design evaluation. Usually, there is not a traceable path from these analyses to the conventional

simulations that are done later. Also, these conventional simulations are often too special-purpose to support
evaluations of operability, diagnosability, and supportability.

A more abstracted level of modeling would be sufficient for early conceptual design definition and evaluation, and
would also remain useful for some later analyses. Component-connection models are one such useful abstraction.
Discrete event models are another useful abstraction. Discrete event simulation technology combines both
abstractions, and has been used extensively for evaluation'of conceptual designs of equipment configurations in

operations research (3). In CONFIG, these abstractions, with some enhancements, are also proving to be useful in
def'ming and evaluating conceptual designs for several types of systems.

97

https://ntrs.nasa.gov/search.jsp?R=19940027926 2020-06-16T12:30:02+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42786571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DcsK, n Gr_al_of CONFIG
When the CONFIG project began, the goal was to support simulation studies for design of automated diagnostic
software for new life-support systems (9). The problem was to design an "expert system" on-line troubleshooter
before there was enough experience with the system for there to be an expert. The design engineer could use a model

of the system to support what-if analyses concerning how failures would propagate, interact, and become observable
and testable. With these analyses, development of detection and diagnosis procedures could proceed in parallel with

system design. This activity is similar to Failure Modes and Effects Analysis (5), but with comparative simulations
of failure effects for the purpose of developing diagnostic software. Conventional simulation software was not up to
this challenge, but discrete event simulation software, with enhancements, seemed promising. CONFIG supports
the use of qualitative models for applying discrete event simulation to continuous systems, and the use of graph

analysis on component-connection models.

CONFIG is designed to model many types of systems in which discrete and continuous processes occur. The
CONFIG 2 prototype was used to model and analyze effects of failures in: 1) a simple two-phase thermal control

system based on a Space Station prototype thermal bus, 2) a reconfigurable computer network with alternate
communications protocols, and 3) Space Shuttle Remote Manipulator System latching and deployment subsystems

(7). The core ideas of CONFIG have been patented (8). CONFIG 3 has added capabilities for graph analysis and for
modeling operations and procedures. Many potential uses for CONFIG in engineering and operations have been

identified.

How CONFIG Can Support Engineering Activities

Major engineering activities include systems engineering (functions), physical design engineering (materials,
processes, equipment performance and geometry, manufacturing, etc.), operations engineering (control, diagnostics,

procedures), and supportability (reliability, maintainability) and safety (failures and hazards) engineering. There has
been much progress in tool development to support systems engineering, physical design engineering, and control

engineering. However, there have been missing links between physical design engineering and the other engineering
areas. There has also been little software support for operations, supportability and safety engineering. Major

design goals of the CONFIG tool include support for conceptual design for operations and safety engineering, and

for bridging the gaps between physical design engineering and other types of engineering. These types of support
will be discussed in the sections that follow in the paper.

A major area of potential CONFIG 3 use is for concurrent or integrated engineering that addresses operability,
diagnosability and supportability. Operations procedures and software can be modeled along with the system model,
to evaluate specific procedures, protocols, rules or plans, when they are applied in various system configurations and
scenarios. Simulations of components and their interactions during operations can show how the system realizes

functional requirements. Functional requirements can be embodied in operations models. Approaches to sensor
location can be evaluated for support of test and diagnosis requirements. Redundancy, observability and composite

measurements can be investigated in operations scenarios and fault management scenarios.

Another major area of potential CONFIG 3 use is for design definition, evaluation and documentation. Component-
connection models are well suited for configuration and connectivity analysis, and for analysis of potential
interactions among system parts. Graph analyses can be used to investigate completeness, consistency, modularity,

efficiency, redundancy, fault tolerance and criticality. Graph analyses can also be used to locate potential failure
impacts and sources. Discrete event simulation is well suited for predicting critical system states in nominal
operation or when one or more failures occur. Such simulations can be used to compare alternative designs to each
other and to specifications, and may include statistical studies. For design documentation, CONFIG can be used to

capture functional goals in component and operations models.

CONCEPTUAL DESIGN SUPPORT

A major goal of the CONFIG project is to support conceptual design for operations and safety engineering. Major
tasks in conceptual design are design definition, evaluation (by simulation and analysis) and documentation. In
operations engineering, the focus is on the design of systems and procedures for operating, controlling and managing
the system in normal or faulty conditions. In safety engineering, the focus is on prevention of hazardous effects and
conditions in the physical system or its operation. In these types of engineering, complex interactions and interfaces

among system components and operations must be a focus. This is so because of interest in such issues as
operations efficiency and completeness, redundancy, fault tolerance and diagnosability. Yet, conventional physical
simulation modeling provides quantitative and geometric detail where it is not needed, and leaves out modeling that

98



is needed of operations, faults, and component interactions. Systems engineers can model functional components
and their connections, but are not supported in modeling a corresponding physical design and operations design that
together achieve these functions.

Component-connection representations are well suited for modeling and defining both physical system designs (as
structures of interacting components) and operations designs (as structures of interacting actions), as well as the

interactions between system components and operational actions. Discrete event models have been used for this type
of modeling in areas that focus on queueing and scheduling problems, but can be extended to support conceptual
modeling in operations and safety engineering. This type of modeling is also compatible with systems engineering
function diagrams (1).

When executable component-connection models define conceptual designs, they provide rich design documentation

that can achieve most design knowledge capture goals. Design decisions can be specified by modeling operations and
systems jointly, thereby showing functional intent. Design alternatives can be documented as executable models and
their evaluation results. Functional intent can also be explicitly documented in operations activity models.

Discrete event simulation technology can be adapted for this purpose by incorporating abstracted modeling of
component behavior and operating procedures. Such enhancements should accommodate modeling of both nominal
and faulty component operating modes and both nominal and recovery operations. These modeling capabilities can
be achieved by applying process modeling approaches from qualitative modeling and plan representation approaches
from planning in artificial intelligence research.

The principal types of simulation and analysis enhancements needed are global capabilities, since the discrete event
simulation approach is limited to local propagation of discrete change events through a component-connection

structure. These global capabilities can be achieved by applying graph analysis techniques to the global component-
connection structure during simulation, and in static analyses.

INTEGRATING TYPES OF ENGINEERING

Another goal of the CONFIG project is to help bridge the gaps between physical design engineering and other types
of engineering, especially operations engineering and systems engineering. Such gaps impede progress in
integrating engineering. The most important cause of these gaps is lack of modeling approaches that could support
clean mappings among models. The CONFIG project integration philosophy is support for loose coupling among
engineering support tools, so that relevant information from one tool can be selected, dispatched and mapped or
translated for use by another tool. Although a single data base of interrelated models is not needed for integration,
mappable modular information is needed from each tool, and distributed operation of heterogeneous tools should be

assumed. Attention also needs to be paid to how selected information can be reused and how consistency can be
maintained. Since many such tools, including CONFIG, use model libraries, such issues can be dealt with at both
the library and the application level.

Some of these issues have been addressed in CONFIG design, to support intemal integration of modeling approaches
and separation of modeling and analysis concerns. Since CONFIG is intended to support incremental modeling and
modeling options, modularity of models and analyses is supported. This modularity is supported by the object-
oriented approach and explicit interface definitions among model types and between models and their graphical
presentations.

To integrate with other types of engineering, relations between notations and representations need to be identified.
Such relations can form a basis for the activities of selection, translation and mapping that support coordinated and

integrated engineering. To illustrate integration with physical design engineering, we use a process engineering
example (11). In process engineering, component-connection models can correspond to the process plant structures

that are used in the sequential-modular approach to generating flowsheeting simulations. Likewise, components
correspond to equipment, which is modeled next.

Component-connection models are closely related to functional diagram notation in systems engineering. In
addition, functional information, in the form of goals for actions, is central to operations models in CONFIG.

These goals describe variables that correspond to states in the system model components. Mapping to systems
engineering models should not be difficult.

99



In operations and support engineering, tools are emerging for scheduling, planning, and representing procedures. The
integration problem is to support conceptual design of operations so that the results can be reused in these tools.
Operations modeling in CONFIG has been designed to correspond to current planning representations, by including
goals in the activity models to achieve or maintain states. Thus, for example, CONFIG could be used both to
evaluate the output of a planning or procedure development tool, and to provide a problem to a planning tool. These
same capabilities could be used during operations, for evaluation of design changes for procedures, plans or schedules
in the context of the current situation.

CONFIG 3

The focus of CONFIG 3 work has been on preparing and demonstrating a solid foundation for both product

development and further integration studies. CONFIG has been reimplemented in a standard object-oriented
language, in modular and well-documented form. The project approach has been to incrementally integrate advanced
modeling and analysis technology with more conventional technology. The prototype integrates qualitative
modeling, discrete event simulation and directed graph analysis technologies for use in analyzing normal and faulty
behaviors of dynamic systems and their operations.

CONFIG 3 has been designed for modularity, portability and extensibility. A generic directed graph element design
has been used to standardize model element designs and to promote extensibility. This directed graph framework
supports integration of levels of modeling abstraction and integration of alternative types of model elements.

CONFIG provides intelligent automation to support nonprogrammer and nonspecialist use and understanding.
CONFIG embeds object-oriented model libraries in an easy-to-use toolkit with interactive graphics and automatic
programming.

Enhanced Discrete Event Simulation Capabilities

In traditional discrete event modeling and simulation, state changes in a system's entities, "events", occur discretely
rather than continuously, and occur at nonuniform intervals of time. Throughout simulation, new events are added
to an event list that contains records of events and the times they are scheduled to occur. Simulation processing
jumps from one event to the next, rather than occurring at a regular time interval. Computation that results in
creation of new events is localized in components, which are connected in a network. Any simulation run produces a
particular history of the states of the system, and random variables are used in repeated runs to produce distributions
of system output variables. These statistical simulation experiments are used to compare design alternatives.

To enhance this discrete event simulation approach to accommodate abstracted qualitative modeling of continuous
behavior of system components, a number of new concepts and methods were developed for CONFIG. These
concepts and methods include a component model with operating modes, types of links connecting components
("relations" and "variable clusters"), new state transition structures ("processes"), methods for representing qualitative
and quantitative functions ("process language"), and a new simulation control approach.

These enhancements make discrete event simulation techniques available for evaluating conceptual designs for
systems and their operations. Engineers can investigate how system components will interact in operations
scenarios, in which some components can be nominal and some can be faulty, and in which effects of single or
multiple faults can be local or can interact and propagate through the system. Simulations can be used to see
whether system designs meet functional or redundancy requirements. Simulations can also be used to investigate
alternatives for instrumenting the system, and for detecting and diagnosing faults.

Di_aph Analysis Capabilities

The CONFIG Digraph Analyzer (DGA) makes graph analysis techniques available for evaluating conceptual designs
of systems and their operations. The DGA is based on reachability search. This search is implemented genetically
so that it can be applied to any of the many types of graph data structures in CONFIG. The DGA user may specify
constraints that limit the search in various ways. The results of the reachability analysis may be written to a f'de,
presented as a textual display, or the paths found may be highlighted on an iconic screen display of the graph. In
textual output mode, the DGA may also display metrics associated with the graph topology such as path lengths.
Since the DGA is generic, it can be used on simplified component-connection models of systems or operations
before detailed modeling has been completed.

100



The ability to impose constraints on the graph search allows the user to tailor analyses for a wide range of purposes.
Analyses of completeness, consistency and modularity can be supported, such as ensuring that all electrically
powered devices in a model are on an electrical circuit. Analysis of failure sources and impacts can be done by
tracing the paths of impact of a given failure source.

System Modeling

Devices are the basic components of a CONFIG system model, which are connected together in topological model
structures with Relations. Device behavior is defined in operating and failure Modes, which contain mode dependent
and mode transition processes. Modes are connected together in a mode transition diagram which delineates the

transition dependencies among the individual modes. Device Processes def'me change events in device variables,
which are conditionally invoked and executed with appropriate delays during a simulation. In terms of qualitative
process theory (4), a change in a component variable or a mode can be equivalent to passing a landmark value and

reaching a new qualitative range. Processes define time-related behavioral effects of changes to device input
variables, both direction of change and the new discrete value that will be reached, possibly after a delay. Faults and
failures can be modeled in two distinctly different ways. Failure modes can be used to model device faults. Mode-
transition processes can be used to model device failures that cause unintended mode changes.

Relations connect devices via their variables, so that state changes can propagate along these relations during
simulations. Related variables are organized into variable clusters, to separate types of relations by domain (e.g.,
electrical vs. fluid connections). Relations can also connect Devices with device-controlling Activities in operations
models.

Flow Path Modelint,

There are two inherent difficulties in modeling flows by means of CONFIG device processes. First, processes in
CONFIG are by definition local descriptions of a device's behavior while flow is in fact a global property of the
modeled system and the substances being subjected to flow within the system. Second, in many cases a modeled

system can undergo dynamic changes in topological structure during the course of its operations, while any process
descriptions involving flow must often rely on assumptions that some aspects of the device's relationship to the
system topology are static. These factors severely limit the reusability of device descriptions to a limited set of
possible system topological structures.

A flow-path management module (FPMM) was implemented to address these problems, by interrupting simulation

to operate on a global flow path layer of the model. The FPMM is separate from the module implementing local
device behavior, but the two modules are interfaced via flow-related state variables in the modeled system's
component devices. During simulation, the behavior modeling module notifies FPMM of local changes in a
device's state and FPMM recomputes the global effects on flows produced by the local state change. The FPMM
then updates the state of flow in all device affected by the recomputation, and this in turn may cause other processes
to be invoked that result in further local changes. This interface design makes it possible for the user to write local
device process descriptions that do not depend on any assumptions concerning the system topology but yet are
capable of describing the mutual dependencies between the device and the system flows. Therefore, these process
descriptions are highly reusable.

For large models, it would not be feasible to examine each device in a system every time any one of them underwent

a process-induced state change during a simulation. FPMM therefore constructs a simplified representation of the
system as a collection of aggregate objects referred to as "circuits." The devices within a given circuit are not
manipulated by FPMM unless the flow state of the circuit has changed.

The complexity of the algorithm for processing the effects on system flows due to one device state change is the
product of the average number of devices per circuit times the average number of circuits per device. Unfortunately,
the number of circuits is itself a nonpolynomial function of the average number of connections to a device in the

system (degree of the node). To increase the size of systems for which the algorithm's complexity is tractable, a
second class of aggregates referred to as "clusters" was introduced. Clustering reduces a graph to a hierarchy of
alternating serial and parallel clusters (6). The complexity of flow computations is a linear function of the average
degree of the nodes for cluster-based representations. The_:e are many practical examples of systems that are only
partially reducible to clustering representations. For such systems, F'PMM produces a hybrid representation
consisting of a set of circuit objects in which clusters are treated as individual nodes. This hybrid approach can
represent any arbitrary system topology, unlike pure clustering, and will allow considerably more efficient flow
computations for most topologies than would pure circuit representations.

101



The "circuits", which are component configuration representations, simpfify and separate analysis of state changes

that produce changes in global configuration of flow. In many cases, configuration determination alone can be
sufficient to verify flow/effort path designs, to establish flow paths for a continuous simulation, for reconflguration
planning, and for troubleshooting analysis (see Ref. [2] on cluster-based design of procedures for diagnosis, test,
repair and work-around in a faulty system).

Ope_rations modelin_
Activities are the basic components of a CONFIG operations model, which are connected together in action
structures with Relations. They represent procedures or protocols that interact with the system, to control and use it
to achieve goals or functions. Each activity model can include evaluable specifications for what it is intended to
achieve or maintain. Activity behavior is defined and controlled in a sequence of phases, ending in an evaluation of
results. Activity behavior is defined by processes that simply model direct effects of actions, or that control device
operation and mode transitions to achieve activity goals. Relations define sequencing and control between activities
and connect Devices with device-controlling Activities.

Operations models are designed to support operation analysis with procedure models. These models are designed to
support analysis of plans and procedures for nominal operation. They are also designed to support simulation and
analysis of proposed design changes (reconfigured systems and revised procedures) that are developed during
operations in response to failures. The procedure modeling elements are designed for reuse by intelligent replanning
software, and for compatibility with functional modeling in systems engineering.

Model Development & Intem'ation Ca_bilities and Approach
CONFIG provides extensive support for three separable yet tightly integrated phases of user operation during a
modeling session: Library Design, Model Building, and Simulation and Analysis. This includes a graphical user
interface for automated support of modeling during each of the phases including the development of object-oriented
library element classes or templates, the construction of models from these library items, model inspection and
verification, and running simulations and analyses.

The integration between the phases enables an incremental approach to the modeling process by allowing the user to
repeatedly and rapidly incorporate into a perhaps initially simple model, lessons learned from a simulation or other
analysis of that model or combination of models. This information might be used to explore a range of
progressively more detailed, or simply different, structural, behavioral, and functional modifications to the various

types of CONFIG models such as: addition, deletion, and reconfiguration of elements of the model layout;
substitution of functionally similar elements; selective modification and redefinition of the structure and behavior of
the classes from which the elements in a model were instantiated. Additionally, CONFIG's support for these phases

as separate user activities fosters the achievement of concurrent engineering goals by allowing library definition,
model building, and model analysis to be performed by different individuals at different times depending on area of

expertise and availability of resources. Finally, support for the model building phases spans all types of modeling
that can be performed in CONFIG including component structure, behavior and flow, and activity goals and
structure.

The various types of model elements are instances of class det'mitions which are located in libraries, either CONFIG-

provided or user-defined. These libraries are themselves objects which are hierarchically organized to utilize the full
benefits of the object-oriented approach including inheritance. The library builder may construct one library by

accessing the elements of the superlibrary and creating new elements as subclasses of the superlibrary's elements.
Thus, a fundamental aspect of the automated modeling process in CONFIG is its support for creating, modifying,
and storing libraries of classes, or model element templates, from which models may be constructed.

Initially the library designer may create his own object-oriented and extensible Qualitative Process Language of
Variable Types, Operators, and specialized Operations which will subsequently be used to describe Device level
behavior. This ability to define a domain-specific language is an important feature of CONFIG in that it does not
restrict the modeler to some particular modeling language and allows him to describe the system easily using his

own qualitative or quantitative vocabulary. Additionally, the library designer may then go on to create specialized
subclass hierarchies of a number of other different types of CONFIG elements including Devices, Relations, Variable

Clusters, and Activities.

102



TheDeviceClass hierarchy illustrates how CONFIG uses the power of object-oriented definition of model elements.
A Device Class defines a template from which a specific qualitative model of device behavior may be instantiated or
stamped out. Device Classes not only def'me attributes or variables for which all instances of the class will provide
instance-slx_ific values, but also Modes of operation consisting of Mode Dependent and Mode Transition Processes
that are conditionally invoked and executed with appropriate delays during a simulation. The various modes of
operation are grouped together in the Mode Transition Digraph, a composite object, which may be incrementally
modified as it is inherited down the Device Class hierarchy. The Processes associated with Modes contain
Statements which are written by the modeler making use of the domain-specific Qualitative Process Language.

Creation of various configurations of system models may then proceed graphically and interactively. The model

builder makes use of a model building window in which instances of Device and Relation Classes from a particular
library are selected via mouse interaction from palettes. These instances are connected and arranged on a design
canvas. Finally, CONFIG's graphical support for graph reachability and flow analysis and the running of
simulations may then be used. Digraph analysis may be used on models with simpler device behavior definitions,
and discrete event simulation can use more detailed device models.

Although CONHG has been designed as a complete object-oriented qualitative modeling and simulation system
which is able to stand alone with communication proceeding through use of its graphical user interface, an additional
goal has been to provide the ability to integrate CONFIG with other CAE tools and data base management systems.
This goal has been achieved and is reflected in the implementation of the CONFIG Programmatic Interface (CPI),
which defines a set of functions and protocols for interacting with CONFIG. The CPI provides an avenue for other
systems to interact with CONFIG, and for integration with object-oriented data bases.

Care was taken to select software platforms for CONFIG that are portable to most Unix work stations. The

Common Lisp Object System (CLOS) was selected as the software platform for this reason. CLOS is a highly
standardized language, and two vendors produce Lisp compilers for most of the commonly available work stations.
The user interface was implemented using Common Lisp Interface Manager (CLIM), another standardized tool built
on CLOS and available from the same vendors. The most recent version of CLIM is designed to exploit the
resources of the particular windowing system being run by the host machine so that the "look and feel" of CONFIG
can be familiar.

Areas of f01_ure work

There are several areas for enhancement that we are planning to pursue. One is to provide a more complex and
complete operations modeling capability. Another is to further enhance the discrete event simulation capabilities to
include facilities for managing and documenting simulation experiments. We plan to integrate with an object-
oriented data base management system. We also have plans for improving and enhancing flow path management and
digraph analysis capabilities.

CONCLUSIONS

The CONFIG prototype demonstrates advanced integrated modeling, simulation and analysis to support integrated
and coordinated engineering. CONFIG supports qualitative and symbolic modeling, for early conceptual design.
System models are component structure models with operating modes, with embedded time-related behavior models.

CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in
dependencies among components. Operations and procedure models are activity structure models that interact with
system models. The models support simulation and analysis both of monitoring and diagnosis systems and of
operation itself. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance,
and analysis of the development of system effects of problems over time, including faults, failures, and procedural or
environmental difficulties.

CONFIG has many attributes that aid commercialization. The core CONNG concepts are patented. CONFIG
integrates advanced technology with mature discrete event simulation and digraph analysis technology bases. In the
years of work on CONFIG, a number of requirements have been discovered and a number of technical and product
problems have been solved. The prototype and its design are well documented, to ease conversion of all or part of
the design to a supported product. CONFIG provides hooks and placeholders for further enhancements. CONFIG
takes advantage of sophisticated capabilities in object-oriented databases and graphical interfaces. Commercial
versions of these technologies appear to be mature enough now to support this type of advanced CAE tool.

103



There are several possible commercialization approaches for CONFIG. One is to simply develop a commercial
version of the CONHG tool. Another is to enhance an existing tool for object-oriented modeling or discrete-event
simulation. Another approach is to integrate CONFIG with a Process simulation or Control engitw, ering tool in a
CAE environment.

ACKNOWLEDGEMENTS

The authors wish to thank Bryan Basham for significant design and coding contributions to all aspects of the
CONFIG 3 prototype, prior to his leaving the project. We also thank Leslie Ambrose, Ralph Krog and Debra
Schreckenghost for their contributions to user interface design, Brian Cox for his cona'ibutions to discrete event

simulation design, Daniel Leiiker, for his contributions to operations modeling design, and Sherry Land, for her
contributions to digraph analysis design. We also thank Kathy Jurica for her continuing management support.

REFERENCES

1. Alford, M. Strengthening the System Engineering Process, Engineering Management Journal, Vol. 4, No. 1,
March, 1992, pp 7-14.

2. Farley, A. M. Cluster-based Representation of Hydraulic Systems, Proc. 4th Conference on AI Applications,
March, 1988, pp. 358-364.

3. Fishman, G. S. Principles of Discrete Event Simulatiorl. New York, NY: Wiley, 1978.

4. Forbus, K. Qualitative Physics: Past, Present, and Future. In Exploring Artificial Intelligence (H. Shrobe and
AAAI, eds.). San Mateo, CA: Morgan Kaufmann, 1988.

5. FuUwood, R. R. and Hall, R. E. Probabilistic Risk Assessment in the Nuclear Power Industry: Fundarnenml_ alld
Applications. Pergamon Press, 1988.

6. Liu, Z. and Farley, A. M. "Structural Aggregation in Common-Sense Reasoning". Proc. 9th National

Conference on Artificial Intelligence (AAAI-91), July, 1991, pp. 868-873.

7. Malin, J. T., B. D. Basham and R. A. Hams, "Use of Qualitative Models in Discrete Event Simulation for

Analysis of Malfunctions in Continuous Processing Systems." Artificial Intelligence in Process Engineering
(M. Mawovouniotis, ed.), Academic Press, pp. 37-79, 1990.

8. Malin et al., U. S. Patent 4,965,743, "Discrete Event Simulation Tool for Analysis of Qualitative Models of
Continuous Processing Systems" October, 1990.

9. Malin, J. T., and Lance, N. "Processes in construction of failure management expert systems from device design
information". IEEE Trans. on Systems. Man. and Cybernetics, 1987, SMC-17, 956-967.

10. Malin, J. T. and Leiiker, D. B. "Functional Modeling with Goal-Oriented Activities for Analysis of Effects of
Failures on Functions and Operations". Informatics and Telematics, 1991, 8(4), pp 353-364.

11. Winter, P. Computer-Aided Process Engineering: The Evolution Continues. Chemical Engineering Progress,
February, 1992, pp 76-83.

104


